
D
A Provable Security
Treatment of Isolated
Execution
Environments and
Applications to
Secure Computation
Bernardo Portela
MAPi
DCC
2018

Orientador
Manuel Barbosa, Professor Auxiliar, FCUP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/148429608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

iv

Dedication and acknowledgements

First and foremost, I would like to express my dearest appreciation for the constant support
and guidance of my advisor Dr. Manuel Bernardo Barbosa. Not only was he the one
responsible for making me want to pursue research in Cryptography, but he was also the
most significant factor towards the resolve I presently have to give the best of myself at all
times. I truly hope this Ph.D. is just the beginning of a long career of collaboration.

I would also like to thank my all my co-authors, especially Bogdan Warinschi and Guillaume
Scerri. They provided crucial guidance to my work in its embryonic stages, and helped make
what seemed like a nice research challenge into the contribution that is now my thesis.

I would like to thank my loving parents and girlfriend for doing their absolute best to inspire
me, and to ensure that I was always confident and happy. They made me the person I am
today, and I am certain that without that love, this thesis would have never been written.

Furthermore, a big thanks to my research team. They have been with me at all times along
the way, and have been massively supportive throughout all the work on this Ph.D. I hope
to count on them from here onwards, for both research and drinks.

Last, but most certainly not least, to all of my friends with whom I have cherished great
memories throughout this Ph.D. They are living proofs that there is no subject immune from
mockery, and boy am I thrilled to celebrate this chapter of my life with them.

v

vi

Abstract

Exciting new capabilities of modern trusted hardware technologies allow for the execution
of arbitrary code within environments isolated from the rest of the system and provide
cryptographic mechanisms for securely reporting on these executions to remote parties. Rig-
orously proving security of protocols that rely on this type of hardware raises two challenges.
The first is to develop scalable new proof techniques that permit dealing with new forms
of composition of cryptographic primitives that arise in this setting. In particular, dealing
with implementations of cryptographic primitives provided explicitly to an attacker requires
extending the set of proof techniques commonly used for security analysis.

We present the first steps in this direction by providing formal security definitions, generic
constructions and security analysis for attested computation, labelled attested computation and
key-exchange for attestation. The approach taken is incremental: each of the concepts relies
on the previous ones according to an approach that is modular. These building blocks are then
demonstrated to be applicable in a variety of settings for security-critical applications, namely
secure outsourced computation, secure function evaluation and multiparty computation.

Our constructions formalise the intuition of using modern hardware to play the role of a
trusted third party. The attestation guarantees of trusted hardware technologies can be
used to bootstrap secure communications between participants and the trusted third party.
The load of communications and computations on participants only depends on the size
of each party’s inputs and outputs, and is thus small and independent from the intricacies
of the functionality to be computed. The remaining computational load (essentially that
of the functionality being computed) is moved to an untrusted party that is running this
trusted hardware machine, an attractive feature for Cloud-based scenarios. Finally, an
experimental evaluation of the proposed solution on SGX-enabled hardware is presented. The
implementation is open-source and functionality agnostic: it can be used to securely outsource
to the Cloud arbitrary off-the-shelf collaborative software, enabling secure collaborative
execution over private inputs provided by multiple parties.

vii

viii

Resumo

Desenvolvimentos recentes em hardware confiável permitem a execução de software em ambi-
entes isolados do resto do sistema, e fornecem mecanismos criptográficos para validar resulta-
dos perante participantes remotos. Demonstrar rigorosamente segurança em protocolos que
dependem deste tipo de tecnologias levanta dois desafios de investigação. O primeiro está no
desenvolvimento de modelos de segurança que corretamente capturem as assunções e relações
de confiança neste novo cenário. O segundo está no desenvolvimento de técnicas de prova
escaláveis que permitam lidar com novas formas de composição de primitivas criptográficas
existentes neste ambiente. Mais especificamente, a necessidade de capturar um modelo onde
implementações de primitivas criptográficas são providenciadas diretamente ao adversário
faz com que seja ncessário extender as técnicas clássicas de prova que são habitualmente
utilizadas para realizar análises de segurança.

Este trabalho representa os primeiros passos nesta direção, apresentando definições formais,
construções genéricas e respetiva análise de segurança de attested computation, labelled at-
tested computation e key-exchange for attestation. A abordagem é incremental: cada um
destes conceitos faz uso dos anteriores de uma forma modular. A aplicabilidade destas
construções é demonstrada num conjunto de cenários que permitem execução remota de
código para computação segura sobre dados privados.

As construções formalizam a intuição de usar ambientes isolados como participantes con-
fiáveis. As garantias de atestação conseguidas por estes hardwares podem ser utilizadas para
iniciar comunicações seguras entre participantes e ambientes isolados. O peso de comunicação
e computação dos participantes só depende do tamanho do input/output de cada um, sendo
como tal reduzido e independente da complexidade da funcionalidade a ser computada. O
restante peso computacional (essencialmente, o da função a executar) encontra-se do lado
do participante não-confiável equipado com hardware seguro, o que é um cenário atrativo
quando se trata de aplicações baseadas em Cloud. Por fim, é apresentada uma avaliação
da solução desenvolvida em hardware SGX. A implementação é open-source, e é agnóstica a
nível de funcionalidade: pode ser usada para executar bibliotecas existentes de forma segura
na cloud, permitindo o processamento de dados privados vindos de múltiplos participantes.

ix

x

Contents

List of Tables xiii

List of Figures xvii

1 Introduction 1

1.1 Contributions . 4

1.2 Sources and structure . 11

2 Preliminaries 15

2.1 Basic cryptographic primitives . 15

2.2 Key Exchange . 21

2.3 Secure multiparty computation . 25

3 Related Work 31

3.1 Basic mechanisms for secure computation . 31

3.2 Passively secure multiparty computation . 38

3.3 Actively secure multiparty computation . 42

4 Trusted hardware in cryptography 47

4.1 Software Guard Extensions . 47

4.2 TrustZone . 50

4.3 Other approaches to hardware attestation . 52

4.4 Protocols relying on trusted execution . 53

4.5 Side-channel attacks . 56

xi

xii CONTENTS

5 Formalising Isolated Execution Environments 59

5.1 Isolated Execution Environments . 59

5.2 Attested Computation . 64

5.3 Labelled Attested Computation . 74

6 Secure Channels to Isolated Execution Environments 87

6.1 Attested Key Exchange for Attested Computation 87

6.2 Utility . 101

7 Secure Outsourced Computation 117

7.1 Secure Outsourced Computation . 117

7.2 An implementation of a secure SOC scheme 121

8 Secure Multiparty Computation 127

8.1 Secure Function Evaluation . 127

8.2 Multiparty Computation from LAC . 134

8.3 Relation to the UC approach . 150

9 Experimental results 159

9.1 Methodology and micro-benchmarks . 159

9.2 Side channels and resilience against timing attacks 161

9.3 Comparison with state-of-the-art MPC protocols 163

10 Conclusion 167

References 169

List of Tables

9.1 SGX Micro-Benchmarks . 161

9.2 LAC Components Benchmarks . 163

9.3 Minimum of two inputs . 164

9.4 AES – 128 bit key and 128 bit block size . 164

9.5 Hamming distance with different input sizes 165

9.6 Private set intersection with different set sizes 165

xiii

xiv LIST OF TABLES

List of Figures

2.1 Games defining the security of a symmetric encryption scheme. 16

2.2 Games defining existential unforgeability of a message authentication scheme. 18

2.3 Games defining the security of an authenticated encryption scheme. Cipher-
text indistinguishability (top) and existential unforgeability (bottom). 19

2.4 Games defining existential unforgeability of a digital signature scheme. 20

2.5 Game defining the correctness of protocol Π. 22

2.6 Passively secure two-party SFE security experiment 29

3.1 Example of garbled circuit transformation. 33

3.2 Naor-Pinkas OT protocol . 34

4.1 Process for remote attestation . 49

4.2 Generate procedure . 52

4.3 Building block procedure . 52

5.1 Parallel (left) and sequential (right) program composition. 62

5.2 Attested Computation scenario. 64

5.3 Games defining the correctness (left) and security (right) of an AC scheme. . 67

5.4 Games defining minimum leakage of an AC scheme. 68

5.5 First game hop for the proof of security of the AC protocol. 72

5.6 Second game hop for the proof of security of the AC protocol. 73

5.7 Description of simulator S . 75

5.8 Games defining the correctness (left) and security (right) of LAC. 79

5.9 Games defining minimum leakage of LAC. 80

xv

xvi LIST OF FIGURES

5.10 First game hop for the proof of security of the LAC protocol. 82

5.11 Second game hop for the proof of security of the LAC protocol. 83

5.12 Description of simulator S . 85

6.1 Game defining the correctness of an AttKE scheme. 89

6.2 Execution environment for AttKEs. 90

6.3 Details of the AttKE construction. 93

6.4 Game defining the execution environment for the security analysis of an AttKE
scheme for an arbitrary local identity id. O denotes all oracles associated with
the game. 94

6.5 Game defining the execution environment for the security analysis of an AttKE
scheme for an arbitrary local identity id. O denotes all oracles associated with
the game. 96

6.6 Game defining the execution environment for the security analysis of an AttKE
scheme for an arbitrary local identity id. O denotes all oracles associated with
the game. 97

6.7 Game defining the execution environment for the security analysis of an AttKE
scheme for an arbitrary local identity id. O denotes all oracles associated with
the game. 98

6.8 Game defining the execution environment for the security analysis of an AttKE
scheme for an arbitrary local identity id. O denotes all oracles associated with
the game. 99

6.9 Game defining the utility of an AttKE scheme when used in the context of
attested computation. 103

6.10 Game defining the utility of an AttKE scheme when used in the context of
attested computation. 104

6.11 First hop of the utility proof. 104

6.12 Second hop of the utility proof. 105

6.13 Third hop of the utility proof. 106

6.14 Details for running n parallel key exchange protocols. 109

6.15 Game defining the one-to-many utility of a AttKE scheme when used in the
context of attested computation. Compile and Verify refer to methods of the
underlying AC scheme. 110

6.16 Utility of adversarially composed AttKE. 112

LIST OF FIGURES xvii

6.17 Send oracle from G1′AttKE,A . 113

6.18 Run oracle from G3′AttKE,A . 114

7.1 Input integrity of a SOC scheme . 119

7.2 Input privacy of a SOC scheme . 120

7.3 SOC algorithms . 122

7.4 Game hops for integrity of the SOC scheme 124

7.5 Game hops in the privacy proof . 126

8.1 Real and Ideal security games for SFE. Fun can only be run once. 129

8.2 Boxing using Authenticated Encryption . 131

8.3 SFE Protocol algorithms. 133

8.4 Game defining protocol correctness. 137

8.5 Real and Ideal security games. 139

8.6 Boxing using Authenticated Encryption . 140

8.7 General SMPC protocol. 142

8.8 SMPC protocol untrusted scheduler. 143

8.9 Description of simulator S with respect to emulating local participants. 144

8.10 Description of simulator S with respect to emulating the remote machine. . . 145

8.11 Real world expanded. 146

8.12 First hop of the proof. 147

8.13 Second hop of the proof. 156

8.14 Third hop of the proof. 157

8.15 Description of functionality FCOM. 158

8.16 Description of functionality FOT. 158

8.17 Description of functionality FSFE. 158

9.1 Bird’s eye view of the implementations. 160

xviii LIST OF FIGURES

Chapter 1

Introduction

Technological developments in recent years have been gradually improving the processing
and storage capabilities of a wide variety of computational devices. This facilitates the
deployment of efficient security-critical services (such as Internet banking, electronic voting,
outsourced data management and computation) over commodity hardware, but in increas-
ingly difficult to control environments. These applications routinely manipulate sensitive
data and must ensure i. that attackers cannot tamper with their execution; and ii. that
no sensitive information is leaked. Yet, satisfying these guarantees on modern execution
platforms rife with vulnerabilities (e.g. in mobile devices, PCs) or inherently not trustworthy
(e.g., cloud infrastructures) is a major challenge.

A promising starting point for solutions is the usage of remote attestation capabilities offered
by modern trusted hardware: computational platforms equipped with this technology can
guarantee to a remote party various degrees of integrity for the software that it runs.
For instance, the Trusted Platform Module (TPM) can provide certified measurements on
the state of the platform and can be used to guarantee integrity of BIOS and boot code
right before it is executed. More recent technologies (e.g., ARM’s TrustZone and Intel’s
Software Guard Extensions (SGX)) have significantly expanded the scope and guarantees
of trusted hardware. They offer the ability to run applications in “clean-slate” isolated
execution environments (IEE) with isolation guarantees from anything else running on the
processor; the desired attestation guarantees come from reports that are authenticated by
the hardware, without any possibility of manipulation by co-located software, including the
operative system.

A second major challenge within this scope is to provide security guarantees that go beyond
heuristic arguments. Here, the established methodology is the “provable security” approach,
which advocates carrying out the analysis of systems with respect to rigorously specified
models that clarify the trust relations, the powers of the adversary and what constitutes
a security breach. The approach offers well-established definitional paradigms for all basic

1

2 CHAPTER 1. INTRODUCTION

primitives and some of the more used protocols. On the other hand, the success of applying
this approach to new and more complex scenarios fundamentally hinges on one’s ability to
tame scalability problems, as models and proofs, even for moderate size systems, tend to
be unwieldy. Some solutions to this issue exist in the form of compositional principles that,
when incorporated as a native feature in the security abstractions, allow to establish the
guarantees of larger systems from the guarantees on its components [Can01].

In this thesis we take a provable security approach to protocols that rely on the IEE-
capabilities of modern trusted hardware. It may be tempting to assume that, for the analysis
of such protocols, designing security models is a simple matter of overlaying/merging the trust
model induced by the use of such hardware over well-defined security abstractions. If this
were true, one could rely on established models and methodologies to perform the analysis.
Unfortunately, this is not the case.

Consider the problem of securely outsourcing the computation of a program P to a remote
machine. The owner of P wants to ensure that the (potentially malicious) remote platform
does not tamper with the execution of the program, and that it learns no information about
the input/output (I/O) behaviour of P . For remote machines with IEE capabilities, the
following straightforward design has been informally proposed in the literature [HLP+13]
and should, intuitively, provide the desired guarantees. First, execute a key-exchange with
a remote instance of an IEE; after the key exchange finishes, use the key thus established to
send encrypted inputs to the IEE, which can then decrypt and pass them to P . The output
returned by P is encrypted within the IEE and sent back to the user. The construction relies
on standard building blocks (key-exchange, authenticated encryption) so the security of the
overall design should be reducible to that of the key exchange and authenticated encryption,
for which one already has widely-accepted security models and constructions.

However, the following two important issues demonstrate that neither existent models nor
existent techniques are immediately suitable for the analysis of IEE-based protocols in gen-
eral, and for the protocol above in particular. The first is the concept of a party which is a key
notion in specifying and reasoning about the security of distributed systems. Traditionally,
one considers security (e.g., of a key-exchange) in a setting where there is a PKI and at
least some of the parties (e.g., the servers) have associated public keys. Parties and their
cryptographic material are then essentially the same thing for the purpose of the security
analysis. Contrarily, in the context of secure outsourcing using trusted hardware, there
is no reason why one should impose users to have long term keys; furthermore, privacy
considerations require that the cryptographic operations performed by the trusted hardware
on remote machines should not allow one to track different instances – which makes long term
cryptographic material inadequate as a technical anchor of a party’s participation in such
a protocol. Indeed, the desirable functionality for many usages of such systems is that the
cryptographic material associated with a computation outsourcing protocol (both for local

3

and remote parties) can be arbitrary and fixed on-the-fly, when the protocol is executed. An
interesting problem is, therefore, how to define the security of applications such as outsourced
computation in this setting, and how to rely on the asymmetry afforded by the trust model
specific to IEE systems to realise them.

The second issue is composability. In outsourced computation, one might be led to think
that security simply follows if the key-exchange is secure and the channel between the user
and the IEE uses authenticated encryption (with appropriate replay protection): if the only
information passed from the key exchange to the channel is the encryption key, then one can
design and analyze the two parts separately. While in more standard scenarios this may be
true, reliance on the IEE breaks the independence assumption that allows for composability
results: what the specification above hides is that the code run by the IEE (i.e., the program
for key-exchange, the one for the secure channels and the program that they protect) needs
to be loaded at once, or else no isolation guarantees are given by the trusted hardware.1 This
means that the execution of the different parts of the program is not necessarily independent,
as they unavoidably share the state of the IEE. An important question is, therefore, whether
the above intuitive construction is sound, and under which conditions can one use it to
perform IEE-enabled outsourcing of computation.

To summarise, protocols relying on IEE are likely to be deployed in applications with stringent
security requirements, so ensuring that they fall under the scope of the provable security
approach is important. Moreover, such applications are likely to be complex: inherently,
they involve communication between remote parties, incorporate diverse code executed at
different levels of trust, and rely on multiple cryptographic primitives and protocols as
building blocks (see, for example, the One-time password protocol based on SGX [HLP+13]).
However, key aspects of existing cryptographic models do not naturally translate to this
new setting and, perhaps more worryingly, the type of compositional reasoning enabled by
such cryptographic models is clearly unsuitable for protocols that rely on IEEs. These two
questions help motivate the work in this thesis.

1Intuitively, mechanisms such as SGX and TrustZone are designed to protect and provide attestation
guarantees over monolithic pieces of software, which must be fixed when an IEE is created and are identified
using a fingerprint of the code. To go around this restriction and compose multiple programs, we have two
options: i. to build a single composed program and load it in its entirety into an IEE (the approach taken
throughout the thesis); or ii. to use multiple IEEs to host the various programs, and employ cryptographic
protocols to protect the interactions between them using the (potentially malicious) host operating system
as a communications channel. This latter option would again lead to loading composed programs into each
IEE, since cryptographic code would need to be added to each of the individual programs, and this would
then lead to the same problem tackled in this work.

4 CHAPTER 1. INTRODUCTION

1.1 Contributions

Consider a setting where a Client wishes to have some program be securely executed in a
Server, which is equipped with the aforementioned IEE-enabling hardware. The client is
trusted, and the IEE-enabling hardware must behave according to the specified isolation and
attestation mechanisms, however no guarantees are ensured regarding the communication
channel to the Server, or the Server itself. Indeed, despite the trusted hardware behaving
according to the IEE description, the adversary should be able to freely execute arbitrary
code within it.

In order to enable confidentiality and integrity guarantees to the program running within
the untrusted Server, the Client must rely on attestation guarantees provided by the trusted
hardware. Moreover, the Client and Server expect the overhead incurred by relying on a
cryptographic protocol supported by trusted hardware to be minimal and, in particular, for
the overall cost to closely resemble the computational load of the outsourced computation
without security mechanisms.

Suppose the program to be outsourced is denoted P . The intuitive solution is to construct
a program P ∗, containing the original P and all the additional procedures required to run
P ∗ remotely and securely. As such, program P will need to be transformed (compiled in
the cryptographic sense of the word) into another program that, intuitively, will result from
the composition of a handshake/bootstrapping procedure that will establish a secure channel
with the IEE in which the program will be executed, and an instrumented version of P , that
uses the aforementioned secure channel to ensure that is indeed securely executed.

This intricacy hints towards the complexity challenges that arise when one wishes to enforce
correctness and security properties in composed programs running within IEEs, especially
when the goal is to allow for any program P to be combined with a specific bootstrapping
procedure (necessary to claim that the client can securely compute any function on the
Server). Furthermore, while having an attested bootstrapping procedure for a single secure
channel might suffice for the scenario provided, more complex settings will consider several
local users agreeing upon program P , and will thus require for this bootstrapping procedure
to consider multiple secure channels established to the same IEE, established in a potentially
asynchronous way.

The approach taken to formalising and realising such composition patterns has four main
stepping stones:

• The specification of a computational model for IEE-enabled machines. This includes
a formalisation of programs to be executed within these environments, a specification
of what is a program activation, what flavours of program composition are considered,
and a definition of the machine API, i.e. the interface made available between the IEE

1.1. CONTRIBUTIONS 5

machine and its holder.

• The formalisation of raw guarantees provided by IEEs with cryptographic functional-
ities. Two approaches are proposed in this sense. Attested computation formalises the
proposed application example considering a restricted model for program composition.
Labelled attested computation generalises the same notions for attested/non-attested
traces considering more flexible composition and attestation settings.

• A generic transformation from a passively secure key exchange combined with a scheme
for attested computation to the bootstrapping procedure referred above. This encom-
passes both the proposal of how key exchange can be constructed in a setting where
attested computation is performed, as well as several utility theorems describing the
guarantees obtained when attestation protocols are combined with this flavour of key
exchange.

• New efficient, authenticated and private remote attested computation applications rely-
ing on these composition-aware formalisations. More specifically, we propose protocols
for Secure Outsourced Computation, following the provided example where a single user
wishes to outsource the execution of program Q to an IEE, Secure Function Evaluation,
where multiple users want to run program Q over private inputs and retrieve respective
outputs, and Secure Multiparty Computation, where multiple users have a (potentially
reactive) functionality Q responding to private inputs and producing private outputs.

Details follow.

Isolated execution environments

Our first contribution is the proposal of a computational model for IEE-enabling machines.
This specification introduces an abstraction of what represents an IEE machine, and includes
several core definitions to rigorously analyse the execution of programs in these environments.
In this respect, we present the IEEs as idealised random access machines, whose behaviour
is fully characterised by a strictly defined interface allowing for program loading and input
passing (also referred to as program activation). We also require for the I/O behaviour of
programs within IEEs to only depend on inputs and on the currently executing program,
which essentially enforces isolation guarantees between concurring programs within the same
IEE, and for the only information revealed about the execution of programs within IEEs to be
contained in its I/O behaviour, preventing machine users to extract cryptographic material
held on the secure memory of the IEE.

More specifically, we consider two flavours of programs to be run within IEEs. Non-labelled
programs map to a simple execution model where programs are activated with inputs and
produce outputs. Composition of non-labelled programs considers the sequential execution

6 CHAPTER 1. INTRODUCTION

of two programs, and captures a deployment where the first program is the “attested part”,
the bootstrapping procedure for which the execution should provide attested outputs, and
the second program is the “unattested part”, the function to be executed, instrumented to
use the previously established secure channel. Labelled programs map to a more general
execution setting where programs are activated with inputs and labels. These labels can be
associated with different users and enable for more flexibility in deployment, as an arbitrary
number of programs can be composed in parallel or sequentially, with potentially several
stages of attestation.

It is emphasized that the proposed notion of machines is intended to be inclusive of any hard-
ware platform that supports some form of isolated execution. For this reason, the proposed
syntax is minimalistic, so that it can be restricted/extended to capture the specific guarantees
awarded by different concrete hardware architectures, including TPM, TrustZone, SGX,
etc. As an example, the described “vanilla” machine supports an arbitrary number of IEEs,
where programs can be loaded only once, and where multiple input/output interactions are
allowed with the protected code. This is a close match to the SGX/TrustZone functionalities.
However, for something like TPM, one could consider a restricted machine where a limited
number of IEEs exist, with constrained input/output capabilities, and running specific code
(e.g., to provide key storage). Similarly, the abstraction considers IEE environments where
the underlying hardware is assumed to only keep benevolent state, i.e., state that cannot be
used to introduce destructive correlations between multiple interactions with an IEE. Again,
this closely matches what happens in SGX/TrustZone, but different types of state keeping
could be allowed for scenarios where such correlations are not a problem or where they must
be dealt with explicitly.

Attested computation

This abstraction enables a formal treatment of IEE-based remote attested computation. A
user wishes to remotely execute a program P and relies on the cryptographic infrastructure
available within the IEE to attest that some incarnation P ∗ of this program is indeed
executing within an IEE of a specific remote machine (or group of machines). A general
solution to this problem relying on non-labelled programs is provided, in the form of a new
cryptographic concept called attested computation (AC). Two core guarantees are formalised.

First, it is required that the user’s local view of the execution is “as expected”, i.e., that the
I/O behaviour that is reconstructed locally corresponds to an honest execution of P . The
second guarantee is more subtle and requires that such an execution has actually occurred in
an IEE within a specific remote platform; in other words, the attested computation client is
given the assurance that its code is being run in isolation (and displays a given I/O behaviour)
within a prescribed remote physical machine (or group of machines) associated with some
authenticated public parameters. This latter guarantee is crucial for bootstrapping the secure

1.1. CONTRIBUTIONS 7

outsourcing of code: consider for example P to be a key-exchange protocol, which will be
followed by some other program that relies on the derived key. It must be the case that, at
the end of the key exchange, the remote state of the key-exchange protocol is protected by
an IEE.

The second guarantee required from attested computation follows naturally from the previous
observation. If the attested program keeps sensitive information in its internal state (which
is not revealed by its I/O behaviour as in the case of a key-exchange protocol) then execution
within the remote IEE should safeguard its internal state. If this were not the case, problems
would arise again when trying to compose P ∗ with some program that relies on the security
properties of P . Attested computation schemes where the instrumented program P ∗ might
leak more information in its I/O behaviour than P itself are excluded by introducing the
notion of minimal leakage, which essentially states that the I/O of an attested program does
not leak any information beyond what is unavoidably leaked by an honest execution.

Finally, a scheme for attested computation that relies on a remote machine offering a combi-
nation of symmetric authentication and digital signatures (a capability similar to what SGX
provides) is proposed, and it is shown that such scheme is secure in the defined context.

Labeled attested computation

The previous formalisation considers a somewhat simple setting, where a program consists
of an “attested part”, the bootstrapping procedure for the establishment of a secure channel,
and an “unnatested part”, the secure computation. Attestation guarantees are established
with respect to the first part of the execution, thus hindering the deployment of applications
where multiple (potentially asynchronous) stages of attestation are required. Furthermore,
attested computation requires for the full I/O behaviour to be maintained and validated.
This scenario aims to capture the interaction between a single party and an IEE, and it is
non-trivial to extend these guarantees to the interaction of multiple parties with the same
IEE when the goal is to reason about concurrent asynchronous interactions.

To overcome these problems, the notion of labelled attested computation (LAC) is introduced,
a powerful and clean generalization of its attested computation counterpart. In a nutshell,
this notion makes use of labelled programs where parts of the code loaded in an IEE
are marked with labels pertaining to users, such that individual users can get attestation
guarantees for parts of the code corresponding to specific labels. The gain is that users can
now be oblivious of other users’ interactions with the IEE, which leads to significantly simpler
and more efficient protocols. Nonetheless, the user can sill derive attestation guarantees about
the overall execution of the system, since LAC binds each users’ local view to the same code
running within the IEE, and one can use standard cryptographic techniques to leverage this
binding in order to obtain indirect attestation guarantees as to the honest executions of the

8 CHAPTER 1. INTRODUCTION

interactions with other users.

To understand the need for this generalization of attested computation, consider a scenario
where we now have n Clients that want to jointly execute a program in the Server. This
requires the IEE to run a compiled code consisting of n key exchange protocols, followed by
the actual program. Employing AC would require for the execution of all key exchanges (the
“attested part”) to be performed sequentially on a pre-determined order, and for all partici-
pants to exchange execution traces, since attesting the trace of the IEE implies attesting its
execution with all users.

Using LAC, we assign a different label to the key exchange of each user (say, the identity
of the user that should be running that key exchange); LAC then guarantees, for each user,
that the steps of its key exchange (and only those) have been executed properly. Attestation
only requires the user’s own communication with the IEE and is independent of the other
exchanges. Furthermore, since the attestation guarantees provided by LAC bind an attested
trace to the code running within the IEE, a local user can be sure that the other key exchanges
are being executed with specific parties: the code running inside the IEE will contain public
cryptographic material that enables the IEE to authenticate all the local parties and hence
authenticating the code implicitly authenticates all the parties participating in the protocol.

Syntax and a formal security model for LAC will be provided, and then shown how this
primitive can be used to deploy arbitrary (labelled) programs to remote IEEs with flexible
attestation guarantees. The proposed provably secure LAC protocol relies on hardware
equipped with SGX-like IEEs. The core guarantees are intuitively similar to a translation of
attested computation to a labelled setting. Correctness ensures that a local user can accu-
rately reconstruct a partial view of I/O sequence that took place in the remote environment,
for an arbitrary set of labels. Security imposes that an adversary with control of the remote
machine cannot convince the local user that some arbitrary remote (partial) execution of a
program P has occurred, when it has not. Observe that this provides no guarantees with
respect to parts of the execution hidden from the client, or outside the scope of some attested
label set. LAC schemes must also satisfy the notion of minimal leakage, necessary for the
same reasons as previously explained.

It is also expected for LAC to find applications beyond the specific one considered in this
work. For example, an application which should be a direct application of LACs is the
implementation of a secure bulletin board. Consider an IEE which receives inputs (which
can optionally be authenticated) and appends them to an internally maintained bulletin
board. Upon request of an arbitrary party, the IEE returns the current content of the IEE.
The desired security is obtained by attesting (only) this communication step.

1.1. CONTRIBUTIONS 9

Key-exchange for attested computation

On its own, both flavours of attested computation provide only integrity guarantees: the
I/O behavior of the outsourced code is exposed to untrusted code in the remote machine on
which it is run. The natural solution to the problem is to establish a secure communication
channel with the IEE via a key-exchange protocol. It is unclear, however, how the standard
security models for key-exchange protocols map into the attested computation scenarios, and
how existing constructions for secure key-exchange fare in the novel scenario studied. Indeed,
for efficiency reasons one should use a key exchange protocol that is just strong enough to
achieve this goal.

To clarify this issue, we also formalize the notion of key-exchange for attested computation.
The proposed name is intentional: key-exchange protocols as used in this context differ
significantly in syntax and security models from their more traditional counterparts. For
example, the suggested syntax reflects that the code of the key-exchange is not fixed a-priori:
a user can set parameters both for the component to be run locally and for the one to be
executed within the IEE. This allows a user to hard-wire a new nonce in the code to be run
remotely (or, as in the proposed examples, some cryptographic public key for which it knows
the secret key).

As explained above, the notion of party in the context of attested computation needs to be
different from the one adopted by traditional notions of secure key-exchange. The proposed
solution is to rely on the trust model specific to IEE settings: one can assign some arbitrary
strings as identifiers for the users of the local machine, and these users are allowed to specify
arbitrary strings as identifiers for the remote code (a secure instantiation would require that
this identifier corresponds to some cryptographic material possibly generated on the fly as
explained above). The execution model and definitions are adapted for key-exchange for the
modified syntax and the new notion of communicating parties is established to reflect the
expected guarantees: different local and remote sessions agree on each other’s identifiers,
derive the same key and the key is unknown to the adversary. One crucial aspect of this
security model for key-exchange is that it explicitly accounts for the fact that the remote
process will be run under attestation guarantees, which maps to a semi-active adversarial
environment.

This leads to a generic construction that combines a key-exchange protocol that is passively
secure and a standard signature scheme to derive a very efficient key-exchange protocol for
attestation. This construction is then used for establishing various Utility theorems, which
specifically state what composition guarantees one gets for an arbitrary program P that is
run within a remote IEE and that relies on shared keys established via attestation of a key-
exchange protocol satisfying our tailored definition. More concretely, this work proposes One-
to-one AttKE Utility, capturing the notion of combining non-labelled attested computation
with a single key exchange to the IEE, One-to-many AttKE Utility, capturing the notion

10 CHAPTER 1. INTRODUCTION

of combining non-labelled attested computation with several key-exchange protocols with
the same IEE, and Labelled AttKE Utility, where labelled attested computation is used to
asynchronously run several key-exchange protocols with the same IEE, where each participant
only has to validate its own trace.

Applications

The final stage of this work tackles several application scenarios and proposes and analyses
hardware-based solutions relying on the presented building blocks.

First, we formalise Secure Outsourced Computation, the original motivating use-case for
the presented approach. Syntax is provided, as well as two security notions for a secure
outsourced computation protocol, one for authenticity and one for the privacy of the I/O of
the outsourced program. We then prove that the construction that combines a key-exchange
for attested computation with an authenticated symmetric encryption scheme and replay
protection gives rise to a scheme for secure outsourced computation. This result is presented
as a general formalisation (i.e., not application specific) of the intuition that by relying on
more powerful hardware assumption such as those offered by SGX, one can indeed efficiently
achieve a well-defined notion of secure outsourced computation that simultaneously offers
verifiability and privacy. The proof of this result crucially relies on the utility theorem
defined for the one-to-one combination of attested computation with key exchange.

Afterwards, one explores the possibility for taking advantage of these security anchors in
the setting of Secure Function Evaluation (SFE) and in the setting of general Multiparty
Computation (MPC). Indeed, the functionality outlined by IEEs suggests a simple and
natural design for these application scenarios: load the functionality to be computed into an
IEE, which plays the role of a Trusted Third Party (TTP), and have users provide inputs and
receive outputs via secure channels to the IEE. Attestation ensures the authenticity of the
computed function, inputs and outputs. The resulting protocol is extremely efficient when
compared to existing solutions that do not rely on hardware assumptions. Indeed, the load
of communications and computations on protocol participants is small and independent of
the intricacies of the functionality that is being computed; it depends only on the size of
each party’s inputs and outputs. The remaining computational load — essentially that of
computing the functionality expressed as a transition function in a standard programming
language — is moved to an untrusted party running an IEE-enabled machine. This makes the
protocol attractive for Cloud scenarios. Due to its obvious simplicity, variations of the overall
idea have been proposed in several practice-oriented works [SCF+15a, GMF+16]. However, at
the time of writing, there exists no thorough and rigorous analysis of the security guarantees
provided by this solution in the sense of a general approach to MPC.

The intuitive appeal of this refined protocol obscures multiple obstacles in the process of

1.2. SOURCES AND STRUCTURE 11

obtaining a formal security proof, including: i. the lack of private channels between the
users and the remote machine; ii. the need to authenticate/agree on a computation in a
setting where communication between parties is inherently asynchronous and only mediated
by the IEE; iii. the need to ensure that the “right” parties are engaged in the computation;
iv. dealing with the interaction between different parts of the code that coexist within the
same IEE, sharing the same memory space, each potentially corresponding to different users;
and v. ensuring that the code running inside an IEE does not leak sensitive information to
untrusted code running outside. The resulting MPC protocol is non-interactive in the sense
that each user can perform an initial set-up, and then provide its inputs and receive outputs
independently of other protocol participants, which means that it provides a solution for
“secure computation on the web” [HLP11] with standard MPC security.

Finally, we present an experimental evaluation of this MPC protocol via a detailed comparison
of this solution to state-of-the-art multiparty computation. The experimental results confirm
the theoretical performance advantages highlighted above, in comparison to non hardware-
based solutions. The most resilient implementation of a generic MPC protocol —sgx-mpc-
nacl— relies on the NaCl2 cryptographic library [BLS12] and inherits its careful approach
to dealing with timing side-channels. Side-channels in SGX-like and TrustZone-like systems
are also discussed and it is explained how this constant-time code thwarts all leaks based on
control-flow or memory access patterns that depend on secret data. This coding policy is
generally accepted as the best software-based countermeasure against timing attacks that one
can adopt, eliminating attack vectors that may arise, not only from direct measurements of
execution time, but also from indirect ones relying for example on cache and page fault
correlations. sgx-mpc-nacl introduces a very small overhead over the functionality that
needs to be executed: it uses elliptic-curve based technology for both key exchange (Diffie-
Hellman) and digital signatures, and a combination of the Salsa20 and Poly1305 encryption
and authentication schemes [BLS12] for authenticated encryption. This implementation is
functionality agnostic and can be used to outsource to the Cloud arbitrary off-the-shelf
collaborative software, enabling multiple parties to jointly execute complex interactive com-
putations without revealing their own inputs. One should of course mention that, in order to
meet the level of side-channel attack resilience of sgx-mpc-nacl, the code that is outsourced to
the Cloud should itself be implemented according to the constant-time coding policy. This,
however, is a software engineering issue that is outside of the scope of this work.

1.2 Sources and structure

This section provides a list of the author’s publications produced as a consequence of the
work presented in this thesis, as well as projects in which the author actively contributed

2https://nacl.cr.yp.to

https://nacl.cr.yp.to

12 CHAPTER 1. INTRODUCTION

with the presented work. The listed published papers map to the two major stages of work
development, first formalising attested computation and rigorously specifying the security
guarantees achievable by the deployment of IEE-based systems, and second refining this
notion to capture more general models with multiple local participants.

[BPSW16] Foundations of Hardware-Based Attested Computation and Applica-
tion to SGX.
Barbosa, Portela, Scerri, Warinschi (EuroS&P 2016)
The author played a central role in the development of the whole paper, with the
supervision of the remaining authors. More specifically, this includes the design of the
IEE abstraction for non-labelled programs and machines, the formalisation of attested
computation and its security analysis, the development of attested key exchange for
attested computation and its security proof, the utility theorem proof, and the secure
outsourced computation protocol.

[BBB+17] Secure Multiparty Computation from SGX.
Bahmani, Barbosa, Brasser, Portela, Sadeghi, Scerri, Warinschi (FC 2017)
The author played a central role in the development of the whole paper, with the
supervision of the remaining authors. Specifically, this includes the generalisation to
labelled programs, the formalisation of labelled attested computation, the extension of
the utility theorem to multiple users using labels, and the design of the IEE-enabled
multiparty computation protocol, its security model and associated security analysis.
The implementation effort of the MPC protocol on Intel’s SGX was a joint effort of the
author and Raad Bahmani, also with the supervision of the remaining authors.

Throughout the Ph.D. programme, the author was also actively involved in National and
European projects, which provided both crucial insight in the fundamental security definitions
associated with standard secure computation scenarios, as well as feedback for use cases
validating the applicability of the approach. The projects and the author’s participation is
now listed.

PRACTICE 3

The author actively contributed to the specification of formal verification requirements
(WP12, D12.3 [BNB+15]), and the development of precise specification of secure com-
putation functionalities (WP13, D13.2 [BPS+16]).

SAFECLOUD 4

The author actively contributed to the specification of privacy-protecting mechanisms
for data querying (WP3, D3.2 [PPM+16]), to the architectural definition that captures

3https://practice-project.eu/
4http://www.safecloud-project.eu/

https://practice-project.eu/
http://www.safecloud-project.eu/

1.2. SOURCES AND STRUCTURE 13

the application of these techniques in the SafeCloud framework (WP3, D3.1 [PBT+16],
D3.5 [BTS+17a]), as well as to support the implementation of a key-value store following
the framework specifications (WP3, D3.4 [BTS+17b], D3.5 [BTS+17a]).

NANOSTIMA 5

NanoSTIMA sprawls several research lines with different scopes. The author works on
Research Line 3, WP1. This research line directly benefits from the work developed
on secure computation using IEEs, as [BBB+17] was presented in NanoSTIMA 3.5
Meeting in the context of enabling secure collection and computation of medical data.

Works not included in this thesis

For the development of efficient real-world solutions in the context of the SAFECLOUD
project, the author also explored how to employ mechanisms for privacy-preserving data
processing in the context of databases. More specifically, this work produced a modular
and extensible architecture for NoSQL databases where developers can associate different
data attributes with cryptographic procedures, thus allowing for tailor-made instantiation of
security mechanisms within a system.

The design of such architecture has further motivated the research on secure outsourced
computation from trusted hardware. It should be possible to modularly extend the server-side
component of NoSQL databases to employ IEEs in the processing of queries, thus presenting
yet another trade-off to explore in real-world deployments. Indeed, the results presented in
this thesis suggest considerable performance gains in the execution of privacy-preserving data
processing within IEE-enabling machines.

[MPP+17] A Practical Framework for Privacy-Preserving NoSQL Databases
Macedo, Paulo, Pontes, Portela, Oliveira, Matos, Oliveira (SRDS 2017)
The author played a central role in the development of the proposed NoSQL framework,
both on the design of the required cryptographic implementations, and on the interplay
between NoSQL mechanisms and cryptographic components. The author was also
involved in the use case selection and specification, as well as on the experimental
result validation.

Document structure

The thesis structure is as follows.

• Chapter 2 presents preliminary cryptographic definitions relevant throughout the full
thesis, whose reading is optional for readers with experience in the subject matter.

5http://nanostima.cintesis.eu/

http://nanostima.cintesis.eu/

14 CHAPTER 1. INTRODUCTION

• Chapter 3 provides context of related work with respect to the state-of-the-art software
based approaches to passively secure computation and actively secure computation.

• Chapter 4 discusses modern trusted hardware in cryptography, namely the hardware
platforms of Intel’s SGX and ARM TrustZone, as well as related contributions with
respect to protocols relying on these technologies and recent side-channel attacks.

• Chapter 5 formalises the fundamental concepts of IEEs, programs, compositions and
machines. It then presents the basic cryptographic primitives for IEEs, namely Attested
Computation and Labelled Attested Computation, and rigorously defines the ensured
security guarantees.

• Chapter 6 proposes how one can implement an efficient key-exchange protocol in the
context of IEE-enabling hardware, and establishes utility theorems useful for combining
these results with full-fledged protocols.

• Chapter 7 demonstrates how the proposed example of one-to-one secure outsourced
computation can be achieved given Attested Computation and this new flavour of key-
exchange for IEEs.

• Chapter 8 further explores the possibilities of using IEEs to the deployment of Secure
Function Evaluation and Multiparty Computation protocols.

• Chapter 9 presents experimental results for the implementation of the proposed MPC
protocol, to validate the expected theoretical advantages of this approach.

• Chapter 10 concludes the work and suggests branching future research directions.

Chapter 2

Preliminaries

In this chapter, we present preliminary definitions that will be relevant throughout the
dissertation. These will include: i.) standard definitions of cryptographic primitives for
message authentication codes, authenticated encryption and digital signatures; ii.) security
definitions of key exchange protocols and a description of how these are formally analysed;
and iii.) security notions and provable security approaches to the development of secure
multiparty computation.

2.1 Basic cryptographic primitives

The presented fundamental cryptographic definitions are based on [KL14].

Symmetric Encryption

The symmetric encryption setting considers participants Alice and Bob, both in possession
of the same secret key key, where Alice wants to send message msg to Bob via a channel
controlled by eavesdropper Eve. This goal can be achieved using symmetric encryption. A
symmetric encryption scheme is a triple E = (Gen,Enc,Dec) of algorithms. Gen(1λ) is a
probabilistic algorithm that takes a security parameter 1λ and outputs a key key generated
according to a distribution determined by the scheme. Enc(key,msg) is a probabilistic
algorithm that takes a key key and a message msg to produce an encrypted message cph.
Dec(key, cph) is a deterministic algorithm that takes the key key and a message encryption
cph and reverts the encryption process, producing the original message msg, or a failure
symbol ⊥.

Developing a usable encryption scheme requires for two main properties to be ensured:
correctness and security. Correctness will ensure that the scheme is behaving appropriately
when a legitimate execution is performed. For encryption schemes, correctness requires that,

15

16 CHAPTER 2. PRELIMINARIES

Game IND-CPAE,A(1λ):

b←$ {0, 1}
key←$ Gen(1λ)

(msg0,msg1, st)←$ AEncrypt
0 (1λ)

cph←$ Enc(key,msgb)

b′←$ AEncrypt
1 (cph, st)

If |msg0| 6= |msg1|: b′←$ {0, 1}
Return b = b′

Oracle Encrypt(msg):

Return Enc(key,msg)

Figure 2.1: Games defining the security of a symmetric encryption scheme.

for any key within the key space, one can successfully recover the original message after a
sequential encryption and decryption with the generated key, i.e.

∀key ∈ {0, 1}λ

∀msg,Dec(key,Enc(key,msg)) = msg

Security aims to ensure confidentiality over an encrypted message. Here, we want to show
that an adversary (Eve), when given an encrypted message, is unable to extract any useful
information from it. Formally, this is translated into a security experiment that rigorously
details what are the adversarial conditions, and what is the “win criteria” that constitutes
a successful attack to the scheme. In this sense, encryption schemes are required to ensure
Indistinguishability against Chosen Plaintext Attacks (IND-CPA), as detailed in Figure 2.1
and described as follows. After a bit is flipped and a key is generated, the adversary A0 gets
to arbitrarily select two messages (msg0,msg1) of the same length.1 Then, msg0 or msg1

will be encrypted, according to bit b, and its encrypted result cph will be returned to the
adversary. A1 must then provide a guess as to what message was encrypted, and wins the
game if it guesses correctly (b = b′). Throughout the process, the adversary has access to an
oracle Encrypt, allowing for it to retrieve a polynomial number of encryptions of arbitrarily
chosen plaintexts.

The probability of adversary A = (A0,A1) winning the security game over the random
choices of all algorithms executed in the experiment and bit b, selecting b′ such that b = b′

with probability bias from 1
2 , defines the advantage of an adversary breaking the encryp-

tion scheme. AdvIND-CPA
E,A defines the advantage function associated with the experiment in

Figure 2.1 as follows.

AdvIND-CPA
E,A (λ) = 2 · Pr[IND-CPAE,A(1λ)⇒ T]− 1

Definition 1 (IND-CPA Security). An encryption scheme E = (Gen,Enc,Dec) ensures
semantic security if, for all probabilistic polynomial time (ppt) adversaries A = (A0,A1)

and negligible function µ,
1This excludes attacks where an adversary selects messages with different lengths, and will trivially

distinguish their encryptions by evaluating the size of the received ciphertext.

2.1. BASIC CRYPTOGRAPHIC PRIMITIVES 17

AdvIND-CPA
E,A (λ) < µ(λ)

Message Authentication Codes

Message authentication codes (MACs) consider a similar scenario to the symmetric encryp-
tion, where Alice and Bob are in possession of the same secret key key, but Alice now wants
to send a message/tag pair (msg, t) to Bob via a channel controlled by eavesdropper Eve.
The goal here is not message confidentiality, but rather to ensure Bob that only Alice could
have sent message msg. A message authentication code scheme Π is a triple of algorithms
(Gen, Auth, Ver). Gen(1λ) is a probabilistic algorithm that takes a security parameter 1λ

and outputs a key key generated according to a distribution determined by the scheme.
Auth(key,msg) is a deterministic algorithm that takes a key key and a message msg to produce
a tag t. Ver(key,msg, t) is a deterministic algorithm that takes the key key, a message msg

and a tag t, and verifies if the tag corresponds to the given message, outputting T if so, and
F otherwise.

For message authentication schemes, correctness requires that, for any key within the key
space, one can successfully validate messages after sequentially producing tags out of those
messages, i.e.

∀key ∈ {0, 1}λ

∀msg,Ver(key,msg,Auth(key,msg)) = T

Security is focused on ensuring message authentication, proving that the received message
is indeed msg, instead of some msg′ 6= msg that Eve might have created. Formally, this is
known as existential unforgeability, which is also described via a security experiment that
aims to rigorously define what the adversary must produce to constitute a feasible attack
to the message authentication scheme. The standard notion of existential unforgeability for
MACs [BKR94] is considered, as detailed in Figure 2.2 and described as follows. After a
key is generated, adversary A must provide a pair (msg, t), which will constitute a message
and its associated tag. The adversary is allowed to interact with Oracle Tag, that provides
tags for arbitrary messages. The adversary wins the experiment if the produced (msg, t)

successfully validates, and if that message was not queried to Oracle Tag.2

Security requires that the production of a valid message/tag to be either result of a legit-
imate oracle execution (therefore not constituting a forgery), or computationally infeasible
without access to the secret key. AdvAuth

Π,A defines the advantage function associated with the
experiment in Figure 2.2 as follows.

2Again, this excludes a trivial attack where the adversary simply requests a tag for some message and
outputs said message alongside the Oracle’s result.

18 CHAPTER 2. PRELIMINARIES

Game AuthΠ,A(1λ):

List← []

key←$ Gen(1λ)

(msg, t)←$ ATag(1λ)

Return Ver(key,msg, t) ∧msg 6∈ List

Oracle Tag(msg):

List← (msg : List)

t← Mac(key,msg)

Return t

Figure 2.2: Games defining existential unforgeability of a message authentication scheme.

AdvAuth
Π,A (λ) = Pr[AuthΠ,A(1λ)⇒ T]

Definition 2 (MAC Unforgeability). A MAC scheme Π = (Gen,Auth,Ver) ensures existen-
tial unforgeability if, for all ppt adversaries A and negligible function µ,

AdvAuth
Π,A (λ) < µ(λ)

Authenticated Encryption

An authenticated encryption scheme Λ is denoted as a triple of algorithms (Gen, Enc, Dec).
Gen(1λ) is a probabilistic algorithm that takes a security parameter 1λ and outputs a key
key generated according to a distribution determined by the scheme. Enc(key,msg) is a
probabilistic algorithm that takes a key key and a message msg to produce an encrypted
message cph. Dec(key, cph) is a deterministic algorithm that takes the key key and a message
encryption cph and reverts the encryption process, producing the original message msg, or
⊥ if the decryption process fails.

Correctness requires that, after a legitimate key generation, sequential encryption and de-
cryption recovers the original message. Security of authenticated encryption provides both
Indistinguishability under Chosen Ciphertext Attack (IND-CCA) and existential unforge-
ability. We use the standard notions of indistinguishability and existential unforgeability for
authenticated encryption schemes [KY00].

IND-CCA is detailed in Figure 2.3 (top) and is described as follows. After a bit is flipped
and a key is generated, the adversary A0 gets to arbitrarily select two messages msg0,msg1 of
the same length. Then, msg0 or msg1 will be encrypted, according to bit b, and its encrypted
result cph will be returned to the adversary. A1 must then provide a guess as to what
message was encrypted, and wins the game if it guesses correctly (b = b′) without having
requested the decryption of the ciphertext to the provided oracle. Throughout the process,
the adversary has access to oracles Encrypt,Decrypt, allowing for it to retrieve a polynomial
number of encryptions/decryption of arbitrarily chosen plaintexts/ciphertexts.

Existential unforgeability is similar to the security guarantees ensured by MACs, in the sense
that the adversary should not be able to produce any valid ciphertext without access to the

2.1. BASIC CRYPTOGRAPHIC PRIMITIVES 19

Game IND-CCAΛ,A(1λ):

List← []

b←$ {0, 1}
key←$ Gen(1λ)

(msg0,msg1, st)←$ AEncrypt,Decrypt
0 (1λ)

cph←$ Enc(key,msgb)

b′←$ AEncrypt,Decrypt
1 (cph, st)

If (|msg0| 6= |msg1|) ∨ (cph ∈ List): b′←$ {0, 1}
Return b = b′

Oracle Encrypt(msg):

Return Enc(key,msg)

Oracle Decrypt(cph):

List← (cph : List)

msg← Dec(key, cph)

Return msg

Game UFΛ,A(1λ):

List← []

key←$ Gen(1λ)

cph←$ AEncrypt(1λ)

Return Dec(key, cph) 6=⊥ ∧ cph 6∈ List

Oracle Encrypt(msg):

cph← Enc(key,msg)

List← (cph : List)

Return cph

Figure 2.3: Games defining the security of an authenticated encryption scheme. Ciphertext
indistinguishability (top) and existential unforgeability (bottom).

symmetric secret key. The notion of existential unforgeability for authenticated encryption
schemes is detailed in Figure 2.3 (bottom) and described as follows. After a key is generated,
adversary A must provide a ciphertext cph. The adversary is allowed to interact with
Oracle Encrypt, that encrypts arbitrary messages. The adversary wins the experiment if the
produced cph successfully decrypts, and if that message was not queried to Oracle Encrypt.
Security of authenticated encryption requires both these notions to be fulfilled.

AdvIND-CCA
Λ,A defines the advantage function associated with the experiment in Figure 2.3 (top)

as follows.

AdvIND-CCA
Λ,A (λ) = 2 · Pr[IND-CCAΛ,A(1λ)⇒ T]− 1

and AdvUF
Λ,A defines the advantage function associated with the experiment in Figure 2.3

(bottom) as follows.

AdvUF
Λ,A(λ) = Pr[UFΛ,A(1λ)⇒ T]

Definition 3 (Authenticated Encryption Security). An authenticated encryption scheme
Λ = (Gen,Enc,Dec) is secure if, for all ppt adversaries A = (A0,A1) and negligible function
µ,:

AdvIND-CCA
Λ,A (λ) < µ(λ)

AdvUF
Λ,A(λ) < µ(λ)

20 CHAPTER 2. PRELIMINARIES

Game AuthΣ,A(1λ):

List← []

(pk, sk)←$ Gen(1λ)

(msg, σ)←$ ASign(1λ, pk)

Return Vrfy(pk,msg, σ) ∧m 6∈ List

Oracle Sign(msg):

List← (msg : List)

σ ← Sign(sk,msg)

Return σ

Figure 2.4: Games defining existential unforgeability of a digital signature scheme.

Digital Signature Schemes

In the public key setting, Alice communicates over a network controlled by Eve. Alice has a
secret key sk and a publicly available key pk. Alice’s goal is to produce a message/signature
pair (msg, σ) to anyone with access to pk via a channel controlled by Eve. The goal is to
ensure that σ can effectively be used to ensure that msg was produced by the owner of
the secret key sk, Alice. There is no assumption with respect to a pre-established secret
key, however it must be the case that Eve cannot replace pk by some alternative key pk′.
This is achieved via a Digital Signature scheme, a triple of algorithms Σ = (Gen,Sign,Vrfy).
Gen(1λ) is a probabilistic algorithm that takes a security parameter 1λ and outputs a key
pair (sk, pk) generated according to a distribution determined by the scheme. Sign(sk,msg) is
a (potentially probabilistic) algorithm that takes a secret key sk and message msg to produce
signature σ. Vrfy(pk,msg, σ) if a deterministic algorithm that takes public key pk, a message
msg and a signature σ, and verifies if the signature σ corresponds to the given message,
outputting T if so, and F otherwise.

After a legitimate generation of a key pair, signing a message with the secret key will always
successfully validate the associated message if verified with the public key. Security will
follow the standard notion of existential unforgeability for signature schemes [GMR88], an
experiment that is detailed in Figure 2.4 and described as follows. After a key pair is
generated, adversary A must provide a pair (msg, σ), which will constitute a message and
its associated signature. The adversary is given the public key pk, and is allowed to interact
with Oracle Sigm that provides signatures for arbitrary messages. The adversary wins the
experiment if the produced (msg, σ) successfully verifies, and if that message was not queried
to Oracle Sign.

Security requires the production of such message/signature pair to be computationally in-
feasible without access to the secret key. AdvAuth

Σ,A defines the advantage function associated
with the experiment in Figure 2.4 as follows.

AdvAuth
Σ,A (λ) = Pr[AuthΣ,A(1λ)⇒ T]

Definition 4 (Signature Unforgeability). A digital signature scheme Σ = (Gen, Sign,Vrfy)

ensures existential unforgeability if, for all ppt adversaries A and negligible function µ,

AdvAuth
Σ,A (λ) < µ(λ)

2.2. KEY EXCHANGE 21

2.2 Key Exchange

Key exchange protocols consider a setting where Alice and Bob are communicating over an
insecure network, and want to agree upon a secret key key, but are unwilling to reveal such
secret to adversary Eve, which is in control of the communications channel. Two adversarial
models are considered, defining the strength of the opponent. Passive adversaries are limited
to eavesdropping. They observe the protocol being executed, and can compute over the
acquired data. Active adversaries can act arbitrarily, tampering with messages sent over the
channel, or outright preventing messages from being delivered. We employ a form of key
exchange protocol that does not rely on long term secret/state or global setup and for which
weak security guarantees will be required (essentially, security against a passive adversary);
the classical Diffie-Hellman key exchange is a standard example for these protocols. The
following definitions are based on [CK01, BSWW13].

A key exchange protocol is defined by a single ppt algorithm Π used by communicating
parties. Each party has a unique identifier id, and can execute several instances of the
protocol with different parties. Throughout the thesis, identifiers will be arbitrary strings,
which will be given meaning by the higher-level applications relying on protocols under
analysis. For s ∈ N, let Πs

id be the s instance of party id. Each instance is assumed to
maintain the following variables.

• st ∈ {0, 1}∗ is some internal state for that instance.
• δ ∈ {derived, accept, reject,⊥} is the state of the key.
• ρ ∈ {initiator, responder} is the role of the participant.
• oid is the identity of the owner of the instance.
• sid and pid are the session identifier and the identity of the partner, respectively.
• key is the agreed session key.

It is required that key =⊥ unless δ ∈ {derived, accept}, and that oid, ρ, sid, key are only
assigned once during the entire execution of the protocol (the first two when the session
is initialized). Running Π with message msg, role ρ and state st to produce msg′ and the
updated state st′ is denoted by (msg′, st′)←$ Π(1λ,msg, id, ρ, st).

Message ε will be used to refer to the empty string. This will be passed to both parties as the
initial state; it will be passed to the initiator as first input message; and it will be returned
as output message by the party that executes last, to denote that no further interaction is
needed. Long term secrets and/or shared initial state between several instances run by the
same identity can be captured by setting their initial state accordingly.

A key exchange protocol is correct if, after a complete (honest) run between two participants
with complementary roles, both reach the accept state, both derive the same key and session
identifier, and both obtain correct partner identities.

22 CHAPTER 2. PRELIMINARIES

Game CorrΠ(1λ):
stj ← ε; t← j

(msg, sti)←$ Π(ε, i, initiator, ε)

While msg 6= ε:
If t = j: t← i; (msg, stj)←$ Π(msg, j, responder, stj)

Else: t← j; (msg, sti)←$ Π(msg, i, initiator, sti)

Return δi = δj = accept ∧ keyi = keyj ∧ sidi = sidj ∧
pidj = i ∧ pidi = j

Figure 2.5: Game defining the correctness of protocol Π.

Definition 5 (Correctness). A key exchange protocol Π is correct if, for any distinct party
identities i and j, the experiment in Figure 2.5 always returns T.

Execution model

The adopted security notion is a restriction of the scenario considered in [KY03] that excludes
corruptions. The execution model considers an active adversary, which is run on the security
parameter, and which can interact with the following oracles:

• Send(i, s,msg) sends message msg to instance Πs
i and receives output o. If δ = derived,

it checks if the key derived for the executed session exists in list fake. If not, it generates
a new key∗ uniformly at random, and adds (key, key∗) to the list. Finally, Send outputs
the corresponding reply o.

• Execute(i, j) runs a new instance of the protocol between distinct parties i and j. It
then generates a new key∗ uniformly at random, and adds (key, key∗) to the list. Finally,
it outputs the transcript of the protocol execution and the session identifier associated
with it.

• Reveal(i, s) outputs the session key key of Πs
i .

• Test(i, s) will return ⊥ if δsi 6= accept. Otherwise, if b = 0 it outputs the key associated
with Πs

i . If b = 1, it searches for the key associated with Πs
i in list fake and returns the

associated key∗.

When the adversary terminates interacting with the oracles, it will eventually output a bit
b′ which represents his guess on what the challenge bit b is.

Entity authentication is defined following [BSWW13]. Observe that, in the case of pas-
sively secure key exchange, this is essentially a correctness property. First, a notion of
partnering will be introduced, which informally states that two oracles which have derived
keys are partners if they share the same session identifier. The definition makes use of the

2.2. KEY EXCHANGE 23

following predicate on two instances Πs
i and Πt

j holding states (stsi , δ
s
i , ρi, sidsi , pidsi , keysi) and

(sttj , δ
t
j , ρj , sidtj , pidtj , keytj), respectively:

P(Πs
i ,Π

t
j) =

{
T if sidsi = sidtj ∧ δsi , δ

t
j ∈ {derived, accept}

F otherwise.

Definition 6 (Partner). Two players Πs
i and Πt

j are partnered if P(Πs
i ,Π

t
j) = T.

The employed authentication notion relies on three further definitions, which demand that
partnering will need to be valid, confirmed and unique. In short, these three requirements
ensure that any instance that accepts has a partner, that this partner is unique and that
partners share the same key. More specifically, valid partners must have corresponding
partner identifiers (i.e. they both believe they are talking with each other), have different
roles and share the same key. Confirmed partners ensures that, for each oracle that accepts,
there exists at least one partner; and for unique partners there exists at most one.

Definition 7 (Valid Partners). A protocol Π ensures valid partners if the bad event notval

does not occur, where notval is defined as follows:

∃Πs
i ,Π

t
j s.t. P(Πs

i ,Π
t
j) = T∧

(pidsi 6= oidtj ∨ pidtj 6= oidsi ∨ ρi = ρj ∨ keysi 6= keytj).

Definition 8 (Confirmed Partners). A protocol Π ensures confirmed partners if the bad event
notconf does not occur, where notconf is defined as follows:

∃Πs
i s.t. δsi = accept ∧ ∀Πt

j , P(Πs
i ,Π

t
j) = F.

Definition 9 (Unique Partners). A protocol Π ensures unique partners if the bad event notuni

does not occur, where notuni is defined as follows:

∃Πs
i ,Π

t
j ,Π

r
k s.t.

(j, t) 6= (k, r) ∧ P(Πs
i ,Π

t
j) = T ∧ P(Πs

i ,Π
r
k) = T

Intuitively, an adversary is considered to violate two-sided entity authentication if he can
lead an instance of an honest party running the protocol to accept, and in doing that cause
one of the bad events notval, notconf, notuni.

To exclude breaks via trivial attacks, legitimate adversaries are defined as those who ensure
that the following freshness criteria is satisfied for his Test(i, s) queries: i.) Reveal(i, s) was
not queried; and ii.) for all Πt

j such that P(Πs
i ,Π

t
j) = T, Reveal(j, t) was not queried. Only

experiments in which the adversary is found to be legitimate will be considered. The winning
event guess is defined to be b = b′ at the end of the experiment.

24 CHAPTER 2. PRELIMINARIES

Definition 10 (Passive AKE security). A protocol Π is passively secure if, for any legitimate
ppt adversary interacting with the execution environment described above:

• The adversary violates two-sided entity authentication with negligible probability, i.e.
Pr[notval ∨ notconf ∨ notuni]

• Its key secrecy advantage 2 · Pr[guess]− 1 is negligible.

One-Sided Authentication

A weaker form of entity authentication guarantee will also be considered, where only some
parties are authenticated. To this end, it is now relevant to distinguish between Loc and
Rem parties. The former is identified with responders, and the latter with initiators. In one-
sided authentication, only initiators (i.e., remote parties) are authenticated, which means
that responders (i.e., local parties) do not need to keep any long term secrets. Again,
definitions of [BSWW13] will be followed to produce one-sided versions of the definitions
for valid partners and confirmed partners.

Intuitively, on acceptance, a local party will be assured that a valid unique partnering session
exists. Security will still need to ensure that each local (or remote) session has at most one
remote (respectively local) partnered session. However, confirmation for the remote machine
is no longer required: the remote party is allowed to accept even if there is no local matching
session that has accepted.

Definition 11 (One-Sided Valid Partners). A protocol Π ensures one-sided valid partners if
the bad event os-notval does not occur, where os-notval is defined as follows:

∃Πs
i ,Π

t
j s.t. i ∈ Loc ∧ P(Πs

i ,Π
t
j) = T ∧

(pidsi 6= j ∨ ρsi 6= initiator ∨ ρj 6= responder ∨ keysi 6= keytj).

Definition 12 (One-Sided Confirmed Partners). A protocol Π ensures one-sided confirmed
partners if the bad event os-notconf does not occur, where os-notconf is defined as follows:

∃Πs
i s.t. i ∈ Loc ∧

δsi = accept ∧ ∀Πt
j , P(Πs

i ,Π
t
j) = F.

When one-sided authentication suffices, then the definition of key exchange security is weak-
ened by relaxing condition 1 in Definition 10, which is modified to refer to the following
event.

Pr[os-notval ∨ os-notconf ∨ notuni]

2.3. SECURE MULTIPARTY COMPUTATION 25

2.3 Secure multiparty computation

In Secure Multiparty Computation, multiple participants want to compute some function
over their input data and receive its output, without revealing their private inputs to each
other. Yao’s Millionaire problem is an example of this application, depicting two millionaires
that wish to know who is richer, without disclosing any additional information about each
other’s wealth. Modern implementations allow for complex computations to be performed
over private data, such as data mining algorithms [BJL12, BNTW12, Jag10], secure auc-
tions [BCD+09] or privacy-preserving satellite collision detection [KW15].

Secure computation can be defined as a problem in which n players Pn in possession of
inputs {x1, . . . , xn} agree to compute a stateless function f(x1, . . . , xn) = (y1, . . . , yn), such
that Pi knows yi and learns nothing additional that couldn’t be deduced from their personal
input and output. This specific setting is known as secure function evaluation, and can be
generalised to general multiparty computation by considering stateful (reactive) functions.

General multiparty computation can trivially be achieved if one considers secure channels
and a trusted third party. For any number of participants, each Pi would only need to send
xi to the trusted party and expect to receive yi as, by definition of the trusted party, function
f is executed correctly and securely. Therefore, the problem of MPC refers solely to the cases
in which these conditions are unavailable.

Participants in a MPC protocol are modeled as probabilistic polynomial time interactive
Turing machines (ITM). Execution of the protocol takes place in the presence of an environ-
ment Z. Z is also a ppt ITM, and is responsible for providing input and receiving output
from parties, as well as for modelling the protocol’s adversary, corrupting and controlling
corrupt players. Players of a MPC protocol exchange messages according to an established
communication model. Systems may assume the existence of pair-wise secure channels, in
which case the adversary gains no information regarding data exchanged between honest
players. When the system makes no such assumption, players communicate through a channel
that is accessible to the adversary, where security can only be achieved in a cryptographic
sense. Communication may also be considered as synchronous or asynchronous. Synchronous
communication implies that processors have internal clocks that are synchronized to some
extent and, whenever a message is sent, it is guaranteed to arrive within a predetermined
time frame. Asynchronous communication does not make assumptions regarding assurance
of delivery or timing on delivered messages. This environment description models all possible
applications and protocol stacks where MPC could be used.

A multiparty computation’s security approach is, typically, characterizable by its adversarial
model and associated definition of security. The first relates to environment assumptions in
which it performs, while the latter specifies the security model considered, and how it can
be measured/proved. The following definitions are based on Cramer, Damgård and Jesper

26 CHAPTER 2. PRELIMINARIES

Buus’ lecture notes [CDN05].

Adversarial assumptions

To capture the worst case scenario, the adversary in MPC is considered to be a single,
monolithic entity, capable of controlling multiple corrupt parties while maintaining a global
state. This corruption implies that the adversary gains information regarding the designated
party, namely the private input xi and every private data resulting from the process executed
up to that point. This corruption may confer the adversary different levels of power:

Passive adversary is also known as “honest-but-curious”, and reflects a behaviour that,
without breaking the correct protocol execution, attempts to infer additional knowledge
from the information it is able to obtain.

Active adversary is also known as “malicious”, and reflects a behaviour that may deviate
from protocol procedure. As such, it is able to perform arbitrary actions that may not
produce correct (or even coherent) results, in order to achieve its goals.

An adversary is, typically, only capable of corrupting a subset of players, since no protocol
can be secure if we assume the possibility for the adversary to corrupt any number of
parties. As such, an adversary structure consists of all subsets with cardinality inferior
than a predetermined threshold, and its corruption may be static or adaptive:

Static corruption means that the corrupted subset is chosen before starting the protocol,
and remains unchanged for its full duration.

Adaptive corruption means that the adversary may choose to corrupt a new player at
any time during the process, based on all the information obtained up to that point,
assuming the resulting corrupted set remains within the threshold.

Security definition

The standard way to analyse a multiparty computation protocol is to take the approach of
real world versus ideal world, a concept used in methods for formalizing composable security
proofs, such as universal composability [Can01] (UC) or reactive simulatability [PW00]. Its
intuition is to demonstrate that an adversary (with the power specified via the associated
adversarial model) is unable to distinguish a real protocol execution from a simulated version
of it. Observe that this entails both the notion of correctness, i.e. if the protocol is not
executing according to its idealized version, then it is trivially distinguishable, and the
notion of security, i.e. if private information was not necessary to present the adversary

2.3. SECURE MULTIPARTY COMPUTATION 27

with an indistinguishable simulated execution, then clearly the same private information is
not accessible to the adversary in a real execution.

The real world considers a protocol Π run by participants P1, ..., Pn with some adversary A
and environment Z. The actual protocol execution maps to a sequence of activations. Once
an activation terminates, the participant that had its input tape written on is activated
next. The environment Z starts, and it might read the contents of uncorrupted parties’
output tapes, or write on the input tapes of participants or the adversary. Upon adversary
A activation, it may read its own tapes and communication tapes of all participants, and
it can write on the communication tape of a participant (thus delivering a message)3, or
corrupt a participant. Corrupting a participant means that the adversary gains access
to all tapes of that party, and controls all future actions of that party (while bound by
the adversarial limitations established in the model). If the adversary has written on a
participant’s communication tape, that will be the next activation, otherwise the environment
is activated. When a participant P is activated, it follows the protocol description, which
results in either writing information to the outgoing communication tape (thus signalling a
message for delivery), or writing some information on its output tape (declaring protocol
output). The actual protocol execution terminates when the environment completes without
writing on any input tape. As such, let RealZ,Π,A(1λ) denote the output of Z upon interacting
with A and participants P1, ..., Pn running protocol Π on security parameter 1λ.

The ideal world is comprised of an ideal functionality F , a set of dummy parties P̃1, ..., P̃n,
a simulator S and an environment Z. Similar to the real-world, an execution is described as
a set of activations with similar sequencing rules. The environment Z begins by reading
contents of participants (which are now dummy), and writing on input tapes of either
participants or the simulator. Dummy participants P̃ are simple ITMs that, upon being
activated with data on the input tape, simply writes it to the outgoing communication
tape for the ideal functionality, and upon activation with input on communication channel
(a message from the ideal functionality), simply writes it to the output tape. Messages
exchanged between dummy parties and the functionality have secret and public contents, and
the simulator is only capable of reading its public contents.4 When the ideal functionality F
is activated, it will read contents of incoming communication tapes, and potentially produce
messages to dummy parties and/or to the simulator. When it completes, the environment is
activated next. When the simulator S is activated, it can read its input tape and the public
parts of messages on the communication tapes of participants and of the functionality, and
then can perform one of four actions: i.) write a message from itself to the communication

3If the model assumes secure communication between participants, this might be limited to delivering
messages that have been sent in the past. This allows for the adversary to delay messages, while limiting its
power of message forgery.

4This can be further detailed by specifying what contents are public and what contents are private in the
functionality description itself, which is something that the abstraction in this work will explicitly specify.

28 CHAPTER 2. PRELIMINARIES

tape of the functionality, ii.) deliver a message from the outgoing communication of a
participant to the ingoing communication of the functionality, iii.) deliver a message from
the outgoing communication of the functionality to the communication tape of a participant,
or iv.) corrupt a participant, gaining the same power as the adversary in the real world.
Let IdealZ,F ,S(1λ) denote the output of Z upon interacting with S and dummy participants
P̃1, ..., P̃n communicating with idealised functionality F on security parameter 1λ.

A protocol Π is said to UC-realise an ideal functionality F if, for all ppt adversaries A, there
exists some simulator S such that no environment Z can distinguish if it is interacting with
A for a real-world execution, or with an S for an ideal-world execution.

Definition 13 (UC Security). Let n ∈ N, let F be an ideal functionality and let Π be an
n-party MPC protocol. Π UC-realises F if, for all A, there exists a simulator S such that,
for all Z,

RealZ,Π,A(1λ) ≈ IdealZ,F ,S(1λ)

This approach is based on the intuition that, if such simulator exists, then the adversary
can’t possibly gain more information than what he would obtain when interacting with the
same idealised version of said protocol. If the views of the real and ideal worlds follow the
same distribution, the protocol is a perfectly secure realisation of the ideal functionality. If the
views are only statistically indistinguishable, the protocol is a statistically secure realisation of
the ideal functionality. If the views are only computationally indistinguishable, the protocol
is a computationally secure realisation of the ideal functionality.

One of the major advantages of using this framework is that protocols UC-realising func-
tionalities benefit from its composition theorem. Informally, this theorem states that if some
protocol is demonstrated to UC-securely realise some functionality, then this is also the case
whenever this functionality is used as a sub-procedure of any other protocol. In particular,
this functionality can be relied upon to demonstrate the UC security of other protocols that
use it, as something that can be assumed to be accessible in the real world.

This is formalised via the hybrid model, which extends the real world by allowing participants
to send and receive messages to an unbound number of copies of F , if it has been shown that
there exists some protocol Π that UC-realises F according to Definition 13. The composition
theorem states that if some ρ UC-realises G in the F-hybrid model, then an execution of
protocol ρΠ in the F-hybrid model emulates an execution of ρ in the G-hybrid model (the
real world extended with the UC secure functionality).

Definition 14 (UC composition). Let n ∈ N, let F and G be ideal functionalities, let ρ be
an n-party MPC protocol in the F-hybrid model, and let Π be an n-party MPC protocol that
UC-realises F in the G-hybrid model. Then, for any A in the G-hybrid model, there exists S
in the F-hybrid model such that

HybridGZ,ρΠ,A(1λ) ≈ HybridFZ,ρ,S(1λ)

2.3. SECURE MULTIPARTY COMPUTATION 29

Game RealΠ,A(1λ):

(x1, x2, i, st)←$ A1()

(y, t1, t2)← Π(x1, x2)

Return A2(x1, x2, y, ti, st)

Game Idealf,S1,S2,A(1λ):

(x1, x2, i, st)←$ A1()

y ← f(x1, x2)

ti ← Si(xi, y)

Return A2(x1, x2, y, ti, st)

Figure 2.6: Passively secure two-party SFE security experiment

In particular, when G is the empty functionality, then G-hybrid model is the real world.
In this case, Definition 14 ensures that Π remains secure when run concurrently with any
protocol ρ.

Secure function evaluation with passive adversaries

The described UC model is designed to capture all possible instances where the problem of
multiparty computation is applicable. The security analysis can be considerably simplified
if restrictions are imposed to the system model. To illustrate this, the following notions
consider the work of [Sch08] regarding how provable security can be achieved in the passive
adversary model of two-party secure function evaluation.

Consider protocol participants P1, P2. Let Π(x1, x2) be a two-party protocol producing
(y, t1, t2) and f(x1, x2) be a stateless function that produces output y, where xi is the input
of Pi, ti is the protocol view of Pi (all randomness Pi provides as input to Π, as well as
all messages exchanged during the execution of Π), and y is the output received by both
participants. Proving the security of protocol Π requires the construction of two simulators
S1,S2 that must be capable of presenting a protocol view (t1, t2, respectively) from their
private inputs/outputs that is indistinguishable from the real-world execution.

Furthermore, these definitions can be represented and analysed in a game-based form, as
demonstrated in Figure 2.6. The adversary gets to select all participants’ inputs, and the
participant it wishes to corrupt (i ∈ {1, 2}). Then, either the protocol is executed with the
given inputs – the real world – or the functionality is executed with the given inputs and the
simulator must produce the view of the corrupt participant, given its input and output – the
ideal world. At the end of the experiment, the adversary gets to see all inputs and outputs,
and the view of the corrupt participant’s protocol (real or simulated).

AdvAuth
Σ,A defines the advantage function associated with the experiment in Figure 2.6 as

follows.

AdvIND
Π,f,A,S1,S2

(λ) = |{RealΠ,A(1λ) } − { Idealf,S1,S2,A(1λ) }|

Definition 15. A protocol Π securely realises functionality f if there exists ppt simulators
S1,S2 that, for every adversary A = {A1,A2} and negligible function µ, the advantage in

30 CHAPTER 2. PRELIMINARIES

distinguishing these distributions is negligible:

AdvIND
Π,f,A,S1,S2

(λ) < µ(λ)

The presented security experiment is only valid for this specific setting. In particular, observe
that it is unfit to capture active adversaries, since giving the protocol view directly to the
adversary implies that it has no control over the protocol’s execution process (other than
selecting inputs a priori). One approach to extend it for allowing active adversaries could be to
decompose Π into individual calls to honest participants, so as to enable the adversary to have
its corrupt participant deliver arbitrary messages, and have the simulator be responsible for
extracting the corrupt input from the interactions in the ideal world. This would additionally
require for the simulator to have controlled access to f , so that it can provide the extracted
corrupt input, and receive the associated output. Similar issues arise when considering an
arbitrary number of participants, reactive (stateful) functionalities, or adaptive corruptions.

Chapter 3

Related Work

In this chapter, we present state-of-the-art research in software-based MPC solutions, to
contextualize the approach taken to enable secure computation via IEE-enabled hardware.
We begin by describing the basic mechanisms employed for secure computation, and then
present approaches for passively secure MPC, as well as actively secure MPC.

3.1 Basic mechanisms for secure computation

The current approaches to secure computation can be grouped into families according to a
small set of basic mechanisms they use. As such, we begin by describing the fundamentals
of each of these mechanisms, as well as other techniques commonly used in the process of
deploying real-world MPC solutions.

Garbling schemes

The following definitions for garbling schemes consider the work in [BHR12]. A garbling
scheme G = (Gb,En,De,Ev, ev) is composed by a set of five algorithms, behaving as follows.
String f defines the function to compute, and can be evaluated using y ← ev(f, x). Given
input f and security parameter λ, Gb returns a triple with the garbled function and the
functions for encoding inputs and decoding outputs (F, e, d)←$ Gb(1λ, f). Algorithm En

performs the encoding, taking function e and plain input x to produce the garbled version of
the same value X ← En(e, x). Algorithm Ev receives the garbled function F and maps each
garbled input X to its corresponding output Y ← Ev(F,X). Finally, De is the algorithm used
to convert garbled output Y to its corresponding plain output y ← De(d, Y). The presented
definitions are representation-independent, in the sense that they capture instantiations other
than garbled circuits (GC). However, we will only look at these notions from the scope of
garbled circuits, since it is the most common approach to enable multiparty computation.

31

32 CHAPTER 3. RELATED WORK

Security of garbling schemes is approached using a set of game-based experiments, matching
the security properties desired from these schemes (Figure 5 of [BHR12]). Namely, garbling
schemes are analysed with respect to privacy, obliviousness and authenticity. Informally,
privacy ensures that knowledge of garbled input X and circuit (F, e, d) reveals no non-public
information that cannot be derived from y. Obliviousness ensures that knowledge of the
garbled circuit F and inputs X allows for the computation of Y but reveals nothing regarding
x or y. Authenticity is a property that captures the inability for {F,X} to be used to create
a valid garbled output Y such that F (X) 6= Y .

An instantiation of a garbling scheme is proposed in the same work, denoted as Garble1,
considering functions f represented as circuits. This scheme makes use of a dual-key cipher
(DKC), which is essentially a symmetric encryption scheme relying on two keys for the
encryption and decryption operations. More specifically, a DKC scheme is a triple E =

(Gen,Enc,Dec) of algorithms. Gen is a probabilistic algorithm that takes a security parameter
1λ and outputs keys (key1, key2)←$ Gen(1λ) generated according to a distribution determined
by the scheme. Enc is a probabilistic algorithm that takes keys key1, key2 and a message msg to
produce an encrypted message cph←$ Enc(key1, key2,msg). Dec is a deterministic algorithm
that takes keys key1, key2 and a message encryption cph and reverts the encryption process,
producing the original message msg← Dec(key1, key2, cph), or a failure symbol ⊥.

The actual process for garbling circuits begins by selecting two tokens for each wire in the
circuit, representing the possible values of 0 and 1, respectively. We denote Xb

i as the token
for wire i of original value b, and thus the encoding function e maps inputs xi ∈ {0, 1} to
according values {X0

i , X
1
i }. The tokens associated with circuit outputs are simply the plain

values. Afterwards, all circuit gates are replaced by tables, mapping pairs of input wire
tokens to their respective output wire tokens in an encrypted fashion. More specifically, each
circuit gate g with input wires i, j and output wire k is replaced by a garbled table G with
four entries, where each entry matches Xa

i , X
b
j with the respective output wire encrypted

with the input tokens Enc(Xa
i , X

b
j , Yk). Note that the security of the DKC scheme ensures

that extracting an output wire token implies knowledge of both input wire tokens. As such,
given circuit input wire tokens X, function F traverses the set of tables according to the
original circuit description and produces output wire tokens Y . The function d has an empty
description, as the output gates provide plain output values, i.e. Y are values in the clear.

As a toy example, consider the garbling of two exclusive-or operations, illustrated in Fig-
ure 3.1. Function f takes three inputs x1, x2, x3 and performs (x1 ⊕ x2) ⊕ x3. The corre-
sponding circuit (Figure 3.1(a)) has input wires 1, 2, 3, intermediate wire 4 and output wire
5, and has two XOR gates g1, g2: g1 receiving inputs 1, 2 and producing output 4, and g2

receiving inputs 3, 4 and producing output 5. The encoding function e maps input values to
{X0

1 , X
1
1 , X

0
2 , X

1
2 , X

0
3 , X

1
3}. The garbled circuit function F will consist of a set of two tables

3.1. BASIC MECHANISMS FOR SECURE COMPUTATION 33

(a) Original Circuit (b) Garbled Circuit

Figure 3.1: Example of garbled circuit transformation.

(Figure 3.1(b)), matching the two gates:

G1 = {Enc(X0
1 , X

0
2 , X

0
4),Enc(X0

1 , X
1
2 , X

1
4),Enc(X1

1 , X
0
2 , X

1
4),Enc(X1

1 , X
1
2 , X

0
4)}

G2 = {Enc(X0
3 , X

0
4 , 0),Enc(X0

3 , X
1
4 , 1),Enc(X1

3 , X
0
4 , 1),Enc(X1

3 , X
1
4 , 0)}

Again, note that the output value is stored in a non-tokenized fashion, and thus the decoding
function d is empty.

Garbled circuits are have received several optimizations since their inception. Free XOR
gates [KS08] and garbled row reduction [NPS99, PSSW09, KMR14] have allowed for the
sizes of garbled circuits and their encrypted tables to be considerably reduced, evaluation
pipelining [HEKM11] enables protocols to generate garbled circuits at the same time they are
being evaluated (thus removing restrictions on circuit size), and the usage of highly efficient
hardware-based AES for garbling [BHKR13] enhances performance of circuit creation and
evaluation.

Oblivious transfer

The two-party protocol of Oblivious Transfer (OT) was originally proposed in [EGL85], and
considers a setting with participants P1, P2 with private inputs two messages (msg0,msg1)

and bit v, respectively. The goal is for P1 to transmit msgv to P2 without gaining knowledge
of v, and without P2 being able to recover both (msg0,msg1). More specifically, an oblivious
transfer protocol OT(msg1,msg2, v) = (ε,msgv) must satisfy the following conditions:

• P2 obtains msgv and no additional information about msgv−1.

• P1 learns no information about v.

A classical instantiation of 1-out-of-2 OT is the Naor-Pinkas protocol [NP00], whose construc-
tion considered security against passive adversaries, and can be generalized to a 1-out-of-n

34 CHAPTER 3. RELATED WORK

algorithm OT(msg0,msg1, v):

P2: a, b←$ Zq ; cb ← ab; c1−v←$ Zq
x← ga; y ← gb; z0 ← gc0 ; z1 ← gc1

SendP1
(g, x, y, z0, z1)

P1: (g, x, y, z0, z1)← ReceiveP2

If (z0 = z1) Return ⊥
(g, x, y0, z′0)←$ DDH-SR(g, x, y, z0)

(g, x, y1, z′1)←$ DDH-SR(g, x, y, z1)

c0 ← Enc((g, x, y0, z′0),msg0)

c1 ← Enc((g, x, y1, z′1),msg1)

SendP2 (c0, c1)

P2: (c0, c1)← ReceiveP1

msgb ← Dec((g, a, b), cv)

Figure 3.2: Naor-Pinkas OT protocol

OT protocol. Let G be a group of prime order q and g ∈ G be a generator. Let P1 have input
(msg0,msg1) and P2 have v ∈ {0, 1}, consider (Enc,Dec) public-key encryption algorithms
and (SendP ,ReceiveP) be calls to a communication layer. Its construction is detailed in
Figure 3.2.

Several improvements on OT have been proposed to achieve scalability for a larger number of
transmissions [IKNP03, LLXX05], leveraging pre-computation of OTs without knowledge of
inputs [Bea95], and general protocol optimizations [ALSZ13]. Extension to active adversaries
on OT was a consideration for one of the earlier extensions in [IKNP03], where malicious P1

are considered, and from then onwards many works have considered and improved the active
OT setting [Lar14, PVW08, NNOB12, ALSZ15].

Secret sharing

Secret sharing techniques have been proposed in independent works [Sha79] and [Bla79] and
are algorithms that allow for some value v to be shared between n participants v1, . . . , vn,
such that reconstructing the original value v requires at least t out of the n shares, and any
other number k such that k < t reveals no information about v. These schemes are known as
t-out-of-n secret sharing schemes. The one originally proposed by Shamir [Sha79] was based
on polynomial interpolation. First, a polynomial is of degree t− 1 is selected, and then any
number of n points can be derived out of it, to be given to the participants. Any subset t
of these points is sufficient for reconstructing the polynomial using interpolation, hence the
threshold t-out-of-n.

The most commonly used secret sharing schemes for secure computations are n-out-of-n (all
shares are required for value reconstruction), maintaining additively homomorphic properties.

3.1. BASIC MECHANISMS FOR SECURE COMPUTATION 35

Consider a group ZN . To secret share some value v among n participants, one can compute

For i ∈ (n− 1) : vi←$ ZN

vn ← v −
(n−1)∑
i

vi mod N

It easy to see that v =
∑n

i vi, so one can efficiently reconstruct the original value from the
computed shares. This scheme also allows for operations such as additions to be performed
locally

u+ v =
n∑
i

ui +
n∑
i

vi ⇔

⇔u+ v =

n∑
i

(ui + vi)

Multiplication of shared values with constants can also be performed locally, but multipli-
cation of two shared values requires for multiple rounds of share transmission, and thus
cannot be performed locally. An alternative method for evaluating multiplications has
been proposed by Beaver [Bea91], by using multiplication triples. This approach requires
for the computation to be divided into two parts: a preparation stage, where some pre-
processing is performed between the computing parties, and an online stage, where the
actual computation is executed. Essentially, multiplication triples are random shares ai, bi, ci
such that

∑n
i ci =

∑n
i ai +

∑n
i bi that can be generated in the setup phase using OT

protocols [ALSZ13]. In the computation stage, the calculation of u ∗ v only requires the
participants to exchange di = vi + ai and ei = ui + bi and to compute

∑n
i di,

∑n
i ei and

(d∗e)+(bi∗d)+(ai∗e)+ci (which, after reconstruction of d, e, can now be performed locally).
This pre-computation stage for multiplication triples minimizes the number of messages a
participant must send to one, and reduces the overall size of the messages exchanged.

Alternatively, the GMW protocol [Gol09, GMW87] is a general approach for secure com-
putation allowing for the evaluation of arbitrary Boolean functions securely, relying on the
secret sharing of private inputs such that v =

⊕n
i vi. The GMW protocol benefits from XOR

being an associative operation, allowing for all XOR gates to be evaluated locally, following
the same logic as the one presented on secret shares over group ZN . The same approach for
multiplication with pre-processing is also valid, where participants start with ai, bi, ci such
that

⊕n
i ci =

⊕n
i ai⊕

⊕n
i bi exchange di and ei, so that the calculation of

⊕n
i di,

⊕n
i ei and

(d ∧ e)⊕ (bi ∧ d)⊕ (ai ∧ e)⊕ ci can be performed locally.

Homomorphic encryption

Homomorphic Encryption (HE) schemes allow for executing computations over encrypted
data without revealing the underlying plaintext. More concretely, a participant with private

36 CHAPTER 3. RELATED WORK

input v encrypts its value using an HE scheme to enc←$ HE.Enc(key, v) and sends it to
another participant, which will take care of the computation. The properties of the scheme
ensure that operations can be performed over this encrypted value without requiring the
secret key, e.g. enc′←$ HE.op(enc). The computation result is then transmitted back to the
input participant, which can retrieve the computation output by decrypting using the same
HE scheme, v′ ← HE.Dec(key, enc′).

Partially homomorphic schemes, such as [Pai99, DJ01, ElG85, BV11, RSA78], can only
be employed to execute a restricted subset of functions. These are classified by the type
of operations permitted, namely additively homomorphic, multiplicatively homomorphic or
somewhat homomorphic. For instance, in the Pallier cryptosystem [Pai99] the multiplication
of ciphertexts ensures the addition of the plaintexts, i.e.

HE.Dec(key,HE.Enc(key, a) ∗ HE.Enc(key, b)) = a+ b

which means the Pallier cryptosystem is additively homomorphic. Basic RSA [RSA78] is
multiplicatively homomorphic, since the addition of ciphertexts ensures the multiplication
of the plaintexts. The scheme by Brakerski et al. [BV11] allows for both addition and
multiplication to be performed, but is limited on the number of multiplications (more specif-
ically, on the degree of the evaluated function, represented as a polynomial), and is thus
considered somewhat homomorphic encryption. The direct application of these schemes is
consequentially limited to very specialized use cases, such as secure elections [CGS97] (secure
vote tallying), but these schemes can also be employed as a mechanism enabling more general
cryptographic tools [DPSZ12].

The first fully homomorphic scheme was proposed by [Gen09], which removes the limitations
of HE applicability, by allowing the evaluation of arbitrary circuits. Essentially, operations on
somewhat homomorphic encryption schemes incrementally add noise to the ciphertext, and
from some threshold onwards, it is no longer possible to decrypt the data. Gentry’s scheme
proposes a bootstrapping operation allowing for the decrypt operation to also be performed
homomorphically. Consider this example for an addition gate. Private inputs msg1,msg2 are
first encrypted

FHE.Enc(pkA,msg1)

FHE.Enc(pkA,msg2)

and then all values and decryption keys are encrypted again with another key pair

FHE.Enc(pkB,FHE.Enc(skA,msg1))

FHE.Enc(pkB,FHE.Enc(skA,msg2))

FHE.Enc(pkB, skA)

3.1. BASIC MECHANISMS FOR SECURE COMPUTATION 37

by allowing for inner decryptions, fully homomorphic encryption (FHE) can be used to
decrypt the inner values (given encrypted skA and msg1,msg2) and compute the gate. This
produces FHE.Enc(pkB,msg1 + msg2).

Gentry’s implementation is discussed in [GH11] to have several downsides to direct practical
application, such as the size of public keys (going up to 2.2 GBs), the key generation (up to
2.2 hours) and the re-encryption (up to 31 minutes). Research progress on FHE has improved
bootstrapping performance [DM15] and leveraged weaker security assumptions to remove the
bootstrapping stage [BGV14], but significant performance improvements will be necessary
before FHE schemes can be applied as real-world solutions.

Commitment schemes

Bit commitment schemes [Nao91] consider a two-party P1, P2 setting where P1 wants to
commit a bit b to P2, to be revealed later. A bit commitment protocol consists of two stages:
the commit stage, where P1 sends some information d that represents b, and the revealing
stage, where P1 sends additional information that allows P2 to know b. As such, this protocol
can be seen as a scheme Φ = {Commit,Reveal}, where the commit stage

d←$ Commit(1λ, b)

takes security parameter λ and the private bit b from P1 and produces commitment d for P2,
and the reveal stage

(b / ⊥)← Reveal(b, d)

takes private bit b from P1 and commitment d from P2 and produces either the revealed bit
b or a failure symbol ⊥. In particular, this protocol must ensure that the commitments are
both hiding and committing.

• Hiding, which requires for P2 to be unable to infer b from d. More specifically, it
requires for P2 to be unable to guess b with probability greater than 1

2 + µ(λ), for
security parameter λ and negligible function µ.

• Committing, which requires for P1 to be unable to reveal a different value b′ 6= b. More
specifically, it requires that, after producing d from b, verification upon revealing b′ 6= b

succeeds with probability µ(λ), for security parameter λ and negligible function µ.

Bit commitments can be naturally extended to schemes for committing a set of bits, and
can thus be used to commit sensitive data with variable size, such as inputs or randomness.
Commitment schemes are a central component to achieve zero knowledge proofs [GMW86,
BM84, BCK+14, BKLP15, BSCG+15] and as a building block to achieve several multiparty
protocols [CDVdG87, GMW87, LP07, Can01, CLOS02].

38 CHAPTER 3. RELATED WORK

Zero-knowledge proofs

The presented definitions follow the ones discussed in [BR05, BSCTV14b]. A zero knowledge
protocol considers two parties, a prover, which we denote as P1, and a verifier, which we
denote as P2. P1 has input x,w, P2 has input x, z, and the goal is for P1 to convince
P2 that z = F (x,w). As such, a protocol for zero-knowledge proofs can be denoted as
T/F←$ ZK(F, x, z, w), receiving the shared input x, shared output z, function F and the
witness w for z = F (x,w), and producing T for successful validations and F otherwise.

Protocols for zero-knowledge proofs require for the fulfilment of three properties: complete-
ness, soundness and zero-knowledge.

• Completeness requires for P2 to be convinced whenever z = F (x,w). More specifically,
it requires that, if z = F (x,w), then P2 returns T with probability 1.

• Soundness requires P2 to be unconvinced whenever z 6= F (x,w) with overwhelming
probability. More specifically, it requires that, if z 6= F (x,w), then P2 returns T with
probability µ(λ), for security parameter λ and negligible function µ.

• Zero-knowledge requires for the execution of the protocol to leak no information re-
garding w, other than what is leaked by z. More specifically, it requires the existence
of some simulator S such that the view (the set of messages exchanged between the
two participants) produced by the interaction between P1(x,w) and P2(x, z) is only
distinguishable from the one produced by S(x, z) with probability µ(λ), for security
parameter λ and negligible function µ.

Applications for Zero-knowledge proofs include program verification [BSCG+13, BCI+13,
BSCTV14a, WB15], functional encryption [GGH+16], e-cash [MGGR13], deniable encryp-
tion [SW14] and multiparty computation [CDVdG87, GMW87].

3.2 Passively secure multiparty computation

A major factor defining the applicability of MPC solutions is the adversary considered. We
begin by presenting the MPC protocols that consider weaker (passive) adversaries, and give
a high-level perspective on how they fare in real-world applications.

Yao’s protocol

Yao’s two-party computation protocol [Yao86] considers participants P1 with private input x1

and P2 with private input x2 that wish to compute a function f securely, which is represented
as a binary circuit. In its simpler version, only P2 is expected to receive the computation

3.2. PASSIVELY SECURE MULTIPARTY COMPUTATION 39

output. To achieve this goal, the protocol relies on two central components: a garbling circuit
scheme G and a 1-out-of-2 OT protocol OT.

P1 will play the role of the circuit generator and P2 will play the role of the circuit evaluator.
At a high level, the protocol executes as follows.

• P1 runs the circuit generation procedure (F, e, d)←$ Gb(1λ, f) and computes the tokens
associated with its own private input Xx1

1 ← En(e, x1).

• The garbled circuit, the decoding function, and P1’s private input tokens {F, d,X1}
are securely sent to P2.

• Both participants execute OT protocols OT(X0
2 , X

1
2 , x2) = (ε,XX2

2) for P2 to receive
all input tokens associated with its private input.

• P2 can now evaluate the garbled circuit to produce the output token wires Y ←
Ev(F, (Xx1

1 , Xx2
2)) and recover the computation output y ← De(d, Y).

The presented protocol is demonstrated to be secure against passive adversaries. Intuitively,
for adversaries complying with the protocol specification, the guarantees achieved by garbling
schemes ensure that P2 is unable to retrieve any information regarding x1 that could not be
inferred by x2 and y, and the guarantees given by the OT scheme ensure that P1 recovers no
information with respect to x2.

In this regard, [PSSW09] was one of the pioneer contributions presenting reasonable results
for Two-party Yao, refining the implementation on [LPS08] and presenting a set of ground
breaking results for AES computation speeds, such as 7s for passive adversaries, 95s for
covert adversaries and 1148s for active adversaries.

Yao’s protocol is particularly effective in settings where applications can be deployed over two
computing parties, such as PRACTICE’s use cases [BMS+15] Privacy Preserving Genome-
Wide Association Studies between Biobanks and Location Sharing with Nearby Contacts.
While Yao’s approach is often used in the two-party computation setting, [BMR90, BDNP08]
have also proposed how to extend this protocol to the general MPC setting, which is par-
ticularly relevant since the majority of settings fundamentally require computation to be
performed over an arbitrary number of participants.

Secret sharing based protocols

There are various approaches that rely on partially homomorphic secret sharing schemes.
Sharemind [Bog13, BLW08, BNTW12] is a secure service platform for data collection and
analysis that has had some practical applicability cases, and serves as an example for a
passively secure MPC protocol based on secret sharing techniques.

40 CHAPTER 3. RELATED WORK

Sharemind’s deployment model considers an interplay between three kinds of protocol par-
ticipants. Input parties can be any number of participants, and hold the private inputs
x1, . . . , xn. Result parties can also be any number of participants, and are expected to receive
the computation result y. Computing parties are always fixed to three participants, and will
be in charge of receiving shared values from input parties, executing the secure computation,
and forwarding the resulting shares to the result parties.

The protocol makes use of a 3-party additive secret sharing scheme in the ring of 32-bit
integers, i.e. a secret s ∈ Z232 is split into three random shares s1, s2, s3 ∈ Z232 such that
s1 + s2 + s3 = s (mod 232), and its execution is as follows. The input parties take their
private inputs {x1, . . . , xn} and secret share them to

{x1
1, x

1
2, x

1
3, . . . , x

n
1 , x

n
2 , x

n
3}

These shares are then divided accordingly and securely sent to the three computing parties,
denoted here as C1, C2 and C3

C1 : {x1
1, . . . , x

n
1}

C2 : {x1
2, . . . , x

n
2}

C3 : {x1
3, . . . , x

n
3}

Sharemind then describes several protocols for performing basic arithmetic and comparison
of integers, which in turn can be used to perform more complex data processing applications.
After all operations are performed in the computing parties, the output shares {y1, y2, y3}
are sent to the output parties, to be reconstructed into the actual computation output

y ← y1 + y2 + y3 (mod 232)

The computation protocols are presented as being provably secure in the passive adversarial
model with no more than one passively corrupted party. Originally, Sharemind’s definition
of security followed the universal composability, but did not present a full universal com-
posability proof for its algorithms. More recently, the security of Sharemind was formalized
using reactive simulatability and under a weaker notion of privacy [BLLP14].

Sharemind has been widely used as a solution for use cases such as Genome Data Analy-
sis [BKLS16a], Tax Fraud Detection [BoSV16] or General Statistical Analysis [BKLS16b].
Sharemind-based implementations have been demonstrated in 2013 [LTW13] to implement
AES with execution times of 323ms and 0.29ms (amortised), further improved in [T+16]
with execution times of 223ms and 0.04ms (amortised).

Combined approaches

In general, Yao’s protocol benefits from having a constant number of communication rounds,
which makes the approach typically preferential when deployment over networks with high

3.2. PASSIVELY SECURE MULTIPARTY COMPUTATION 41

latency is considered. This technique allows for offloading a considerable ratio of the heavy
cryptographic work to a preparation stage, however its communication is not as efficient
as its secret sharing scheme’s counterparts, where some operations can be performed locally.
Secret sharing schemes benefit from natural scalability to an arbitrary number of participants.
The operation for the secret sharing of values tends to be very efficient, which allows for
the bulk of the computation and communication to be off-loaded to potentially untrusted
participants. This is a natural fit to real-world deployments where participants with inputs
are not necessarily the ones doing the actual computation, such as users off-loading secure
computation to a cloud provider.

Both approaches have their strengths and weaknesses, thus their optimal application is
dependent on the use case scenario and its inherent computational and communicational
model. On the opposite end of highly specific applications, such as those improving AES
execution time on MPC, frameworks TASTY [HSS+10] and ABY [DSZ15] focus on providing
the software developer with a passively-secure MPC tool that can execute general functions
using both garbled circuits and secret sharing homomorphic computations. These approaches
have considerable potential for real-world MPC, since they can be instantiated with the best
implementations of each primitive, thus enabling applications to employ different mechanisms
according to different deployment settings.

TASTY (Tool for Automating Secure Two-partY computations) is a tool suite addressing
secure two-party computation in the passive adversary model. TASTY ’s goal is to prioritize
the online phase for evaluating a function f , assuming a prior setup phase for the execution.
To achieve the desired speed-up, TASTY allows the compiling and evaluation of functions
using garbled circuits and (additively) homomorphic encryption schemes, e.g. Paillier, at the
same time. TASTY can be extended to employ other primitives, such as fully-homomorphic
encryption [Gen10]. Prior to TASTY , compilers for secure function evaluation were restricted
to compiling protocols using either garbled circuits or homomorphic encryption schemes.
TASTY implements a hybrid approach, combining garbled circuits and homomorphic en-
cryption, as described in [KSS10, KSS13b]. Specifically, for each function f to be evaluated,
the programmer can define which parts of f should be computed by garbled circuits, and
which parts should be computed by homomorphic encryption. On one hand, arithmetic
circuits cannot efficiently encode non-linear functions like comparisons, which includes Yao’s
millionaire problem and XORs [KS08]. On the other hand, Boolean circuits cannot efficiently
express arithmetic functions like multiplication. The combination of both approaches allows
for experimentally supported computation speedup [HSS+10, KSS09].

ABY is a framework for secure multiparty computation that is highly focused on maximizing
performance [DSZ15]. In a intuitively similar approach to TASTY , the idea is to combine
several schemes for secure multiparty computation, such as Arithmetic sharing, Boolean
sharing and Yao’s garbled circuits (hence the name), to take advantage of the best aspects

42 CHAPTER 3. RELATED WORK

of each of these approaches. The original proposal is focused on allowing for two-party
computation, however there is no strict limitation on the actual number of participants. The
framework is also prepared to handle reactive computations, thus allowing the servers per-
forming computations to maintain secure state information among a sequence of executions.
Arithmetic sharing encodes l-bit values additively in a ring Z2l , with a protocol inspired
by [ABL+04, KSS14]. Boolean sharing uses a XOR-based secret sharing scheme, and its
circuits are evaluated by the GMW protocol. Yao sharing is made using the original protocol
approach [Yao82]. To support and combine all these different secure computation methods,
ABY proposes methods for converting one type of sharing to another. These represent
operations such as (but not limited to) Yao to Boolean Sharing, Boolean to Arithmetic Sharing
or Arithmetic to Yao Sharing.

Under the scope of performance, the experimental validation in [DSZ15] presents an overview
of the execution times for the ABY framework. The tool was evaluated both in a local setting
and in a cloud setting, to highlight potential computation bottlenecks and communication
bottlenecks, and considering applications such as Modular exponentiation, Private Set In-
tersection and Biometric Matching. Measurement results strongly substantiate the intuitive
notion that different use cases can benefit from different approaches, e.g. sometimes boolean
sharing is better, sometimes garbled circuits are better, sometimes the combination of the
two is the best choice, and further solidifies the potential of combining techniques in software-
based MPC.

3.3 Actively secure multiparty computation

On the other side of the spectrum, we now present actively secure solutions for MPC. These
enable for deployments on a wider variety of use cases, however good performance results
only tend to arise from highly specialized approaches rather than their more flexible passively
secure counterparts.

GMW compiler

The usage of secure computation for real-world use cases often involves deployment over
highly untrustworthy participants, so active security is a common concern. In [Gol09],
Goldreich proposes a compiler – the GMW compiler – allowing for any passively secure
MPC protocol to be converted into an actively secure one. The approach makes use of
two main components: input commitment and zero-knowledge proofs, and its intuition is
to take a passively secure protocol and have every step (i.e. every exchanged message) be
accompanied by a zero-knowledge proof verifying its legitimacy both with respect to the
protocol description, and to the established inputs.

3.3. ACTIVELY SECURE MULTIPARTY COMPUTATION 43

More concretely, consider n participants {P1, . . . , Pn} with private inputs {x1, . . . , xn} and
let msg ← π(i,msgki , ri, t

k
i) be an n-party passively secure protocol, taking as inputs party

index i, the k’th message msgki , the party’s randomness ri, and the list of all messages seen
up to the k’th message by the participant tki . Let Φ = {Commit,Reveal} be a commitment
scheme, and ZK(F, x, z, w) be a protocol for zero-knowledge proofs. The GMW compiler
tweaks the execution of π to perform as follows.

• First, all Pi must force one another to execute using uniformly generated randomness,
while maintaining secrecy of each individual randomness. As such, all Pi will generate
randomness values {r1

i , . . . , r
n
i } and send rji to all j. Afterwards, Pi computes its

randomness from all values received and the locally generated value.

ri ←
n⊕
j=1

rji

• Then, all Pi prepare commitments of their inputs dxi←$ Commit(1λ, xi) and of their
locally generated randomness dri←$ Commit(1λ, rii), and send {dxi, dri} to all other
participants.

• Finally, all messages exchanged by the protocol msg ← π(i,msgki , ri, t
k
i) are accom-

panied by a zero-knowledge proof ZK(F, x, z, w) where w is the witness opening the
commitments (xi, r

i
i), z is the produced message msg, x is the description of the protocol

π and F is the decision problem “msg is consistent with π and the transcript {t1i , . . . , tki },
given the input and randomness commitments (dxi, dri)”.

The employed zero-knowledge proofs ensure that the adversary cannot deviate from the
protocol description in π, enforce input consistency throughout the execution, and prevent
the adversaries to use “convenient” randomness in any step of the protocol execution. This
technique is sufficiently generic to be applied to any passively secure MPC protocol, and
presents an important result in the research of practical MPC solutions.

However, one downside of the GMW compiler is the requirement of using zero-knowledge
proofs. These tend to be very expensive, as they revolve around reducing decision problems
to NP-Complete problems such as the Boolean Satisfiability Problem, Hamiltonian Cycle
or the 3-Coloring, and often introduce large polynomial factors. As such, practical MPC
deployments most commonly resort to other techniques for tackling with active adversaries.

Cut-and-choose

In [LP07], Pinkas and Lindell introduced an elegant protocol allowing for GC-based secure
computation under the active adversary model named Cut-and-Choose. This technique is
focused on preventing the circuit generator (P1) from garbling a circuit different from the

44 CHAPTER 3. RELATED WORK

agreed upon function, by having P1 generate several garbled circuits to be sent to P2, and
allowing P2 to select half of them for validation.

More concretely, cut-and-choose takes a statistical security parameter ρ which specifies how
many garbled circuits will be used. This will define the error probability incurred by the
cut-and-choose technique. At a high-level, the cut-and-choose protocol assumes participants
P1, P2 with inputs x1, x2 and wishing to compute F(x1, x2), and executes as follows.

• P1 commits to ρ different garbled circuits of F, with the additional tweak that each
input for P2 is replaced by a exclusive-or gate consisting of ρ new input wires for P2.
P1 also commits to garbled values corresponding to the circuits’ input wires.

• For all P2 input bits, P1, P2 run 1-out-of-2 OT protocols, so that P2 can obtain input
wires corresponding to x2.

• P1, P2 run a coin-tossing protocol to establish fair randomness to define which commit-
ments and which garbled circuits will be verified.

• P1 must then open the selected garbled circuits and inputs, and P2 verifies their
correctness. If any inconsistency is detected, the protocol aborts.

• P1 can now send the garbled values corresponding to x1, to be evaluated on the
remaining unopened circuits.

• P2 can now evaluate all unopened circuits and present the majority output value as
the result of F(x1, x2).

The cost of cut-and-choose techniques is highly associated with the number of generated
garbled circuits. Originally ([LP07]), restricting an active adversary to a 2−ρ chance of
successful attack would require 17ρ circuits, however this overhead was gradually reduced to
3ρ [LP12, hSas11, S+13] and ρ [Lin16]. Recent developments in [Bra13, CAGAA+13] explore
the possibility of using an approach named “forge-and-lose”, where cheating requires for all
circuits (checked and evaluated) to be correct. This uses a specific flavour of commitments
leaking some auxiliary information if two garbled circuits differ, allowing for P2 to recover x1

if P1 has attempted to cheat (thus enabling the local computation of the legitimate output
F(x1, x2)).

Authenticated shares

The goal of achieving active security has also been approached in [NNOB12, KRW17],
which use information-theoretic message authentication codes (IT-MACs) to authenticate
the joint evaluation of a garbled circuit. In this setting, active corruptions may occur as both

3.3. ACTIVELY SECURE MULTIPARTY COMPUTATION 45

participants can replace values on internal wires to disrupt the functionality output or force
information leakage.

Security is achieved by relying on homomorphic MACs associated with all bits of shares held
by both players, thus enforcing a verifiable behaviour on both participants’ computations.
At a high-level, this mechanism works as follows. One party (say, P1) plays the role of a key
holder, and the other (say, P2) is the MAC holder. For a security parameter λ, P1 holds a
global key key ∈ {0, 1}λ and P2 holds secret bits (x0, x1). For each of these bits, P1 holds a
corresponding key (K0,K1) ∈ {0, 1}λ, which are used to validate the corresponding MACs
M0,M1 for each of these values

M0 : K0 ⊕ x0 · key

M1 : K1 ⊕ x1 · key

These MACs benefit from the same homomorphic properties as shares in the GMW protocol

M0 ⊕M1 = (K0 ⊕K1)⊕ (x0 ⊕ x1) · key

Thus allowing for local computation over shares to also be reflected in their associated
MACs. Whenever the shares are to be reconstructed to produce the original values, the
associated MACs are also gathered, allowing for a verification of the produced result. Note
that, in [NNOB12], both P1 and P2 will have several secret bits over which computation is
to be performed, and both can behave maliciously. As such, P1 will be the key holder for
validating the secret values computed by P2 (as exemplified), and P2 will be the key holder
for validating the secret values computed by P1.

The adaptation of the same mechanism to the MPC setting is suggested in [WRK], retaining
the homomorphic properties of the original protocol. IT-MACs are also a central approach
to works such as [DPSZ12, DKL+13], where MACs are used to authenticate shared values,
rather than the shares themselves. This mechanism for authentication works very similarly
to the MPC extension proposed in [WRK], considering a global shared MAC key such that
all participants can locally compute MAC values, and use its homomorphic properties to
propagate over several operations on the authenticated shared value.

Practical applicability of the state-of-the-art

Execution time is one of (if not the) most significant factor in the transition of MPC
from a purely theoretical area to a feasible approach for real-world deployments. From
the pioneer proposal in [PSSW09] onwards, considerable improvements have been reported.
In 2011, [hSas11] proposed results for 192s computation of AES, considerably reducing
communication and computation overheads by improving cut-and-choose techniques using
claw-free collections [GK96] and the approach of [CC+08] to reduce complexity size for the

46 CHAPTER 3. RELATED WORK

output validation step. Yet another meaningful push was made on 2014 [FJN14] presenting an
implementation with 456ms for AES computation, improving the “forge-and-lose” approach
and parallelizing its execution using the same instruction, multiple data (SIMD) framework
using a GPU.

Recent 2016 [RR16] and 2017 [WMK17] works have achieved values for 6.4ms (amortised)
and 65ms (non-amortised) for AES, respectively. [RR16] builds upon the dual-execution
protocol proposed in [MF06], where both participants play both roles in the GC evaluation
and converge to the secure computation output, and reduce its computational overhead by
developing a novel input consistency technique for this specific setting. [WMK17] makes use
of Lindell’s construction in [Lin16] requiring ρ garbled circuits for statistical security param-
eter ρ, and builds upon the general idea of [AMPR14] for replacing public-key cryptographic
operations with symmetric cryptographic operations, asymptotically reducing the number of
public-key operations required in the circuit evaluation. Also in 2017, [KRW17] has produced
results for AES computation in 0.93ms (as reported in [KOR+17]), adopting and improving
upon the IT-MAC approach for the design of authenticated garbled circuits. This approach
by Katz et al. has also been extended to the MPC setting in [WRK], allowing for a more
flexible corruption setting where up to n− 1 participants can be controlled by the adversary.

SPDZ is another approach to the problem of secure computation [DPSZ12, DKL+13], consid-
ering active adversaries and protocols running on n participants with up to n−1 corruptions.
Security relies on the usage of IT-MACs for authentication of shared values, and performance
takes advantage of a somewhat homomorphic encryption scheme (proposed in [DPSZ12]) used
to generate beaver triples to enhance processing during the online phase. In [KSS13a], the
efficiency of SPDZ to compute a single AES execution was measured in a deployment using
SIMD to obtain a value of 12ms.

Other secret-sharing based MPC solutions have presented good results, such as [FLNW17]
and [KOR+17]. [FLNW17] extends the work in [AFL+16] to sustain active adversaries by
having cut-and-choose be used to validate beaver triple generation, and is (theoretically)
expected to outperform existent execution such as [RR16] requiring communication of roughly
100 times higher than the proposed protocol. [KOR+17] also takes the lookup table approach,
improving on the TinyTable protocol [DNNR16], generalising the approach to the MPC
setting and refining the mechanism required for the preparation phase, achieving 0.93ms per
AES computation.

The high amount of recent publications in the subject substantiates the considerable effort
by the research community to find feasible actively secure MPC solutions. However, note
that the fastest existing solutions take on a highly specialized approach to the problem,
often following implementation decisions such as lookup tables, which are not scalable to
considerably more complex problems.

Chapter 4

Trusted hardware in cryptography

Work that looks at provable security for realistic protocols using trusted hardware compo-
nents has been developed around approaches using the Trusted Platform Module [BCC04,
SRC07, BCL08, GT07, FNRT14]. However, the functionality and efficiency of these protocols
offered by TPM makes them more suitable for ensuring integrity of programs right before
execution, rather than the run-time guarantees that modern trusted hardware provide. In
this chapter, we present the novel trusted hardware technologies of Intel SGX and ARM
TrustZone, as well as an analysis of similar technologies focused on ensuring runtime guaran-
tees, relevant research relying on these technologies to provide secure and efficient protocols,
and an overview of current side-channel attacks to these specialized hardware technologies.

4.1 Software Guard Extensions

An SGX-enabled processor is equipped to protect the integrity and confidentiality of the
computation inside the enclave, by isolating its code and data from the outside environment.
This includes the operating system and hypervisor, as well as any hardware devices attached
to the system bus. These environments have access to a special SGX call for producing
a proof of integrity regarding the code running within the enclave. The proof itself is a
cryptographic signature that certifies the hash of the enclave contents (namely the code and
memory). This setting does not prevent the remote computer to run any specific software
within enclaves, but instead allows for the user to reject any result produced by an enclave
whose contents do not match the expected value.

Enclaves

In an SGX-enabled hardware, a subset of memory is reserved as Processor Reserved Memory
(PRM). The CPU is responsible to protect this memory structure from all external (non-

47

48 CHAPTER 4. TRUSTED HARDWARE IN CRYPTOGRAPHY

enclave) memory access. The PRM manages the enclave page cache, storing enclave-related
information such as code and data. The system software is in charge of assigning these
enclave pages to enclaves, and the CPU will make sure that each enclave page corresponds
to exactly one enclave. SGX provides a set of special CPU instructions allowing for the
management of enclaves, which will now be concisely described.

Enclave creation begins with ECREATE, establishing the initial environment within the
protected range of addresses, and allocating an associated data structure for the enclave
on the PRM. This transits into an initially valid enclave construction. As the enclave is
built, the instruction EADD allows the allocation of additional memory pages to the enclave.
At each page, EEXTEND is used to measure allocated space. If all added pages have been
measured, then the enclave is ready for initialization with EINIT. According to the information
within the enclave, this instruction establishes fixed valid entry points for the enclave.

When the enclave is successfully initialized, it enters a locked state, preventing changes
on enclave memory pages. From this point onwards, the user may enter the enclave under
program control with EENTER, specifying a valid address as entry point. Within the program
mode, the enclave is restricted from performing any instruction listed on a pre-established set
of illegal commands, resulting in an error. From there, it is possible to obtain cryptographic
keys with EGETKEY and generate reports for other enclaves with EREPORT. These reports
can be used for enclaves to authenticate messages among other enclaves within the same
platform.

The enclave is terminated via EEXIT. If something makes the enclave halt (either an ex-
pected or unexpected occurrence), the Asynchronous Enclave Exit is triggered. This saves
the enclave’s state using cryptographic techniques, allowing to re-enter the enclave using
ERESUME. From the moment an enclave is locked, it is possible to execute management
commands, such as evictions blocks or loads.

In order to provide inter-platform enclave attestation, SGX-enabled hardware also includes
an Enhanced Privacy ID (EPID) scheme [BL11] that is used by a special enclave called
quoting enclave for signing enclave attestations. EPID is a group signature scheme allowing
a platform to construct signatures without uniquely identifying the actual platform that has
produced it. Only the quoting enclave has access to this EPID key, which is bound to the
version of the underlying firmware. The mechanism for remote attestation is proposed in
[AGJS13], can be depicted in Figure 4.1 (from the same paper) and is described as follows:

1. The remote machine establishes communication with an SGX-enabled platform and
issues a challenge to validate the machine as running the necessary components inside
an enclave, including a nonce for liveness purposes.

2. The application sends to the enclave the identity of the quoting enclave and the remote
challenge.

4.1. SOFTWARE GUARD EXTENSIONS 49

Figure 4.1: Process for remote attestation

3. The enclave generates a report (using the described instruction EREPORT) comprising
the enclave contents and the challenge given to it, and returns it to the application.

4. The application simply forwards the received data structure to the special quoting
enclave.

5. The quoting enclave verifies the authenticity of the received report (using EGETKEY
to retrieve the associated key) and signs it with its unique EPID key. This produces
what is called a quote, which is returned to the application.

6. The application forwards the quote to the remote machine.

7. The challenger uses a EPID public key to validate the signature included in the received
quote. It can now verify the integrity of the signed data and check the response for the
challenge proposed in (1).

The work developed during this thesis is mainly focused on formalizing and proving security
guarantees that can be provided by schemes such as this quoting mechanism, that allows for
enclaves to prove to external users that they are running according to a specific code and
contents. This was the first modular security analysis of these hardware-based mechanisms,
so the subsequent abstraction and formal definitions represent the initial efforts in precisely
specifying the security models and definitions that allow for the implementation of provably
secure protocols relying on trusted hardware providing isolated execution environments, such
as SGX.

50 CHAPTER 4. TRUSTED HARDWARE IN CRYPTOGRAPHY

4.2 TrustZone

ARM TrustZone [AF04] is a collection of hardware modules employed to allow for a pro-
grammable environment where applications can be run with confidentiality and integrity
guarantees from other software running within the same machine. This is achieved by
enforcing a strict partitioning of all system resources between a Secure world, hosting secure
memory and containers, and a Normal world, hosting the standard software stack.

TrustZone’s CPU core is equipped with two page table base registers, providing separate
address translation units for the Secure and Normal worlds. The addresses include an
additional secure bit to establish if the contents belong to the Normal or the Secure world.
Secure containers must also implement a monitor to perform context switches between the two
worlds and to handle hardware exceptions, forcing the system to return to the normal world.
TrustZone manages context by employing an extended bus architecture (AMBA3 AXI™)
with an extra control signal for secure (low) or non-secure (high) write/read transactions,
ensuring that security separation is not violated.

The development of applications to be run within the Secure world software stack can be
done in a variety of ways, as suggested in [ARM09]. The simplest approach is to load a
code library into the Secure world, whose scheduling is entirely controlled (activated) by
the OS in the Normal world. This allows for software developers to benefit from TrustZone
isolation guarantees when the target application is simpler and does not require any additional
security/management mechanisms. Another approach is to have a dedicated operative system
in the Secure world, which is a complex design that can independently manage several
applications running within controlled environments. This enables the usage of a secure
application service that initializes additional cryptographic components, and that uses the
processor memory management unit to separate secure applications into resource-isolated
sandboxes.

Hardware initialization and attestation

TrustZone is a system primarily designed for establishing strict isolation between Normal
world applications and Secure world applications. This enables for code to be run on
environments whose resources cannot be read or tampered with by external (potentially
malicious) software within the same machine, but is insufficient to enable inter-platform
attestation. Work in [ZZH+14] rigorously describes how TrustZone-enabled hardware is
initialized to make use of a secure root-of-trust for application development. More specifically,
the goal is to construct a building block in on-chip memory providing a unique device key,
to generate cryptographic material for execution attestation, and a random seed, necessary
to implement a secure random number generator for the secure OS.

4.2. TRUSTZONE 51

The generation of a unique device key is achieved by combining an SRAM Physical Unclon-
able Function (PUFs) [Sol] and a fuzzy extractor based on BCH code [MZ]. PUFs ensure
robustness, meaning they produce the same responses to the same challenges (modulo some
noise), and uniqueness, meaning they produce independent responses to different challenges.
These can then be combined with fuzzy extractors to generate and store keys without having
to write keys on secure non-volatile memory. More concretely, the SRAM PUF will provide
a start-up value r, which can be seen as a string of values of SRAM cells. Initially, the fuzzy
extractor uses r on generation algorithm Gen to produce a key k and some non-sensitive
helper data H, which is stored on non-volatile data. Whenever the device must reconstruct
the device key, it now gets a noisy response r′ instead of the original r. To reconstruct the
device key, the fuzzy extractor runs Rep with r′ and helper data H to reconstruct the original
k. This has the added benefit of enabling easy key updates, since Gen can be run again to
obtain the updated key k′ and new helper data H ′.

To allow for secure randomness to be generated, [ZZH+14] makes use of the entropy extractor
proposed in [DPR+13] to condense the entropy of the noisy initial SRAM values and obtain
a random seed, which can then be used on a random number generator whenever necessary.

The proposed system is thus comprised of a generate procedure, to be securely executed
upon the hardware manufacturing, and of a building block, for whenever the same device is
initialized from then onwards. Figures 4.2 and 4.3 depict an overview of these procedures,
which are detailed as follows.

• Generate procedure - The specific key generation procedure feeds a randomly selected
primary seed PS to both a key derivation function KDF to obtain public/private keys
(pk, sk) and to a deterministic key generation algorithm KG to obtain symmetric key k.
sk is then used to issue a certificate Cpk, which can then be employed as cryptographic
material for remote attestation, whereas k is used for encrypting the image of the secure
OS. This PS is also fed to the BCH encoder C ← BCHenc(PS), and the initial values
for the SRAM cells r are used to create the helper data necessary for key recovery
H ← C ⊕ r.

• Building block - The noisy initial SRAM cell values r′ are used to recover a noisy
BCH code C ′ ← r′ ⊕ H, which can then be decoded to obtain the original value
PS ← BCHdec(C

′). Given the original PS, retrieving the keys is analogous to the
previous step. Every time a random value is required, one can use the entropy extractor
on the SRAM cell values r′ to obtain a (fresh) random seed.

This initialization is then used to construct primitives for sealing and unsealing, which
binds secure data with respect to both the platform and the application that is being
run. As a specific case, this allows for the implementation of a service for inter-platform

52 CHAPTER 4. TRUSTED HARDWARE IN CRYPTOGRAPHY

Figure 4.2: Generate procedure Figure 4.3: Building block procedure

attestation using the device key, similarly to the behaviour of the Signing Enclave described
in Section 4.1.

4.3 Other approaches to hardware attestation

Trusted Execution Technology (TXT) [Gra09] is another approach by Intel, using the TPM’s
software attestation model and auxiliary tamper-resistant chip, but reducing the software
inside the secure container to a virtual machine hosted by the CPU’s hardware virtualisation
features. An initialization authenticated code module (SINIT ACM) allows for performing
system resets, and enables for software to have exclusive control over computational resources
while it is active. Program execution within trusted environments requires prior measurement
of the code. These values are computed using cryptographic hashes (SHA-2 in the TPM v.2.0
and onwards) held in Platform Configuration Registers, special registers used for integrity
verification. However, contrary to SGX, TXT does not implement DRAM encryption, and
is vulnerable to physical DRAM tampering (as is the case with similar TPM-based designs).

Alternatively, the IBM 4765 secure coprocessor [Yee94] encapsulates an entire computer
system, including CPU, caches, DRAM and IO controller within a tamper-resistant envi-
ronment. The focus is to provide a general-purpose computing environment withstanding
logical and physical attacks, while ensuring that it is possible to remotely distinguish between
a real instance of the 4765 secure coprocessor and an impersonator. In particular, the secure
coprocessor destroys the secret stored as soon as it detects a tampering attempt, via an
array of sensors. This system securely stores its attestation key in battery-backed memory
accessible only to the secure coprocessor, responsible for measuring and loading system
software, as well as provide software attestation services for applications loaded within. This
hardware has shown to provide good security properties, however these tamper-resistant
enclosures tend to be very expensive compared to the expected cost of computer systems
[And], which deters practical deployment of solutions in these environments.

4.4. PROTOCOLS RELYING ON TRUSTED EXECUTION 53

Sanctum [CLD] provides strong software isolation and protection against software attacks
inferring private information from memory access patters, given a small set of hardware
changes. The overarching idea is to employ a system with protected memory access and
context changes to protected CPU execution environment, and to allow for code signing
with a measurement root and capabilities analogous to the Signing Enclave. With respect
to enclave-dedicated DRAM regions, Sanctum presents a very versatile model, where the
system boots up with all DRAM regions allocated to the OS, which can freely release regions
to be re-assigned to enclaves. Performance evaluation of the system suggests low overheads,
however it does not provide a direct comparison with other hardware for trusted execution.
Sanctum provides full access to the security monitor (central component to the management
of enclaves) and encourage security analysis. This approach is motivated for comparison with
SGX, accused of having security properties that are convoluted to reason over, given lack of
implementation details in publicly available documentation.

TrustLite [KSSV14] is a software architecture for hardware-enforced isolation focused on
applicability to embedded devices. The architecture is based on a memory protection scheme,
with an execution-aware memory protection unit, secure exception engine, and a secure
loader. These components are employed to allow tasks to be designed and executed with
particular security mechanisms, called trustlets. Trustlets must ensure: i.) data isolation, in
the sense that no software can modify their code after hardware-enforced access control is
established, ii.) attestation, which allows for local platform state validation without external
influence, as well as a mechanism for trustlets to establish mutual verification and secure
channels, and iii.) secure peripheral access, where trustlets have access to peripherals without
external interference. i. and ii. are essential to ensure trusted execution, while iii. is central to
motivational application scenarios requiring for secure user I/O [KJ01, FMSW11, ZGNM12].
Remote attestation is ensured by having the secure loader establish a chain of trust that
will allow for trustlet contents to be digitally signed. Security of the system considers an
adversary with full control over the OS and tasks running within the platform, but requires
for the bootstrapping routine (and the initialized trustlets) to behave securely.

4.4 Protocols relying on trusted execution

VC3 [SCF+15b] was one of the earliest paper publications employing SGX. A map-reduce
for generic computations, relying on establishing secure channels with SGX machines and
securely transmitting keys for decrypting and computing over protected data. A more general
application for an IEE-enabled Functional Encryption system is described in [FVBG], lever-
aging IEEs to perform Secure Outsourcing of Computations, where an isolated environment
manages keys, and responds to requests according to a specific functionality f to be run
with security guarantees (private genome calculations being the use case). Along the same

54 CHAPTER 4. TRUSTED HARDWARE IN CRYPTOGRAPHY

lines [SAM+17] also proposes a system for the secure private genome analysis using SGX
systems.

Performing two-party computation using SGX has also been proposed in [GMF+16]. The
motivation of this work is to present the trade-off between efficiency with trusted hardware
and non-reliance on trusted hardware, and proposes a method to convert two-party com-
putation garbled circuits to programs running within SGX, and vice-versa. Experimental
validation compares implementations of two-party computation garbled circuits against pas-
sive adversaries, active adversaries, and SGX-enabled two-party computation.

SGX has been employed in the design of novel block chain systems in [MHWK16]. This
work makes use of Isolated Execution Environments to perform highly efficient validation
of the block chain, introducing a IEE-specific primitive named “proof of luck”, allowing for
low-latency transaction validation, deterministic confirmation time and equitably distributed
mining. Another system [ZEE+] was independently developed to also tackle with the inef-
ficient software solutions to deal with block chains in untrusted environments by leveraging
isolated execution environments such as Intel’s SGX. A third system [ZCC+16], partially
developed by the authors of the second, employs SGX-enabled block chains with the goal
of providing an authenticated data feed for applications such as smart contracts. [LEPS16]
also looks at block chains, but instead focuses on the establishment of payment channels,
achieving higher throughput than software-reliant systems.

Managing and (partially) storing sensitive database indexes [FBB+17]. HardIDX is a hardware-
based approach for efficient database indexing, leveraging Isolated Execution Environments
to either load index structure (B+ trees, entirely or partially), and adequately respond to
query requests. This system does not ensure protection against an attack based on access
pattern recognition, which can itself be prevented by [TLP+16], which obfuscates access
patterns (similarly to ORAM) using the same trusted hardware mechanisms. This system
employs a “Carousel” method for an enclave to loop over database entries, hiding the memory
accesses relevant to client requested queries.

The usage of SGX-enabled systems to improve performance maintaining security was explored
in the context of anonymity networks (Tor) [KSH+15]. SGX allows for Tor nodes and clients
to benefit from attacks compromising program integrity. Experimentation results measure
CPU cycles with and without SGX, using the OpenSGX simulator. Another application
for networking (P2P) was proposed in [JTM+], where the trusted environment of IEEs
is employed to eliminate the advantage of a byzantine adversary, as well as to improve
performance of reliable broadcasting and common random coin generation via SGX features.
SGX technologies were also explored in the context of content-based routing while preserving
privacy without significant performance overheads [PPFF17]. Experimental results include
the comparison between computation over: i.) plain data, ii.) asymmetric scalar-product
preserving encryption (ASPE) and iii) using SGX, where performance of SGX was con-

4.4. PROTOCOLS RELYING ON TRUSTED EXECUTION 55

cluded to be comparable to the plain data implementation, and considerably superior to
ASPE. Additionally, SGX was also explored in the context of secure network booting for
Software-Defined Networking [PG16], which improves resource utilization, scalability and
administration of cloud network infrastructures.

SGXIO [WW17] is a trusted path architecture for SGX, allowing for applications running in
an untrusted OS to make use of trusted paths to generic I/O devices. This is achieved via
the establishment of a secure channel between some user secure I/O device, and an enclave
running the desired code.

TrustShadow [GLX+17] aims to ensure trusted execution environments for security-critical
applications within the context of IoT devices using ARM TrustZone technology. This
approach makes use of the resource partitioning in TrustZone to ensure protection of legacy
operations from potentially untrusted OSes, by initializing “shadow” counterparts of applica-
tions running in the secure world of TrustZone. The performance of TrustShadow has been
evaluated with micro-benchmarks (various Linux system services) and real-world applications
(embedded web server). In the same context of IoT devices, C-FLAT [AAD+16] enables
remote control-flow path attestation. This approach has been implemented in Raspberry Pi
devices relying on ARM TrustZone hardware extensions to be a trust anchor for a pre-
processing off-line stage where control-flow paths are statically analysed, measured and
securely stored in a measurement database. C-FLAT is thus devised to protect a system
from adversaries attempting to hijack control-flow on an application on runtime.

Attestation mechanisms for mobile devices with TrustZone can also be ensured while main-
taining anonymity [YYQ+15]. The proposed system requires a one-time TrustZone activa-
tion, which loads a trust anchor component into the SRAM that must only be accessible via
the secure world, following the methodology described in [ZZH+14]. This protects against
adversaries attempting to attack the scheme either by pretending to be a honest participant
with another device, or by manipulating the device (either via the OS of the TrustZone-
enabled device, or by actively forcing device reboot). This approach was further explored
in [YYZ+16], an anonymous e-payment protocol for mobile devices that makes use of secret
keys derived from the trust anchor that DAA-TZ includes on SRAM.

Protection of mobile OS’s against rootkit attacks is the focus of [GVJ14], which makes use
of TrustZone as an introspection mechanism for tampering detection. The motivation here
is that TrustZone, despite enabling a secure environment for application execution, does not
ensure legitimate execution of sensitive instructions. This is achieved by having a secure
pre-boot setup, where the secure world is initialized to have specific knowledge about the
expected normal world kernel memory configuration.

A provable security approach is often absent in the aforementioned contributions, where
security guarantees are usually limited to high-level descriptions. In this regard, [SCF+15b,
FVBG, FBB+17, JTM+] are exceptions, which present application-specific security goals in

56 CHAPTER 4. TRUSTED HARDWARE IN CRYPTOGRAPHY

their respective settings, and a respective security proof for the proposed protocols.

4.5 Side-channel attacks

Work in [CD] presents a thorough analysis of the SGX platform. In this extensive report,
several attack vectors against this technology are suggested, such as cache timing attacks,
port attacks, bus tapping attacks, chip attacks, power analysis attacks, PCI express attacks,
performance monitoring side-channels or address translation attacks.

Cache attacks are also presented in [MIE17, BMD+17]. Both these works employ the
prime+probe cache monitoring attack [OST06], and demonstrate how this approach allows
for extracting private keys for encryptions run within SGX with significantly better efficiently
than on similarly exploited scenarios. Interestingly, the efficacy of these attacks is further
enhanced by performing prime+probe in isolated co-located enclaves [SWG+17], which re-
main concealed from standard malware detection mechanisms. Similar cache timing attacks
of prime+probe can also be efficiently performed on ARM TrustZone [ZSS+16, LGS+16] in
mobile devices for the extraction of AES encryption keys used in the secure world, with
existing countermeasures proposed in [AL17] by mitigating cache contention about shared
memory and adjusting data path timings for non-detecting cache transition.

The protection of SGX against roll-back and forking attacks is discussed in [MKD+], where
a single platform is considered insufficient to efficiently prevent these threats, so multiple
processors assist each other to maintain execution consistency. This is achieved by the
ROTE system, which maintains a distributed counter value that can be retrieved by restarting
enclaves to maintain freshness. A similar approach is also proposed in [BCLK17], that instead
considers a protocol that allows for mutually trusted clients to maintain an execution context.
This execution context manages a monotonic counter used for protection against roll-back
and forking attacks.

Page fault patterns in SGX can allow for the profiling of program executions, as explored
in [SCNS15], within the context of commonly used crypto libraries such as OpenSSL and
Libgcrypt. This work presents a high success rate in secret bit recovery, and proposes a
solution to reduce overheads, with support from hardware changes. Fault attacks of IEE
systems are explored in [BGN+16], where memory encryption is shown to be insufficient
protection, as the private RSA key of a GnuPG user is extracted in their proof-of-concept
experiment. Their attack mechanism is based on L3 probing (which is shared among all CPU
cores on the chip), so as to determine the execution timing for a specific memory location,
which is combined with a kernel page allocator prediction mechanism, injecting page faults
and provoking predictable effects.

Work of [LSG+16] proposes branch shadowing attacks on SGX. These attacks allow for an

4.5. SIDE-CHANNEL ATTACKS 57

adversary to gather the fine-grained control of an enclave program, namely the result of
branch instructions and the target address of said branch, which can be achieved through
timing attacks, execution traces, or by having a malicious OS interrupting enclave processes.
This work also proposes hardware and software-based countermeasures, including the usage
of techniques such as ORAM [RLT15] and branch removal [OCN+16].

58 CHAPTER 4. TRUSTED HARDWARE IN CRYPTOGRAPHY

Chapter 5

Formalising Isolated Execution
Environments

In this chapter, we generalise the previously presented hardware technologies into an en-
compassing notion of Isolated Execution Environments, and demonstrate how an attestation
mechanism can be implemented over the described hardware assumptions. More specifically,
two approaches for attestation are proposed, applicable in different settings: Attested Com-
putation, which captures the fundamental notions required for ensuring security properties of
isolated execution environments, and Labelled Attested Computation, refining the previous
approach to enable more efficient and complex applications.

5.1 Isolated Execution Environments

At the high-level, an Isolated Execution Environment can be seen as an idealised random
access machine running some fixed program P , whose behaviour can only be influenced
via a well-specified interface that permits passing inputs to the program, and receiving its
outputs. Intuitively, an IEE gives the following security guarantees. The I/O behaviour of
a process running in an IEE is determined by the program it is running, the semantics of
the language in which the program is written, and the inputs it receives. This means, in
particular, that there is strict isolation between processes running in different IEEs (and any
other program running on the machine). Furthermore, the only information that is revealed
about a program running within an IEE is contained in its input/output behaviour (which
in most hardware systems is simply shared memory between the protected code and the
untrusted software outside). As such, this section presents two flavours of computation to
be run within IEEs: non-labelled and labelled. Non-labelled computation captures a more
intuitive scenario, where an IEE provides attestation guarantees for the whole I/O trace
up to some part of the code (potentially all of it), and from then onwards no guarantees

59

60 CHAPTER 5. FORMALISING ISOLATED EXECUTION ENVIRONMENTS

are enforced. Labelled computation allows for considering more complex settings, where
attestation is ensured over only a subset of the whole execution classified by input/output
labels, allowing for more general applications and capturing the non-attested approach as a
specific case.

Programs and composition

Implicit throughout the work will be a programming language L in which programs are
written. It is assumed that this language is used by all computational platforms, but one
can admit IEE-specific system calls giving access to different cryptographic functionalities.
These are referred as the security module interface. An additional system call rand is also
assumed to be present in all platforms, giving access to fresh random coins sampled uniformly
at random. Language L is assumed to be deterministic modulo the operation of system calls.
As mentioned above, it is important for our results that system calls cannot be used by a
program to store additional implicit state that would escape IEE control. To this end, it is
imposed that the results of system calls within an IEE can depend only on: i. an initially
shared state that is defined when a program is loaded (e.g., the cryptographic parameters of
the machine, and the code of the program); ii. the input explicitly passed on that particular
call; and iii. fresh random coins. As a consequence of this, it may be assumed that system
calls placed by different parts of a program are identically distributed, assuming that the same
input is provided. This is particularly important when program composition is considered.

A program P must be written as a transition function, mapping bit-strings to bit-strings.
Such functions take a current state st and an input i, and they will produce a new output o
and an updated state. This will be referred to as an activation and expressed as o← P [st](i).
Unless otherwise stated, st will be assumed to be initially empty. It is imposed that every
output produced by a program includes a Boolean flag finished that indicates whether the
transition function will accept further input. The transition function may return arbitrary
output until it produces an output where finished = T, at which point it can return no
further output or change its state. This notation is extended as o ← P [st; r](i) to account
for the randomness obtained via the rand system call as extra input r; and as (o1, . . . , on)←
P [st; r](i1, . . . , in) to represent a sequence of activations. It is written TraceP [st;r](i1, . . . , in)

for the corresponding I/O trace (i1, o1, . . . , in, on).

Given two programs P and Q, and a projection function between the internal states of
the two programs φ, the sequential composition of the two programs will be referred to as
Composeφ〈P,Q〉. This is defined as a transition function R that has two execution stages,
which are signalled in its output via an additional stage bit. In the first stage, every input to
R will activate program P . This will proceed until P ’s last output indicates it has finished
(inclusively). The next activation will trigger the start of the second stage, at which point R
initialises the state of Q using φ(stP) before activating it for the first time. Additionally it is

5.1. ISOLATED EXECUTION ENVIRONMENTS 61

required that a constant indicating the current stage (termination being counted as a third
stage) is appended to any output of a composition. When dealing with such a composed
program, it is denoted by ATraceR[st;r](i1, . . . , in) the prefix of the trace that corresponds to
the execution of P . Intuitively, this denotes the attested trace where only the initial part of
the program must be protected via attestation.

Labelled programs and composition

Labelled computation provides a more general approach, capturing scenarios where multiple
participants run code within IEEs, in which each participant is only interested in validating
a part (or subtrace) of the execution: its own. The same model for programs is used, but
is now extended to the settings where inputs/outputs are labelled: programs as transition
functions which take a current state st and a label-input pair (l, i), and produce a new output
o and an updated state. The operations are written as o ← P [st](l, i) for each such action
and are referred to as activations. Throughout the thesis the focus is restricted to programs
(even if they are adversarially created) for which the transition function is guaranteed to run
in polynomial-time.1 Unless otherwise stated, st is assumed to be initially empty.

The notation is extended to account for probabilistic programs that invoke the rand sys-
tem call. Let o ← P [st; r](l, i) denote the activation of P which, when invoked on la-
belled input (l, i) (with internal state st and random coins r), produced output o. Se-
quence of activations are written as (o1, . . . , on) ← P [st; r](l1, i1, . . . , ln, in) and denoted by
TraceP [st;r](l1, i1, . . . , ln, in) as the corresponding input/output trace (l1, i1, o1, . . . , ln, in, on).
When dealing with a trace T , filter[L](T) will be used to denote the projection of the trace
that retains only I/O pairs that correspond to labels in L. For simplicity of presentation,
notation will be abused to employ filter[l] when L is a singleton.

The basic notion of program composition is also extended to consider the two general label-
based forms of program composition shown in Fig. 5.1 that can be applied recursively and
interchangeably to create arbitrarily complex programs in a modular way.

Parallel composition of programs P1, . . . Pn, denoted 〈P1 | . . . |Pn〉p1,...,pn , can be seen as the
transition function that takes inputs with extended labels of the form (pi, l)

2—here pi are
bitstrings used to identify the target program, where it is assumed pi 6= pj for i, j distinct—
and dispatches incoming label-input pairs to the appropriate program. Parallel composition
excludes the possibility of state sharing between programs, and defines termination to occur
when all composed programs have terminated. Sequential composition of two programs P
and Q via projection function φ, denoted 〈P ;Q〉φ,p,q, can be seen as the transition function

1In particular it is assumed that adversarially generated programs cannot blow up the execution time of
an experiment beyond poly-time in the security parameter.

2It is assumed some form of non-ambiguous encoding of composed labels and output strings, but this
presentation simply presents these encoded values as tuples.

62 CHAPTER 5. FORMALISING ISOLATED EXECUTION ENVIRONMENTS

Program 〈P1 | . . . |Pn〉p1,...,pn [st](l, i):

If st = ε : For i ∈ [1..n] : st.finished.pi ← F; st.pi ← ε

If (∧ni=1 st.finished.pi) : Return ε
If ∃k ∈ [1..n] s.t. l = (pk, l

′) :

If ¬st.finished.pk :

o←$ Pk[st.pk](l′, i)

st.finished.pk ← o.finished

Else: o← ε

Else: o←⊥
Return

(
∧ni=1 st.finished.pi, o

)

Program 〈P ; Q〉φ,p,q [st](l, i):

If st = ε : st.stage← 0; st.finished← F st.st′ ← ε

If st.finished : Return ε
If st.stage = 0 ∧ l = (p, l′) :

o←$ P [st.st′](l′, i)

If o.finished : st.stage← 1; st.st′ ← φ(st.st′)

Else:
If st.stage = 1 ∧ l = (q, l′) :

o←$ Q[st.st′](l′, i)

st.finished← o.finished

Else: o←⊥
Return (st.stage, st.finished, o)

Figure 5.1: Parallel (left) and sequential (right) program composition.

that has two execution stages, which are signalled in its output via an additional stage flag.
As above, o.stage denotes the value of this flag in some output o. For consistency, labels
are assumed to be of the form (p, l) and (q, l) where p 6= q are used to identify the target
program. In the first stage, every label-input pair will be checked for consistency (i.e., that it
indicates P as the target program) and dispatched to program P . This will proceed until P ’s
last output indicates it has finished (inclusively). The next activation will trigger the start
of the second stage, at which point the composed program initialises the state of Q using
φ(stP) before activating it for the first time. As previously, it is required that a constant
indicating the current stage is appended to any output of a composition. No other state
sharing between P and Q is admitted, in addition to that fixed by φ.

Machines

AmachineM is an abstract computational device that captures the resources offered by a real
world computer or group of computers, whose hardware security functionalities are initialised
by a specific manufacturer before being deployed, possibly in different end-users. For example,
a machine may represent a single computer produced by a manufacturer, configured with a
secret signing key for a public key signature scheme, and whose public key is authenticated
via some public key infrastructure, possibly managed by the manufacturer itself. Similarly,
a machine may represent a group of computers, each configured with secret signing keys
associated with a group signature scheme; again, the public parameters for the group would
then be authenticated by some appropriate infrastructure.3

Machines will be modeled via a simple external interface, which can be seen as both the
functionality that higher-level cryptographic schemes can rely on when using the machine,
and the adversarial interface that will be the basis of the presented attack models. Loosely
speaking, this interface can be thought of as the ideal functionality that captures a system

3If the possibility of removing elements from the group is not needed, then even sharing the same signing
key for a public key encryption scheme between multiple computers could be a possibility.

5.1. ISOLATED EXECUTION ENVIRONMENTS 63

such as SGX, or the Secure OS of TrustZone. The non-labelled interface is as follows:

• Init(1λ) is the global initialisation procedure which, on input the security parameter,
outputs the global parameters prms. This algorithm represents the machine’s hard-
ware initialisation procedure, which is out of the user’s and the adversary’s control.
Intuitively, it initialises the internal security module, the internal state of the remote
machine and returns any public cryptographic parameters that the security module
releases. It should be emphasized that the global parameters of machines are the only
pieces of information that are assumed to be authenticated using external mechanisms
(such as a PKI) in the entire work.

• Load(P) is the IEE initialisation procedure. On input a program/transition function
P , the machine produces a fresh handle hdl, creates a new IEE with handle hdl, loads
P into the new IEE and returns hdl. The machine interface does not provide direct
access to either the internal state of an IEE nor to its randomness input. This means
that the only information that is leaked about internal state and randomness input is
that revealed (indirectly) via the outputs of the program.

• Run(hdl, i) is the process activation procedure. On input a handle hdl and an input i,
it will activate process running in isolated execution environment of handle hdl with i
as the next input. When the program/transition function produces the next output o,
this is returned to the caller.

The described interface can be instantiated for Intel SGX or ARM TrustZone. The Init

procedure can be seen as the device key initialization performed by the manufacturer on
all SGX hardware, or as the generate procedure for TrustZone proposed in [ZZH+14]. The
Load/Run procedures are handled by either enclave initialization and execution on SGX, or
by the Secure OS application management on TrustZone.

The I/O trace TraceM(hdl) of a process hdl running in some machine M is defined as the
tuple (i1, o1, . . . , in, on) that includes the entire sequence of n inputs/outputs resulting from
all invocations of the Run procedure on hdl; ProgramM(hdl) is the code (program) running
inside the process with handle hdl; CoinsM(hdl) represents the coins given to the program
by the rand system call; and StateM(hdl) is the internal state of the program. Finally, AM

denotes the interaction of some algorithm with a machineM, i.e., having access to the Load

and Run oracles defined above.

Alternatively, the interface for machines can be tweaked to consider the usage of labels
for program executions. More specifically, the process activation procedure is denoted as
Run(hdl, l, i). On input a handle hdl and a label-input pair (l, i), it will activate process
running in isolated execution environment of handle hdl with (l, i) as the next input. When
the program/transition function produces the next output o, this is returned to the caller.

64 CHAPTER 5. FORMALISING ISOLATED EXECUTION ENVIRONMENTS

Machine
Machine

Machine

Remote Machine

IEE
IEEIEE

Outsourced
Program

Security
M

odule

Untrusted
Network

Trusted Local Machine

Local Attested
Computation

Software

Remote Attested
Computation

Software

Untrusted code

Operating system

Other
Apps

Figure 5.2: Attested Computation scenario.

Following the previous notation, the I/O trace TraceM(hdl) of a process hdl running in some
machineM is defined as the tuple (l1, i1, o1, . . . , ln, in, on) that includes the entire sequence
of n inputs/outputs resulting from all invocations of Run on hdl.

5.2 Attested Computation

One begins by formalising a cryptographic primitive that builds upon the non-labelled
abstraction presented in Section 5.1, aiming to address the remote execution, i.e., outsourcing,
of programs as illustrated in Figure 5.2. In this setting, a single user running software in a
trusted local machine wishes to use an untrusted network to access a pool of remote machines
with IEE facilities. The remote machines will be running general-purpose operating systems
and other untrusted software. The goal of the user is to run a specific program P within
an IEE in one of the remote machines, and to obtain assurance that, not only the program
is indeed executing there, but also that it is displaying a particular I/O behaviour. This
is called attested computation, and it is now introduced as the cryptographic primitive that
formalises the simplest cryptographic application of trusted hardware systems offering IEE
functionalities.

Syntax

An Attested Computation (AC) scheme is defined by the following algorithms:

• Compile(prms, P, φ,Q) is the program compilation algorithm. On input global parame-
ters for some machineM, and programs P and Q, whose composition under projection

5.2. ATTESTED COMPUTATION 65

function φ will be outsourced, it will output program R∗, together with an initial
(possibly empty) state st for the verification algorithm. This algorithm is run locally.
R∗ is the code to be run as an isolated process in the remote machine. Intuitively, P is
the initial part of the remote code that requires attestation guarantees, whereas Q is
any subsequent code that may be remotely executed (generally leveraging the security
guarantees that have been bootstrapped using the initial attested execution).

• Attest(prms, hdl, i) is the attestation algorithm. On input global parameters for M, a
process handle hdl and an input i, it will use the interface of M to obtain attested
output o∗. This algorithm is run remotely, but in an unprotected environment: it
is responsible for interacting with the isolated process running R∗, providing it with
inputs and recovering the (possibly attested) outputs that should be returned to the
local machine.

• Verify(prms, i, o∗, st) is the (stateful) output verification algorithm. On input global
parameters for M, an input i, a (possibly attested) output o∗ and some state st, it
will produce an output value o and an updated state, or the failure symbol ⊥. This
failure symbol is encoded so as to be distinguishable from a valid output of a program,
resulting from a successful verification. This algorithm is run locally on claimed outputs
from the Attest algorithm.

In Figure 5.2, the local attested computation software block corresponds to Compile (one
initial usage per program) and Verify (one usage per incoming attested output), whereas the
remote attested computation software block corresponds to Attest (one usage per remote
program activation, i.e. per I/O transition). The above syntax can be naturally extended to
accommodate the simultaneous compilation of multiple input programs and/or the possibility
that Compile may generate multiple output programs. This would allow this formalisation
to capture, e.g., map/reduce applications such as those described in [SCF+15a].

Correctness

Intuitively, an AC scheme is correct if, for any given programs P and Q and assuming an
honest execution of all components in the scheme, both locally and remotely, the local user
is able to accurately reconstruct a view of the I/O sequence that took place in the remote
environment. Furthermore, this I/O sequence must be consistent with the semantics of
Composeφ〈P ;Q〉. In other words, suppose the compiled program is run under handle hdl∗ in
remote machineM, and the local user uses Verify to reconstruct the remote I/O behaviour
(i1, o1, . . . , in, on). Then, R := Composeφ〈P ;Q〉, it must be that

TraceR[st;CoinsM(hdl∗)](i1, . . . , in) = (i1, on, . . . , in, on)

66 CHAPTER 5. FORMALISING ISOLATED EXECUTION ENVIRONMENTS

The following definition formalizes the notion of a local user correctly remotely executing
program P using attested computation.

Definition 16 (Correctness). An Attested Computation scheme AC is correct if, for all λ,
and all adversaries A, the experiment in Figure 5.3 (left) always returns T.

The adversary in this correctness experiment definition is choosing inputs, hoping to find a
sequence that causes the attestation protocol to behave inconsistently with respect to the
semantics of P (when these are made deterministic by hard-wiring the same random coins
used remotely). This approach is used for defining correctness because it makes explicit what
is an honest execution of an attested computation scheme, when compared to the security
experiment introduced next.

Since dealing with composed programs is core to the success of this formalisation, the
correctness requirements on attested computation schemes are extended to preserve the
structure of the input program (P, φ,Q), and to modify only the part of the code that will be
attested. Formally, it is imposed that, given any program P , there exists a (unique) compiled
program P ∗, such that, for any mapping function φ and any program Q, it is defined that
Composeφ〈P ∗;Q〉 = Compile(P, φ,Q) .

Security

Security of an attested computation scheme imposes that an adversary with absolute control
of the remote machine cannot convince the local user that some arbitrary remote execution
of a program P has occurred, when it has not (nothing is said about the subsequent remote
execution of program Q). Formally, the adversary is allowed to freely interact with the
remote machine, whilst providing a sequence of (potentially forged) attested outputs. The
adversary wins if the local user reconstructs an execution trace without aborting (i.e., all
attested outputs must be accepted by the verification algorithm) and one of two conditions
occur: i. the execution trace that is validated by Verify is inconsistent with the semantics of P
(in which case an adversary would be able to convince the local user of an I/O sequence that
could not possibly have occurred!); or ii. there does not exist a remote process hdl∗ exhibiting
a consistent execution trace (in which case, the adversary would be able to convince the local
user that a process running P was executing in the remote machine, when it was not).

Since the adversary is free to interact with the remote machine as it pleases, it will always
be capable of appending arbitrary inputs to the trace of any remote process, while refusing
to deliver all of the resulting attested outputs to the local user. This justifies the winning
condition in the presented security game referring to a prefix of the trace in the remote
machine, rather than imposing trace equality. Indeed, the definition’s essence is to impose
that the locally recovered trace and the remote trace share a common prefix (v), which

5.2. ATTESTED COMPUTATION 67

Game CorrAC,A(1λ):

prms←$ M.Init(1λ)

(P, φ,Q, n, stA)←$ A1(prms)

(R∗, stV)← Compile(prms, P, φ,Q)

hdl∗ ←M.Load(R∗)

For k ∈ [1..n]:
(ik, stA)←$ A2(o∗1, . . . , o

∗
k−1, stA)

o∗k ← AttestM(prms, hdl∗, ik)

(oR,k, stV)← Verify(prms, ik, o
∗
k, stV)

If oR,k =⊥:
Return F

Define R := Composeφ〈P ;Q〉
T ← TraceR[st;CoinsM(hdl∗)](i1, . . . , in)

T ′ ← (i1, oR,1, . . . , in, oR,n)

Return T = T ′

Game AttAC,A(1λ):

prms←$ M.Init(1λ)

(P, φ,Q, n, stA)←$ A1(prms)

(R∗, stV)← Compile(prms, P, φ,Q)

For k ∈ [1..n]:
(ik, o

∗
k, stA)←$ AM2 (stA)

(oR,k, stV)← Verify(prms, ik, o
∗
k, stV)

If oR,k =⊥ Return F

T ′ ← (i1, oR,1, . . . , in, oR,n)

Define R := Composeφ〈P ;Q〉
For hdl∗ s.t. ProgramM(hdl∗) = R∗:

T ← ATraceR[st;CoinsM(hdl∗)](i1, . . . , in)

If T v T ′ ∧ T v Translate(prms,ATraceM(hdl∗)):
Return F

Return T

Figure 5.3: Games defining the correctness (left) and security (right) of an AC scheme.

exactly corresponds to the part of the source program’s behaviour that should be protected
by attestation.

Formally, it should be accounted for that the actual I/O sequence of the remote program
includes more information than that of R, e.g., to allow for the cryptographic enforce-
ment of security guarantees. The presented definition is parametrised by a Translate al-
gorithm that permits formalising this notion of semantic consistency. Another way to see
Translate(prms,ATraceM(hdl∗)) is as a trace translation procedure associated with a given
AC scheme, which maps remote traces into traces at the source level.

Definition 17 (Security). An attested computation scheme is secure if there exists an ef-
ficient deterministic algorithm Translate s.t., for all ppt adversaries A, the probability that
experiment in Figure 5.3 (bottom) returns T is negligible.

Observe that the adversary loses the game as long as there exists at least one remote process
that matches the locally reconstructed trace. This should be interpreted as the guarantee
that IEE resources are indeed being allocated in a specific remote machine to run at least one
instance of the remote program (note that if the program is deterministic, many instances
could exist with exactly the same I/O behaviour, which is not seen as a legitimate attack).
Furthermore, this definition imposes that the compiled program uses essentially the same
randomness as the source program (except of course for randomness that the security module
internally uses to provide its cryptographic functionality), as otherwise it will be easy for the
adversary to make the (idealized) local trace diverge from the remote. This is a consequence
of the presented modelling approach, but in no way does it limit the applicability of the
primitive proposed: it just makes it explicit that the transformation that is performed on
the code for attestation will typically consist of an instrumentation of the code by applying
cryptographic processing to the inputs and outputs it receives.

68 CHAPTER 5. FORMALISING ISOLATED EXECUTION ENVIRONMENTS

Game Leak-RealAC,A(1λ):

PrgList← []

prms←$ M.Init(1λ)

b←$ AO(prms)

Return b

Oracle Compile(P, φ,Q):

(R, stV)← Compile(prms, P, φ,Q)

PrgList← R : PrgList

Return R

Oracle Load(R):

ReturnM.Load(R)

Oracle Run(hdl, i):

ReturnM.Run(hdl, i)

Game Leak-IdealAC,A,S(1λ):

PrgList← []

List← []

hdl← 0

(prms, stS)←$ S1(1λ)

b←$ AO(prms)

Return b

Oracle Compile(P, φ,Q):

(R, stV)← Compile(prms, P, φ,Q)

PrgList← (P, φ,Q,R) : PrgList

Return R

Oracle Load(R):

hdl← hdl + 1

List[hdl]← (R, ε)

Return hdl

Oracle Run(hdl, i):

(R, st)← List[hdl]

If (P, φ,Q,R) ∈ PrgList:
R∗ ← Composeφ〈P,Q〉
o∗←$ R∗[st](i)

(o, stS)←$ S2(hdl, P, φ,Q,R, i, o∗, stS)

Else:
(o, st, stS)←$ S3(hdl, R, i, st, stS)

List[hdl]← (R, st)

Return o

Figure 5.4: Games defining minimum leakage of an AC scheme.

Minimum leakage

From the discussion above, an AC scheme should guarantee that the I/O behaviour of the
program in the remote machine includes at least the information required to reconstruct an
hypothetical local execution of the source program. However, it is important to establish an
additional restriction on what AC compilation actually does to a source program, to ensure
that this primitive can be used to achieve ambitious goals, namely to perform attestation of
the remote execution of cryptographic code.

The following definition imposes that nothing from the internal state of the source programs
(in addition to what is public, i.e. the code and I/O sequence) is leaked in the trace of the
compiled program when it is remotely executed.

Definition 18 (Minimal leakage). Attested Computation scheme AC ensures security with
minimal leakage if it is secure according to Definition 20 and there exists a ppt simulator S
that, for every adversary A, the following distributions are identical:

{ Leak-RealAC,A(1λ) } ≈ { Leak-IdealAC,A,S(1λ) }

where games Leak-RealAC,A and Leak-IdealAC,A,S are shown in Figure 5.4.

Notice that the simulator is allowed to replace the global parameters of the machine with
some value prms for which it can keep some trapdoor information. Intuitively, this means that
one can construct a perfect simulation of the remote trace by simply appending cryptographic
material to the local trace. This property is important when claiming that the security of a
cryptographic primitive is preserved when it is run within an attested computation scheme

5.2. ATTESTED COMPUTATION 69

(one can simply reduce the advantage of an adversary attacking the attested trace, to the
security of the original scheme using the minimum leakage simulator).

Attested Computation in practice

The considered remote attestation protocol is inspired in the Secure Guard Extensions (SGX)
architecture proposed by Intel as described in Section 4.1. A similar implementation of
attested computation with a signing enclave can also be achieved in TrustZone, following
the approach detailed in 4.2. The main feature of this system is that the remote machine is
equipped with a security module that manages both short-term and long-term cryptographic
keys, with which it is capable of producing MACs that enable authenticated communication
between various IEEs and digital signatures that can be publicly verified by anyone holding
the (long-term) public key for that machine (or group of machines). A simplified version of
how this security module operates is now formalised.

The security module relies on a signature scheme Σ = (Gen,Sign,Vrfy) and a MAC scheme
Π = (Gen,Mac,Ver), and it operates as follows:

• When the host machine is initialised, the security module generates a key pair (pk, sk)

using Σ.Gen and a symmetric key key using Π.Gen. It also creates a special process
running code S∗ (see below for a description of S∗) in an IEE with handle 0. The
security module then securely stores the key material for future usage, and outputs the
public key. In this case it is assumed that the output ofM.Init is prms = pk.

• The operation of IEE with handle 0 will be different from all other IEEs in the machine.
Program S∗ will permanently reside in this IEE, and it will be the only one with direct
access to both sk and key.

• The code of S∗ is dedicated to transforming messages authenticated with key into
messages signed with sk. On each activation, it expects an input (msg, t). It obtains key

from the security module and verifies the tag using Π.Ver(key, t,msg). If the previous
operation was successful, it obtains sk from the security module, signs the message
using σ←$ Σ.Sign(sk,msg) and writes σ to the output. Otherwise, it writes ⊥ in the
output.

• The security module exposes a single system call mac(msg) to code running in all other
IEEs. Upon such a request from a process running program P , the security module
returns a MAC tag t computed using key over both the code of P and the input message
(msg).

Observe that the operation of the security module allows any process to produce an authenti-
cated message that can be validated by the special process running S∗ as coming from within

70 CHAPTER 5. FORMALISING ISOLATED EXECUTION ENVIRONMENTS

another IEE in the same machine.

It is assumed that the message authentication code scheme Π and the signature scheme Σ sat-
isfy the standard notions of correctness and existential unforgeability detailed in Section 2.1,
and that the machine’s public key is authenticated by some external PKI.

It is now presented an AC scheme that relies on a remote machine supporting a security
module with the above functionality. The operation of the various algorithms is intuitive,
except for the fact that basic replay protection using a sequence number does not suffice to
bind a remote process to a full trace, since the adversary could then run multiple copies of the
same process and mix and match outputs from various traces. Instead, the remote process
must commit to its entire trace whenever an attested output is produced. Details follow:

• Compile(prms, P, φ,Q) will generate a new program R∗ = Composeφ〈P ∗, Q〉 and output
it alongside the initial state of the verification algorithm (R∗, [], 1), where 1 is an
indicator of the stage in which remote programR∗ is supposed to be executing. Program
P ∗ is instrumented as follows: it keeps a list ios of all the I/O pairs it has previously
received and computed, i.e, its own trace; on each activation with input i, P ∗ first
computes o←$ P [stP](i) and updates the list by adding a new (i, o) pair; it then requests
from the security module a MAC of the updated ios. Due to the operation of the
security module, this will correspond to a tag t on the tuple (R∗, ios); it finally outputs
(o, t, R∗, ios). Not that (R∗, ios) is included explicitly in the outputs of R∗ for clarity of
presentation only. This value would be kept in an insecure environment by a stateful
Attest program.

• Attest(prms, hdl, i) invokes M.Run(hdl, i) using the handle and input value it has re-
ceived. When the process produces an output o, Attest parses it into (o′, t, R∗, ios).
It may happen that parsing fails, e.g., if Q is already executing, in which case Attest

simply produces o as its own output. Otherwise, it usesM.Run(0, (R∗, ios, t)) to convert
the tag into a signature σ on the same message. If this conversion fails, then Attest

produces the original output o as its own output. Otherwise, it outputs (o′, σ).

• Verify(prms, i, o∗, (R∗, ios, stage)) returns o∗ if stage = 2. Otherwise, it first parses o∗

into (o, σ), appends (i, o) to ios, and verifies the digital signature σ using prms and
(R∗, ios)). If parsing or verification fails, Verify outputs ⊥. If not, then Verify will check
if output o indicates that program P ∗ has finished. If so, it will update stage to value
2. In any case, it terminates outputting o.

It is easy to see that the proposed AC scheme is correct, provided that the underlying
signature and message authentication code schemes are themselves correct. To see this, first
note that, during the execution of P ∗, unless a MAC or signature verification fails, the I/O
sequence produce by Verify exactly matches that of Composeφ〈P ;Q〉, and therefore T = T ′ is

5.2. ATTESTED COMPUTATION 71

always T. This follows from the construction of R∗, the operation of Attest, and the fact that
the associated randomness tapes are established by CoinsM(hdl∗) as identical. Furthermore,
if the message authentication code scheme is correct, then the MAC verification will never
fail, and if the message signature scheme is correct, then the signature verification will never
fail. This is because the combined actions of R∗, Attest, the signing process running S∗ and
the security module lead to tags and signatures on tuples (R∗, ios) that exactly match those
input to the verification algorithms Π.Ver and Σ.Verify. Finally, after executing P ∗, given
that the associated randomness tapes are established by CoinsM(hdl∗) are identical and that
traces are identical up to that point, so will be φ(stP) in both sides, and all subsequent calls
to Q will display a similar behaviour.

Let Translate be the deterministic function that receives the machine parameters and a list
of tuples of the form (i, (o, t, R∗, ios)) and returns a list of pairs of the form (i, o).

Theorem 1. The AC scheme presented above provides secure attestation if the underly-
ing MAC scheme Π and signature scheme Σ are existentially unforgeable. Furthermore, it
unconditionally ensures minimum leakage.

The proof is a sequence of three games presented in Figure 5.5 and Figure 5.6. The first game
is simply the AC security game instantiated with the proposed protocol. In game G1

AC,A(1λ),
the adversary loses whenever a sforge event occurs. Intuitively, this event corresponds to the
adversary producing a signature that was not computed by the signing process with handle
0, and hence constitutes a forgery with respect to Σ. Given that the two games are identical
until this event occurs, it follows that

Pr[AttAC,A(1λ)⇒ T]− Pr[G1
AC,A(1λ)⇒ T] ≤ Pr[sforge] .

To upper bound the distance between these two games, an adversary B against the existential
unforgeability of signature scheme Σ in S∗ is constructed, such that

Pr[sforge] ≤ AdvUF
Σ,B(λ)

Adversary B simulates the environment of G1
AC,A as follows: the operation of machineM is

simulated exactly with the caveat that the signing operations performed within the process
loaded by the security module are replaced with calls to the Sign oracle provided in the
existential unforgeability game. More precisely, whenever process 0 in the remote machine
is expected to compute a signature on message msg, algorithm B calls its own oracle on
(R∗,msg) to obtain σ.

When sforge is set, according to the rules of game G1
AC,A, algorithm B outputs message

(R∗, ios) and candidate signature σ. It remains to show that this is a valid forgery. To see
this, first observe that this is indeed a valid signature, as signature verification is performed

72 CHAPTER 5. FORMALISING ISOLATED EXECUTION ENVIRONMENTS

Game G0AC,A(1λ):

prms←$ M.Init(1λ)

(P, φ,Q, n, stA)←$ A1(prms)

(R∗, (R∗, ios, stage′))← Compile(prms, P, φ,Q)

For k ∈ [1..n]:
(ik, o

∗
k, stA)←$ AM2 (stA)

If stage′ = 1:
Parse (o′k, σ)← o∗k; (ok, finished, stage)← o′k
If Σ.Vrfy(prms, σ, (R∗, (ik, o

′
k) : ios)):

(oR,k, ios)← (o′k, (ik, o
′
k) : ios)

If finished = T: stage′ ← 2

Else: Return F

Else oR,k ← ok
T ′ ← (i1, oR,1, . . . , in, oR,n)

Define R := Composeφ〈P ;Q〉
For hdl∗ s.t. ProgramM(hdl∗) = R∗:
T ← ATraceR[st;CoinsM(hdl∗)](i1, . . . , in)

If T v T ′ ∧ T v Translate(prms,ATraceM(hdl∗)):
Return F

Return T

Game G1AC,A(1λ):

prms←$ M.Init(1λ)

(P, φ,Q, n, stA)←$ A1(prms)

sforge← F

(R∗, (R∗, ios, stage′))← Compile(prms, P, φ,Q)

For k ∈ [1..n]:
(ik, o

∗
k, stA)←$ AM2 (stA)

If stage′ = 1:
Parse (o′k, σ)← o∗k; (ok, finished, stage)← o′k
If Σ.Vrfy(prms, σ, (R∗, (ik, o

′
k) : ios)):

(oR,k, ios)← (o′k, (ik, o
′
k) : ios)

If finished = T: stage′ ← 2

Else: Return F

If (((R∗, (i1, oR,1, . . . , ik, ok)), ?), σ′) 6∈ TraceM(0):
sforge← T; Return F

Else oR,k ← ok
T ′ ← (i1, oR,1, . . . , in, oR,n)

Define R := Composeφ〈P ;Q〉
For hdl∗ s.t. ProgramM(hdl∗) = R∗:
T ← ATraceR[st;CoinsM(hdl∗)](i1, . . . , in)

If T v T ′ ∧ T v Translate(prms,ATraceM(hdl∗)):
Return F

Return T

Figure 5.5: First game hop for the proof of security of the AC protocol.

on these values immediately before sforge occurs. It suffices to establish that message
(R∗, (i1, o

′
1, . . . , ik, o

′
k)) could not have been queried from the Sign oracle. Access to the

signing key that allows signatures to be performed is only permitted to the special process
with handle 0. From the construction of S∗, producing such a signature would only occur via
the inclusion of (R∗, (i1, o

′
1, . . . , ik, o

′
k)) in its trace. Since this is known not to be the case,

(R∗, ios) could not have been queried from the signature oracle. It is therefore concluded
that B outputs a valid forgery whenever sforge occurs.

In game G2
AC,A(1λ), the adversary loses whenever a mforge event occurs. Intuitively, this

event corresponds to the adversary producing a tag that was not computed by the security
module, and hence constitutes a forgery with respect to Π. Given that the two games are
identical until this event occurs, it follows that

Pr[G1
AC,A(1λ)⇒ T]− Pr[G2

AC,A(1λ)⇒ T] ≤ Pr[mforge] .

To upper bound the distance between these two games, an adversary C against the existential
unforgeability of MAC scheme Π in the security module is constructed, such that

Pr[mforge] ≤ AdvAuth
Π,C (λ)

Adversary C simulates the environment of G2
AC,A as follows: the operation of machine

M is simulated exactly with the caveat that the MAC operations computed inside the

5.2. ATTESTED COMPUTATION 73

Game G1AC,A(1λ):

prms←$ M.Init(1λ)

(P, φ,Q, n, stA)←$ A1(prms)

sforge← F

(R∗, (R∗, ios, stage′))← Compile(prms, P, φ,Q)

For k ∈ [1..n]:
(ik, o

∗
k, stA)←$ AM2 (stA)

If stage′ = 1:
Parse (o′k, σ)← o∗k; (ok, finished, stage)← o′k
If Σ.Vrfy(prms, σ, (R∗, (ik, o

′
k) : ios)):

(oR,k, ios)← (o′k, (ik, o
′
k) : ios)

If finished = T: stage′ ← 2

Else: Return F

If (((R∗, (i1, oR,1, . . . , ik, ok)), ?), σ′) 6∈ TraceM(0):
sforge← T; Return F

Else oR,k ← ok
T ′ ← (i1, oR,1, . . . , in, oR,n)

Define R := Composeφ〈P ;Q〉
For hdl∗ s.t. ProgramM(hdl∗) = R∗:
T ← ATraceR[st;CoinsM(hdl∗)](i1, . . . , in)

If T v T ′ ∧ T v Translate(prms,ATraceM(hdl∗)):
Return F

Return T

Game G2AC,A(1λ):

prms←$ M.Init(1λ)

(P, φ,Q, n, stA)←$ A1(prms)

sforge← F; mforge← F

(R∗, (R∗, ios, stage′))← Compile(prms, P, φ,Q)

For k ∈ [1..n]:
(ik, o

∗
k, stA)←$ AM2 (stA)

If stage′ = 1:
Parse (o′k, σ)← o∗k; (ok, finished, stage)← o′k
If Σ.Vrfy(prms, σ, (R∗, (ik, o

′
k) : ios)):

(oR,k, ios)← (o′k, (ik, o
′
k) : ios)

If finished = T: stage′ ← 2

Else: Return F

If (((R∗, (i1, oR,1, . . . , ik, ok)), ?), σ′) 6∈ TraceM(0):
sforge← T; Return F

If 6 ∃ hdl∗. ProgramM(hdl∗) = R∗ ∧
(i1, oR,1, . . . , ik, oR,k) v Translate(prms,ATraceM(hdl∗)):
Then mforge← T; Return F

Else oR,k ← ok
T ′ ← (i1, oR,1, . . . , in, oR,n)

Define R := Composeφ〈P ;Q〉
For hdl∗ s.t. ProgramM(hdl∗) = R∗:
T ← ATraceR[st;CoinsM(hdl∗)](i1, . . . , in)

If T v T ′ ∧ T v Translate(prms,ATraceM(hdl∗)):
Return F

Return T

Figure 5.6: Second game hop for the proof of security of the AC protocol.

internal security module are replaced with calls to the Auth oracle provided in the existential
unforgeability game. More precisely, whenever a process running code R∗ within an IEE in
the remote machine requests a MAC on message msg from the security module, algorithm C
calls its own oracle on (R∗,msg) to obtain t.

Let T ← (i1, oR,1, . . . , ik, oR,k). When mforge is set according to the rules of game G2
AC,A,

algorithm C retrieves the trace of the process with handle 0 running S∗, locates the input/out-
put pair (((R∗, T), t), σ′) and outputs message (R∗, T) and candidate tag t. To see this is a
valid forgery, first observe that, having failed the sforge check, (((R∗, T), t), σ′) is in the trace
of the process with handle 0, so by its construction it is known that the corresponding input
((R∗, T), t) must contain a valid tag. It suffices to establish that message (R∗, T) could not
have been queried from the Auth oracle. Suppose that the first part of the mforge check failed,
i.e., that 6 ∃ hdl∗. ProgramM(hdl∗) = R∗. Then, because the security module signs the code
of the processes requesting the signatures, there is an assurance that such a query was never
placed to the Auth oracle. Furthermore, any MAC query for a message starting with R∗ must
have been caused by the execution of an instance of R∗. Now suppose some instances of R∗

were indeed running in the remote machine, but that none of them displayed the property
(i1, oR,1, . . . , ik, oR,k) v Translate(prms,ATraceM(hdl∗)). Then, by the construction of R∗, it
can be excluded that (R∗, T) was queried from the MAC oracle. As such, it can be concluded

74 CHAPTER 5. FORMALISING ISOLATED EXECUTION ENVIRONMENTS

that C outputs a valid forgery whenever mforge occurs.

To complete the proof, it is now argued that the adversary never wins in game G2
AC,A. To

see this, observe that the game reaching the final check induces the guarantee that

∃ hdl∗. ProgramM(hdl∗) = R∗ ∧

(i1, oR,1, i2, oR,2, . . . , ik, oR,k) v Translate(prms,TraceM(hdl∗)))

By the construction of R∗, it immediately follows that the final check in the game will always
cause the adversary to lose:

• T is fixed by the input sequence, the value of the randomness tape and the semantics
of R, which determines the sequence of outputs (o1,L, . . . , on,L).

• The above existential guarantee for hdl∗ implies that an instance of R∗ in the remote
machine received the same initial k inpu sequence as that fixed by T .

• Considering T ← ATraceR[st;CoinsM(hdl∗)](i1, . . . , in), it is also inferable that the random-
ness tape used to produce values for T is identical to the one used in hdl∗.

• One can therefore inductively deduce, by the semantics of R∗, that the same process
has produced an initial sequence of k outputs that (modulo the action of Translate) is
identical to that included in T .

• Subsequent inputs after stage′ ← 2 may produce n−k additional non-attested outputs
that are appended to T ′, and that differ from T . However, the above observation
implies that T v T ′, and the proposed security claim follows.

To finish the proof, it must now be shown that this scheme also provides security with min-
imum leakage. This implies defining a ppt simulator S that provides identical distributions
with respect to experiment in Figure 5.4. This is easy to ascertain given the simulator
behaviour described in Figure 5.7: S1 and S3 follow the exact description of the actual
machine, modulo the generation of (pk, sk) and key. S2 takes an external output produced
by R[st](i) and returns an output in accordance to the behaviour ofM, which given language
L may differ from a real output only by the random coins. As such, the distribution provided
by the simulator is indistinguishable to the one provided by a real machine, and the original
claim follows.

5.3 Labelled Attested Computation

The previous definition considers a one-to-one setting, where a local user wishes to execute its
code remotely, and thus has all information necessary to validate the full I/O trace. Labelled

5.3. LABELLED ATTESTED COMPUTATION 75

Simulator S = {S1,S2,S3}

Simulator S will perform according to theM execution description.

• Upon input 1λ, S1 generates a key pair for process S∗, a MAC key for the security module and
initializes the traces as an empty list. The public key will be the public parameters, while the
secret key be stored in its initial state.

S1(1λ):

key←$ Π.Gen(1λ)

(pk, sk)←$ Σ.Gen(1λ)

Traces← []

Return (pk, (key, sk,Traces))

• S2 maintains a list of traces Traces with the respective list ios and stage stage. Given this, it
masks output o∗ as if produced by an actual machine execution.

S2(hdl, P, φ,Q,R, i, o∗, stS):

Parse (key, sk,Traces)← stS
If 6 ∃ (ios, stage) ∈ Traces[hdl]: ios← []; stage← 1

ios← (i, o∗) : ios

If stage = 1: msg← (o∗,Π.Mac(key, R, ios))

Else msg← o∗

Parse (o, finished, stage)← o∗

If finished = T: stage← 2

Traces[hdl]← (ios, stage); stS ← (key, sk,Traces)

Return (msg, stS)

• S3 computes the next output given input i, program R and state st. The result is afterwards
treated similar to S2.

S3(hdl, R, i, st, stS):

Parse (key, sk,Traces)← stS
If hdl = 0:

Parse (i, t)← i∗

If Π.Ver(key, t, i): Return Σ.Sign(sk, i)

Else Return ⊥
If 6 ∃ (ios, stage) ∈ Traces[hdl]: ios← []; stage← 1

o∗←$ R[st](i)

If stage = 1: msg← (o∗,Π.Mac(key, R, st.ios))

Else msg← o∗

Parse (o, finished, stage)← o∗

If finished = T: stage← 2

Traces[hdl]← (ios, stage); stS ← (key, sk,Traces)

Return (msg, stS)

Figure 5.7: Description of simulator S

Attested Computation is a more general design considering the labelled abstraction presented
in Section 5.1. This approach does not rely on a fixed form of composition for attestation,
but is instead agnostic of the program’s internal structure; furthermore, it permits controlling
data flows and attestation guarantees via the label information included in program inputs.

76 CHAPTER 5. FORMALISING ISOLATED EXECUTION ENVIRONMENTS

This enables the flexibility of considering I/O traces for many participants, and attestation
for each participant’s trace individually.

Syntax

A Labelled Attested Computation (LAC) scheme is defined by the following algorithms:

• Compile(prms, P, L∗) is the deterministic program compilation algorithm. On input
global parameters for some machine M, program P and an attested label set L∗, it
will output program P ∗. This algorithm is run locally. P ∗ is the code to be run as
an isolated process in the remote machine, whereas L∗ defines which labelled inputs
should be subject to attestation guarantees.

• Attest(prms, hdl, l, i) is the stateless attestation algorithm. On input global parameters
for M, a process handle hdl and label-input pair (l, i), it will use the interface of M
to obtain attested output o∗. This algorithm is run remotely, but in an unprotected
environment: it is responsible for interacting with the isolated process running P ∗,
providing it with inputs and recovering the attested outputs that should be returned
to the local machine.

• Verify(prms, l, i, o∗, st) is the public (stateful) output verification algorithm. On input
global parameters forM, a label l, an input i, an attested output o∗ and some state st

it will produce an output value o and an updated state, or the failure symbol ⊥. This
failure symbol is encoded so as to be distinguishable from a valid output of a program,
resulting from a successful verification. This algorithm is run locally on claimed outputs
from the Attest algorithm. The initial value of the verification state is set to be (P,L∗),
the same inputs provided to Compile.

Correctness

Intuitively, a LAC scheme is correct if, for any given program P and attested label set L∗,
assuming an honest execution of all components in the scheme, both locally and remotely,
the local user is able to accurately reconstruct a partial view of the I/O sequence that took
place in the remote environment, for an arbitrary set of labels L (which may or may not
be related to L∗). For non-attested labels, i.e., labels in L \ L∗, the I/O behaviour of the
compiled program inside the IEE is restricted, by imposing that it is identical to that of the
original program. For this reason, the set of labels L should be seen as a parameter that
can be used by higher level protocols relying on LAC to specify the partial local view that
may interest a particular party interacting with a remote machine. Different parties may be
interested in different partial views, including both attested an non-attested labels, and the
protocol should be correct for all of them. More technically, suppose the compiled program

5.3. LABELLED ATTESTED COMPUTATION 77

is run under handle hdl∗ in remote machine M, with random coins CoinsM(hdl∗) and on
labelled input sequence (l1, i1, . . . , ln, in). Suppose also that, running the original program
on the same random coins and inputs yields

TraceR[st;CoinsM(hdl∗)](l1, i1, . . . , ln, in) = (l1, i1, on, . . . , ln, in, on)

Then, for any set of labels L, if a local user recovers outputs (o′1, . . . , o
′
m) corresponding to

labelled inputs (lk1 , ik1) to (lkm , ikm), where lkj ∈ L, it must be the case that (o′1, . . . , o
′
m)

= (ok1 , . . . , okm). Outputs for attested labels are passed through Attest and Verify, whereas
inputs and outputs for non-attested labels are processed independently of these algorithms.
The following definition formalizes the notion of a local user correctly remotely executing
program P using labelled attested computation.

Definition 19 (Correctness). A labelled attested computation scheme LAC is correct if, for
all λ and all adversaries A, the experiment in Fig. 5.8 (left) always returns T.

The adversary in this correctness experiment definition is choosing inputs, hoping to find a
sequence that causes the attestation protocol to behave inconsistently with respect to the
semantics of P (when these are made deterministic by hard-wiring the same random coins
used remotely). This approach is used to defining correctness because it makes explicit what
is an honest execution of an attested computation scheme, when compared to the security
experiment introduced next.

Structural preservation

To simplify analysis of constructions and proofs, the correctness requirements on labelled
attested computation schemes are extended to preserve the structure of the input program
when dealing with sequential composition, and to modify only the part of the code that will
be attested.

Formally, it is imposed that, for all global parameters, given any program R = 〈P ; Q〉φ,p,q,
and an attested label set L∗ that contains only labels of the form (p, l), then there exists
a (unique) compiled program P ∗, such that, 〈P ∗ ; Q〉φ,p,q = Compile(prms, R, L) . Note that
this implies that the state of compiled program P ∗ somehow encodes the state of P in a way
that is transparent for φ, this will be used to refer to the execution state of P ∗ and extracting
values from it. Note also that, for composed programs compiled in this way, the unnatested
I/O behaviour of the second program will be identical to that of the original program.

Security

Security of labelled attested computation imposes that an adversary with control of the
remote machine cannot convince the local user that some arbitrary remote (partial) execution

78 CHAPTER 5. FORMALISING ISOLATED EXECUTION ENVIRONMENTS

of a program P has occurred, when it has not. It says nothing about the parts of the execution
trace that are hidden from the client or are not in the attested label set L∗. Formally, the
adversary is allowed to freely interact with the remote machine, whilst providing a sequence
of (potentially forged) attested outputs for a specific label l ∈ L∗. The adversary wins if the
local user reconstructs an execution trace without aborting (i.e., all attested outputs must
be accepted by the verification algorithm) and one of two conditions occur: i. there does not
exist a remote process hdl∗ running a compiled version of P where a consistent set of inputs
was provided for label l; or ii. the outputs recovered by the local user for those inputs are
not consistent with the semantics of P if it were run locally.

Technically, these conditions are checked in the definition by retrieving the full sequence of
label-input pairs and random coins passed to all compiled copies of P running in the remote
machine and running P on the same inputs to obtain the expected outputs. One then checks
that for at least one of these executions, when the traces are restricted to special label l,
that the expected trace matches the locally recovered trace via Verify. Since the adversary
is free to interact with the remote machine as it pleases, one cannot hope to prevent it from
providing arbitrary inputs to the remote program at arbitrary points in time, while refusing
to deliver the resulting (possibly attested) outputs to the local user. This justifies the winning
condition referring to a prefix of the execution in the remote machine, rather than imposing
trace equality. Indeed, the definition’s essence is to impose that, if the adversary delivers
attested outputs for a particular label in the attested label set, then the subtrace of verified
outputs for that label will be an exact prefix of the projection of the remote trace for that
label.

Observe that a higher-level protocol relying on LAC will be able to fully control the semantics
of labels, as these depend on the semantics of the compiled program. In particular, adopting
the specific forms of parallel and sequential composition presented in Section 5.1, it is possible
to use labels to get the attested execution of a sub-program that is fully isolated from other
programs that it is composed with. This provides a much higher degree of flexibility than
what was available in the original notion of Attested Computation.

Definition 20 (Security). A labelled attested computation scheme is secure if, for all ppt
adversaries A, the probability that experiment in Fig. 5.8 (right) returns T is negligible.

Observe that the adversary loses the game as long as there exists at least one remote process
that matches the locally reconstructed trace. This should be interpreted as the guarantee
that IEE resources are indeed being allocated in a specific remote machine to run at least one
instance of the remote program (note that if the program is deterministic, many instances
could exist with exactly the same I/O behaviour, which is not seen as a legitimate attack).
Furthermore, the presented definition imposes that the compiled program uses essentially the
same randomness as the source program (except of course for randomness that the security
module internally uses to provide its cryptographic functionality), as otherwise it will be

5.3. LABELLED ATTESTED COMPUTATION 79

Game CorrLAC,A(1λ):

prms←$ M.Init(1λ)

(P,L∗, L, n, stA)←$ A1(prms)

P ∗ ← Compile(prms, P, L∗)

hdl∗ ←M.Load(P ∗)

stV ← (P,L∗)

For k ∈ [1..n] :

(lk, ik, stA)←$ A2(o∗1, . . . , o
∗
k−1, stA)

If lk ∈ L ∩ L∗ :

o∗k←$ AttestM(prms, hdl∗, lk, ik)

(ok, stV)← Verify(prms, lk, ik, o
∗
k, stV)

If ok =⊥ Then Return F

Else If lk ∈ L \ L∗ :

ok←$ M.Run(hdl∗, lk, ik)

Else Return F

T ′ ← filter[L](TraceP [st;CoinsM(hdl∗)](l1, i1, . . . , ln, in))

T ← filter[L](l1, i1, o1, . . . , ln, in, on) Return T = T ′

Game AttLAC,A(1λ):

prms←$ M.Init(1λ)

(P,L∗, l, n, stA)←$ A1(prms)

P ∗ ← Compile(prms, P, L∗)

stV ← (P,L∗)

For k ∈ [1..n] :

(ik, o
∗
k, stA)←$ AM2 (stA)

(ok, stV)← Verify(prms, l, ik, o
∗
k, stV)

If ok =⊥ Return F

T ← (l, i1, o1, . . . , l, in, on)

For hdl∗ s.t. ProgramM(hdl∗) = P ∗

(l′1, i
′
1, o
′
1, . . . , l

′
m, i
′
m, o

′
m)← TraceMR

(hdl∗)

T ′ ← filter[l](TraceP [st;CoinsM(hdl∗)](l
′
1, i
′
1, . . . , l

′
m, i
′
m))

If T v T ′ Return F

Return T

Figure 5.8: Games defining the correctness (left) and security (right) of LAC.

easy for the adversary to make the (idealized) local trace diverge from the remote. This is a
consequence of this modelling approach, but in no way does it limit the applicability of the
primitive proposed: it just makes it explicit that the transformation that is performed on
the code for attestation will typically consist of an instrumentation of the code by applying
cryptographic processing to the inputs and outputs it receives.

Minimum leakage

The above discussion shows that a LAC scheme guarantees that the I/O behaviour of the
program in the remote machine includes at least the information required to reconstruct an
hypothetical local execution of the source program. Next, it is required that a compiled
program does not reveal any information beyond what the original program would reveal.

The following definition imposes that nothing from the internal state of the source programs
(in addition to what is public, i.e., the code and I/O sequence) is leaked in the trace of the
compiled program.

Definition 21 (Minimal leakage). A labelled attested computation scheme LAC ensures
security with minimal leakage if it is secure according to Definition 20 and there exists a
ppt simulator S that, for every adversary A, the following distributions are identical:

{ Leak-RealLAC,A(1λ) } ≈ { Leak-IdealLAC,A,S(1λ) }

where games Leak-RealLAC,A and Leak-IdealLAC,A,S are shown in Fig. 5.9.

Notice that the simulator is allowed to replace the global parameters of the machine with
some value prms for which it can keep some trapdoor information. Intuitively this means that

80 CHAPTER 5. FORMALISING ISOLATED EXECUTION ENVIRONMENTS

Game Leak-RealLAC,A(1λ):

PrgList← []

prms←$ M.Init(1λ)

b←$ AO(prms)

Return b

Oracle Compile(P,L):

P ∗ ← Compile(prms, P, L)

PrgList← P ∗ : PrgList

Return P ∗

Oracle Load(P):

ReturnM.Load(P)

Oracle Run(hdl, l, i):

ReturnM.Run(hdl, l, i)

Game Leak-IdealLAC,A,S(1λ):

PrgList← []; List← []

hdl← 0

(prms, stS)←$ S1(1λ)

b←$ AO(prms)

Return b

Oracle Compile(P,L):

P ∗ ← Compile(prms, P, L)

PrgList← (P ∗, L, P) : PrgList

Return P ∗

Oracle Load(P ∗):

hdl← hdl + 1

List[hdl]← (P ∗, ε)

Return hdl

Oracle Run(hdl, l, i):

(P ∗, st)← List[hdl]

If (P ∗, L, P) ∈ PrgList :

o←$ P [st](l, i)

(o∗, stS)←$ S2(hdl, P, L, l, i, o, stS)

Else:
(o∗, stS)←$ S3(hdl, P ∗, l, i, st, stS)

List[hdl]← (P ∗, st)

Return o∗

Figure 5.9: Games defining minimum leakage of LAC.

one can construct a perfect simulation of the remote trace by simply appending cryptographic
material to the local trace. This property is important when claiming that the security of a
cryptographic primitive is preserved when it is run within an attested computation scheme
(one can simply reduce the advantage of an adversary attacking the attested trace, to the
security of the original scheme using the minimum leakage simulator).

Labelled Attested Computation in practice

The protocol for labelled attested computation is very similar to the one presented in
Section 5.2, with the extension of considering labels for program execution, and no longer
bound by strict compositional restrictions. It is now defined a LAC scheme that relies on a
remote machine supporting a security module with the same functionality as before. However,
the scope is now in validating traces for specific attested labels independently from each other,
rather than the full remote trace.

The proposed LAC scheme works as follows:

• Compile(prms, P, L) will generate a new program P ∗ and output it. Program P ∗ is
instrumented as follows:

– in addition to the internal state st of P , it maintains a list iosl of all the I/O pairs
it has previously received and computed for each label l ∈ L.

– On input (l, i), P ∗ computes o←$ P [stP](l, i) and verifies if l ∈ L. If this is not
the case, then P ∗ simply outputs non-attested output o.

– Otherwise, it updates the list ios by appending (l, i, o), computes the subset of ios

for label l : iosl ← filter[l](ios) and requests from the security module a MAC of

5.3. LABELLED ATTESTED COMPUTATION 81

for that list. Due to the operation of the security module, this will correspond to
a tag t on the tuple (P ∗, iosl).

– It finally outputs (o, t, P ∗, iosl). (P ∗, iosl) is included explicitly in the outputs
of P ∗ for clarity of presentation only. This value would be kept in an insecure
environment by a stateful Attest program.

• Attest(prms, hdl, l, i) invokesM.Run(hdl, (l, i)) using the handle and input value it has
received. When the process produces an output o, Attest parses it into (o′, t, P ∗, iosl).
It may happen that parsing fails, e.g., if the label is not to be attested, in which case
Attest simply produces o as its own output. Otherwise, it uses M.Run(0, (P ∗, iosl, t))

to convert the tag into a signature σ on the same message. If this conversion fails, then
Attest produces the original output o as its own output. Otherwise, it outputs (o′, σ).

• Verify(prms, l, i, o∗, st) is the stateful verification algorithm. The original (public) value
of the state st includes uncompiled program P and the list of attested labels L (this
naturally extends to including compiled program P ∗ since Compile is deterministic);
it also includes a (initially empty) list of previously attested input-output pairs ios.
Verify returns o∗ if l 6∈ L. Otherwise, it first parses o∗ into (o, σ), appends (l, i, o) to
ios and verifies the digital signature σ using prms and (P ∗, filter[l](ios)). If parsing or
verification fails, Verify outputs ⊥. If not, then Verify terminates outputting o.

Correctness

It is easy to see that the presented LAC scheme is correct, provided that the underlying
signature and message authentication schemes are correct, and that it preserves the structure
of compiled programs. To see that this is the case, note that during the execution of P ∗ for
lk ∈ L, unless a MAC or signature verification fails, the I/O sequence provided by Verify will
match the one reconstructed in T ′ (the inputs are the same, and the associated randomness
tapes are fixed by CoinsM(hdl∗)), and therefore T = T ′. Since these algorithms are only used
for attested labels, it is only necessary to consider this possibility for labels l ∈ L∗ ∩L. Now,
observe that if the message authentication code scheme is correct, then the MAC verification
will never fail, and if the message signature scheme is correct, then the signature verification
will never fail. This is the case because the combined operations of P ∗, Attest, the signing
IEE running S∗ and the security module lead to tags and signatures on pairs (P ∗, iosl) that
exactly match the inputs provided to the verification algorithms in Π.Ver and Σ.Verify. It
now follows that the received trace and the reconstructed trace will be the same for all labels
in L.

82 CHAPTER 5. FORMALISING ISOLATED EXECUTION ENVIRONMENTS

Security

Theorem 2. The LAC scheme presented above provides secure attestation if the underly-
ing MAC scheme Π and signature scheme Σ are existentially unforgeable. Furthermore, it
unconditionally ensures minimum leakage.

The proof is a sequence of two games presented in Figure 5.10 and Figure 5.11, following the
same reasoning as its attested computation counterpart proof of Theorem 1. The first game
is simply the LAC security game instantiated with the proposed protocol.

In game G1
AC,A(1λ), the adversary loses whenever a sforge event occurs. Intuitively, this

event corresponds to the adversary producing a signature that was not computed by the
signing process with handle 0, and hence constitutes a forgery with respect to Σ. Given that
the two games are identical until this event occurs, it follows that

Pr[AttLAC,A(1λ)⇒ T]− Pr[G1
LAC,A(1λ)⇒ T] ≤ Pr[sforge] .

Game G0LAC,A(1λ):

prms←$ M.Init(1λ)

(P,L∗, l, n, stA)←$ A1(prms)

P ∗ ← Compile(prms, P, L∗)

For k ∈ [1..n]:
(ik, o

∗
k, stA)←$ AM2 (stV , stA)

Parse (ok, σ)← o∗k
If Σ.Vrfy(prms, σ, (P ∗, filter[l]((l, ik, ok) : ios))):

ios← ((l, ik, ok) : ios)

Else: Return F

T ← (l, i1, o1, . . . , l, in, on)

For hdl∗ s.t. ProgramM(hdl∗) = P ∗

(l′1, i
′
1, o
′
1, . . . , l

′
m, i
′
m, o

′
m)← TraceMR

(hdl∗)

T ′ ← filter[l](TraceP [st;CoinsM(hdl∗)](l
′
1, i
′
1, . . . , l

′
m, i
′
m))

If T v T ′ Return F

Return T

Game G1LAC,A(1λ):

prms←$ M.Init(1λ)

(P,L∗, l, n, stA)←$ A1(prms)

sforge← F

P ∗ ← Compile(prms, P, L∗)

For k ∈ [1..n]:
(ik, o

∗
k, stA)←$ AM2 (stV , stA)

Parse (ok, σ)← o∗k
If Σ.Vrfy(prms, σ, (P ∗, filter[l]((l, ik, ok) : ios))):

ios← ((l, ik, ok) : ios)

Else: Return F

If ((P ∗, (l, i1, o1, . . . , l, ik, ok), ?), σ′) 6∈ TraceM(0):
sforge← T; Return F

T ← (l, i1, o1, . . . , l, in, on)

For hdl∗ s.t. ProgramM(hdl∗) = P ∗

(l′1, i
′
1, o
′
1, . . . , l

′
m, i
′
m, o

′
m)← TraceMR

(hdl∗)

T ′ ← filter[l](TraceP [st;CoinsM(hdl∗)](l
′
1, i
′
1, . . . , l

′
m, i
′
m))

If T v T ′ Return F

Return T

Figure 5.10: First game hop for the proof of security of the LAC protocol.

The distance between these two games is upper bound, by constructing an adversary B
against the existential unforgeability of signature scheme Σ in S∗ such that

Pr[sforge] ≤ AdvUF
Σ,B(λ)

Adversary B simulates the environment of G1
LAC,A as follows: the operation of machineM is

simulated exactly with the caveat that the signing operations performed within the process
loaded by the security module are replaced with calls to the Sign oracle provided in the

5.3. LABELLED ATTESTED COMPUTATION 83

existential unforgeability game. More precisely, whenever process 0 in the remote machine
is expected to compute a signature on message msg, algorithm B calls its own oracle on
(P ∗,msg) to obtain σ.

When sforge is set, according to the rules of game G1
LAC,A, algorithm B outputs message

(P ∗, filter[l](ios)) and candidate signature σ. It remains to show that this is a valid forgery.
To see this, first observe that this is indeed a valid signature, as signature verification is
performed on these values immediately before sforge occurs. It suffices to establish that
message (P ∗, (l, i1, o1, . . . , l, ik, ok)) could not have been queried from the Sign oracle. Access
to the signing key that allows signatures to be performed is only permitted to the special
process with handle 0. From the construction of S∗, is is known that producing such a
signature would only occur via the inclusion of (P ∗, (l, i1, o1, . . . , l, ik, ok)) in its trace. Since
this is not the case, (P ∗, filter[l](ios)) could not have been queried from the signature oracle.
It can therefore be concluded that B outputs a valid forgery whenever sforge occurs.

In game G2
LAC,A(1λ), the adversary loses whenever a mforge event occurs. Intuitively, this

event corresponds to the adversary producing a tag that was not computed by the security
module, and hence constitutes a forgery with respect to Π. Given that the two games are
identical until this event occurs, it follows that

Pr[G1
LAC,A(1λ)⇒ T]− Pr[G2

LAC,A(1λ)⇒ T] ≤ Pr[mforge] .

Game G1LAC,A(1λ):

prms←$ M.Init(1λ)

(P,L∗, l, n, stA)←$ A1(prms)

sforge← F

P ∗ ← Compile(prms, P, L∗)

For k ∈ [1..n]:
(ik, o

∗
k, stA)←$ AM2 (stV , stA)

Parse (ok, σ)← o∗k
If Σ.Vrfy(prms, σ, (P ∗, filter[l]((l, ik, ok) : ios))):

ios← ((l, ik, ok) : ios)

Else: Return F

If ((P ∗, (l, i1, o1, . . . , l, ik, ok), ?), σ′) 6∈ TraceM(0):
sforge← T; Return F

T ← (l, i1, o1, . . . , l, in, on)

For hdl∗ s.t. ProgramM(hdl∗) = P ∗

(l′1, i
′
1, o
′
1, . . . , l

′
m, i
′
m, o

′
m)← TraceMR

(hdl∗)

T ′ ← filter[l](TraceP [st;CoinsM(hdl∗)](l
′
1, i
′
1, . . . , l

′
m, i
′
m))

If T v T ′ Return F

Return T

Game G2LAC,A(1λ):

prms←$ M.Init(1λ)

(P,L∗, l, n, stA)←$ A1(prms)

sforge← F; mforge← F

P ∗ ← Compile(prms, P, L∗)

For k ∈ [1..n]:
(ik, o

∗
k, stA)←$ AM2 (stV , stA)

Parse (ok, σ)← o∗k
If Σ.Vrfy(prms, σ, (P ∗, filter[l]((l, ik, ok) : ios))):

ios← ((l, ik, ok) : ios)

Else: Return F

If ((P ∗, (l, i1, o1, . . . , l, ik, ok), ?), σ′) 6∈ TraceM(0):
sforge← T; Return F

If 6 ∃ hdl∗. ProgramM(hdl∗) = P ∗ ∧
(l, i1, o1, . . . , l, ik, ok) v filter[l]

(TraceP [st;CoinsM(hdl∗)](TraceM(hdl∗)):
Then mforge← T; Return F

T ← (l, i1, o1, . . . , l, in, on)

For hdl∗ s.t. ProgramM(hdl∗) = P ∗

(l′1, i
′
1, o
′
1, . . . , l

′
m, i
′
m, o

′
m)← TraceMR

(hdl∗)

T ′ ← filter[l](TraceP [st;CoinsM(hdl∗)](l
′
1, i
′
1, . . . , l

′
m, i
′
m))

If T v T ′ Return F

Return T

Figure 5.11: Second game hop for the proof of security of the LAC protocol.

84 CHAPTER 5. FORMALISING ISOLATED EXECUTION ENVIRONMENTS

The distance between these two games is upper bound, by constructing an adversary C against
the existential unforgeability of MAC scheme Π in the security module such that

Pr[mforge] ≤ AdvAuth
Π,C (λ)

Adversary C simulates the environment of G2
LAC,A as follows: the operation of machine

M is simulated exactly with the caveat that the MAC operations computed inside the
internal security module are replaced with calls to the Auth oracle provided in the existential
unforgeability game. More precisely, whenever a process running code R∗ within an IEE in
the remote machine requests a MAC on message msg from the security module, algorithm C
calls its own oracle on (P ∗,msg) to obtain t.

Let T ← (l, i1, o1, . . . , l, ik, ok). When mforge is set according to the rules of game G2
LAC,A,

algorithm C retrieves the trace of the process with handle 0 running S∗, locates the input/out-
put pair (((P ∗, T), t), σ′) and outputs message (P ∗, T) and candidate tag t. To see this is a
valid forgery, first observe that, having failed the sforge check, one knows that (((P ∗, T), t), σ′)

is in the trace of the process with handle 0, so by its construction it is also known that the
corresponding input ((P ∗, T), t) must contain a valid tag. It suffices to establish that message
(P ∗, T) could not have been queried from the Auth oracle. Suppose that the first part of
the mforge check failed, i.e., that 6 ∃ hdl∗. ProgramM(hdl∗) = P ∗. Then, because the security
module signs the code of the processes requesting the signatures, we are sure that such a
query was never placed to the Auth oracle. Furthermore, any MAC query for a message
starting with P ∗ must have been caused by the execution of an instance of P ∗. Now suppose
some instances of P ∗ were indeed running in the remote machine, but that none of them
displayed the property (l, i1, o1, . . . , l, ik, ok) v filter[l](Translate(ATraceM(hdl∗))). Then, by
the construction of P ∗, we can also exclude that (P ∗, T) was queried from the MAC oracle.
As such, it can be concluded that C outputs a valid forgery whenever mforge occurs.

To complete the proof, it must be shown that the adversary never wins in game G2
LAC,A. To

see this, observe that the game reaching the final check implies that

∃ hdl∗. ProgramM(hdl∗) = P ∗ ∧

(l, i1, o1, . . . , l, in, on) v filter[l](TraceP [st;CoinsM(hdl∗)](TraceM(hdl∗))

Which exactly matches the final criteria of T v T ′.

To finish the proof, it must now be shown that this scheme also provides security with min-
imum leakage. This implies defining a ppt simulator S that provides identical distributions
with respect to experiment in Figure 5.9. This is easy to ascertain given the simulator
behaviour described in Figure 5.12: S1 and S3 follow the exact description of the actual
machine, modulo the generation of (pk, sk) and key. S2 takes an external output produced by
P [st](l, i) and returns an output in accordance to the behaviour ofM, which given language
L may differ from a real output only by the random coins. As such, the distribution provided

5.3. LABELLED ATTESTED COMPUTATION 85

by the simulator is indistinguishable to the one provided by a real machine, and the claim
follows.

Simulator S = {S1,S2,S3}

Simulator S will perform according to theM execution description.

• Upon input 1λ, S1 generates a key pair for process S∗, a MAC key for the security module and
initializes the traces and states as an empty list. The public key will be the public parameters,
while the secret key be stored in its initial state.

S1(1λ):

key←$ Π.Gen(1λ)

(pk, sk)←$ Σ.Gen(1λ)

Traces← []

Return (pk, (key, sk,Traces))

• S2 maintains a list of traces Traces with the respective list ios and stage stage. Given this, it masks
output o∗ as if produced by an actual machine execution.

S2(hdl, P, L, l, i, o∗, stS):

Parse (key, sk,Traces)← stS
If Traces[hdl] 6= []: ios← Traces[hdl]

Else: ios← []

If l ∈ L∗:
ios← (l, i, o∗) : ios

msg← (o∗,Π.Mac(key, P, filter[l](ios)))

Else: msg← o∗

Traces[hdl]← ios; stS ← (key, sk,Traces)

Return (msg, stS)

• S3 computes the next output given input i, program R and state st. Sim(P ∗[st], l, i, ios, key) refers
to the operation of executing P ∗ with label l and input i for trace ios and considering a security
module with key key, producing output msg and updated trace ios. The result is afterwards treated
similar to S2.

S3(hdl, P ∗, l, i, st, stS):

Parse (key, sk,Traces)← stS
If hdl = 0:

Parse (msg, t)← i∗

If Π.Ver(key, t,msg): Return Σ.Sign(sk,msg)

Else Return ⊥
If Traces[hdl] 6= []: ios← Traces[hdl]

Else: ios← []

L← labels(P ∗)

(msg, ios)←$ Sim(P ∗[st], l, i, ios, key)

Traces[hdl]← ios; stS ← (key, sk,Traces)

Return (msg, stS)

Figure 5.12: Description of simulator S

86 CHAPTER 5. FORMALISING ISOLATED EXECUTION ENVIRONMENTS

Chapter 6

Secure Channels to Isolated
Execution Environments

In this chapter, we make use of the proposed primitives Attested Computation and Labelled
Attested Computation as stepping stones to achieve specific key-exchange mechanisms that
rely on said hardware assumptions and respective utility theorems. These results can then be
employed as building blocks in the construction of more ambitious protocol implementations.

6.1 Attested Key Exchange for Attested Computation

An intermediate step in constructing high-level applications that rely on the proposed mech-
anisms for attestation is the establishment of a secure communications channel with a
process running a particular program inside an IEE in the remote machine. After such
a channel has been established, standard cryptographic techniques can be used to ensure
(in combination with the isolation provided by IEEs) the integrity and confidentiality of
subsequent computations. This section presents how one can combine attested computation
with a specific flavour of a key exchange protocol for constructing a bootstrapping process
to enable this scenario.

First, the precise requirements for a key exchange protocol that can be used in this setting
are formalised (this is called authenticated key exchange for attested computation) and it is
shown how a simple transformation can be used to construct such protocols from any passively
secure key exchange protocol. Later on, various utility theorems will be defined, precisely
describing what it means to use attested computation (or labelled attested computation) to
establish a secure channel with an arbitrary remote program.

87

88CHAPTER 6. SECURE CHANNELS TO ISOLATED EXECUTION ENVIRONMENTS

Syntax

A Key Exchange for Attested Computation (AttKE) protocol is defined by the following pair
of algorithms.

• Setup(1λ, id) is the remote program generation algorithm, which is run on the local
machine to initialise a fresh instance of the AttKE protocol under party identifier id.
On input the security parameter and id, it will output the code for a program RemKE

and the initial state stL of the LocKE algorithm. This algorithm is run locally.

• RemKE (which is generated dynamically by Setup) is a program that will be run as a
part of an IEE process in the remote machine, and it will keep the entire remote state
of the key exchange protocol in that protected environment.

• LocKE(stL,msg) is the algorithm that runs the local end of the AttKE protocol, inter-
acting with RemKE. On input its current state and an incoming message msg, it will
output an updated state and an outgoing message.

When analysing the security of such a protocol it is imposed that the LocKE algorithm and all
RemKE programs that may be produced by Setup keep in their state the same information that
was required for general key exchange algorithms (described in Section 2.1). Let the instances
of local key exchange executions be referred to as LocsKE, for s ∈ N. The local identity will be
implicit in this notation since the following discussion is focused on the case where a single
local identity id is considered. This is done for the sake of rigour and clarity of presentation:
by looking at this simplified case, one can present the following security models in game-based
form, whilst taming the complexity of the resulting games. The extension of these results to
the more general case where several local identities are considered is straightforward. On the
remote side, the identity of the remote process will actually be generated on the fly by the
combined actions of the Setup algorithm and possibly the protocol execution itself, as it may
depend for example on the code of the remote program. For this reason the remote instances
will be enumerated as Remi,j

KE for i, j ∈ N, and observe that the value of variable oid in this
case will be set during the execution of the program itself, rather than passed explicit as an
input to one of the algorithms.

Correctness

An AttKE is correct if, after a complete (honest) run between two participants, one local and
one remote, and where the remote program is always the one to initiate the communication,
both reach the accept state, both derive the same key and session identifier and have matching
partner identities. More formally, a protocol P = {Setup, LocKE} is correct if, for any
arbitrary identity id, the experiment in Figure 6.1 always returns T. It should be noted

6.1. ATTESTED KEY EXCHANGE FOR ATTESTED COMPUTATION 89

Game CorrAttKE(1λ):

(stL,RemKE)←$ Setup(1λ, id)

stR ← ε

msg←$ RemKE[stR](ε)

t← T

While msg 6= ε:
If t: (stL,msg)←$ LocKE(stL,msg)

Else: msg←$ RemKE[stR](msg)

t← ¬t

Return stL.δ = stR.δ = accept ∧ stL.key = stR.key ∧ stL.sid = stR.sid∧
stL.pid = stR.oid ∧ stL.oid = stR.pid ∧ stL.oid = id

Figure 6.1: Game defining the correctness of an AttKE scheme.

that the presented definition of correctness imposes that remote programs always operate as
initiators and local machines as the responders in the key exchange.

Execution Environment

The specific flavour of key exchange considered is clarified by the execution environment
in Figure 6.2. This follows the standard modelling of active attackers, e.g. [KY03], when
one excludes the possibility of corruption (which it is done solely for the sake of simplicity).
There are, however, two modifications that attend to the fact that AttKE remote programs
are designed to be executed under attested computation guarantees. On one hand, the
adversary is given the power to create as many remote AttKE programs as it may need,
by using the NewLocal oracle, revealing the entire code of the remote AttKE program (and
implicitly all of its initial internal state, which is assumed to be empty) to the adversary.
This captures the fact that remote AttKE programs will be loaded into IEEs in an otherwise
untrusted remote machine, and it implies that remote AttKE programs cannot keep any
long term secret information. Intuitively, this limitation will be compensated by the attested
computation protocol. On the other hand, the adversary is able to freely interact with
remote processes, but it is constrained in its interaction with the local machine. Indeed the
SendLocal oracle filters which messages the adversary can deliver to the local machine by
checking that these are consistent with at least one remote process that the adversary is
interacting with. This captures the fact that AttKE is designed to interact over a partially
authenticated channel from the remote machine to the local machine, which will be provided
by an attested computation protocol.

Partnering

The natural extension of the partnering properties introduced for passive key exchange in
Section 2.1 to the AttKE setting is considered. In addition to the syntactic modifications that
result from referring to LocsKE and Remi,j

KE, validity is further restricted so that partnering

90CHAPTER 6. SECURE CHANNELS TO ISOLATED EXECUTION ENVIRONMENTS

Game AttAttKE,A(1λ):

InsList← []; fake← []

i← 0

b←$ {0, 1}
b′←$ AO(1λ, id)

Return b = b′

Oracle NewLoc():

i← i+ 1; T iL ← []

(Remi
KE, stiL)←$ Setup(1λ, id)

InsList[i]← 0

Return Remi
KE

Oracle TestLoc(i):

If stiL.δ 6= accept return ⊥
If b = 0 return stiL.key

Return fake(stiL.key)

Oracle SendLoc(msg, i):

If @j, (msg : T iL) v T i,jR return ⊥
(msg′, stiL)←$ LociKE(stiL,msg)

T iL ← msg′ : msg : T iL
If stiL.δ ∈ {accept, derived}:
If (stiL.key, key∗) /∈ fake:

key∗←$ {0, 1}λ

fake← (stiL.key, key∗) : fake

Return (msg′, stiL.sid, stiL.δ, stiL.pid)

Oracle RevealLoc(i):

Return stiL.key

Oracle RevealRem(i, j):

Return sti,jR .key

Oracle NewRem(i):

InsList[i]← InsList[i] + 1

j ← InsList[i]

T i,jR ← []; sti,jR ← ε

Return ε

Oracle TestRem(i, j):

If sti,jR .δ 6= accept return ⊥
If b = 0 return sti,jR .key

Return fake(sti,jR .key)

Oracle SendRem(msg, i, j):

// No restriction
msg′←$ RemKE[sti,jR](msg)

T i,jR ← msg′ : msg : T i,jR
If sti,jR .δ ∈ {accept, derived}:
If (sti,jR .key, key∗) /∈ fake:

key∗←$ {0, 1}λ

fake← (sti,jR .key, key∗) : fake

Return (msg′, sti,jR .sid, sti,jR .δ, sti,jR .pid)

Figure 6.2: Execution environment for AttKEs.

is only valid when it occurs between local and remote instances, in which the latter is the
initiator. To this end, the following predicate on two instances LocsKE and Remi,j

KE holding
stsL = (sts, δs, ρs, sids, pids, oids, keys) and sti,jR = (sti,j , δi,j , ρi,j , sidi,j , pidi,j , oidi,j , keyi,j) is
used, respectively:

P(LocsKE,Remi,j
KE) =

{
T if sids = sidi,j ∧ δs, δi,j ∈ {derived, accept}
F otherwise.

The definition of partner is the obvious one, whereas invalid partners now includes an extra
possibility.

Definition 22 (Partner). Two instances LocsKE and Remi,j
KE are partnered if

P(LocsKE,Remi,j
KE) = T .

Definition 23 (Valid Partners). A protocol AttKE ensures valid partners if the bad event

6.1. ATTESTED KEY EXCHANGE FOR ATTESTED COMPUTATION 91

notval does not occur, where notval is defined as one of the following events occurring:

∃LocsKE,Remi,j
KE s.t. P(LocsKE,Remi,j

KE) = T ∧ (pids 6= oidi,j ∨ oids 6= pidi,j ∨

keys 6= keyi,j ∨ ρs 6= responder ∨ ρi,j 6= initiator)

∃LocrKE, LocsKE s.t. r 6= s ∧ P(LocrKE, LocsKE) = T

∃Remi,j
KE,Remk,l

KE s.t. (i, j) 6= (k, l) ∧ P(Remi,j
KE,Remk,l

KE)

For completeness, adapted definitions of confirmed and unique partners are also presented.

Definition 24 (Confirmed Partners). A protocol AttKE ensures confirmed partners if the
bad event notconf does not occur, where notconf is defined as at least one of the following
two events occurring:

∃LocsKE s.t. δs = accept ∧ ∀Remi,j
KE, P(LocsKE,Remi,j

KE) = F

∃Remi,j
KE s.t. δi,j = accept ∧ ∀ LocsKE, P(LocsKE,Remi,j

KE) = F.

Definition 25 (Unique Partners). A protocol AttKE ensures unique partners if the bad event
notuni does not occur, where notuni is defined as at least one of the following two events
occurring:

∃LocsKE, Remi,j
KE,Remi′,j′

KE s.t.
(i, j) 6= (i′, j′) ∧ P(LocsKE,Remi,j

KE) = T ∧ P(LocsKE,Remi′,j′

KE) = T

∃Remi,j
KE, LocsKE, Locs

′
KE s.t.

s 6= s′ ∧ P(LocsKE,Remi,j
KE) = T ∧ P(Locs

′
KE,Remi,j

KE) = T .

As before, an adversary is considered to violate entity authentication if he can get a session
to accept, but there is no unique and confirmed valid session in its intended partner. More
formally, one wishes to verify that none of the bad events notval, notconf, notuni occurs. In
the attested computation scenario, it is common to use one-sided authentication where only
the local party receives authentication guarantee. Such definitions can be easily derived from
the ones presented above, analogously to what was done in Section 2.1.

Security

Again, the set of TestLoc and TestRem queries must be restricted in order to exclude trivial
attacks. An adversary is legitimate if it respects the following freshness criteria:

• For all TestLoc(i) queries, the following holds: 1. RevealLoc(i) was not queried; and 2.
for all Remj,k

KE s.t. P(Remj,k
KE, LocsKE) = T, RevealRem(j, k) was not queried.

• For all TestRem(i, j) queries, the following holds: 1. RevealRem(i, j) was not queried;
and 2. for all LockKE s.t. P(LockKE,Remi,j

KE) = T, RevealLoc(i) was not queried.

92CHAPTER 6. SECURE CHANNELS TO ISOLATED EXECUTION ENVIRONMENTS

It established that the winning event guess occurs if b = b′ at the end of the experiment.
AttKE security is defined by requiring both mutual authentication of parties and key secrecy.

Definition 26 (AttKE security). An AttKE protocol is secure if, for any ppt adversary
in Figure 6.2, and for any local party identifier string id: 1. the adversary violates entity
authentication with negligible probability Pr[notval∨ notconf ∨ notuni]; and 2. its key secrecy
advantage 2 · Pr[guess]− 1 is negligible.

Generic Construction

It is now presented a construction of an AttKE scheme from any passively secure key exchange
protocol, relying additionally on a existentially unforgeable signature scheme. The intuition
here is that the attested computation protocol guarantees correct remote execution of a
program, but does not ensure uniqueness, i.e., it does not exclude that potentially many
replicas of the same key exchange protocol instance could be running in the remote machine.
By binding a fresh signature verification key with the identifier for the remote party associated
with the key exchange protocol and generating a fresh nonce at the start of every execution,
one can remotely execute the key exchange code whilst ensuring one-to-one authentication
at the process level. This transformation can be seen as a weaker version of the well-known
passive-to-active compilation process by Katz et al. [KY03], since the specific target security
model is not fully active

Consider a passively-secure authenticated key exchange protocol Π and a signature scheme
Σ = (Gen, Sign,Vrfy). This construction splits the execution of Π between the local machine
and a remote isolated execution environment: the responder will run locally and the initiator
will run remotely within a program RemKE.1 The code of the remote program will have
hard-wired into it a unique verification key for the signature scheme. The first activation
of RemKE initialises an internal state and computes a nonce, together with the first message
in the key exchange protocol. The party identifier string of the remote process will then be
defined to comprise the verification key and the nonce. The local part of the protocol signs
the full communication trace so far. Subsequent activations of remote program RemKE will
simply respond according to the key exchange protocol description, rejecting all inputs that
fail signature verification. The details of this construction are shown in Figure 6.3.

• Setup first generates a fresh key pair for the signature scheme and constructs program
RemKE, parametrised by algorithm Π and verification key pk, as described in Figure 6.3
(top). In this program, state variables δ, ρ, key, sid and pid are all shared with Π (this
is implicit in the figure). The initial value of stL will store id, along with the initially

1Setting the remote machine as the initiator of the protocol is the most common scenario. This is
considered for simplicity; the converse can be treated analogously.

6.1. ATTESTED KEY EXCHANGE FOR ATTESTED COMPUTATION 93

Program RemKE〈Π, pk〉:
Upon activation with input msg and state st:

If st = ε:
δ ←⊥; if msg 6= ε then δ ← reject

t← []; r←$ {0, 1}k; oid← pk || r; msg′ ← ε

Else:
Parse (msg′, σ)← msg

If Σ.Vrfy(pk, σ,msg′ : t) =⊥ then δ ← reject

(msg∗, st)←$ Π(msg′, oid, initiator, st)

msg← (msg∗, r); t← msg : msg′ : t

If δ = reject return ε
Return msg

Algorithm Setup(1λ, id):

(pk, sk)←$ Σ.Gen(1k)

R∗ := RemKE〈Π, pk〉
t← []

stKE ← ε

stL ← (id, stKE, sk, t)

Return (stL, R
∗)

Algorithm LocKE(stL,msg):

(id, stKE, sk, t)← stL
Parse (msg∗, r)← msg

(msg′, stKE)←$ Π(msg∗, id, responder, stKE)

t← msg′ : msg : t

σ ← Σ.Sign(sk, t)

stL ← (id, stKE, sk, t)

Return ((msg′, σ), stL)

Figure 6.3: Details of the AttKE construction.

empty state for the key exchange stKE, the signing key for the signature scheme and
an initially empty trace t log.

• LocKE takes (stL,msg), runs Π(msg, id, responder, stKE) to compute the next message
o, produces signature σ of the entire updated protocol trace, and returns the updated
state stL and message (o, σ).

The following theorem establishes the correctness and security of the generic construction.

Theorem 3. Given a correct passively secure key exchange protocol Π and an existentially
unforgeable signature scheme Σ, the generic construction above yields a correct and secure
AttKE protocol.

The proof for this theorem will follow the intuition of Katz and Yung for Theorem 1 in
[KY03]. It starts by bounding the probabilities for the occurrence of bad events (G0AttKE,A

to G3AttKE,A), and then argue that the behaviour of G3AttKE,A to an adversary is the same as
the one of G4Π,A using a passive adversary for the original protocol Π. At this final stage one
can show that, given correctness and security guarantees of Π, a correct and secure AttKE

protocol is achieved. The proof consists in a sequence of five games presented in Figures 6.4
to 6.8.

The first game is simply the AttKE security game in Figure 6.2 instantiated with the con-
struction detailed in Figure 6.3.

94CHAPTER 6. SECURE CHANNELS TO ISOLATED EXECUTION ENVIRONMENTS

G0AttKE,A(1λ):

InsList← []

fake← []

i← 0

b←$ {0, 1}
b′←$ AO(1λ, id)

Return b = b′

Oracle NewLoc():

i← i+ 1

(pk, sk)←$ Σ.Gen(1k)

Ri ← RemKE < Π, pk >

stiL ← (id, ε, sk, [])

InsList[i]← 0

T iL ← []

Return Ri

Oracle SendLoc(msg, i):

If @j, (msg : T iL) v T i,jR then return ⊥
(id, stKE, sk, t)← stiL
Parse (msg∗, r)← msg

(msg′, stKE)←$ Π(1λ,msg∗, id, responder, stKE)

t← msg′ : msg : t

σ = Σ.Sign(sk, t)

stiL ← (id, stKE, sk, t)

T iL ← msg′ : msg : T iL
If stiL.δ ∈ {accept, derived}:

If (stiL.key, key∗) /∈ fake:
key∗←$ {0, 1}λ

fake← (stiL.key, key∗) : fake

Return (msg′, stiL.sid, stiL.δ, stiL.pid)

Oracle TestLoc(i):

If stiL.δ 6= accept return ⊥
If b = 0 return stiL.key

Return fake(stiL.key)

Oracle RevealLoc(i):

Return stiL.key

Oracle NewRem(i):

InsList[i]← InsList[i] + 1

j ← InsList[i]; sti,jR ← ε

T i,jR ← []

Return ε

Oracle SendRem(msg, i, j):

msg′←$ Ri[sti,jR](msg)

T i,jR ← msg′ : msg : T i,jR
If sti,jR .δ ∈ {accept, derived}:

If (sti,jR .key, key∗) /∈ fake:
key∗←$ {0, 1}λ

fake← (sti,jR .key, key∗) : fake

Return (msg′, sti,jR .sid, sti,jR .δ, sti,jR .pid)

Oracle TestRem(i, j):

If sti,jR .δ 6= accept return ⊥
If b = 0 return sti,jR .key

Return fake(sti,jR .key)

Oracle RevealRem(i, j):

Return sti,jR .key

Figure 6.4: Game defining the execution environment for the security analysis of an AttKE
scheme for an arbitrary local identity id. O denotes all oracles associated with the game.

In the second game G1AttKE,A, the adversary loses whenever a repeat event occurs. Intuitively,
this event corresponds to the adversary generating two sessions with the same key pair, and
hence constitutes a forgery with respect to Σ. Given that the two games are identical until
this event occurs, it follows that

Pr[G0AttKE,A(1λ)⇒ T]− Pr[G1AttKE,A(1λ)⇒ T] ≤ Pr[repeat] .

Let q be the maximum number of calls to NewLocal allowed. The distance between these two
games is upper bound, by constructing an adversary B against the existential unforgeability
of signature scheme Σ such that

Pr[repeat] ≤
AdvUF

Σ,B(λ) ∗ q

2
.

Adversary B simulates the environment of G1AttKE,A as follows: at the beginning of the
game, B has to try and guess which session will have a duplicate key. As such, it samples

6.1. ATTESTED KEY EXCHANGE FOR ATTESTED COMPUTATION 95

uniformly from [1..q] a session s and replaces the public key generated by Σ.Gen in NewLocal

for instance i = s with the public key pkUF provided by UFΣ,B. Every time instance s has
to produce a signature in SendLocal(msg, s), instead of Σ.Sign(sk, t), B calls Oracle Sign(t).
Additionally, B will store all key pairs and session ids generated by NewLocal s.t. i 6= s in
a list keys. When the game terminates, the adversary looks up on list keys for a key pair
with public key pkUF, extracts the associated secret key sk, executes σ←$ Σ.Sign(sk,msg′)

for any msg′ not yet queried to Oracle Sign and presents (msg′, σ) as a challenge for UFΣ,B.
It remains to show that, when repeat is set, B wins UFΣ,B with probability 2/q

When the game ends and repeat = T, there are at least two duplicate R. This implies that
∃i, j s.t. (pki, ski) = (pkj , skj), i 6= j. If it is the case that i = s ∨ j = s, B has either ski

or skj in keys, and can use that to generate the signature that wins the UFΣ,B game. Since
i, j ∈ [1..q] and s is sampled uniformly from [1..q], this happens with probability 2/q, and
one can therefore conclude that B outputs a valid forgery with the same probability whenever
repeat occurs.

In game G2AttKE,A, the adversary loses whenever a rnonce event occurs. Intuitively, this event
corresponds to the adversary generating two duplicate nonces. Given that the two games are
identical until this event occurs, it follows that

Pr[G1AttKE,A(1λ)⇒ T]− Pr[G2AttKE,A(1λ)⇒ T] ≤ Pr[rnonce] .

Let qR be the number of calls to NewRemote allowed to the adversary. The distance between
these two games is upper bound such that

Pr[rnonce] ≤
q2
R

2k
.

From the rules of G2AttKE,A and the construction of R, it is known that a new r is generated
at every query of SendRemote such that T i,jR = []. This only happens at most once for every
new T i,jR , i.e., at most once for every call of NewRemote. Since r is sampled uniformly from
a subset of {0, 1}k, one can conclude that the probability of rnonce is q2

R/2
k.

In game G3AttKE,A, the adversary loses whenever a forge event occurs. Intuitively, this event
corresponds to the adversary producing a signature that was not computed by SendLocal,
and hence constitutes a forgery with respect to Σ. Given that the two games are identical
until this event occurs, it follows that

Pr[G2AttKE,A(1λ)⇒ T]− Pr[G3AttKE,A(1λ)⇒ T] ≤ Pr[forge] .

Let q be the maximum number of calls to NewLocal allowed. The distance between these two
games is upper bound, by constructing an adversary C against the existential unforgeability
of signature scheme Σ such that

96CHAPTER 6. SECURE CHANNELS TO ISOLATED EXECUTION ENVIRONMENTS

G1AttKE,A(1λ):

InsList← []

fake← []

PrgList← []

repeat← F

i← 0

b←$ {0, 1}
b′←$ AO(1λ, id)

If repeat = T:
b′←$ {0, 1}

Return b = b′

Oracle NewLoc():

i← i+ 1

(pk, sk)←$ Σ.Gen(1k)

Ri ← RemKE < Π, pk >

If Ri ∈ PrgList:
repeat← T

PrgList← (Ri : PrgList)

stiL ← (id, ε, sk, [])

InsList[i]← 0

T iL ← []

Return Ri

Oracle SendLoc(msg, i):

If @j, (msg : T iL) v T i,jR then return ⊥
(id, stKE, sk, t)← stiL
Parse (msg∗, r)← msg

(msg′, stKE)←$ Π(1λ,msg∗, id, responder, stKE)

t← msg′ : msg : t

σ = Σ.Sign(sk, t)

stiL ← (id, stKE, sk, t)

T iL ← msg′ : msg : T iL
If stiL.δ ∈ {accept, derived}:

If (stiL.key, key∗) /∈ fake:
key∗←$ {0, 1}λ

fake← (stiL.key, key∗) : fake

Return (msg′, stiL.sid, stiL.δ, stiL.pid)

Oracle TestLoc(i):

If stiL.δ 6= accept return ⊥
If b = 0 return stiL.key

Return fake(stiL.key)

Oracle RevealLoc(i):

Return stiL.key

Oracle NewRem(i):

InsList[i]← InsList[i] + 1

j ← InsList[i]; sti,jR ← ε

T i,jR ← []

Return ε

Oracle SendRem(msg, i, j):

msg′←$ Ri[sti,jR](msg)

T i,jR ← msg′ : msg : T i,jR
If sti,jR .δ ∈ {accept, derived}:

If (sti,jR .key, key∗) /∈ fake:
key∗←$ {0, 1}λ

fake← (sti,jR .key, key∗) : fake

Return (msg′, sti,jR .sid, sti,jR .δ, sti,jR .pid)

Oracle TestRem(i, j):

If sti,jR .δ 6= accept return ⊥
If b = 0 return sti,jR .key

Return fake(sti,jR .key)

Oracle RevealRem(i, j):

Return sti,jR .key

Figure 6.5: Game defining the execution environment for the security analysis of an AttKE
scheme for an arbitrary local identity id. O denotes all oracles associated with the game.

Pr[forge] ≤ AdvUF
Σ,C(λ) ∗ q .

Adversary C simulates the environment of G3AttKE,A as follows: at the beginning of the
game, C has to try and guess which session will have a duplicate key. As such, it samples
uniformly from [1..q] a session s and replaces the public key generated by Σ.Gen in NewLocal

for instance i = s with the public key pkUF provided by UFΣ,C . Every time instance s has
to produce a signature in SendLocal(msg, s), instead of Σ.Sign(sk, t), C calls Oracle Sign(t).
During the execution of SendRemote(msg, i, j) that sets forge = T, C presents ((o : sti,jR .t), σ)

as a challenge for UFΣ,C . It remains to show that, when forge is set, C wins UFΣ,C with
probability 1/q.

When forge = T it is inferred that, for some execution of SendRemote(msg, i, j), sti,jR .δ 6=

6.1. ATTESTED KEY EXCHANGE FOR ATTESTED COMPUTATION 97

G2AttKE,A(1λ):

InsList← []

fake← []

PrgList← []

NonList← []

repeat← F

rnonce← F

i← 0

b←$ {0, 1}
b′←$ AO(1λ, id)

If repeat = T:
b′←$ {0, 1}

If rnonce = T:
b′←$ {0, 1}

Return b = b′

Oracle NewLoc():

i← i+ 1

(pk, sk)←$ Σ.Gen(1k)

Ri ← RemKE < Π, pk >

If Ri ∈ PrgList:
repeat← T

PrgList← (Ri : PrgList)

stiL ← (id, ε, sk, [])

InsList[i]← 0

T iL ← []

Return Ri

Oracle SendLoc(msg, i):

If @j, (msg : T iL) v T i,jR then return ⊥
(id, stKE, sk, t)← stiL
Parse (msg∗, r)← msg

(msg′, stKE)←$ Π(1λ,msg∗, id, responder, stKE)

t← msg′ : msg : t

σ = Σ.Sign(sk, t)

stiL ← (id, stKE, sk, t)

T iL ← msg′ : msg : T iL
If stiL.δ ∈ {accept, derived}:

If (stiL.key, key∗) /∈ fake:
key∗←$ {0, 1}λ

fake← (stiL.key, key∗) : fake

Return (msg′, stiL.sid, stiL.δ, stiL.pid)

Oracle TestLoc(i):

If stiL.δ 6= accept return ⊥
If b = 0 return stiL.key

Return fake(stiL.key)

Oracle RevealLoc(i):

Return stiL.key

Oracle NewRem(i):

InsList[i]← InsList[i] + 1

j ← InsList[i]; sti,jR ← ε

T i,jR ← []

Return ε

Oracle SendRem(msg, i, j):

msg′←$ Ri[sti,jR](msg)

If T i,jR = []:
Parse (o, r)← msg′

If r ∈ nonList:
rnonce← T

nonList← (r : nonList)

T i,jR ← msg′ : msg : T i,jR
If sti,jR .δ ∈ {accept, derived}:

If (sti,jR .key, key∗) /∈ fake:
key∗←$ {0, 1}λ

fake← (sti,jR .key, key∗) : fake

Return (msg′, sti,jR .sid, sti,jR .δ, sti,jR .pid)

Oracle TestRem(i, j):

If sti,jR .δ 6= accept return ⊥
If b = 0 return sti,jR .key

Return fake(sti,jR .key)

Oracle RevealRem(i, j):

Return sti,jR .key

Figure 6.6: Game defining the execution environment for the security analysis of an AttKE
scheme for an arbitrary local identity id. O denotes all oracles associated with the game.

reject ∧ (o : sti,jR) 6∈ sigList. From the construction of R, it is also known that sti,jR .δ 6= reject

implies that the provided ((o : sti,jR .t), σ) is a valid message/signature pair for session i. If
i = s, this is also a valid message/signature pair for UFΣ,C . Now observe that (o : sts,jR .t) 6∈
sigList gives assurance that (o : sts,jR .t) was not queried to oracle Sign: rnonce establishes
that every nonce is unique, and every execution of SendLocal adds the nonce r to the signed
message, so every call to oracle Sign is unique. From

If @j, (msg : T sL) v T s,jR then return ⊥

and repeat, it follows that if oracle Sign was called for some (m′ : sts,jR .t), then SendLocal

of session s would be responding to the sequence of messages exchanged with the unique
instance j, matching T s,jR that coincides (modulo signatures) with sts,jR .t. However, by the
construction of G3AttKE,A, that would imply sigList ← (sts,jR .t : sigList), and it is already

98CHAPTER 6. SECURE CHANNELS TO ISOLATED EXECUTION ENVIRONMENTS

known that sts,jR .t 6∈ sigList. One can therefore conclude that (sti,jR .t, σ) is a winning output
for game UFΣ,C if i = s. That probability is 1/q.

G3AttKE,A(1λ):

InsList← []

fake← []

PrgList← []

NonList← []

sigList← []

repeat← F

rnonce← F

forge← F

i← 0

b←$ {0, 1}
b′←$ AO(1λ, id)

If repeat = T:
b′←$ {0, 1}

If rnonce = T:
b′←$ {0, 1}

If forge = T:
b′←$ {0, 1}

Return b = b′

Oracle NewLoc():

i← i+ 1

(pk, sk)←$ Σ.Gen(1k)

Ri ← RemKE < Π, pk >

If Ri ∈ PrgList:
repeat← T

PrgList← (Ri : PrgList)

stiL ← (id, ε, sk, [])

InsList[i]← 0

T iL ← []

Return Ri

Oracle SendLoc(msg, i):

If @j, (msg : T iL) v T i,jR then return ⊥
(id, stKE, sk, t)← stiL
Parse (msg∗, r)← msg

(msg′, stKE)←$ Π(1λ,msg∗, id, responder, stKE)

t← msg′ : msg : t

σ = Σ.Sign(sk, t)

sigList← t : sigList

stiL ← (id, stKE, sk, t)

T iL ← msg′ : msg : T iL
If stiL.δ ∈ {accept, derived}:

If (stiL.key, key∗) /∈ fake:
key∗←$ {0, 1}λ

fake← (stiL.key, key∗) : fake

Return (msg′, stiL.sid, stiL.δ, stiL.pid)

Oracle TestLoc(i):

If stiL.δ 6= accept return ⊥
If b = 0 return stiL.key

Return fake(stiL.key)

Oracle RevealLoc(i):

Return stiL.key

Oracle NewRem(i):

InsList[i]← InsList[i] + 1

j ← InsList[i]; sti,jR ← ε

T i,jR ← []

Return ε

Oracle SendRem(msg, i, j):

msg′←$ Ri[sti,jR](msg)

If T i,jR = []:
Parse (o, r)← msg′

If r ∈ nonList:
rnonce← T

nonList← (r : nonList)

Else:
Parse (o, σ)← msg

If sti,jR .δ 6= reject ∧ (o : sti,jR .t) 6∈ sigList

forge← T

T i,jR ← msg′ : msg : T i,jR
If sti,jR .δ ∈ {accept, derived}:

If (sti,jR .key, key∗) /∈ fake:
key∗←$ {0, 1}λ

fake← (sti,jR .key, key∗) : fake

Return (msg′, sti,jR .sid, sti,jR .δ, sti,jR .pid)

Oracle TestRem(i, j):

If sti,jR .δ 6= accept return ⊥
If b = 0 return sti,jR .key

Return fake(sti,jR .key)

Oracle RevealRem(i, j):

Return sti,jR .key

Figure 6.7: Game defining the execution environment for the security analysis of an AttKE
scheme for an arbitrary local identity id. O denotes all oracles associated with the game.

Finally, in game G4Π,A, AttKE is no longer required, and instead a passive adversary and its
corresponding oracles {Execute(i, j),Reveal(i, s),Test(i, s)} is in place. The intuition is that,
at this fifth game, all calls to the compiled AttKE protocol can be perfectly simulated using
the original protocol Π. More formally, it is required to show that

Pr[G3AttKE,A(1λ)⇒ T] = Pr[G4Π,A(1λ)⇒ T].

Whenever G4Π,A is required to respond to SendLocal or SendRemote, instead of executing Π

6.1. ATTESTED KEY EXCHANGE FOR ATTESTED COMPUTATION 99

G4Π,A(1λ):

InsList← []

fake← []

PrgList← []

NonList← []

sigList← []

repeat← F

rnonce← F

forge← F

i← 0

b←$ {0, 1}
b′←$ AO(1λ, id)

If repeat = T:
b′←$ {0, 1}

If rnonce = T:
b′←$ {0, 1}

If forge = T:
b′←$ {0, 1}

Return b = b′

Oracle NewLoc():

i← i+ 1

(pk, sk)←$ Σ.Gen(1k)

Ri ← RemKE < Π, pk >

If Ri ∈ PrgList:
repeat← T

PrgList← (Ri : PrgList)

stiL ← (id, (pk, sk),⊥, [], 1)

InsList[i]← 0

T iL ← []

Return Ri

Oracle SendLoc(msg, i):

If @j, (msg : T iL) v T i,jR then return ⊥
(id, (pk, sk), r, t, n)← stiL
Parse (msg∗, r)← msg

If t = [] then r ← r′

msg∗ ← Ei,r[n]

t← msg′ : msg : t

σ = Σ.Sign(sk, t)

sigList← t : sigList

stiL ← (id, (pk, sk), r, t, n)

T iL ← msg′ : msg : T iL
(sid, δ, pid)← Locali

Return ((msg∗, σ), sid, δ, pid)

Oracle TestLoc(i):

(sid, δ, pid)← Locali

If δ 6= accept return ⊥
Return Test(id, sid)

Oracle RevealLoc(i):

(sid, δ, pid)← Locali

If δ 6= {derived, accept} then Return ⊥
Return Reveal(id, sid)

Oracle NewRem(i):

InsList[i]← InsList[i] + 1

j ← InsList[i]; sti,jR ← ε

T i,jR ← []

Return ε

Oracle SendRem(msg, i, j):

If T i,jR = []:
If msg 6= ε then δ ← reject

t← []; n← 0; r←$ {0, 1}k

If r ∈ nonList:
rnonce← T

nonList← (r : nonList)

oid← stiL.pk || r
Ei,r←$ Execute(id, oid); o← ε

Else:
(pk, r, t, n)← sti,jR
Parse (o, σ)← msg

If Σ.Vrfy(pk, σ, (o : t)) =⊥: δ ← reject

If δ 6= reject ∧ (o : t) 6∈ sigList

forge← T

msg′ ← Ei,r[n]

t← (msg′, r) : o : t

sti,jR ← (pk, r, t, n+ 2)

T i,jR ← (msg′, r) : msg : T i,jR
(sid, δ, pid, oid)← Remotei,j

Return ((msg′, r), sid, δ, pid)

Oracle TestRem(i, j):

(sid, δ, pid, oid)← Remotei,j

If δ 6= accept return ⊥
Return Test(oid, sid)

Oracle RevealRem(i, j):

(sid, δ, pid, oid)← Remotei,j

If δ 6= {derived, accept} then Return ⊥
Return Reveal(oid, sid)

Figure 6.8: Game defining the execution environment for the security analysis of an AttKE
scheme for an arbitrary local identity id. O denotes all oracles associated with the game.

and R (respectively), it will follow a unique Execute(id, oid) that is associated with sessions i
and nonce r. Additionally, G4Π,A tracks when any execution should be rejected, and responds
to Reveal/Test with either⊥ or with the output of the same oracles from the passive adversary.
To help with this, G4Π,A stores a list of Execute transcripts Ei,r. Messages exchanged from
such transcripts will be tracked locally and remotely with a counter n. From the information

100CHAPTER 6. SECURE CHANNELS TO ISOLATED EXECUTION ENVIRONMENTS

in (stiL, sti,jR) and transcripts Ei,r it is realistic to assume that it is possible to infer (sid, δ, pid)

and (sid, δ, pid, oid) via Locali and Remotei,j , respectively.

The changes in NewLocal merely reflect additional information stored in existing structures.
In SendLocal, Ei,r[n] is used instead of Π to provide the next message. In SendRemote,
instead of running R, the specification in Figure 6.3 is followed on the oracle itself, with the
exception of calling Ei,j [n] instead of using Π to provide the next message. In Reveal/Test,
either ⊥ is returned or the result of another oracle Reveal/Test is given, instead of directly
providing a key. In these scenarios, handling of fake keys is delegated to Test queries of the
passive adversary. As such, to validate these games as equivalent, it must now be shown that
all calls to Ei,r correspond to the Π replaced, and that Reveal/Test are responding similarly
to G3AttKE,A.

Observe that, by the construction of Ei,r←$ Execute(id, oid),

Ei,r = [o1←$ Π(1λ, ε, oid, initiator, str), o2←$ Π(1λ, o1, id, responder, sti), . . .]

the transcript Ei,r contains a list of specific executions of Π(1λ,msg, i, ρ, st). It must be shown
that every Ei,j [n] matches to the output of Π(1λ,msg, i, ρ, st) executed in G3AttKE,A. First
note that, from repeat, it is inferred that every i is associated with a different R. This means
that every SendRemote(msg, i, j) will be associated with a unique stiL. Many executions of
the same session i may occur, so the nonce associated cannot be determined at NewLocal

(hence stiL ← (id, (pk, sk),⊥, [], 1)), but it is also known that every first message of AttKE

will fix a unique r, so Ei,r can be established in the first non-reject call of SendLocal(msg, i),
and a 1-to-1 relation with instance j is given by

If @j, (m : T iL) v T i,jR then return ⊥

and forge. Let SendLocalk and SendRemotek be the k-th execution of these Oracles.

• SendRemote1(msg, i, j): If δ 6= reject and r←$ {0, 1}k, we have that

[Π(1λ, ε, pk||r, initiator, st), . . .]←$ Execute(id, pk||r)

and thus Π(1λ, ε, pk||r, initiator, st) = Ei,r[0] = msg1; sti,jR .t = [(msg1, r), ε]; sti,jR .n = 2.

• SendLocal2(msg, i): If stiL.δ 6= reject, then it is implied that ((o, r) : stiL.t) is in
the prefix trace of a unique instance SendRemote1 (from (1)). Since stiL.t = [],
msg was the first message produced by SendRemote1, one can set r as the nonce
of the execution, retrieving the second message from Execute(id, pk||r) in Ei,r, the
unique transcript between session i and the remote j that produced r. Therefore,
Π(1λ,msg′, id, responder, st) = Ei,r[1] = msg2. stiL.t = [msg2, (msg1, r

′), ε]; stiL.n← 3.

• SendRemoten(msg, i, j): If δ 6= reject, Parse (o, σ)← msg; Σ.Vrfy(pk, σ, (o : sti,jR .t)) 6=⊥
and (o : sti,jR .t) ∈ sigList means that msg was the (n − 1)-th message produced by

6.2. UTILITY 101

instance SendLocaln−1(msgn−2, i) with stiL.t = [o, . . . , (msg1, r), ε], following (o : sti,jR .t)

(from forge). (o : sti,jR .t) was constructed with the first n− 1 messages in the transcript
of Execute(id, pk||r): Ei,r, so given that Ei,r[n] provides the n-th message of Ei,r, then
Π(1λ, o, pk||r, initiator, st) = Ei,r[n]. sti,jR .n = n+ 2.

• SendLocaln(msg, i): If stiL.δ 6= reject, then msg was the (n − 1)-th message produced
by some instance SendRemoten−1 with ([msg, . . . ,msg2, (msg1, r), ε]) in its trace sti,jR .t

(from (1)). sti,jR .t was also constructed with the first n − 1 messages in the transcript
of Execute(id, pk||r): Ei,r, so given that Ei,r[n] provides the n-th message of Ei,r, one
infers that Π(1λ,m′, id, responder, st) = Ei,r[n]. stiL.n = n+ 2.

Regarding Reveal and Test queries, observe that either the instances of i or j have δ 6=
{derived, accept} or δ 6= accept, respectively, which given the previous is the same in both
scenarios, or A gets the response from the Oracle of the passive adversary regarding the
unique Execute(id, oid) associated with sessions i and j, and the output is also the same in
both scenarios.

At this point, the behaviour of G3AttKE,A to an adversary A is indistinguishable to the
one provided in G4Π,A interacting with a passive adversary for the original protocol. This
provides the correctness and security guarantees of the passive protocol Π modulo any attacks
that would also be possible in the passive scenario. Now observe that, given that rnonce

assures unique values for oid, and given that LocalKE and RemoteKE have ρ = responder and
ρ = initiator, respectively, it is trivial to infer that this implies the correctness and security
of AttKE.

To conclude,

AdvAtt
AttKE,A = Pr[GAttKE,A

0 (1λ)]− Pr[GΠ,A
4 (1λ)]

= (

3∑
i=0

Pr[GAttKE,A
i (1λ)]− Pr[GAttKE,A

i+1 (1λ)]) + (Pr[GAttKE,A
3 (1λ)]− Pr[GΠ,A

4 (1λ)])

≤ Pr[repeat] + Pr[rnonce] + Pr[forge] + AdvAtt
Π,A(λ)

≤
3 ∗ AdvUF

Σ,D(λ) ∗ q

2
+

q2
R

2k
+ AdvAtt

Π,A(λ)

and Theorem 3 follows.

6.2 Utility

Finally, for constructing full-fledged authenticated and private remote attested computation
applications, several utility theorems will now be presented, describing precisely the guar-
antees one obtains when combining an attested computation protocols and labelled attested

102CHAPTER 6. SECURE CHANNELS TO ISOLATED EXECUTION ENVIRONMENTS

computation protocols with AttKE, in various settings. Intuitively, these theorems will state
that attestation allows for authentication and secrecy assurances offered by AttKE to be
retained when is used to establish session keys with remote IEEs, in the presence of fully
active adversaries that control the remote machine, and when the key exchange is composed
with arbitrary programs.

One-to-one AttKE utility

The first setting considered is the one presented in Section 5.2. Figure 6.9 shows an idealised
game where an adversary must distinguish between two remote machines where an AttKE
scheme is executed in combination with an AC scheme. MachineM is any standard remote
machine that is supported by the attested computation protocol, whereas M′ represents a
modification ofM where one can tweak the operation of RemKE programs. The differences of
M′ with respect toM are concentrated on the Run interface, which now operates as follows:

• It takes as additional parameters a list fake of pairs of keys and Boolean flag tweak that,
when activated, identifies a process that is running an instance of RemKE composed
with some program Q. This flag triggers the following modifications with respect to
the operations ofM.

• When it detects that RemKE has transitioned into derived or accept state, it will check if
the derived key exists in list fake. If not, it generates a new random key∗, and (key, key∗)

is added to the list.

• When it detects that program Q is set to start executing, rather than using the key as
an input to φ, it uses fake(key) instead.

The environment presented to the adversary models a standard attested computation inter-
action, where it is given total control over the remote machine using oracles Load and Run

(these oracles will either give access toM or toM′, depending on a secret bit b generated in
the beginning of the game). The adversary is also able to obtain challenge remote programs
using a NewSession(Q) oracle that uses the attested computation scheme to compile RemKE

composed with arbitrary program Q of its choice under a mapping function φkey that reveals
the relevant parts of the key exchange state (namely the secret key key, the party identifiers
oid and pid, the state δ and the session identifier sid). Observe that such arbitrary programs
can leak all of the information revealed by φkey to the attacker. If the adversary chooses to
Load a challenge program, and if M′ is being used in the game, then it will be tweaked as
described above. Whenever NewSession(Q) is called, the environment creates a new local
session i that the adversary can interact with using a Send(i,msg) oracle. The Send oracle
uses the Verify algorithm of the attested computation scheme to validate attested outputs
and, if they are accepted, feeds them to the LocKE instance (and also ensures that list fake is

6.2. UTILITY 103

updated). Finally, the adversary can explicitly choose to be tested (as opposed to the implicit
testing it may trigger using arbitrary programs Q) by calling Test on a local instance. This
oracle will either return the true key, if b = 0, or the associated random key that is kept in
the fake list. As before, the winning event guess is established to occur when b = b′ in the
end of the game.

Game AttAttKE,A(1λ):

prms0←$ M.Init(1λ)

prms1←$ M′.Init(1λ)

PrgList← []

fake← []

i← 0

b←$ {0, 1}
b′←$ AO(prmsb, id)

Return b = b′

Oracle Load(R∗):

hdl0 ←M.Load(R∗)

hdl1 ←M′.Load(R∗)

Return hdlb

Oracle Run(hdl, in):

o0←$ M.Run(hdl, in)

tweak← F

If ProgramM′ (hdl) ∈ PrgList then flag← T

(o1, fake)←$ M′.Run(hdl, in, tweak, fake)

Return ob

Oracle NewSession(Q):

i← i+ 1

(Remi
KE, stiKE)←$ Setup(1λ, id)

(R∗i , stiL)←$ AC.Compile(prmsb,Remi
KE, φkey, Q)

inilast ← ε

PrgList← R∗i : PrgList

Return R∗i

Oracle Send(msg′, i):

(msg, stiL)←$ AC.Verify(prmsb, in
i
last,msg′, stiL)

If msg =⊥ then return ⊥
(msg∗, stiKE)←$ LociKE(stiKE,msg)

inilast ← msg∗

If stiKE.δ ∈ {derived, accept} ∧ stiKE.key /∈ fake:
key∗←$ {0, 1}λ

fake← (key, key∗) : fake

Return msg∗

Oracle Test(i):

If stiKE.δ 6= accept return ⊥
If b = 0 then return stiKE.key

Return fake(stiKE.key)

Figure 6.9: Game defining the utility of an AttKE scheme when used in the context of
attested computation.

Theorem 4 (One-to-one AttKE utility). If AttKE is correct and secure and the AC protocol
is correct, secure and ensures minimum leakage, then for all ppt adversaries in the utility ex-
periment: 1. the probability that the adversary violates AttKE two-sided entity authentication
is negligible; and the key secrecy advantage 2 · Pr[guess]− 1 is negligible.

This proof begins by bounding the possibility for the occurrence of a bad event (G0AC,A to
G1AC,A). Then, the machine execution will be replaced by the indistinguishable behaviour of
the simulator of minimum leakage game in Figure 5.4 for G2AC,A. Finally, one argues that,
given these circumstances, this scenario is the same as one of G3AttKE,A using the oracles of
key exchange for attested computation in Figure 6.2 modulo any advantage the adversary
may gain from the AttKE scheme. The proof consists in a sequence of four games presented
in figures 6.10 to 6.13. The first game is simply the utility game in Figure 6.9.

In the second game G1AttKE,A, the adversary loses whenever a forgeAC event occurs. In-
tuitively, this event corresponds to the adversary producing an output that is successfully
validated, but was not computed using Run, and hence constitutes a forgery with respect to

104CHAPTER 6. SECURE CHANNELS TO ISOLATED EXECUTION ENVIRONMENTS

G0AttKE,A(1λ):

prms0←$ M.Init(1λ)

prms1←$ M′.Init(1λ)

PrgList← []

fake← []

i← 0

b←$ {0, 1}
b′←$ AO(prmsb, id)

Return b = b′

Oracle Load(R∗):

If b = 0

ReturnM.Load(R∗)

ReturnM′.Load(R∗)

Oracle NewSession(Q):

i← i+ 1

(Remi
KE, stiKE)←$ Setup(1λ, id)

(R∗i , stiL)←$ AC.Compile(prmsb,Remi
KE, φkey, Q)

inilast ← ε

PrgList← ((R∗i ,Remi
KE, Q) : PrgList)

Return R∗i

Oracle Run(hdl, in):

flag← F

If ProgramM′ (hdl) ∈ PrgList then flag← T

If b = 0 returnM.Run(hdl, in)

(o, fake)←$ M′.Run(hdl, in, flag, fake)

Return o

Oracle Send(msg′, i):

(msg, stiL)←$ AC.Verify(prmsb, in
i
last,msg′, stiL)

(msg∗, stiKE)←$ LociKE(stiKE,msg)

inilast ← msg∗

If stiKE.key /∈ fake ∧ stiKE.δ ∈ {derived, accept}:
key∗←$ {0, 1}λ

fake← (key, key∗) : fake

Return msg∗

Oracle Test(i):

If stiKE.δ 6= accept return ⊥
If b = 0 then return stiKE.key

Return fake(stiKE.key)

Figure 6.10: Game defining the utility of an AttKE scheme when used in the context of
attested computation.

G1AttKE,A(1λ):

prms0←$ M.Init(1λ)

prms1←$ M′.Init(1λ)

PrgList← []

fake← []

forgeAC← F

i← 0

b←$ {0, 1}
b′←$ AO(prmsb, id)

If forgeAC = T:
b′ ← {0, 1}

Return b = b′

Oracle Load(R∗):

If b = 0

ReturnM.Load(R∗)

ReturnM′.Load(R∗)

Oracle NewSession(Q):

i← i+ 1

(Remi
KE, stiKE)←$ Setup(1λ, id)

(R∗i , stiL)←$ AC.Compile(prmsb,Remi
KE, φkey, Q)

inilast ← ε

PrgList← ((R∗i ,Remi
KE, Q) : PrgList)

T iL = []

Return R∗i

Oracle Run(hdl, in):

flag← F

If ProgramM′ (hdl) ∈ PrgList then flag← T

If b = 0: o←M.Run(hdl, in)

Else: (o, fake)←$ M′.Run(hdl, in, flag, fake)

Return o

Oracle Send(msg′, i):

(msg, stiL)←$ AC.Verify(prmsb, in
i
last,msg′, stiL)

If b = 0 thenM←M elseM←M′

If msg 6=⊥ ∧ 6 ∃hdl s.t. ProgramM(hdl) = R∗i
Rev(msg′ : T iL) v ATraceM(hdl):

forgeAC← T

(msg∗, stiKE)←$ LociKE(stiKE,msg)

inilast ← msg∗; T iL ← msg∗ : msg′ : T iL
If stiKE.key /∈ fake ∧ stiKE.δ ∈ {derived, accept}:

key∗←$ {0, 1}λ

fake← (key, key∗) : fake

Return msg∗

Oracle Test(i):

If stiKE.δ 6= accept return ⊥
If b = 0 then return stiKE.key

Return fake(stiKE.key)

Figure 6.11: First hop of the utility proof.

AC. Let Rev reverse a list given as input2. Given that the two games are identical until this
event occurs, it follows that

Pr[G0AttKE,A(1λ)⇒ T]− Pr[G1AttKE,A(1λ)⇒ T] ≤ Pr[forgeAC] .

Let q be the maximum number of calls to NewSession allowed, and N the number of messages
exchanged in Remi

KE. The distance between these two games is upper bound, by constructing
an adversary B against the security of AC such that

Pr[forgeAC] ≤ AdvAtt
AC,B(λ) ∗ q ∗ dN/2e .

2This is for handling a technicality, in which the trace of M and the constructed T iL are in reverse order.

6.2. UTILITY 105

G2AttKE,A(1λ):

(prms, stS)←$ S1(1λ)

PrgList← []

fake← []

List← []

forgeAC← F

i← 0

hdl← 0

b←$ {0, 1}
b′←$ AO(prms, id)

If forgeAC = T:
b′ ← {0, 1}

Return b = b′

Oracle Load(R∗):

hdl← hdl + 1

List[hdl]← (R∗, ε)

T hdl
R ← []

Return hdl

Oracle NewSession(Q):

i← i+ 1

(Remi
KE, stiKE)←$ Setup(1λ, id)

(R∗i , stiL)←$ Compile(Remi
KE, φkey, Q)

inilast ← ε

PrgList← ((Remi
KE, φkey, Q,R

∗
i) : PrgList)

T iL = []

Return R∗i

Oracle Run(hdl, in):

(R∗, st)← List[hdl]

If (P, φ,Q,R) ∈ PrgList:
R← Composeφ[P,Q]

o∗←$ R[st](in)

(o, stS)←$ S2(hdl, P, φ,Q,R∗, in, o∗, stS)

If stP .stage = 1:
If stP .key 6∈ fake∧

stP .δ ∈ {derived, accept}:
key∗←$ {0, 1}λ

fake← (key, key∗) : fake

If δ = accept ∧ b = 1:
stP .key← fake(key)

T hdl
R ← o : in : T hdl

R

Else:
(o, st, stS)←$ S3(hdl, R∗, in, st, stS)

List[hdl]← (R∗, st)

Return o

Oracle Send(msg′, i):

(msg, stiL)←$ AC.Verify(prms, inilast,msg′, stiL)

If msg 6=⊥ ∧ 6 ∃hdl s.t. List[hdl] = R∗i .

Rev(msg′ : T iL) v T hdl
R :

forgeAC← T

(msg∗, stiKE)←$ LociKE(stiKE,msg)

inilast ← msg∗; T iL ← msg∗ : msg′ : T iL
If stiKE.key /∈ fake ∧ stiKE.δ ∈ {derived, accept}:

key∗←$ {0, 1}λ

fake← (key, key∗) : fake

Return msg∗

Oracle Test(i):

If stiKE.δ 6= accept return ⊥
If b = 0 then return stiKE.key

Return fake(stiKE.key)

Figure 6.12: Second hop of the utility proof.

Adversary B simulates the environment of G1AttKE,A as follows: at the beginning of the game,
B has to try and guess which session will have a forged message, and which message of the
protocol it will be. As such, it samples uniformly from [1..q] a session s and from [1..dN/2e]
a message k. During NewSession such that i = s, B1 will output (Remi

KE, φkey, Q, k,⊥) to
AttAC,B, store the produced R∗ and all hdl output by Load(R∗) from there on. Afterwards,
all calls to M.Load(R∗) and M.Run(hdl,m) or M′.Load(R∗) and M′.Run(hdl,m, flag, fake)

with the same calls on AttAC,B. Whenever Send(msg′, i) is called, i = s and msg 6=⊥, let n
be the number of messages sent for session s:

• If n = 0, B2 outputs (⊥,msg′,msg∗).

• If n > 0 ∧ n < k, B2 outputs (stB,msg′,msg∗)

It remains to show that, when forgeAC is set, B wins AttAC,B with probability 1/(q ∗ dN/2e).

When the game ends and forgeAC = T,

msg 6=⊥ ∧ 6 ∃hdl s.t. ProgramM(hdl) = R∗i . (msg′ : T iL) v ATraceM(hdl)

From the construction of Send, msg 6=⊥ means that this message has been successfully
validated by AC.Verify. Furthermore, this matches the verifications in AttAC,B, considering

106CHAPTER 6. SECURE CHANNELS TO ISOLATED EXECUTION ENVIRONMENTS

G3AttKE,A(1λ):

(prms, stS)←$ S1(1λ)

PrgList← []

fake← []

List← []

InsList← []

forgeAC← F

i← 0

hdl← 0

b←$ {0, 1}
b′←$ AO(prms, id)

If forgeAC = T:
b′ ← {0, 1}

Return b = b′

Oracle Load(R∗):

hdl← hdl + 1

T hdl
R = []

If 6 ∃(R∗, j) ∈ InsList:
InsList[R∗]← 1

Else: j ← j + 1

InsList[R∗]← j

List[hdl]← (R∗, ε, j, 1)

NewRem()

T hdl
R ← []

Return hdl

Oracle NewSession(Q):

i← i+ 1

Remi
KE←$ NewLoc()

(R∗i , stiL)←$ Compile(Remi
KE, φkey, Q)

inilast ← ε

PrgList← ((Remi
KE, φkey, Q,R

∗
i) : PrgList)

T iL = []

Return R∗i

Oracle Run(hdl, in):

(R∗i , st, j, stage)← List[hdl]

If (P, φ,Q,R) ∈ PrgList:
If stage = 1:
o←$ SendRem(in, i, j)

Parse (o, sid, δ, pid)← o:
(o∗, stS)←$ S2(hdl, P, φ,Q,R∗, in, o, stS)

If δ = accept:
stage← 2

st← TestRem(i, j)

T hdl
R ← o∗ : in : T hdl

R

Else:
o←$ Q[st](in)

(o∗, stS)←$ S2(hdl, P, φ,Q,R∗, in, o, stS)

Else:
(o, st, stS)←$ S3(hdl, R∗, in, st, stS)

List[hdl]← (R∗, st, j, stage)

Return o∗

Oracle Send(msg′, i):

(msg, stiL)←$ AC.Verify(prms, inilast,msg′, stiL)

If msg 6=⊥ ∧ 6 ∃hdl s.t. List[hdl] = R∗i .

Rev(msg′ : T iL) v T hdl
R :

forgeAC← T

msg∗←$ SendLoc(msg, i)

Parse (o, sid, δ, pid)← msg∗:
inilast ← msg∗; T iL ← o : msg′ : T iL
Return o

Oracle Test(i):

Return TestLoc(i)

Figure 6.13: Third hop of the utility proof.

that inilast ← msg∗ in Send, so it is known that all verifications that succeed in G1AttKE,A also
do so in AttAC,B. If forgeAC is set upon receiving message k, the final check is reached. All
calls that produce handles such that ProgramM(hdl) = R∗i are also performed in AttAC,B, so
it remains to show that Rev(msg′ : T iL) matches T .

It is known that T ← ATraceR[st;CoinsM(hdl∗)](i1, . . . , in). From the construction of Send and
the behaviour of the adversary, it can also be concluded that this is constructed with the
outputs given by B2. It will be shown, inductively, why Rev(msg′ : T iL) matches the k outputs
of B2.

• Initially, given that (⊥,msg′0,msg∗0)← B2:

Rev(msg′0 : T iL) = Rev[msg′0,⊥] = [⊥,msg′0]

• For all subsequent messages up to k, (msg∗n−1,msg′n,msg∗n)← B2, so

Rev(msg′ : T iL) = Rev[msg′n,msg∗n−1, . . . ,msg′0,⊥] = [⊥,msg′0, . . . ,msg∗n−1,msg′n]

As such, when forgeAC is set on session s, and in the k-th message input on Send,

6 ∃hdl s.t. ProgramM(hdl) = R∗i . (msg′ : T iL) v ATraceM(hdl)

6.2. UTILITY 107

which results in a winning output for AttAC,B with probability 1/(q ∗ dN/2e).

In the third game G2AttKE,A, when the adversary loads and runs code, it is no longer
interacting with machineM, but rather with a simulator that is given the trace of a legitimate
execution. Furthermore, S handles the different behaviour of M and M′ following the
description in Section 6.2. Intuitively, this difference corresponds to the indistinguishable
scenario presented in the minimum leakage game of Figure 5.4. Given the presented differ-
ences, it follows that

Pr[G1AttKE,A(1λ)⇒ T]− Pr[G2AttKE,A(1λ)⇒ T] ≤

Pr[Leak-RealAC,A(1λ)⇒ T]− Pr[Leak-IdealAC,A(1λ)⇒ T].

One must now argue that the difference between the games is bound by the adversary’s
advantage of breaking minimal leakage. In both possibilities for the bit b, the transformation
in Load is exactly the same as the one in the minimum leakage game. Furthermore, T hdl

R

will always correspond to the ATraceM(hdl). First, consider b = 0. The behaviour of Run is
exactly the same as the one in the minimum leakage game, modulo the generation of the fake
key, which will not be taken into consideration since it is only used in Test when b = 1. Now
consider b = 1. The behaviour of Run is exactly the same as the one in the minimum leakage
game, modulo generating and setting the fake key. However, these additional operations
match the described behaviour expected fromM′ for establishing the fake key.

As such, the advantage of the adversary in G2AttKE,A with respect to G1AttKE,A is limited by
its advantage of breaking the minimum leakage.

Finally, in game G3AttKE,A, the key exchange part of the code is no longer executed. Instead,
the game makes use of AttKE and its corresponding oracles {NewRem,NewLoc,SendRem,SendLoc,

TestRem,TestLoc}. The intuition is that, at this fourth game, calls to the attested part of
the protocol can be provided using a key exchange for attested computation AttKE. More
formally, it must be shown that

Pr[G2AttKE,A(1λ)⇒ T]− Pr[G3AttKE,A(1λ)⇒ T] ≤ AdvAtt
AttKE,A .

Whenever G3AttKE,A creates a local or a remote session (respectively, NewSession or Load), it
will initialize accordingly on the AttKE protocol. On the remote side, a new InsList will also
keep track of how many remote sessions are created (just like oracle NewRem in AttKE). On
the local side, algorithm Setup will be replaced by a call to NewLoc that by its construction
will return the same value as in G2AttKE,A. As such, it must now be argued that, every time
the game is required to produce either an output from the local/remote machine or a key,
the response given by the corresponding oracle is only distinguishable by an adversary that
breaks AttKE security.

108CHAPTER 6. SECURE CHANNELS TO ISOLATED EXECUTION ENVIRONMENTS

• For stage = 1 ∧ δ 6= accept: Locally, SendLoc replaces calling LociKE, which by the
oracle behaviour implies the same result. Remotely, instead of producing output via
R[st](in), oracle SendRem is now directly executed, which by construction holds and
updates st in the same way as G2AttKE,A.

• For stage = 1 ∧ δ = accept: In G2AttKE,A, SendLoc would replace the real key with
a fake key according to decision bit b. In G3AttKE,A, the same thing happens, but
according to AttKE decision bit. Remotely, the behaviour of st← TestRem also differs
in the same manner.

• For stage = 2: Composeφ[P,Q] implies that the state st considered for Q only maintains
the key. As such, from thereon, the only difference between G2AttKE,A and G3AttKE,A is
the key depending on the decision bit taken into consideration.

In this final game, the adversary’s decision is based on a bit that is unrelated to any
information obtainable via the oracles. Let

AdvLeak
AC,A = Pr[Leak-RealAC,A(1λ)⇒ T]− Pr[Leak-IdealAC,A(1λ)⇒ T]

Finally

AdvUt
AttKE,A = Pr[GAttKE,A

0 (1λ)]− Pr[GAttKE,A
3 (1λ)]

=
3∑
i=0

Pr[GAttKE,A
i (1λ)]− Pr[GAttKE,A

i+1 (1λ)]

≤ Pr[forgeAC] + AdvLeak
AC,A + AdvAtt

AttKE,A

≤ AdvAtt
AC,B(λ) ∗ q ∗ dN/2e+ AdvLeak

AC,A + AdvAtt
AttKE,A

and Theorem 4 follows.

One-to-many AttKE utility

Attested Computation can also be employed when several instances of attested key exchange
running in parallel. The one-to-many utility theorem validates that, if the authentication
and secrecy assurances offered by AttKE are retained when used to establish keys between a
single client and a remote IEE, then this is also the case for multiple clients establishing keys
with a remote IEE. This setting considers the presence of a fully active adversary, in control
of the machine and allowed to select k honest participants (controlling the remaining n− k),
as well as the possibility of composing the key exchanges with any arbitrary function F.

Figure 6.15 shows an idealized experiment similar to the approach taken for the previous
Utility theorem. The adversary is challenged to distinguish between two remote machines,

6.2. UTILITY 109

where several instances of an AttKE scheme are being combined and executed with an AC
scheme. MachineM represents the standard remote machine supported by the AC protocol,
while machineM′ is a modification ofM in which the operation of the first k (honest) RemKE

programs is tweaked. The differences between these machines are mostly concentrated on
the Run interface, which operates as follows:

• It takes, as additional parameters, a list of key pairs fake, a Boolean flag t and the
number of honest participants k. The activation of this flag identifies an IEE running
the selected parallel execution of RemKE composed with program Q, and triggers the
following modifications with respect to the operations inM:

– When it detects that any of the first k executions of RemKE has transitioned into
the derived or accept state, it records the derived key and checks if it exists in the
provided list fake. If that is not the case, it generates a new random key∗ and
adds (key, key∗) to the list.

– When it detects that program Q is executing for the first time, rather than using
all keys as input to φkey, it replaces the first k as the respective fake(key) (from
k + 1 to n, the behaviour is similar toM).

To capture the notion of parallel execution of several instances of AttKE in the AC setting,
ParComp is introduced, described in Figure 6.14. This program construction takes n programs
Rem1

KE, . . . ,Remn
KE and produces a program that is built to expect every input to consist in

an array of n inputs. It parses the received input, runs every instance Remi
KE with the i-th

input and constructs an output array with the outputs of the executions.

Program ParComp〈Rem1
KE, ...,Remn

KE〉(msg, st):

If st = ε:
For i ∈ [1..n]: st[i]← ε

For i ∈ [1..n]:
oi←$ Remi

KE(msg[i], st[i])

out← o1, . . . , on

Return out

Figure 6.14: Details for running n parallel key exchange protocols.

The provided environment models the adversary power in a standard attested computation
interactions, where it is given access to the oracles Load and Run, matching to M or M′,
depending on the sampled secret bit b. The adversary can also initialize challenge programs
by running NewSession(φ,Q), which initializes n executions, compiles the KE programs and
composes them with program Q, having the set of exchanged keys mapped to its initial state
via φ. Note that, additionally to the adversary having access to the machine, its power is
extended to control n−k participants, by providing him their internal states st

i(k+1)
KE , . . . , stinKE.

Upon calling NewSession, the environment creates new session i, with which the adversary

110CHAPTER 6. SECURE CHANNELS TO ISOLATED EXECUTION ENVIRONMENTS

Game AttOtmAttKE,A(1λ, I, k):

prms0←$ M.Init(1λ)

prms1←$ M′.Init(1λ)

PrgList← []

fake← []

i← 0

b←$ {0, 1}
b′←$ AO(prmsb)

Return b = b′

Oracle Test(i):

Keys← []

For j ∈ [1..k]:
If stijKE.δ 6= accept return ⊥
If b = 0 then

Keys← stijKE.key : Keys

Else
Keys← fake(stijKE.key) : Keys

Return Keys

Oracle NewSession(φ,Q):

i← i+ 1

For j ∈ [1..n]:
(stijKE,Remj

KE)←$ Setup(1λ, I[j])

inijlast ← ε

C := ParComp〈Rem1
KE, . . . ,Remn

KE〉
For j ∈ [1..n]:
(R∗i , stijL)←$ Compile(prmsb,C, φ,Q)

PrgList← R∗i : PrgList

Return (R∗i , st
i(k+1)
KE , . . . , stinKE)

Oracle Run(hdl, in):

o0←$ M.Run(hdl, in)

t← F

If ProgramM′ (hdl) ∈ PrgList:
then t← T

(o1, fake)←$ M′.Run(hdl, in, t, fake, k)

Return ob

Oracle Send(msg′, i, j):

(ins, outs∗)← msg′

(outs, stijL)← Verify(prms, ins,msg′, stijL)

If outs =⊥ Return ⊥
If inijlast 6= ins[j] Return ⊥
(msg∗, stijKE)←$ LocKE(stijKE, outs[j])

inijlast ← msg∗

If stijKE.δ ∈ {derived, accept}∧
stijKE.key /∈ fake:

key∗←$ {0, 1}λ

fake← (key, key∗) : fake

Return msg∗

Oracle Load(R∗):

hdl0 ←M.Load(R∗)

hdl1 ←M′.Load(R∗)

Return hdlb

Figure 6.15: Game defining the one-to-many utility of a AttKE scheme when used in the
context of attested computation. Compile and Verify refer to methods of the underlying AC

scheme.

can interact with in behalf of participant j by using Send(msg′, i, j). The Send oracle mimics
the behavior of a local participant by using the Verify algorithm of the AC scheme to validate
if the output was correctly attested, and if the j-th input (the input provided by the local
participant) is consistent with what was provided. If both of these conditions are met, the
result is fed to the LocKE instance. Finally, the adversary can challenge an explicit session i
to test, by calling Test(i). This oracle will return either the honest participant (the initial k)
set of true keys, if b = 0, or the associated random keys kept in the fake list. The winning
event guess is defined to occur when b = b′ in the end of the game.

Theorem 5 (One-to-many AttKE utility). If the AttKE is correct and secure, and the AC

protocol is correct, secure and ensures minimal leakage, then for all ppt adversaries in the
utility experiment: the probability that the adversary violates the AttKE two-sided entity
authentication is negligible; and the key secrecy advantage 2 · Pr[guess]− 1 is negligible.

The intuition behind this proof very closely follows the formula to the one of One-to-one
utility theorem. A sketch is now presented. There is a sequence of four games, beginning
with the original experiment in Figure 6.15. On the second game, the possibility for the
adversary to forge an attested output us restricted, which can be bound as the advantage for
attacking the original AC scheme. Afterwards, the behaviour of the machine is replaced with
a simulator, which is also indistinguishable if the underlying AC scheme provides minimal
leakage. Finally, all calls to the key exchange are replaced by calls to oracles for the AttKE

scheme, therefore reducing to attacks on the AttKE scheme. In the final game, the adversary’s

6.2. UTILITY 111

decision is based on a bit that is unrelated to any information obtainable via the oracles. All
these hops match the ones described in the proof for Theorem 4, but in a setting generalised
for multiple local participants.

Labelled AttKE utility

Labelled AttKE is a flavour of utility relying on a LAC scheme. Here, it is allowed for the
key exchange to be composed in parallel with other arbitrary programs and then sequentially
with another program, where the execution is being attested according to specific labels. The
utility experiment intuitively states that the adversary cannot distinguish between a derived
key and a random key, whenever the key exchange has been performed between an honest
party and a remote machine running RemKE within an IEE, and RemKE is composed with
other arbitrary programs as described above. The reason this parallel/sequential composition
pattern does not harm security is that the parts of the state belonging to different parallel-
composed programs are disjoint, and sequential composition only reveals controlled informa-
tion to other programs. Indeed, sequential composition in the utility theorem is restricted
to pass only specific parts of the state of the key exchange program to the following phase:
mapping function φkey passes on the derived key, the session and party identifiers, and the
state (derived or accept) of the key exchange. Contrary to AC utility, this is not enough to
define the mapping function, as other programs composed in parallel with the remote key
exchange need to pass states to the next phase as well. To that extent, if φ1, . . . , φn are
mapping functions, let φl11 | . . . |φlnn be defined as φ∗ := st.li 7→ φi(st.li). If the state comes
from the program 〈P1| . . . |Pn〉(l1,...,ln), this mapping function maps the state belonging to each
Pi using φi. In this composition context, the φi is taken according to the key exchange to be
φkey. This ensures that only the key is transmitted to the following stage of the protocol, and
not information supposed to be local to the key exchange protocol and hence not intended
for further use.

In the experiment in Figure 6.16, the adversary has to distinguish between an ideal machine
and a real world machine where an AttKE is run in parallel with other programs in the
first phase of a LAC-compiled protocol. The machine M represents the remote machine
expected by the LAC protocol and the machineM′ is a modification of machineM in which
the key derived by a key-exchange session is magically replaced by a fresh key. In order to
maintain consistency between the tested keys and the keys used inM′, oracleM′.Run takes
two additional parameters: a list fake of pairs of keys and a flag tweak. If the flag is activated,
the following modifications in the behaviour ofM occur inM′:

• It expects the sub-program being activated due to input label l to be a key exchange
RemKE instance. After running its transition function,M′ checks if it has reached the
derived or accept state. If so, it retrieves the derived key and if there is no association

112CHAPTER 6. SECURE CHANNELS TO ISOLATED EXECUTION ENVIRONMENTS

(key,_) in fake it generates a fresh key key∗ and appends (key, key∗) to fake.

• Furthermore, if the key exchange process has entered accept state, it performs st.l.key←
fake(key), i.e., it replaces the derived key with a fake random one. Note that this will
cause the fake key to be passed to the next stage of the sequentially composed program.

The oracles provided to the adversary offer access to the remote machine. Additionally, the
adversary can create new sessions of the key exchange using the NewSession oracle, where
the remote key exchange is composed in parallel (with label l∗) with programs P1, . . . , Pn,
followed with Q and compiled for LAC. Parallel composition of P1, . . . , Pn, and its sequential
composition with Q follow the respective composition notions for labelled programs as
described in Figure 5.1. Note that, given the structure of the presented parallel composition,
the position in which a program is listed in the composition expression is irrelevant. The
adversary makes the local part of the key exchange progress by using the Send oracle, provided
that the message passes the LAC verification step for the relevant label. Finally the adversary
can challenge a session by executing the Test oracle, which return either the real key of a fake
key according to b (provided that the key exchange has reached a derived or accept state).

Game AttAttKE,A(1λ, id):

prms0←$ M.Init(1λ)

prms1←$ M′.Init(1λ)

PrgList← []

fake← []

i← 0

b←$ {0, 1}
b′←$ AO(prmsb)

Return b = b′

Oracle Test(i):

If stiKE.δ 6= accept: Return ⊥
If b = 0: Return stiKE.key

Else: Return fake(stiKE.key)

Oracle Send(o∗, i):

o← LAC.Verify[stiV](prms, l∗i , in
i
last, o

∗)

If o =⊥: Return ⊥
msg∗←$ LocKE[stiKE](o)

inilast ← msg∗

If stiKE.δ ∈ {derived, accept} ∧ stiKE.key /∈ fake:
key∗←$ {0, 1}λ

fake← (key, key∗) : fake

Return msg∗

Oracle NewSession(P1, l1, φ1, . . . , Pn, ln, φn, l∗, Q, L∗):

If ∃j, k such that j 6= k ∧ lj = lk: Return ⊥
If (p, (l∗, ε)) 6∈ L∗: Return ⊥
i← i+ 1

l∗i ← (p, (l∗, ε))

(stiKE,Remi
KE)←$ Setup(1λ, id)

inilast ← ε

RemComp := 〈Remi
KE|P1| . . . |Pn〉(l∗,l1,...,ln)

φ∗ := φl
∗

key|φ
l1
1 | . . . |φ

ln
n

Ri := 〈RemComp ; Q 〉φ,p,q
R∗i ←$ LAC.Compile(prmsb, Ri, L

∗)

stiV ← (R∗i , L
∗)

PrgList← (R∗i , l
∗
i) : PrgList

Return R∗i

Oracle Load(R∗):

hdl0 ←M.Load(R∗)

hdl1 ←M′.Load(R∗)

Return hdlb

Oracle Run(hdl, l, x):

o0←$ M.Run(hdl, l, x)

tweak← F

If (ProgramM′ (hdl), l) ∈ PrgList then tweak← T

(o1, fake)←$ M′.Run(hdl, l, x, tweak, fake)

Return ob

Figure 6.16: Utility of adversarially composed AttKE.

Theorem 6 (Labelled AttKE utility). If the AttKE is correct and secure, and the LAC
protocol is correct, secure and ensures minimal leakage, then for all ppt adversaries in the

6.2. UTILITY 113

labelled utility experiment: the probability that the adversary violates the AttKE two-sided
entity authentication is negligible; and the key secrecy advantage 2 ·Pr[guess]−1 is negligible.

The previously presented proof for Theorem 4 consists in a sequence of 4 games G0AttKE,A

to G3AttKE,A. The first hop removes the possibility of an AC forgery, thus ensuring that
messages are delivered properly from the remote program executing the key exchange to
the local party. The second hop, using minimal leakage, replaces execution in the remote
machine by a simulated execution based on a real execution of the compiled program. The
final game hop replaces the execution of the remote key exchange by call to the AttKE
security oracles, and concludes immediately by security of the AttKE. Due to the similarities
of both proofs, the whole proof is not rewritten, instead the differences coming the different
notion of attestation and the more general composition patterns are highlighted. For brevity,
the original proof will be referred to as the one-to-one proof.

The presented proof is a sequence of four games G0′AttKE,A to G3′AttKE,A. The following
description relates how the sequence of games can be constructed with respect to the one-
to-one proof.

First game hop The first game G0′AttKE,A is the utility game presented in Figure 6.16.
In the one-to-one proof, the first hop consists in adding a forgeAC event in the Send oracle
to ensure that the initial segment of the trace witnessed by local party matches the initial
segment of a valid execution of the distant protocol. Here, similarly, a forgeLAC event is
added, making sure that the subtrace corresponding to the appropriate label matches a
remote execution, the Send oracle is replaced by the one described in Figure 6.17.

Oracle Send(o∗, i):

o← LAC.Verify[stiV](prms, li, inilast, o
∗)

If o =⊥: Return ⊥
If b = 0 thenM←M elseM←M′

If o 6=⊥ ∧ 6 ∃hdl s.t. ProgramM(hdl) = R∗i .

Rev(o : T iL) v filter[li]TraceM(hdl): forgeLAC← T

msg∗←$ LocKE[stiKE](o)

inilast ← msg∗;T iL ← msg∗ : o : T iL
If stiKE.δ ∈ {derived, accept} ∧ stiKE.key /∈ fake:

key∗←$ {0, 1}λ

fake← (key, key∗) : fake

Return msg∗

Figure 6.17: Send oracle from G1′AttKE,A

The correctness of this game hop follows from the same arguments as the one-to-one proof.

Second game hop The second game hop in the one-to-one proof consists in replacing the
remote machine by the simulator, provided by the minimum leakage property. The minimal
leakage property is exactly the same in AC and LAC, and this second game hop is exactly
the same.

114CHAPTER 6. SECURE CHANNELS TO ISOLATED EXECUTION ENVIRONMENTS

This second game enables reasoning on the semantic of the original code instead of the
compiled code executed in an IEE. This allows for taking advantage of semantics for parallel
and sequential composition in the next game hop.

Third game hop In the third game hop, the crucial point is emulating a run of the protocol
using the oracles from the AttKE security game. As in the one-to-one proof, a list of instances
of key exchanges related to the various programs is kept, updated in the Load oracle. The
NewSession oracle creates a new instance of RemKE using the NewLoc oracle and the Send

oracle uses the SendLoc oracle, exactly as in the one-to-one proof. The crucial modifications
appear in the Run oracle and are presented in Figure 6.18.

Oracle Run(hdl, (l, in)):

(R∗i , st, j, stage)← List[hdl]

If (R∗i , l0) ∈ PrgList and R∗i = LAC.Compile(〈〈P |P1 . . . |Pl〉(l0,l1,...,ln);Q〉(φkey|φ1|...|φn),p,q):
If stage = 1:

If l = (p, l0, ε):
If st.finished.l: Return (F, ε)

o←$ SendRem(in, i, j)

Parse (o, sid, δ, pid)← o:
If δ = accept:

st.finished.l← T

st.l.key← TestRem(i, j)

Else If l = (p, lk, l
′)

o← Pk[st.lk](l′, in)

st.finished.lk ← o.finished

If st.finished.lk: st.lk ← φk(st.lk)

o←
(
∧ni=0st.finished.li, o

)
(o∗, stS)←$ S2(hdl, R∗, l, in, o, stS)

If
(
∧ni=0st.finished.li, o

)
: stage = 2

T hdl
R ← o∗ : in : T hdl

R

Else:
o←$ Q[st](l, in)

(o∗, stS)←$ S2(hdl, P, φ,Q,R∗, in, o, stS)

Else:
(o, st, stS)←$ S3(hdl, R∗, in, st, stS)

List[hdl]← (R∗, st, j, stage)

Return o∗

Figure 6.18: Run oracle from G3′AttKE,A

Note that that for this last game hop to be valid, it is necessary that only the key and relevant
parts of the key exchange state are passed through φ, which is ensured by the fact that the
mapping function in the sequential composition is (φkey|φ1| . . . |φn). Additionally, the state
of the key exchange has to be completely independent from the state of the other programs
composed in parallel in order for one to be able to emulate it using the SendRem oracle. This
property is ensured by the semantics of the parallel composition. With these remarks, it
should be noted that the semantics of this third game is exactly the same as the semantics of
G2′AttKE,A, in a similar way to the one-to-one proof. Finally, observe that the adversary wins
G3AttKE,A if it wins the AttKE security game (modulo the reduction simulating all non-AttKE

6.2. UTILITY 115

oracles), which concludes the proof.

116CHAPTER 6. SECURE CHANNELS TO ISOLATED EXECUTION ENVIRONMENTS

Chapter 7

Secure Outsourced Computation

In the previous chapters, we presented formalisations that encapsulate the security guarantees
provided by the usage of trusted hardware, and rigorously defined how one can employ these
mechanisms for the establishment of secure channels between local participants and remote
IEEs. We now propose and analyse the direct application of Secure Outsourced Computation
relying on these hardware mechanisms.

7.1 Secure Outsourced Computation

The setting of secure outsourced computation considers a single local user, willing to out-
source computation to a remote participant equipped with an IEE. Informally, two properties
are required: i) that only the legitimate local user can pass inputs to the outsourced program
and ii) that the I/O of the remote program is secret from any observer (even an actively
malicious one). As such, first syntax will be provided for the protocols that solve this
problem, then the formal definitions for the properties outlined above will be proposed,
concluding with a generic construction combining a key-exchange for attestation, a scheme
for attested computation and an authenticated encryption scheme.

A security definition is proposed for each one of these properties. It is also shown that it is
easy to satisfy these definitions by building on top of an AttKE and an AC scheme. The main
intuition here is using an AttKE over the AC protocol to established a shared authenticated
encryption key between the (compiled) remote instance of the program and the local machine.
It is then enough to use this shared key to build a secure channel between the remote and
the local machine.

117

118 CHAPTER 7. SECURE OUTSOURCED COMPUTATION

Syntax

A Secure Outsourced Computation scheme (SOC) for a remote machineM is defined by the
following algorithms:

• Compile(prms, P, id) is the program compilation algorithm. On input public parameters
prms, a program P and a party identifier id, it outputs a compiled program P ∗, together
with an initial state stl for the local side algorithms. It is assumed that initially
stl.accept =⊥. Note that unlike the AC compilation algorithm, this algorithm only
takes one program as input, as this scheme is intended for providing guarantees for the
whole trace and not only for an initial segment.

• BootStrap(prms, o, stl) is the client side initialization algorithm. On input public pa-
rameters prms, o (presumably the last message from the remote machine) and local
state stl, it returns the next message i to be delivered to the remote machine in the
bootstrapping step, together with the updated local state. It is assumed that BootStrap

sets an accept flag to T when the initialization process successfully terminates.

• Verify(prms, o∗, stl) is the verification algorithm. It fulfils the same function as the AC
verification algorithm. Note that, as all the inputs are provided by the local machine, it
is not necessary to feed it the last input, as it can be stored in the state. It is expected
to return ⊥ if stl.accept 6= T.

• Encode(prms, i, stl) is the encoding algorithm. On input the public parameters, local
state and the next intended input for P , it returns the next input i∗ for P ∗ together
with the updated local state. It is expected to return ⊥ if stl.accept 6= T.

• Attest(prms, hdl, i) is, as in an AC scheme, the (untrusted) attestation algorithm.

A party A with identifier id who wants to outsource program P to the remote machine first
compiles P with his id, thus obtaining P ∗ and some secret data stl. It then loads P ∗ on the
remote machine using some untrusted protocol. As it is, the program P ∗ is not ready to
receive inputs intended for P : an initial bootstrapping phase (until BootStrap sets the accept

flag) is necessary to establish some shared secrets between the IEE in which P ∗ is executed
and A. Then when A wants to send an input to the remote execution, it encodes it using
Encode, sends it (using Attest) and verifies the output provided by Attest using Verify.

In this section, for simplicity reasons, it is assumed that the program P is deterministic.
However, it would be easy to extend all the definitions to a non-deterministic program.

7.1. SECURE OUTSOURCED COMPUTATION 119

Input Integrity

While security of attested computation aims at ensuring that a trace was honestly produced
on the remote side, it does nothing to restrict the provenance of the inputs received.

It is now provided a stronger notion named input integrity which, intuitively, ensures that if
a program is compiled by a party with identifier id, then only that party may use the remote
compiled program. This property is ensured by making sure that the local and remote views
coincide (up to the last message exchanged, which may not have yet been delivered). The
following formula Ψ which relates two input/output traces captures this intuition.

Ψ(T, T ′) := T = T ′ ∨ ∃o.
(
T = o :: T ′) ∃i.

(
T ′ = i :: T)

The formalization that provided in Figure 7.1 is as follows. The adversary chooses a program
P that is compiled with an honest party’s id yielding P ∗ (which is given to the adversary).
The adversary is given access to two oracles. A bootstrapping oracle that simply executes
BootStrap honestly; and a send oracle that verifies the last (presumed) output of the remote
program and encodes the next input (which is provided by the adversary), while keeping
track of the local view of the trace. The goal of the adversary is then create a mismatch
between the local and remote view of the trace.

The adversary is allowed in the experiment to use a local agent as oracle. This local agent
initializes the remote process (using BootStrap) then checks the last output of the remote
machine and prepares the next input.

Game IntSOC,A(1λ):

prms←$ MR.Init(1λ)

(P, stA)←$ A1(prms)

(P ∗, stl)←$ Compile(prms, P, id)

tr← []

Run AO,M2 (stA, P
∗)

If @=1hdl such that
ProgramM(hdl) = P ∗ ∧
Translate(prms,TraceM(hdl)) 6= []

Return F

hdl← Program−1
M (P ∗)

T ← Translate(prms,TraceM(hdl))

T ′ ← tr

Return ¬Ψ(T, T ′)

Oracle Send(o∗, i):

o, stl ← Verify(prms, o∗, stl)

If o =⊥ Return ⊥
i∗, stl ← Encode(prms, i, stl)

tr← i : o : tr

Return o, i∗

Oracle BootStrap(o):

If stl.accept

Return ⊥
i, stl ← BootStrap(prms, o, stl)

Return i

Figure 7.1: Input integrity of a SOC scheme

Definition 27 (Input Integrity). It is defined that a SOC scheme satisfies input integrity
if there exists a polynomial time algorithm Translate such that for all ppt A the experiment
described in Figure 7.1 returns true with probability negligible in the security parameter.

120 CHAPTER 7. SECURE OUTSOURCED COMPUTATION

Input privacy

Privacy of I/O is defined with an indistinguishability game. One important point here is that
the class of programs considered is length-uniform (written lu) programs. A program is length
uniform if the length of its outputs depends only on the length of its inputs. Intuitively, this
is because the encryption scheme is allowed to leak the length of the messages, which in turn
would leak information about the inputs for a non lu program.

The formalization described in Figure 7.2 is as follows. First, a bit b is chosen, that will
determine whether the adversary will be talking with the left send oracle or the right send
oracle (described later). As for input integrity, the adversary then chooses a program P . It
is then compiled for an honest party’s identifier and given the resulting P ∗ to the adversary.
The adversary is also given access to the bootstrapping oracle. In addition, he is given access
to a left or right send oracle. This oracle, on a request with the last candidate output of the
remote machine and two inputs i0 and i1, verifies the last candidate output and, depending
on the bit b, encodes either i0 or i1 and returns the result. The goal of the adversary is to
guess the bit b with non-negligible bias from 1/2.

Game PrivSOC,A(1λ):

b←$ {0, 1}
prms←$ MR.Init(1λ)

(P, stA)←$ A1(prms)

If ¬lu(P) Return b′←$ {0, 1}
(P ∗, stl)←$ Compile(prms, P, id)

b′ ← A2(stA, P
∗)O,M

Return b = b′

Oracle Sendb(o
∗, i0, i1):

o, stl ← Verify(prms, o∗, stl)

If |m0| 6= |m1| Return ⊥
i∗, stl ← Encode(prms, ib, stl)

Return i∗

Oracle BootStrap(o):

If stl.accept

Return ⊥ // (1 init max)
i, stl ← BootStrap(prms, o, stl)

Return i

Figure 7.2: Input privacy of a SOC scheme

Definition 28. A SOC scheme is defined to satisfy input privacy if, for all ppt A, the
experiment in Figure 7.2 returns true with probability 1/2 up to a negligible function.

This definition ensures that there exist no two traces (with messages of the same length)
played by an honest party over a SOC protocol that are distinguishable for an (active)
adversary. This means that no adversary can gain information on the inputs sent out by a
local machine using a SOC scheme, besides the length of the messages exchanged, achieving
the established goal of hiding the honest party’s inputs.

Definition 29. A SOC scheme is said to be secure if it satisfies both input privacy and input
integrity.

7.2. AN IMPLEMENTATION OF A SECURE SOC SCHEME 121

7.2 An implementation of a secure SOC scheme

Having defined the security expected from a SOC scheme, it is now defined a scheme that
satisfies these requirements. This construction is based on an AttKE, and an AC scheme.
The main idea is using the AttKE to establish a key between the party agent and the IEE,
and then communicate with the IEE over the secure channel established with this key.

Formally, let (Compile,Attest,Verify) be an AC scheme, (Setup, LocKE) be an AttKE and
(Gen,Enc,Dec) be an authenticated encryption scheme. Figure 7.3 defines a SOC scheme.
The most important part is the compilation part, which uses the AC scheme compilation to
compile the composition of the RemKE program generated by Setup together with program
P running over a secure channel (denoted by C(P)). The initial local state is the union
of the state provided by the AC compilation and the AttKE setup. The program C(P)

simply decrypts the message it receives checks that the sequence number of the message
matches its view the passes the decrypted message to P . It then retrieves the output of P ,
appends the corresponding next sequence number and outputs it. This mechanism ensures
that all messages received (resp. sent out) by P ∗ after the bootstrapping phase have the form
Enc(k, i#m) where i is the position of the message in the trace, m is the message intended
to (resp. produced by) P , and k is the key established by the AttKE.

On the local side, the bootstrapping mechanism simply consists of running the local KE
over the AC protocol as already described in the utility definition. Once the key has been
established, the local state keeps track of the local view of the sequence number. Verifying
an output consists in decrypting it and checking that the sequence number against the local
view of it. Encoding an input, is just appending the correct sequence number and encrypting
it with the shared key.

Theorem 7. If (Compile,Attest,Verify) is an AC scheme ensuring correctness, security and
minimal leakage, {Setup, LocKE,RemKE} is a secure AttKE and (Gen,Enc,Dec) is a secure
authenticated encryption scheme, then the SOC presented in Figure 7.3 is secure.

Integrity

The proof consists of two game hops described in Figure 7.4. The first hop from G0 to G1

consists in using the utility of the key exchange to replace the shared key by a magically
shared fresh key. The second game hop from G1 to G2 is simply using sequence numbers
and integrity of the encryption scheme to ensure that the local and remote traces actually
match. The details of each game hop are now provided.

Let A be an adversary against G0 or G1, it is now built an adversary B against AttAttKE. The
machine B simulatesA giving NewSession(P) as input toA2 instead of Compilesec(prms, P, id),
answering the oracle calls as follows:

122 CHAPTER 7. SECURE OUTSOURCED COMPUTATION

Program Compilesec(prms, P, id)

RemKE, stKE ← Setup(1λ, id)

P ∗, stAC ← Compile(prms,RemKE, φkey, C(P))

stl ← stKE] stAC

Return P ∗, stl

Program C(P)[st](m)

st.count← st.count + 1

(initialised at 0)
c← Dec(st.key,m)

If c =⊥ Return ⊥
i#m′ ← c

If i 6= st.count Return ⊥
st.count← st.count + 1

o← P [st](m′)

o∗ ← Enc(st.key, st.count#o)

Return o∗

Program Encode(prms, i, stl)

stl.c← stl.c+ 1

Return Enc(stl.key, i#stl.c), stl

Program Verifysec(prms, o∗, stl)

stl.c← stL.c+ 1

m← Dec(stl.key, o∗)

If m =⊥ Return ⊥
i#o← m

If i 6= stl.c Return ⊥
Return o, stl

Program BootStrap(prms, o, stl)

m← Verify(prms, stlinlast, o, stl)

If m =⊥ Return ⊥
stl, i← LocKE(stl,m)

stl.inlast ← i

Return i

Figure 7.3: SOC algorithms

BootStrap(o): Return Send(o, 0)

Send(o∗, i): k ← Test(0)

o, c← Dec(k, o∗)

countl ← countl + 1

If c 6= countl Return ⊥
countl ← countl + 1

i∗ ← Enc(k, countl#i)

tr← i : o : tr

Return o, i∗

Load(R∗): Return Load(R∗)

Run(hdl, i): Return Run(hdl, i)

Observe that if the bit b chosen in the utility game is 0, the game being played by B is
exactly the integrity game. On the other hand, if the bit chosen is 1, either B violates entity
authentication or B behaves as A playing against G1. It can therefore be concluded that

|G0-IntSOC,A(1λ)−G1-IntSOC,A(1λ)| ≤ Advutility
AttKE,B(1λ)

First note that the only difference between G1 and G2 occurs when the forge event is raised
(the other differences are simple rewritings). Now let A be an adversary against G2. An
adversary B is now built against the INT-CTXT game by simulating A playing G2 using the
encryption/decryption oracles provided by the INT-CTXT game. Note that the event forge

7.2. AN IMPLEMENTATION OF A SECURE SOC SCHEME 123

is raised if and only if B wins the INT-CTXT game. Indeed, remarking that the counters are
strictly increasing ensure that no encryption can be accepted twice as input to Run or Send.
This entails the fact that if a message is accepted, it was the last message produced. It can
then be concluded that

|G1-IntSOC,A(1λ)−G2-IntSOC,A(1λ)| ≤ AdvINT-CTXT(Gen,Enc,Dec),B(1λ)

It is now enough to remark that in G2, the Run oracle and the Send oracle agree on inputs
and outputs (unless forge is raised). As G2 always returns true, it follows that

AdvInt
SOC(1λ) ≤ Advutility

AttKE(1λ) + AdvINT-CTXT(Gen,Enc,Dec)(1
λ)

Privacy

The proof consists of, as previously in replacing the derived key by a magically shared key.
The second game hop, as in the integrity property, makes sure that the inputs received on
both sides coincide. The game G2 obtained reduces then quite simply to IND-CPA of the
encryption scheme. The game hop is presented in Figure 7.5. The reduction from G0 to G1

is exactly the same as the one in the integrity proof. As previously (for some PPT B),∣∣∣G0-PrivSOC,A(1λ)−G1-PrivSOC,A(1λ)
∣∣∣ ≤ Advutility

AttKE,B(1λ)

Let A be an adversary against G1 or G2. It is now built an adversary B against the INT-
CTXT game for (Gen,Enc,Dec). The machine B simulates A playing the game G1, with
the exception of not drawing k and using the encryption and decryption oracle of the INT-
CTXT game. Remark that G1 and G2 behave differently only if A is able to submit a
forged encryption to either the send or the run oracle. Indeed, if the encryption submitted
is neither the last produced encryption nor a forgery, the sequence number makes sure that
the corresponding oracle return ⊥. It follows that∣∣∣G1-PrivSOC,A(1λ)−G2-PrivSOC,A(1λ)

∣∣∣ ≤ AdvINT-CTXT(Gen,Enc,Dec),B(1λ)

The key point in the proof is reducing G2 to the security of the authenticated encryp-
tion scheme. Let us call Chal the IND-CPA challenge oracle and Enc the encryption or-
acle in the IND-CPA game for (Gen,Enc,Dec). Let A be an adversary against G2-Priv.
The following adversary B against the IND-CPA game for (Gen,Enc,Dec) is built. The
machine B simulates the game G2, without drawing the key k or the bit b and using
the IND-CPA oracles to perform encryptions. In the Send oracle, instead of computing
Enc(countl#ib, k), B calls Chal(countl#i0, countl#i1). Similarly, in the Run oracle, instead of
computing Enc(count#ob, k), B calls Chal(count#o0, count#o1). All calls are well formed as
at each call of Send, the length of the two inputs is required to be identical and, in the Run

124 CHAPTER 7. SECURE OUTSOURCED COMPUTATION

Game G0-IntSOC,A(1λ):

prms←$ M.Init(1λ)

(P, stA)←$ A1(prms)

P ∗, stl ← Compilesec(prms, P, id)

Run ABootStrap,Send,Run,Load
2 (stA, P

∗)

If @=1hdl such that
ProgramM(hdl) = P ∗ ∧
Translate(prms,TraceM(hdl)) 6= []

Return F

hdl← Program−1
M (P ∗)

T ← Translate(prms,TraceM(hdl))

T ′ ← tr

Return ¬Ψ(T, T ′)

Oracle BootStrap(i):

If stl.accept Return ⊥
i, stl ← BootStrap(prms, o, stl)

Return i

Oracle Send(o∗, i):
o, c← Dec(stl.key, o∗)

countl ← countl + 1

If c 6= countl Return ⊥
countl ← countl + 1

i∗ ← Enc(stl.key, countl#i)

tr← i : o : tr

Return o, i∗

Oracle Load(R∗):

hdl←M.Load(R∗)

Return hdl

Oracle Run(hdl, i):

o←$ M.Run(hdl, i)

Return o

Game G1-IntSOC,A(1λ):

k←$ K(1λ)

stP ← ∅
countR ← 0

countl ← 0

prms←$ M.Init(1λ)

(P, stA)←$ A1(prms)

P ∗, stl ← Compilesec(prms, P, id)

Run ABootStrap,Send,Run,Load
2 (stA, P

∗)

If @=1hdl such that
ProgramM(hdl) = P ∗ ∧
Translate(prms,TraceM(hdl)) 6= []

Return F

hdl← Program−1
M (P ∗)

T ← Translate(prms,TraceM(hdl))

T ′ ← tr

Return ¬Ψ(T, T ′)

Oracle BootStrap(o):

If stl.accept Return ⊥
i, stl ← BootStrap(prms, o, stl)

Return i

Oracle Send(o∗, i):
If ¬stl.accept Return ⊥
o, c← Dec(k, o∗)

countl ← countl + 1

If c 6= countl Return ⊥
countl ← countl + 1

i∗ ← Enc(k, countl#i)

tr← i : o : tr

Return o, i∗

Oracle Load(R∗):

hdl←M.Load(R∗)

Return hdl

Oracle Run(hdl, i∗):

If ProgramM(hdl) 6= P ∗

o∗←$ M.Run(hdl, i∗)

Return o∗

If ¬stM(hdl).accept

o←$ M.Run(hdl, i∗)

Return o∗

If ∃hdl2 6= hdl.ProgramM(hdl) = P ∗

∧stM(hdl).accept

raise twoPartners

i#c← Dec(k, i∗)

countR ← countR + 1

If c 6= countR Return ⊥
o← P [stP](i)

countR ← countR + 1

Return Enc(k, count#o)

Game G2-IntSOC,A(1λ):

k←$ K(1λ)

stP ← ∅
countR ← 0

countl ← 0

trR ← []

prms←$ M.Init(1λ)

(P, stA)←$ A1(prms)

P ∗, stl ← Compilesec(prms, P, id)

Run ABootStrap,Send,Run,Load
2 (stA, P

∗)

If @=1hdl such that
ProgramM(hdl) = P ∗ ∧
Translate(prms,TraceM(hdl)) 6= []

Return F

hdl← Program−1
M (P ∗)

T ← trR
T ′ ← tr

Return ¬Ψ(T, T ′)

Oracle BootStrap(o):

If stl.accept Return ⊥
i, stl ← BootStrap(prms, o, stl)

Return i

Oracle Send(o∗, i):
If ¬stl.accept Return ⊥
o, c← Dec(k, o∗)

countl ← countl + 1

If c 6= countl Return ⊥
If o 6= lasto Raise forge

countl ← countl + 1

i∗ ← Enc(k, countl#i)

lasti ← i

tr← i : o : tr

Return o, i∗

Oracle Load(R∗):

hdl←M.Load(R∗)

Return hdl

Oracle Run(hdl, i∗):

If ProgramM(hdl) 6= P ∗

o∗←$ M.Run(hdl, i∗)

Return o∗

If ¬stM(hdl).accept

o←$ M.Run(hdl, i∗)

Return o∗

If ∃hdl2 6= hdl.ProgramM(hdl) = P ∗

∧stM(hdl).accept

raise twoPartners

i#c← Dec(k, i∗)

countR ← countR + 1

If c 6= countR Return ⊥
If i 6= lasti Raise forge

o← P [stP](i)

countR ← countR + 1

lasto ← o

trR ← o : i : trR
Return Enc(k, count#o)

Figure 7.4: Game hops for integrity of the SOC scheme

7.2. AN IMPLEMENTATION OF A SECURE SOC SCHEME 125

oracle, P is assumed length-uniform. It is now enough to remark that B wins the IND-CPA
game if and only if A wins G0 to conclude∣∣∣∣G2-PrivSOC,A(1λ)− 1

2

∣∣∣∣ ≤ AdvIND-CPA
(Gen,Enc,Dec),B(1λ)

From this result, everything can be summed up to obtain the advantage of an adversary
against the privacy game:

AdvPriv
SOC(1λ) ≤ AdvIND-CPA

(Gen,Enc,Dec),B(1λ) + AdvINT-CTXT(Gen,Enc,Dec),B(1λ) + Advutility
AttKE,B(1λ)

126 CHAPTER 7. SECURE OUTSOURCED COMPUTATION

Game G0-PrivSOC,A(1λ):

k←$ K(1λ)

stP ← ∅
countR ← 0

countl ← 0

prms←$ M.Init(1λ)

(P, stA)←$ A1(prms)

P ∗, stl ← Compilesec(prms, P, id)

b′ ← AO2 (stA, P
∗)

Return b = b′

Oracle BootStrap(o):

If stl.accept Return ⊥
i, stl ← BootStrap(prms, o, stl)

Return i

Oracle Sendb(o∗, i0, i1):

If |i0| 6= |i1| Return ⊥
o, c← Dec(stl.key, o∗)

countl ← countl + 1

If c 6= countl Return ⊥
countl ← countl + 1

i∗ ← Enc(stl.key, countl#ib)

tr← i : o : tr

Return o, i∗

Oracle Load(R∗):

hdl←M.Load(R∗)

Return hdl

Oracle Run(hdl, i∗):

o∗←$ M.Run(hdl, i∗)

Return o∗

Game G1-PrivSOC,A(1λ):

k←$ K(1λ)

stP ← ∅
countR ← 0

countl ← 0

prms←$ M.Init(1λ)

(P, stA)←$ A1(prms)

P ∗, stl ← Compilesec(prms, P, id)

b′ ← AO2 (stA, P
∗)

Return b = b′

Oracle BootStrap(o):

If stl.accept Return ⊥
i, stl ← BootStrap(prms, o, stl)

Return i

Oracle Sendb(o∗, i0, i1):

If |i0| 6= |i1| Return ⊥
If ¬stl.accept Return ⊥
o, c← Dec(k, o∗)

countl ← countl + 1

If c 6= countl Return ⊥
countl ← countl + 1

i∗ ← Enc(k, countl#ib)

tr← i : o : tr

Return o, i∗

Oracle Load(R∗):

hdl←M.Load(R∗)

Return hdl

Oracle Run(hdl, i∗):

If ProgramM(hdl) 6= P ∗

o∗←$ M.Run(hdl, i∗)

Return o∗

If ¬stM(hdl).accept

o←$ M.Run(hdl, i∗)

Return o∗

If ∃hdl2 6= hdl.ProgramM(hdl) = P ∗

∧stM(hdl).accept

raise twoPartners

i#c← Dec(k, i∗)

countR ← countR + 1

If c 6= countR Return ⊥
o← P [stP](i)

countR ← countR + 1

Return Enc(k, count#o)

Game G2-PrivSOC,A(1λ):

k←$ K(1λ)

stP ← ∅
countR ← 0

countl ← 0

prms←$ M.Init(1λ)

(P, stA)←$ A1(prms)

P ∗, stl ← Compilesec(prms, P, id)

b′ ← AO2 (stA, P
∗)

Return b = b′

Oracle BootStrap(o):

If stl.accept Return ⊥
i, stl ← BootStrap(prms, o, stl)

Return i

Oracle Sendb(o∗, i0, i1):

If |i0| 6= |i1| Return ⊥
If o∗ 6= lasto∗ Return ⊥
i∗ ← Enc(k, countl#ib)

lasti0 ← i0

lasti0 ← i1

lasti∗ ← i∗

tr← i : o : tr

Return o, i∗

Oracle Load(R∗):

hdl←M.Load(R∗)

Return hdl

Oracle Runb(hdl, i∗):

If ProgramM(hdl) 6= P ∗

o∗←$ M.Run(hdl, i)

Return o∗

If ¬stM(hdl).accept

o←$ M.Run(hdl, i)

Return o∗

If ∃hdl2 6= hdl.ProgramM(hdl) = P ∗

∧stM(hdl).accept

raise twoPartners

If i 6= lasti∗ Return ⊥
countR ← countR + 1

o0 ← P [st0P](lasti0)

o1 ← P [st1P](lasti1)

countR ← countR + 1

o∗ ← Enc(k, count#ob)

lasto∗ ← o∗

Return o∗

Figure 7.5: Game hops in the privacy proof

Chapter 8

Secure Multiparty Computation

In the previous chapter, we focused on the one-to-one application of securely outsourcing
program execution to a potentially untrusted machine. On this chapter, we further explore
the applicability of Attested Computation on the multiple user settings of Secure Function
Evaluation and Secure Multiparty Computation.

8.1 Secure Function Evaluation

The combination of Attested Computation with multiple parallel executions of AttKE (Theo-
rem 5) enables for the deployment of a Secure Function Evaluation protocol. More specifically,
this section considers multiple local participants willing to execute some arbitrary function
over their private inputs, and obtain the resulting computation output.

Functionalities and execution model

Let n be the number of protocol participants. The goal is to securely execute a functionality
F defined as (F, Lin, Lout), as follows.

• F is a (stateless) function to be evaluated. More precisely (o1, . . . , on) ← F(i1, . . . , in)

is a function with n inputs and n outputs, one for each party.

• Lin(i, k) defines the public leakage that can be revealed by a protocol from a given
input i by party k.

• Lout(o1, . . . , on) defines the public leakage associated with the outputs of F.

This setting considers a machineM allowing for the execution of non-labelled programs on
isolated execution environments, as defined in Section 5.1. The machineM is assumed to be

127

128 CHAPTER 8. SECURE MULTIPARTY COMPUTATION

adversarially controlled, with the isolation guarantees enforced by the IEEs. All the code that
is run inM, but outside these execution environments is also considered to be adversarially
controlled. The goal is to guarantee that a set of parties can use the IEE capabilities of
M securely, bar the possibility thatM refuses to allow the protocol to proceed (this would
amount to a denial-of-service attack, which is considered to be outside the scope of this
work).

A protocol π for functionality F is a six-tuple of algorithms as follows:

• Setup – This is the party local set-up algorithm. Given the security parameter, the
public parameters prms for machineM, the party’s identifier id, it returns the party’s
initial state st (including its secret key material) and its public information pub.

• Init – This is the party local protocol initialization algorithm. Given the party’s state
st produced by Setup, the description of a functionality F and the public information
of all participants Pub, it prepares the code to be securely evaluated, compiles it and
outputs an accordingly updated state st. Note that a party can choose to engage in a
protocol by checking if the public parameters of all parties are correct and assigned to
roles in the protocol that match the corresponding identities.

• AddInput – This is the party local input providing algorithm. Given the party’s current
state st and an input in, it outputs an updated state st.

• Process – This is the party local message processing algorithm. Given its internal state
st, and an input message msg, it runs the next protocol stage, updates the internal
state and returns output message msg′. Protocol termination will be locally signalled
with an output message msg′ =⊥.

• Output – This is the party local output retrieval algorithm. Given internal state st, it
returns the computation output o.

• Remote – This is the untrusted code that will be run in M and which ensures the
correctness of the protocol by controlling its scheduling. It has oracle access to M,
and is run on public parameters prms, the handle to the IEE in which the compiled
program is running and input message msg; it returns the output message msg′ and the
identity id of the party for which msg′ is intended, as well as the participant position
pos expected for the next message.

Security

The presented security definition is based on the experiments shown in Figure 8.1, where O
represents access to all oracles except Fun, i.e., the adversary has oracle access to Run, Setup,
SetInput, GetOutput and Send in both games.

8.1. SECURE FUNCTION EVALUATION 129

Game RealF,π,A,M(1λ):

(n,F, Lin, Lout)← F
prms←$ M.Init(1λ)

(stA, k)←$ A(prms)

For id ∈ [1..k]:
(stid, pubid)←$ Setup(prms, id)

Pub← (pub1, ..., pubk)

For id ∈ [k + 1..n]:
(stA, pubid)←$ A(stA, id,Pub)

Pub← (pub1, ..., pubn)

For id ∈ [1..k]:
stid←$ Init(stid,Pub)

b←$ AO(stA)

Oracle SetInput(in, id):

If id 6∈ [1..k]: Return ⊥
stid←$ AddInput(in, stid)

Oracle GetOutput(id):

If id 6∈ [1..k]: Return ⊥
Return Output(stid)

Oracle Send(id,m):

If id 6∈ [1..k]: Return ⊥
(stid,m

′)←$ Process(stid,m)

Return m′

Oracle Load(P):

ReturnM.Load(P)

Oracle Run(hdl, l, x):

ReturnM.Run(hdl, l, x)

Game IdealF,π,A,S(1λ):

(n,F, Lin, Lout)← F
stF ← ε

(st, prms)←$ S(1λ)

ListIn← []

ListOut← []

(stA, k)←$ A(prms)

For id ∈ [1..k]:
(st, pubid)←$ S(st, id)

Pub← (pub1, ..., pubk)

For id ∈ [k + 1..n]:
(stA, pubid)←$ A(stA, id,Pub)

Pub← (pub1, ..., pubn)

For id ∈ [1..k]:
st←$ S(st, id,Pub)

b←$ AO(stA)

Oracle SetInput(in, id):

If i 6∈ [1..k]: Return ⊥
If ListIn[id] = ε:
`← Lin(in, id)

st←$ S(st, `, id)

ListIn[id]← in

Oracle GetOutput(id):

If id 6∈ [1..k]: Return ⊥
i←$ S(st, id)

If i: Return ListOut[id]

Else: Return ⊥

Oracle Send(id,msg):

(st, out)←$ SFun(st, id,msg)

Return out

Oracle Load(P):

(st, out)←$ S(st, P)

Return out

Oracle Run(hdl, l, x):

(st, out)←$ SFun(st, hdl, l, x)

Return out

Oracle Fun(ink+1, . . . , inn):

(in1, . . . , ink)← ListInid

out1, . . . , outn ← F(in1, . . . , inn)

For id ∈ [1..k]:
ListOut[id]← outid

l← Lout(out1, . . . , outn)

Return (outk+1, . . . , outn, l)

Figure 8.1: Real and Ideal security games for SFE. Fun can only be run once.

Definition 30. π is said to be secure for F if, for any ppt adversary A, there exists a ppt
simulator S such that the following definition of advantage is a negligible function in the
security parameter.

|Pr[RealF ,π,A,M(1λ)⇒ b = 1]− Pr[IdealF ,π,A,S(1λ)⇒ b = 1] |

As is customary in secure computation models, security analysis is done via the ideal world
versus real world approach. The real world considers a remote machineM, which is under
the control of the adversary. A fixed number of n parties are also considered, where the
first k of which are honest, and the rest corrupt. The experiment begins with the trusted
setup of the machine, the attacker selectively choosing the number of corrupt parties, and the
trusted initialization of the initial states of all honest parties. The adversary gets the public
parameters of all honest parties (including the machine) and chooses those of the corrupt
parties. All public parameters are assumed to be authenticated and available to all (e.g.,
via a PKI). Note that the adversary has all the information it needs to honestly execute the
protocol and, in particular, it may properly compile and run Remote on its own, or choose

130 CHAPTER 8. SECURE MULTIPARTY COMPUTATION

to arbitrarily deviate from it. The honest parties will initialise correctly and will therefore
be able to take advantage of the attestation guarantees provided by the remote machine.
Intuitively, this is the underlying setup assumption that enables secure computation to be
done efficiently.

The adversary then takes control of the experiment execution and it has access to a series of
oracles that allow it to fully control the remote machine (Load and Run) and interact with
the honest parties: setting their inputs via SetInput, checking the outputs via GetOutput and
delivering messages via Send. In this sense, the real world experiment is similar to the Uni-
versal Composability framework: the adversary represents the UC environment that controls
party inputs and outputs combined with a dummy adversary that conveys communications
between parties and the environment. When the adversary terminates, it outputs a bit b
with its guess of whether it is executing in the real or ideal worlds.

As in the real world experiment, the ideal experiment begins with the global set-up procedure.
The simulator is given full control of the remote machine, which is always assumed to be
honest, and this includes the ability to generate its global parameters. The simulator is also
given the ability to control the honest party parameter generation. The remaining parties are
initialized in the standard way, and the adversary is run on an equivalent set of parameters
as in the real world.

The central component in the ideal experiment is the functionality oracle Fun. This oracle
represents an idealized execution, very much like the ideal functionality in the UC setting.
The adversary can provide inputs and read outputs from the functionality via the SetInput

and GetOutput oracles; this ability applies only to the inputs of honest parties. The scheduling
of the computation of the functionality F is controlled by the simulator, as is the setting of the
inputs corresponding to corrupt parties. As in the UC framework, this can be interpreted
as an idealization of the operation of the functionality where some of its participants are
dishonest: from this perspective, the simulator should be seen as an adversary attacking the
ideal functionality and, as such, it should control the dishonest inputs.

Succinctly, the proposed security model is inspired in the UC framework, and can be derived
from it when natural restrictions are imposed: PKI, static corruptions, and a distinguished
non-corruptible party modeling an SGX-enabled machine.1 A security proof for a protocol
in this model can be interpreted as translation of any attack against the protocol in the real
world, as an attack against the ideal functionality in the ideal world. The simulator performs
this translation by presenting an execution environment to the adversary that is consistent
with what it is expecting in the real world. It does this by simulating the operations of the
Load, Run and Send oracles, which represent the operation of honest parties in the protocol.
While the adversary is able to provide the inputs and read the outputs for honest parties

1This particular choice in this model has implications for the composability properties of these results, as
will be discussed in a later section.

8.1. SECURE FUNCTION EVALUATION 131

Program Box〈F,Λ〉(msg1, . . . ,msgn):

For i ∈ [1..n]:
inpi ← Λ.Dec(keyi,msgi)

(out1, . . . , outn)← F(inp1, . . . , inpn)

For i ∈ [1..n]:
oi ← Λ.Enc(keyi, outi)

Return (o1, . . . , on)

Figure 8.2: Boxing using Authenticated Encryption

directly from the functionality, the simulator is only able obtain partial leakage about this
values via the Lin function, which in this work is assumed to just reveal the lengths of their
inputs. Conversely, it can obtain the functionality outputs for corrupt parties and leakage of
honest outputs via the Fun oracle (which relies on Lout for output leakage, also assumed to
reveal nothing but output length).

Similarly to the real world, the adversary will finish the interaction by outputting a bit b
containing its guess of which world it is executing in.

Boxing using authenticated encryption

After the bootstrapping stage, the protocol will be running the ideal functionality within
an isolated execution environment, and using secure channels to communicate with each
participating party. The availability of these secure channels will follow from Theorem 5.
As such, it is now formalized the concept of boxing a functionality, which defines a program
that executes the functionality code, but receives inputs and delivers outputs using secure
channels. This is done in the form of the Box construction presented in Figure 8.2. This
construction takes a functionality F for n parties and a secure authenticated encryption
encryption scheme Λ. This allows for Box〈F ,Λ〉 to be constructed, whose initial state is
assumed to contain n symmetric keys compatible with scheme Λ, denoted key1 to keyn (one
for each participating party). Upon inputs msg1, . . . ,msgn, the program decrypts msgi with
ski to obtain input inpi. It then passes all decrypted inputs to the functionality to produce
outputs out1, . . . , outn, and subsequently encrypts them with the respective key. Finally, the
encrypted outputs are returned.

Generic construction

It can now be presented a construction of a protocol that relies on AC and AttKE to
bootstrap secure function evaluation. The main property of this construction is that messages
are bundled between all local clients and the remote IEE executing the protocol. All n
local participants receive messages that encompass the responses (msg1, . . . ,msgn), and are
identified by their position pos ∈ [1..n]. Their respective input is to be accessed by Process,

132 CHAPTER 8. SECURE MULTIPARTY COMPUTATION

according to the participant’s position in the protocol. Remote is responsible for collecting
every individual message. As it receives all n inputs, it concatenates them and feeds it to
the IEE executing the protocol.

As previously explained, Remote is untrusted code to run in M to ensure the correctness
of the protocol. The joint execution of Setup, Init and Process is responsible for preventing
adversarial tampering of the trace. The presented protocol is composed of six algorithms:
Setup, Init, Process, AddInput, GetOutput and Remote. These algorithms are expressed in
Figure 8.3 and will now be described in brief.

• Setup(1λ, prms, id, pos) starts participant of identifier id and position pos in the protocol,
by generating its key exchange program Pubid = RemKE,id and initializing its state st.
The local state is now ready to execute Init (stage← 1).

• Init(st,Pub) composes the set of key exchange programs in Pub, prepares the code F to
be securely evaluated, and compiles it to R∗. The internal state st is then updated with
the computed verification sate stV . The local state is now ready to receive AddInput

(stage ← 2). Note that this assumes that all parties agree on all other parties’ public
parameters prior to executing this algorithm.

• AddInput(st, in) will simply update the local state st with the provided input in. The
local state is now ready to execute Process (stage← 3).

• Process(msg, st) while the key exchange is executing (stage = 3), verifies the attestation
for the input received and if the included input of its position matches the last input
provided (inlast), generates the next response for the key exchange and updates its state.
After completing the key exchange (stage = 4), Process extracts input in from its state,
encrypts it with the exchanged key key to produce an encrypted output. Finally, after
sending its input (stage = 5), Process expects an output encrypted using the same
shared key key, decrypting it and storing the result in out. From this point onwards,
Process will not execute (stage = 6).

• Output(st) will simply return the value stored in variable out. This means that, before
Process reaching its completion, the output will be ⊥, otherwise it will be the result of
securely evaluating F.

• Remote(stR, prms,Pub,msg) begins by composing and compiling the code, similarly to
what is performed in Init, and loading the result into M. Remote also keeps track of
the messages produced byM and received from all local participants in in[pos], as well
as the next message to produce p. p defines the position of the participant that will
receive the next message, so the behaviour highly depends on the value of p:

– p = 1 means that a message must be provided for the first participant. This
triggers Remote to collect the input received into in[n] (if the next participant is

8.1. SECURE FUNCTION EVALUATION 133

the first, then the received message came from the last participant, i.e. n), run the
IEE via AC.Attest for the collected inputs in (ε for the first execution) and update
the record of the last inputs provided lin. The received output will be stored in
out, the internal state stR is updated and the message out is returned alongside
the last input given to the IEE (lin), signalled to be delivered to participant p.

– p ∈ [2, . . . , n] stores the received input in in[p − 1] (if the next response goes to
p, then the received message was from p − 1), updates its state and returns the
previously computed (out, lin) flagged for participant p.

Algorithm Setup(1λ, prms, id, pos):

(stL,RemKE)← SetupKE(1λ, id)

stV ← ε; inlast ← ε; in← ε; out← ε

st← (prms, stL, id, pos, stV , inlast, in, out, 1)

Return (st,RemKE)

Algorithm AddInput(st,msg):

(prms, stL, id, pos, stV , inlast, in, out, stage)← st

If stage = 2:
st← (prms, stL, id, pos, stV , inlast,msg, out, 3)

Return st

Else: Return ⊥

Algorithm Process(msg, st):

(prms, stL, id, pos, stV , inlast, in, out, stage)← st

(id, stKE, sk, t)← stL
If stage = 3:

(ins, outs∗)← msg

(outs′, stV)← AC.Verify(prms, ins,msg, stV)

If outs′ =⊥: Return ⊥
(ins, outs)← outs′

If inlast 6= ins[pos]: Return ⊥
(o, stL)←$ LocKE(stL, outs[pos])

inlast ← o

If (stKE.δ) ∈ {derived, accept}
stage← 4

Else If stage = 4:
o←$ Λ.Enc(stKE.key, in)

stage← 5

Else If stage = 5:
(ins, outs) = msg

out←$ Λ.Dec(stKE.key, outs)

stage← 6; o← ε

Else: Return ⊥
st← (prms, stL, id, pos, stV , inlast, in, out, stage)

Return (st, o)

Algorithm Init(st,Pub, in):

(prms, stL, id, pos, stV , inlast, in, out, stage)← st

If (stage 6= 1):
Return ⊥

(Rem1
KE, . . . ,Remn

KE)← Pub

RemComp := ParComp〈Rem1
KE, . . . ,Remn

KE〉
Q := Box〈F,Λ〉
(R∗, stV)← AC.Compile(prms,RemComp, φkey, Q)

st← (prms, stL, id, pos, stV , inlast, in, out, 2)

Return st

Algorithm RemoteM(stR, prms,Pub,msg):

n← Length(Pub)

If stR = ε:
(Rem1

KE, . . . ,Remn
KE)← Pub

RemComp := ParComp〈Rem1
KE, . . . ,Remn

KE〉
Q := Box〈F,Λ〉
(R∗, stV)← AC.Compile(prms,RemComp, φkey, Q)

hdl←M.Load(R∗)

For i ∈ [1..n]:
in[i]← ε

p = 1

Else: (hdl, in, lin, out, p)← stR
If p = 1:

in[n]← msg

out←$ AC.AttestM(prms, hdl, in)

lin← in

Else in[p− 1]← msg

If (p = n) p′ = 1

Else p′ ← p+ 1

stR ← (hdl, in, lin, out, p′)

Return (stR, p, (lin, out))

Algorithm Output(st):

(prms, stL, id, pos, stV , inlast, in, out, stage)← st

Return out

Figure 8.3: SFE Protocol algorithms.

Theorem 8. If LAC is a correct and secure LAC scheme, AttKE is a secure AttKE scheme
and Λ a secure authenticated encryption scheme, then the protocol in Figure 8.3 is correct
and secure for any functionality F that leaks input/output length.

134 CHAPTER 8. SECURE MULTIPARTY COMPUTATION

It is now presented a proof sketch. The following section proposes a more refined protocol
generalised for MPC, whose full proof follows the same intuition as this one. The proof
consists of two game hops for the real world scenario, reaching a real world setting for which
it is trivial for a simulator to present an accordingly indistinguishable view.

It begins with the real world described in this section. The first hop is to an alternative
scenario in which the exchanged keys between all honest participants and the remote IEE
are replaced with randomly generated ones, whose correctness can be reduced to Theorem 5.
In a second hop, the encryption of inputs from honest participants and outputs to honest
participants are replaced by encryptions of zeros, which given that the adversary has no
access to the associated keys, is given by the IND-CPA property of the encryption scheme
used.

This scenario is now trivial for the simulator to emulate, since it no longer requires knowledge
of information to which the simulator does not have access to, namely the honest parties’
inputs and outputs. The simulator can, therefore, simply initialize and execute the protocol
according to its description, modulo some additional safety mechanisms (e.g. assuring that
no inputs are provided before initialization and that no outputs are delivered before protocol
termination).

8.2 Multiparty Computation from LAC

In Section 8.1, we proposed an application for Attested Computation for the design of a
secure SFE protocol. However, the usage of “vanilla” Attested Computation implied that
every participant must be given the full trace of the computation for validating outputs
produced by the IEE. We now extend the goal to providing a protocol for secure MPC, now
taking the alternative design path of employing the Labelled Attested Computation described
in Section 5.2. The idea is to ensure the same level of security against powerful active
adversaries, while requiring for a much more scalable amount of data for local verification of
attested outputs. This is achieved by having LAC ensure a secure channel between the IEE
and all participants, where the labelled cryptographic material required for every participant
is restricted to its own interaction with the IEE.

Functionalities and execution model

The notions presented in Section 8.1 are here refined to consider reactive functionalities. More
specifically, the presented definition of F is the same, with the caveat of now being seen as
a deterministic stateful transition function that takes inputs of the form (id, i), where id is a
party identifier, an integer in the range [1..n] where n denotes the number of participating
parties. On each transition, F produces an output that is intended for party id, as well as

8.2. MULTIPARTY COMPUTATION FROM LAC 135

an updated state. Also refining the previous approach, F is associated two leakage functions
Lin(k, i, st) and Lout(k, o, st) which define the public leakage that can be revealed by a protocol
about a given input i or output o for party k, respectively; for the sake of generality, both
functions may depend on the internal state st of the functionality, although this is not the case
in the examples provided in this work. Arbitrary reactive functionalities formalized in the
Universal Composability framework can be easily recast as transition functions such as these.
The upside of the presented approach is that one obtains a precise code-based definition of
what the functionality should do (which is central to this thesis since these descriptions give
rise to concrete programs); the downside is that the code-based definitions may be less clear
to a human reader, as one cannot ignore the tedious book-keeping parts of the functionality.

The execution model considered is the same as the one introduced in Section 8.1, but now
one considers machine M to allow for running labelled programs on isolated execution
environments. In secure computation terms, this machine should not be seen as an ideal
functionality that enables some hybrid model of computation, but rather as an additional
party that comes with a specific setup assumption, a fixed internal operation, and which
cannot be corrupted.2 The same adversarial power overM is also considered in this setting.

Since this setting considers the usage of LAC and reactive functionalities, the definition of
protocol π for functionality F must also be refined to the seven-tuple of algorithms as follows:

• Setup – This is the party local set-up algorithm. Given the security parameter, the
public parameters prms for machine M and the party’s identifier id, it returns the
party’s initial state st (including its secret key material) and its public information
pub.

• Compile – This is the (deterministic) code generation algorithm. Given the description
of a functionality F, and the public parameters (prms,Pub) for both the remote machine
and the entire set of public parameters for the participating parties, it generates the
instrumented program that will run inside an IEE.

• Remote – This is the untrusted code that will be run in M and which ensures the
correctness of the protocol by controlling its scheduling and input collection order. It
has oracle access toM, and is run on public parameters prms, the handle to the IEE in
which the compiled program is running and input message msg; it returns the output
message msg′, the identity id of the party for which msg′ is intended, and a flag inreq

that indicates whether party id is expected to provide an input at this step of the
protocol. Its initial state describes the order in which inputs of different parties should
be provided to the functionality.

2Relating this to the Universal Composability framework, this special party M does not take inputs
or outputs, and is accessible only via its communications tape, which is assumed to be controlled by the
adversary.

136 CHAPTER 8. SECURE MULTIPARTY COMPUTATION

• Init – This is the party local protocol initialization algorithm. Given the party’s state
st produced by Setup and the public information of all participants Pub it outputs an
updated state st. Note that a party can choose to engage in a protocol by checking if
the public parameters of all parties are correct and assigned to roles in the protocol
that match the corresponding identities.

• AddInput – This is the party local input providing algorithm. Given the party’s current
state st and an input in, it outputs an updated state st.

• Process – This is the party local message processing algorithm. Given its internal state
st, and an input message msg, it runs the next protocol stage, updates the internal
state and returns output message msg′. Protocol termination will be locally signalled
with an output message msg′ =⊥.

• Output – This is the party local output retrieval algorithm. Given internal state st, it
returns the current output o.

Correctness

The following definition formalizes the notion of n users correctly running a function evalu-
ation protocol π for F.

Definition 31. π is said to be correct for functionality F on m inputs in r rounds if, for all
λ, and all adversaries A, the experiment in Figure 8.4 always returns T.

This correctness definition considers an honest execution environment, but includes a correct-
ness adversary that is in charge of finding problematic inputs for the protocol and potentially
erroneous execution schedules. It is parametrized by a number of inputs m and a number of
rounds r.

The first stage of the experiment executes the Setup and Init algorithms that initialise both
the remote machine and the parties’ local states, and collects the public parameters for all
of these participants (which are assumed to be authenticated throughout the thesis, e.g.,
using a PKI). In the second part of the experiment, the adversary chooses a sequence of m
inputs for the functionality, interleaving different parties in an arbitrary way. The sequence
(id1, . . . , idm) implicitly defines a schedule for the execution of the proposed protocol, which
should ensure that the inputs of each party are provided to the functionality in precisely this
order.

The last stage of the correctness experiment emulates the protocol execution, alternating
between local steps and remote steps. The Remote algorithm commands the scheduling of
message exchanges; this algorithm is always invoked first and its output indicates the next
party to be activated, the message this party will receive, and whether or not the party is

8.2. MULTIPARTY COMPUTATION FROM LAC 137

Game CorrF,π,r,m,A,M(1λ):

//Trusted setup of machine and parties
(n,F, Lin, Lout)← F
prms←$ M.Init(1λ)

For id ∈ [1..n]:
(stid, pubid)←$ Setup(prms, id)

Pub← (pub1, . . . , pubn)

For id ∈ [1..n]:
stid←$ Init(stid,Pub)

outidi ← ε

//Adversarially scheduled ideal execution
stF ← ε; stA ← ε

For i ∈ [1..m]:
(idi, ini, stA)←$ A(prms,Pub, stA)

outidi ← outidi ||F[stF](idi, ini)

//Protocol execution
F ∗ ← Compile(prms,F ,Pub)

hdl←M.Load(F ∗)

t← T; msg← ε; j ← 0

stR ← (id1, . . . , idm) // input schedule
For i ∈ [1..r]:

If t: //Remote step
(id, inreq,msg′, stR)←$ RemoteM(prms, hdl,msg, stR)

Else: // Local step
If inreq = T:

If id 6= idj Return F

stid←$ AddInput(inj , stid)

j ← j + 1

(stid,msg)←$ Process(stid,msg′)

t← ¬t

For id ∈ [1..n]:
out′1 ← Output(stid)

Return (out1, . . . , outn) = (out′1, . . . , out′n)

Figure 8.4: Game defining protocol correctness.

expected to provide an input. The protocol is run for r rounds, at which point its outputs
are retrieved via Output. The adversary wins the game if it can force the game to produce
a set of outputs that wouldn’t be obtained by simply running the functionality F with the
given inputs in the provided order.

The correctness experiment shows the crucial scheduling role of the Remote algorithm, which
is run in an untrusted environment in the remote machine. Here, the work deviates from
the standard approach in the UC setting, where the simulation-based definition of security is
taken as providing sufficient detail to evaluate correctness of the protocol. Indeed, as other
simulation-based definitions, the security experiment below will impose some input/output
consistency conditions on the protocol. Intuitively, these must hold for any adversarially
chosen Remote scheduling algorithm, as the adversary has full control of the remote machine
and scheduling can be arbitrarily controlled by the attacker. However, the author believes

138 CHAPTER 8. SECURE MULTIPARTY COMPUTATION

that there is added value in including a separate correctness definition, where the scheduling
tasks of the non-security critical parts of the protocol can be specified as a first class feature of
the protocol syntax. This also clarifies the envisioned execution model and makes it explicit
that untrusted code running in an adversarially run machine is only relevant for correctness
purposes.

Security

The presented security definition is based on the experiments shown in Figure 8.5, where O
represents access to all oracles except Fun, i.e., the adversary has oracle access to Run, Setup,
SetInput, GetOutput and Send in both games.

Definition 32. π is said to be secure for F if, for any ppt adversary A, there exists a ppt
simulator S such that the following definition of advantage is a negligible function in the
security parameter.

|Pr[RealF ,π,A,M(1λ)⇒ b = 1]− Pr[IdealF ,π,A,S(1λ)⇒ b = 1] |

The security definition is presented in Figure 8.5, which also refines the SFE definition
presented in Figure 8.1. This model must now consider labelled execution and reactive
functionalities. Modulo the usage of labels at programs run on M, the most meaningful
difference relates to the functionality oracle Fun, and how inputs are gathered via SetInput

and GetOutput.

Since it is no longer the case that F is a one-shot function, taking one input for every
participant and producing one output respectively, SetInput and GetOutput will manage lists
of inputs/outputs for every participant. These will be collected in SetInput and provided in
GetOutput. For the latter, while in Section 8.1 the simulator can simply block a participant’s
output to match the real world execution, it is now the case that S can select how many
outputs can be revealed at every call to GetOutput. Furthermore, S is also able to control
the rate and order in which all inputs are provided to the functionality. Were this not the
case, the adversary would be able to distinguish the two worlds by manipulating scheduling
in such a way that the simulator could not possibly match.

Boxing for MPC

The notion for boxing presented in Figure 8.2 captured a SFE functionality, in the sense
that it is expected to run only once with all inputs, producing all outputs. Boxing reactive
functionalities requires a more detailed notion for handling stateful execution, as follows.
After the bootstrapping stage, the protocol will be running the ideal functionality within
an isolated execution environment, and using secure channels to communicate with each

8.2. MULTIPARTY COMPUTATION FROM LAC 139

Game RealF,π,A,M(1λ):

(n,F, Lin, Lout)← F
prms←$ M.Init(1λ)

(stA, k)←$ A(prms)

For id ∈ [1..k]:
(stid, pubid)←$ Setup(prms, id)

Pub← (pub1, ..., pubk)

For id ∈ [k + 1..n]:
(stA, pubid)←$ A(stA, id,Pub)

Pub← (pub1, ..., pubn)

For id ∈ [1..k]:
stid←$ Init(stid,Pub)

b←$ AO(stA)

Oracle SetInput(in, id):

If id 6∈ [1..k] Return ⊥
stid←$ AddInput(in, stid)

Oracle GetOutput(id):

If id 6∈ [1..k] Return ⊥
Return Output(stid)

Oracle Send(id,m):

If id 6∈ [1..k] Return ⊥
(stid,m

′)←$ Process(stid,m)

Return m′

Oracle Load(P):

ReturnM.Load(P)

Oracle Run(hdl, l, x):

ReturnM.Run(hdl, l, x)

Game IdealF,π,A,S(1λ):

(n,F, Lin, Lout)← F
stF ← ε

(st, prms)←$ S(1λ)

(stA, k)←$ A(prms)

For id ∈ [1..k]:
(st, pubid)←$ S(st, id)

ListInid ← []

ListOutid ← []

Pub← (pub1, ..., pubk)

For id ∈ [k + 1..n]:
(stA, pubid)←$ A(stA, id,Pub)

Pub← (pub1, ..., pubn)

For id ∈ [1..k]:
st←$ S(st, id,Pub)

b←$ AO(stA)

Oracle SetInput(in, id):

If i 6∈ [1..k] Return ⊥
`← Lin(in, id, stF)

st←$ S(st, `, id)

ListInid ← in : ListInid

Oracle GetOutput(id):

If id 6∈ [1..k] Return ⊥
i←$ S(st, id)

(out1, . . . , outk)← ListOutid

Return out1 || . . . || outi

Oracle Send(id,msg):

(st, out)←$ SFun(st, id,msg)

Return out

Oracle Load(P):

(st, out)←$ S(st, P)

Return out

Oracle Run(hdl, l, x):

(st, out)←$ SFun(st, hdl, l, x)

Return out

Oracle Fun(id, in):

If id ∈ [1..k]:
(in1, . . . , ink)← ListInid

ListInid ← (in1, . . . , ink)

out← F[stF](id, ink)

ListOutid ← out : ListInid

Return Lout(out, id, stF)

Else
out← F[stF](id, in)

Return out

Figure 8.5: Real and Ideal security games.

participating party. The availability of these secure channels will follow from Theorem 6. The
updated notion of boxing a functionality defines a program that executes the functionality
code, but receives inputs and delivers outputs using secure channels. This is done in the form
of the Box construction presented in Figure 8.6. This construction takes a functionality F for
n parties and a secure authenticated encryption encryption scheme Λ. In this context, labelled
program Box〈F ,Λ〉 is constructed, whose initial state is assumed to contain n symmetric keys
compatible with scheme Λ, denoted key1 to keyn (one for each participating party) and the
empty initial state for the functionality stF. To avoid replays of encrypted messages, one
sequence number seqid per communicating party id is maintained. On input (i∗, l), the pro-
gram interprets the label as party identity id = l, decrypts input i∗ with skid to obtain input
i = (in, seq), an checks the corresponding sequence number. It then passes the decrypted
input to the functionality, and subsequently encrypts the output of the functionality back
to the same user, together with the updated sequence number. The updated state includes

140 CHAPTER 8. SECURE MULTIPARTY COMPUTATION

Program Box〈F ,Λ〉[st](i∗, l):

(n,F, Lin, Lout)← F
id← l

If id /∈ [1..n] : Return ⊥
If st.seqid = ε :

st.seqid ← 0

i← Λ.Dec(st.keyid,msg)

If msg = (in, st.seqid) :

o← F [st.stF](id, in)

st.seqid ← st.seqid + 1

c←$ Λ.Enc(st.keyid, (seq, o))

st.seqid ← st.seqid + 1

Return c
Else: Return ⊥

Figure 8.6: Boxing using Authenticated Encryption

the updated sequence number and the updated state of the functionality. The transition
function finally externalizes this updated state and the encrypted output.

An MPC protocol from SGX

It is now described a secure computation protocol based on LAC that works for any function-
ality. This protocol starts by running bootstrap code in an isolated execution environment
in the remote machine, which exchanges keys with each of the participants in the protocol.
These key exchange programs are composed in parallel, as defined in Figure 5.1. Once this
bootstrap stage is concluded, the code of the functionality, which is composed sequentially
with the bootstrap stage, starts executing and it uses the secure channels established with
each party to ensure that the collection of inputs and delivery of outputs is secure. The
protocol builds upon the Labelled AttKE utility Theorem 6.16, for the usage of key exchange
in the context of attestation.

Building on top of a LAC scheme, an AttKE scheme and the proposed Box construction,
Figure 8.7 defines a general secure multiparty computation protocol that works for any
(possibly reactive) functionality F. The core of the protocol is the execution of an AttKE
for each participant in parallel, followed by the execution of the functionality F on the
remote machine, under a secure channel with each participant as specified in the updated
Box construct. More precisely:

• Setup derives the code for a remote key exchange program RemKE using the AttKE setup
procedure. This code (which intuitively includes cryptographic public key material) is
set to be the public information for this party. The algorithm also stores various
parameters in the local state for future usage.

• Compile uses the LAC compilation algorithm on a program that results from the

8.2. MULTIPARTY COMPUTATION FROM LAC 141

parallel composition of all the remote key exchange programs for all parties, which is
then sequentially composed with the boxed functionality. Sequential composition uses
the special φ∗key function that maps the keys derived by all the key exchange RemKE

instances into the initial state of the Box construction. The set of attested labels is
restricted to those of form (p, (idi, ε)), corresponding to the AttKE subprograms.

• Init locally recomputes the program that is intended for remote execution, as this is
needed for attestation verification. The set of labels that define the locally recovered
trace is set to those of the form {(p, (id, ε)), (q, id))}, which correspond to those exactly
matching the parts of the remote trace that are relevant for this party, namely its own
key exchange and its own input/output relation with the functionality. Various parts
of the local state that are used by Process are also initialized.

• Process is split into two stages. In the first stage it uses LAC with attested labels of
the form (p, (id, ε)) to execute AttKE protocol and establish a secure channel with
the remote program. In the second stage, it uses non-attested labels of the form
(q, id), and it provides inputs to the remote functionality (on request) and recovers the
corresponding outputs when they are delivered. The input sending process is initiated
by passing an empty message into the algorithm, which triggers the encryption of the
next input using the derived secret key from the first stage. A non-empty message
input to this stage will trigger decryption and recovery of an output.

• Output reads the output in the state of the participant and returns it.

• AddInput adds an input to the end of the list of inputs that have to be transmitted by
the participant.

The (untrusted) scheduling algorithm is shown in Figure 8.8. It is in charge of dispatching
messages to/from the remote machine IEE using the Attest algorithm provided by the LAC,
and animating the protocol to generate a correct execution for an arbitrary sequence of
input-party interactions provided externally as an input schedule which is stored in its initial
state. During the bootstrap stage, the Remote procedure interacts with one party at a time,3

moving from one party to the next when the previous party has moved to its second stage.
When all parties have completed the key exchange, the Remote procedure detects this in the
output of the IEE (consistently with the properties of sequential composition), and moves to
the functionality execution stage.

In this second stage, the algorithm simply follows the provided input schedule. Moving to the
next input is triggered by feeding the algorithm with an empty input provided by the previous
party (this is syntactic book-keeping to match the presented correctness requirement, and it

3Other options were possible for implementing Remote, and the core of the proposed protocol is actually
compatible with a totally asynchronous scheduling. Dealing with such issues is out of the scope of this thesis.

142 CHAPTER 8. SECURE MULTIPARTY COMPUTATION

algorithm Setup(prms, id):

stid.id← id; stid.prms← prms

(stL,RemKE)← SetupKE(1λ, id)

stid.stL ← stL; stid.pub← RemKE

Return (stid, stid.pub)

algorithm Compile(prms,F ,Pub):

(Rem1
KE, . . . ,Remn

KE)← Pub

P ← 〈 〈Rem1
KE, . . . ,Remn

KE〉1,...,n ; Box〈F ,Λ〉 〉φkey,p,q

L∗ ← {(p, (1, ε)), . . . , {(p, (n, ε))}
P ∗ ← LAC.Compile(prms, P, L∗)

Return P ∗

algorithm Init(stid,Pub):

stid.InList← []; stid.stage← 0;
stid.seqin ← 0; stid.seqout ← 1; stid.inlast ← ε

If Pub[stid.id] 6= stid.pub : Return ⊥
(Rem1

KE, . . . ,Remn
KE)← Pub

P ← 〈 〈Rem1
KE, . . . ,Remn

KE〉1,...,n ; Box〈F ,Λ〉 〉φkey,p,q

L← {(p, (stid.id, ε)), (q, stid.id)}
stid.stV ← (P,L)

Return stid

algorithm AddInput(in, stid):

stid.InList← stid.InList + [in]

Return stid

algorithm Output(stid):

Return stid.out

algorithm Process(stid,msg):

//Bootstrap (attested labels)
if stid.stage = 0 :

(i, stid.stV)← LAC.Verify(stid.prms, (p, (stid.id, ε)), inlast,msg, stV)

If i =⊥: Return ⊥
(o, stid.stL)←$ LocKE(stid.stL, i)

stid.inlast ← o

If (stid.stL.stKE.δ) = accept : Then stage← 1

msg′ ← (stid.stage, stid.id, o)

Return (stid,msg′)

//Execution (non-attested labels)
if stid.stage = 1 :

If msg = ε : // Input requested
in← stid.InList[0]

(in1, . . . , ink)← stid.ListInid

stid.ListInid ← (in1, . . . , ink)

o←$ Λ.Enc(stid.stL.key, (stid.seqin, in))

stid.inlast ← o

stid.seqin ← stid.seqin + 2

msg′ ← (stid.stage, stid.id, o)

Return (stid,msg′)

Else: //Process received output
msg′ ← Λ.Dec(stid.stL.key,msg)

If msg′ = (stid.seqout, out′) :

stid.seqout ← stid.seqout + 2

stid.out← out′

msg′ ← (stid.stage, stid.id, ε)

Return (stid,msg′)

Else: Return ⊥

Figure 8.7: General SMPC protocol.

signals the fact that the previous output was correctly delivered to the previous party). The
consequence of such an action is that Remote signals that a new input should be requested
from the next party in the schedule. When an actual input is received, this is passed into
the IEE using an unnattested label of the form (q, id). The output is sent back to the same
party.

For proving security, functionalities are restricted to consider to a particular leakage function:
size of inputs/outputs. It is then established that a functionality (n,F, Lin, Lout) leaks size
if it is such that Lin and Lout return the length of the inputs/outputs (i.e. Lin(k, x, st) =

Lout(k, x, st) = |x| for every k, x, st).

Theorem 9. If LAC is a correct and secure LAC scheme, AttKE is a secure AttKE scheme
and Λ a secure authenticated encryption scheme, then the protocol in Figure 8.7 and Fig-
ure 8.8 is correct and secure for any functionality F that leaks input/output length.

This proof is made by simulation. First, the construction of simulator S is presented, with
the task of interacting with A on behalf of honest participants of the protocol, i.e.,M.Load,

8.2. MULTIPARTY COMPUTATION FROM LAC 143

algorithm RemoteM(prms, hdl,msg, stR):

// Initial message
If msg = ε :

msg← (0, 1, ε) //Force bootstrap start
stR.IdList← stR // Input schedule
stR.stage← 0

//Bootstrap (attested labels)
If stR.stage = 0 :

(stageid, id, i)← msg

o← LAC.AttestM(prms, hdl, (p, (id, ε)), i)

If o.stage = 1 : // IEE just finished bootstrap
stR.stage = 1; inreq← T; msg′ ← ε

(id1, . . . , idk)← stR.IdList; id = id1

stR.IdList← (id2, . . . , idk)

Return (id, inreq,msg′, stR)

Else: // Just continue bootstrap
If stageid = 1 : //This id finished bootstrap

id← id + 1

o← LAC.AttestM(prms, hdl, (p, (id, ε)), ε)

inreq← F; msg′ ← o

Return (id, inreq,msg′, stR)

Else:
inreq← F; msg′ ← o

Return (id, inreq,msg′, stR)

//Execution (non-attested labels)
If stR.stage = 1 :

(stageid, id, i)← msg

If i = ε : //Move to next input (empty incoming message)
(id1, . . . , idk)← stR.IdList

inreq← T; msg′ ← ε

id = id1; stR.IdList← (id2, . . . , idk)

Return (id, inreq,msg′, stR)

Else: //Process input and send output
o←M.Run(hdl, (q, id), i)

inreq← F; msg′ ← o

If IdList = [] : Then stR.stage← 2 //No additional inputs
Return (id, inreq,msg′, stR)

Figure 8.8: SMPC protocol untrusted scheduler.

M.Run and Send for parties 1 to k. Afterwards, arguments are presented for why adversary A
cannot distinguish between this displayed interaction and the real world protocol execution.

Observe that, according to the experiment in Figure 8.5, despite being used in different
contexts (e.g. the same S for emulating the machine and the presentation of outputs), the
simulator can always distinguish to which call it is responding to. This is because it receives
different inputs in different occasions, with exception of honest party initialization and output
retrieval, whose orders are predictable (GetOutput will always provide S with an already
initialized id). As such, for clarity of presentation, the simulator is described in Figure 8.9
(local participants) and Figure 8.10 (remote machine) with different behaviour for different

144 CHAPTER 8. SECURE MULTIPARTY COMPUTATION

S(1λ): // parameter initialization

prms, st.sk←$ SMInit(1λ)

st.λ← 1λ; st.hdl← 0; st.fake← []

Return (st, st.prms)

S(st, id): // party setup

(stL,RemKE)← SetupKE(st.λ, id)

st.id.stL ← stL
st.stage← 0

Return (st,RemKE)

S(st, id): // party initialization

st.id.InList← []; st.id.stage← 0;
st.id.seqin ← 0; st.id.seqout ← 1; st.id.inlast ← ε

(Rem1
KE, . . . ,Remn

KE)← Pub

st.P ← 〈 〈Rem1
KE, . . . ,Remn

KE〉1,...,n;
Box〈F ,Λ〉 〉φkey,p,q

st.L← {(p, (id, ε)), (q, id)}
st.id.stV ← (st.P, st.L)

L∗ ← {(p, (1, ε)), . . . , {(p, (n, ε))}
st.P ∗ ← LAC.Compile(prms, st.P, L∗)

st.id.InLeak← []; st.id.InList← []

Return st

S(st, l, id): // add inputs

stid.InLeak[id]← stid.InLeak[id] + [l]

Return st

S(st, id): // output retrieval

Return (st.id.seqout/2) + 1

SFun(st, id,msg): // emulate local participant id

If st.id.stage = 0 :

(i, st.id.stV)← LAC.Verify(st.prms, (p, (id, ε)), st.id.inlast,

msg, st.id.stV)

If i =⊥: Return ⊥
(o, st.id.stL)←$ LocKE(st.id.stL, i)

st.id.inlast ← o

If st.id.stL.key 6∈ st.fake ∧ st.id.stL.δ ∈ {derived, accept}:
key∗←$ {0, 1}st.λ

st.fake← (st.id.stL.key, key∗) : fake

If st.id.stL.δ = accept: stage← 1

msg′ ← (st.id.stage, id, o)

Return (st,msg′)

If st.id.stage = 1 :

If msg = ε :

l← st.id.InLeak[0]

(in1, . . . , ink)← st.id.InLeak

st.id.InLeak← (in1, . . . , ink)

in← {0}l

o←$ Λ.Enc(fake(st.id.stL.key), (st.id.seqin, in))

st.id.InList[st.id.seqin]← o

st.id.inlast ← o

st.id.seqin ← st.id.seqin + 2

msg′ ← (st.id.stage, id, o)

Return (st,msg′)

Else:
msg′ ← Λ.Dec(fake(st.id.stL.key),msg)

If msg′ = (st.id.seqout, out′) :

st.id.seqout ← st.id.seqout + 2

msg′ ← (st.id.stage, id, ε)

Return (st,msg′)

Else: Return ⊥

Figure 8.9: Description of simulator S with respect to emulating local participants.

calls. Notice that in this scenario there is no M, however the simulator perfectly follows
the description of M to emulate its behaviour. Following its description in Section 5.2, let
SMInit(1λ) be the initialization function of the security module, producing public parameters
prms and internal state sk, and let P ∗[hdlst, sk](l, i) be the execution of compiled P ∗ given
the internal state hdlst and private parameters sk, according to the description of the security
module, producing (possibly attested) output o∗.

The behaviour detailed in S does not trivially entail indistinguishability from the real world
on all cases. The two main differences between how the simulator handles calls and how
the same instructions would be executed in the real world are highlighted in the presented
figures, and are now further detailed.

• The simulator is replacing the exchanged keys associated with honest participants with
randomly generated ones (fake), and using them throughout the second stage of the
protocol.

8.2. MULTIPARTY COMPUTATION FROM LAC 145

S(st,Pub, P): //M.Load

st.hdl← st.hdl + 1

For i ∈ L: seq[i]← 0

st.HdlList← (st.hdl, seq, ε)

Return st.hdl

SFun(st, hdl,msg): //M.Run

(P ∗, seq, sthdl)← st.HdlList[hdl]

If P ∗ = st.P ∗: //The agreed protocol.
If (p, (id, ε)) 6∈ st.L: Return ⊥
If sthdl[id].stage = 0 :

(id, in)← msg

msg′←$ P ∗[sthdl, st.sk](id,msg)

If st.id 6= ε ∧ sthdl[id].key 6∈ st.fake ∧ sthdl[id].δ ∈ {derived, accept}:
key∗←$ {0, 1}st.λ

st.fake← (sthdl[id].key, key∗) : fake

Else If sthdl[id].stage = 1 :

(seqin, id, in)← msg

If (seq[id] 6= seqin): Return ⊥
If st.id 6= ε: //Honest participant

If st.id.InList[seq[id]] 6= in: Return ⊥
l← Fun(honest, id, ε)

out← {0}l

msg′←$ Λ.Enc(fake(sthdl.key[id]), (seq[id] + 1, in))

Else: //Corrupt participant
in∗←$ Λ.Dec(fake(sthdl.key[id]), (seq[id] + 1, in))

out← Fun(corrupt, id, in∗)

msg′←$ Λ.Enc(fake(sthdl.key[id]), (seq[id] + 1, out))

seq[id]← seq[id] + 2

Else: //Any other program onM.
(id, in)← msg

msg′←$ P ∗[sthdl, st.sk](id,msg)

st.HdlList[hdl]← (P, seq, sthdl)

Return (st,msg′)

Figure 8.10: Description of simulator S with respect to emulating the remote machine.

• Instead of the honest participant’s inputs and outputs, the simulator is encrypting
strings of 0s with the same length as the real-world values (obtained by Lin and Lout).

It is now argued that, nevertheless, this provides an indistinguishable view for any A. This
is proven in three game hops from the real world, from Figure 8.11 to Figure 8.14. The first
hop will replaceM with the slightly differentM′, which replaces keys exchanged by honest
participants by freshly generated keys (in exactly the same way the simulator is doing it). The
correctness of this hop follows from the utility theorem, using a hybrid argument to replace
keys of all k honest parties. Afterwards, the encrypted inputs/outputs of honest parties
are replaced by encrypting dummy payloads of the correct length. The correctness of this
hop follows from the indistinguishability of the underlying authenticated encryption scheme.
Finally, the possibility of A to produce a forged encryption is restricted, by accordingly
establishing a bad event. The correctness of this final hop follows from the unforgeability of

146 CHAPTER 8. SECURE MULTIPARTY COMPUTATION

G0F,π,A,M(1λ):

(n,F, Lin, Lout)← F
prms←$ M.Init(1λ)

(stA, k)←$ A(prms)

For id ∈ [1..k]:
(stid.stL, stid.pub)← SetupKE(1λ, id)

Pub← (pub1, ..., pubk)

For id ∈ [k + 1..n]:
(stA, pubid)←$ A(stA, id,Pub)

Pub← (pub1, ..., pubn)

For id ∈ [1..k]:
stid.InList← []; stid.stage← 0;
stid.seqin ← 0; stid.seqout ← 1; stid.inlast ← ε

(Rem1
KE, . . . ,Remn

KE)← Pub

P ← 〈 〈Rem1
KE, . . . ,Remn

KE〉1,...,n ;
Box〈F ,Λ〉 〉φkey,p,q

L← {(p, (stid.id, ε)), (q, stid.id)}
stid.stV ← (P,L)

b←$ AO(stA)

Oracle SetInput(in, id):

If id 6∈ [1..k] Return ⊥
stid.InList← stid.InList + [in]

Oracle Load(P):

ReturnM.Load(P)

Oracle Run(hdl, l,msg):

ReturnM.Run(hdl, l,msg)

Oracle GetOutput(id):

If id 6∈ [1..k] Return ⊥
Return stid.out

Oracle Send(id,msg):

If id 6∈ [1..k] Return ⊥
If stid.stage = 0 :

(i, stid.stV)← LAC.Verify(stid.prms, (p, (stid.id, ε)), inlast,

msg, stV)

If i =⊥: Return ⊥
(o, stid.stL)←$ LocKE(stid.stL, i)

stid.inlast ← o

If (stid.stL.stKE.δ) = accept : Then stage← 1

msg′ ← (stid.stage, stid.id, o)

Return msg′

If stid.stage = 1 :

If msg = ε :

in← stid.InList[0]

(in1, . . . , ink)← stid.ListInid

stid.ListInid ← (in1, . . . , ink)

o←$ Λ.Enc(stid.stL.key, (stid.seqin, in))

stid.inlast ← o

stid.seqin ← stid.seqin + 2

msg′ ← (stid.stage, stid.id, o)

Return msg′

Else:
msg′ ← Λ.Dec(stid.stL.key,msg)

If msg′ = (stid.seqout, out′) :

stid.seqout ← stid.seqout + 2

stid.out← out′

msg′ ← (stid.stage, stid.id, ε)

Return msg′

Else: Return ⊥

Figure 8.11: Real world expanded.

the underlying authenticated encryption scheme.

The first game (Figure 8.11) is simply the real game expanded with the protocol instantiation.
In this setting, whenever the adversary sets k as 0, i.e. corrupts all participants, the simulator
already produces an indistinguishable view. In this case there are no honest inputs/outputs,
so the simulator has access to all information and can therefore execute the protocol without
replacing any keys and without encrypting any dummy payloads (st.id = ε for all id),
executing Fun whenever a corrupt input is provided to produce the corresponding output. As
such, the following steps will only refer to situations in which k 6= 0, where indistinguishability
is not yet established.

In the second game G1F ,π,A,M′(1λ) (Figure 8.12), the machine in the ideal world is replaced
with the machine M ′ of the Utility game for which b = 1. This machine performs exactly
what the simulator is doing with the list fake, i.e., replacing keys for the first k participants
whenever they finish the first stage of the protocol (the key exchange). This is possible via

8.2. MULTIPARTY COMPUTATION FROM LAC 147

G1F,π,A,M′ (1λ):

(n,F, Lin, Lout)← F
prms←$ M′.Init(1λ)

fake← []

(stA, k)←$ A(prms)

For id ∈ [1..k]:
(stid.stL, stid.pub)← SetupKE(1λ, id)

Pub← (pub1, ..., pubk)

For id ∈ [k + 1..n]:
(stA, pubid)←$ A(stA, id,Pub)

Pub← (pub1, ..., pubn)

For id ∈ [1..k]:
stid.InList← []; stid.stage← 0;
stid.seqin ← 0; stid.seqout ← 1; stid.inlast ← ε

(Rem1
KE, . . . ,Remn

KE)← Pub

P ← 〈 〈Rem1
KE, . . . ,Remn

KE〉1,...,n ;
Box〈F ,Λ〉 〉φkey,p,q

L← {(p, (stid.id, ε)), (q, stid.id)}
stid.stV ← (P,L)

P ∗ ← LAC.Compile(prms, P, L)

b←$ AO(stA)

Oracle SetInput(in, id):

If id 6∈ [1..k] Return ⊥
stid.InList← stid.InList + [in]

Oracle Load(P):

ReturnM′.Load(P)

Oracle Run(hdl, l,msg):

flag← F

If ProgramM(hdl) = P ∗: flag← T

ReturnM′.Run(hdl, l,msg, flag, fake)

Oracle Send(id,msg):

If id 6∈ [1..k] Return ⊥
If stid.stage = 0 :

(i, stid.stV)← LAC.Verify(stid.prms, (p, (stid.id, ε)), inlast,

msg, stV)

If i =⊥: Return ⊥
(o, stid.stL)←$ LocKE(stid.stL, i)

stid.inlast ← o

If stid.stL.key 6∈ fake ∧ stid.stL.δ ∈ {derived, accept}:
key∗←$ {0, 1}λ

st.fake← (stid.stL.key, key∗) : fake

If (stid.stL.stKE.δ) = accept : Then stage← 1

msg′ ← (stid.stage, stid.id, o)

Return msg′

If stid.stage = 1 :

If msg = ε :

in← stid.InList[0]

(in1, . . . , ink)← stid.ListInid

stid.ListInid ← (in1, . . . , ink)

o←$ Λ.Enc(fake(stid.stL.key), (stid.seqin, in))

stid.inlast ← o

stid.seqin ← stid.seqin + 2

msg′ ← (stid.stage, stid.id, o)

Return msg′

Else:
msg′ ← Λ.Dec(fake(stid.stL.key),msg)

If msg′ = (stid.seqout, out′) :

stid.seqout ← stid.seqout + 2

stid.out← out′

msg′ ← (stid.stage, stid.id, ε)

Return msg′

Else: Return ⊥

Oracle GetOutput(id):

If id 6∈ [1..k] Return ⊥
Return stid.out

Figure 8.12: First hop of the proof.

two steps.

Fix identity id = 1. The behaviour ofM in G0F ,π,A,M(1λ) regarding this participant can be
replaced using the Utility Theorem 6.16, for which l∗ = id. In this scenario, the key (both in
M′.Run and in Send) for that particular participant will be replaced by a fake one and stored
in fake (as described in G1F ,π,A,M′(1λ), but only for id = 1). The advantage gained by the
adversary in this intermediate step is bound by its advantage in winning the experiment in
Figure 6.16, by providing

Rem2
KE, (p, (2, ε)), (q, 2), . . .Remn

KE, (p, (n, ε)), (q, n), (p, (1, ε)),Box〈F ,Λ〉, φkey

To NewSession on every call.

Now observe that, for any scenario in which m participants have had their keys replaced by

148 CHAPTER 8. SECURE MULTIPARTY COMPUTATION

fake ones, it is possible to apply the same Utility theorem for replacing the keys of m + 1

participants. In order to replace all k keys, it are therefore required to apply the same Utility
theorem k times, and thus

Pr[G0F ,π,A,M(1λ)⇒ T]− Pr[G1F ,π,A,M′(1
λ)⇒ T] ≤ AdvUT

AttKE,A(λ) ∗ k.

In the third game G2F ,π,A(1λ) (Figure 8.13), machine M ′ is opened and its behaviour is
altered for instances of running program P ∗ on the second stage as follows:

• Upon receiving an honest participant input, instead of using it for computing Fun

instead uses the first element of ListIn.

• When producing an honest participant output, instead of returning an encryption of
the value received from F, it stores the value from F on an output list for this identity
OutList and returns an encryption of zeros of the same length as the output.

Similarly, on the local side for instances running the second stage:

• When called for presenting the input, instead of encrypting the actual input, it stores
it on a list of inputs InList and encrypts a string of zeros of the same length.

• Upon receiving an output, instead of decrypting and storing it on ListOut, it retrieves
the value of OutList and stores it on ListOut.

The distance between these two games is upper bound, by constructing an adversary B
against the indistinguishability of encryption scheme Λ such that

Pr[G1F ,π,M′(1
λ)⇒ T]− Pr[G2F ,π(1λ)⇒ T] ≤ AdvIND

Λ,B(λ) ∗ k ∗ 2I

Adversary B simulates the environment of G2F ,π,A(1λ) as follows: it first has to try and guess
which message will be used to distinguish. Let I be the maximum number of inputs adversary
A chooses to input for any participant. It samples uniformly from [1..k] a participant p, and
from [1..(I ∗ 2)] a message m. Since every input produces an output, one establishes that

• If m ∈ [1..I], B picked the m-th input.

• If m ∈ [I + 1, . . . , (I ∗ 2)], B picked the m
I -th output.

and proceed accordingly. B replaces all calls for encryption/decryption for inputs/outputs
of participant p with similar calls to Λ.Enc and Λ.Dec, with exception of the following. If
m ∈ [1..I], whenever Send(id,msg) for id = p is called for the m-th time on the second stage,
B challenges INDΛ,B(1λ) with message

((stid.seqin, in), (stid.seqin, {0}|in|))

8.2. MULTIPARTY COMPUTATION FROM LAC 149

Otherwise, whenever Run(hdl, l,msg) for l = p and P = P ∗ (the agreed protocol) is called
for the m

I -th time on the second stage, B challenges INDΛ,B(1λ) with message

((seq[id] + 1, out), (seq[id] + 1, {0}|out|))

Observe that any advantage B acquires in this transformation can be effectively used to
distinguish between G1F ,π,M′(1

λ) and G2F ,π(1λ), since the only difference between the two
games is the encryption of either the first message (the real value) or the second (the dummy
payload with the same length). The two games are identical modulo this difference.

In the fourth game G3F ,π,A(1λ) (Figure 8.14), the adversary loses whenever authForge event
occurs. Intuitively, this event corresponds to the adversary producing an encryption that
was not produced by either Send or M.Run for id ∈ [1..k] (honest participant), and hence
constitutes a forgery with respect to Λ. Given that the two games are identical until this
event occurs, it follows that

Pr[G2F ,π,A(1λ)⇒ T]− Pr[G3F ,π,A(1λ)⇒ T] ≤ Pr[authForge] .

The distance between these two games is upper bound, by constructing an adversary C against
the existential unforgeability of encryption scheme Λ such that

Pr[authForge] ≤ AdvUF
Λ,C(λ) ∗ k

Adversary C simulates the environment of G3F ,π,A(1λ) as follows: it first has to try and guess
which session will produce the forgery. As such, it samples uniformly from [1..k] a participant
p and replaces the key generated for honest participant p (before adding to fake) with the
key generated by Λ.Gen. From there on, every time an encryption/decryption is requested
for p, the same operation will be requested to Λ.Enc and Λ.Dec, respectively.

When authForge is set, according to the rules of G3F ,π,A(1λ), algorithm C outputs candidate
encryption msg. It remains to show that this is a valid forgery. To see this, first observe that
this is indeed a valid encryption, as decryption is performed on this value immediately before
authForge occurs. It suffices to establish that message msg could not have been queried from
the Λ oracle. Access to this oracle is only permitted on the encryption of inputs for this
participant, and on outputs to this participant (when executing Run). From the construction
of these operations and the sequence numbers they entail, it is known that producing such
an encryption would only occur via the inclusion of msg in authList. Since one can infer this
is not the case, msg could not have been queried to the encryption oracle. It is therefore
concluded that C outputs a valid forgery whenever authForge occurs.

Finally, it is argued that the behaviour displayed by the simulator is indistinguishable to
what adversary A observes in game G3F ,π,A(1λ). This is the case because the simulator no
longer has private information to which he has no access to. In G3F ,π,A(1λ), only the length

150 CHAPTER 8. SECURE MULTIPARTY COMPUTATION

of honest inputs and outputs is required to emulate their private inputs and outputs, to
which S has access to via Lin and Lout. Additionally, the simulator uses the same message
sequence numbers to prevent A from forcing an execution that deviates from the order in
which inputs are provided and outputs are retrieved. Since the executions are the same for
all other aspects (including key replacements to fake and exclusion of forged encryptions), A
is provided the same view in both worlds.

Let

AdvDistinguish
F ,A = Pr[RealF ,π,A,M(1λ)⇒ T]− Pr[IdealF ,π,A,S(1λ)⇒ T]

To conclude,

AdvDistinguish
F ,A = Pr[G0F ,π,A,M(1λ)]− Pr[G3F ,π,A(1λ)]

= (Pr[G0F ,π,A,M(1λ)]− Pr[G1F ,π,A,M′(1
λ)]) + (Pr[G1F ,π,A,M′(1

λ)]−

Pr[G2F ,π,A(1λ)]) + (Pr[G2F ,π,A(1λ)]− Pr[G3F ,π,A(1λ)])

≤ AdvAtt
UT,A(λ) ∗ k + AdvIND

Λ,B(λ) ∗ k ∗ 2I + Pr[forgeAuth]

≤ AdvAtt
UT,A(λ) ∗ k + AdvIND

Λ,B(λ) ∗ k ∗ 2I + AdvUF
Λ,C(λ) ∗ k

and Theorem 9 follows.

8.3 Relation to the UC approach

For completeness, this section now summarizes how the presented results map to the stan-
dard Universal Composability approach [Can01, CCL15], as well as to other approaches to
formalise hardware guarantees.

Secure computation from theoretical tamper-proof hardware

Results in [CF01] demonstrate that, within the “plain” model, secure computation of general
UC functionalities is impossible. In [Kat07], Katz tackles this issue by introducing a new
setup assumption based on physical hardware requirements that demonstrably circumvents
these impossibility results. This work was inspired by a somewhat similar approach in [CP92,
Bra93, CP93], where observers can be used as trusted hardware for the deployment of e-
cash applications. The central idea is that a bank could issue observers as smartcards for
each user, which implemented an e-cash functionality. These entities would then behave as
intermediaries between user and bank server, simultaneously enforcing passive behaviour on
the users and ensuring user anonymity in the presence of a malicious bank.

Katz models this hardware as a wrapper functionality Fwrap with two central operations:
Creation and Execution. Creation allows for participants to take some software and compile it

8.3. RELATION TO THE UC APPROACH 151

insider this theoretical tamper-proof hardware token, alongside the participants’ identities.
After this initial step, the hardware token is sent to the other participant(s) to run Execution,
which gives black-box access to the software embedded on the token. The following hardware
assumptions are required to be met, in order for the proposed protocols to ensure security.

• The party running Creation is aware of the code that is to be run securely.

• The hardware token must ensure that the user running Execution cannot learn anything
about the underlying code that would not be revealed by black-box access to its
functionality. This also requires for the assumption that said hardware has a secure
source of randomness.

• The party running Creation should no longer be able to send messages to the token,
once it is sent to the remaining participant(s).

One can immediately find similarities between what is required from these theoretical hard-
ware tokens, and what is necessary for one to make use of IEE-based guarantees as discussed
in this thesis. The described Creation mechanism encapsulates both the machine initialization
of M.Init, and the execution of M.Load for some specific protocol, making it functionally
similar, albeit more restrictive in the sense that a malicious user cannot load/run additional
(potentially parallel) programs into the hardware token. The first requirement is closely
related to what is imposed for AC and LAC, where the program code is central in validating
attested outputs via Verify, being either stored on the verification state as compilation output,
or directly fed as algorithm parameter. The second requirement is similar to the minimal
leakage property required for both flavours of attestation (Figures 5.4 and 5.9), intuitively
necessary to ensure that a malicious user in possession of the hardware is unable to extract
its secret cryptographic material. However, in the IEE abstraction, it is not necessary that
the only information extractable from the underlying code is the one given by black-box
access, as the code itself is allowed to be public. The third requirement is not as necessary
for this thesis’ setting, as the hardware provider is not considered to be a participant of the
protocol, and thus the process ofM.Init is abstracted to be run securely before any protocol
interaction. For real-world deployment of security-critical applications, however, it should
certainly be the case that IEE providers are unable to establish covert channels with access
to the secure hardware and its protected resources.

The work also proposes how to deploy a secure multiple commitment protocol using these
hardware tokens. A core aspect of this design is that Creation must load a functionality
that has a hard-wired key-pair (pk, sk), where sk will be used by the token to sign produced
outputs, and pk will be used by the token creator to validate said outputs. This is also
very similar to how IEEs are proposed to attest I/Os, where sk is seen throughout the
thesis as the device key, and pk as public parameters prms. The model proposed for IEEs,
however, considers trusted hardware that is not aware of any of the participant’s identity,

152 CHAPTER 8. SECURE MULTIPARTY COMPUTATION

since it is initialized by a third party. As such, contrary to Katz’s approach where Creation

fundamentally enables for the subsequent runs of Execution to produce outputs associated
with the identity of the other participant, code loaded into IEEs must be adapted to include
this information, which is what motivates the key exchange for attested computation (as
described in Figure 6.3) to be parametrized with the public key of the participant attesting
the execution.

Composability in the UC model

Another closely related approach is the one by Pass et al. [PST16]. In this work, the authors
propose an abstraction to the general behaviour of modern hardware enabling for attested
execution, and present several theoretical results, among which is the demonstration that
achieving UC protocols for MPC without additional setup assumptions is impossible, unless
all participants are equipped with IEE hardware.

The motivation presented is closely similar to ours. A formal approach to the security
properties ensured by IEE hardware can benefit both users and software developers in: i.)
unifying guarantees provided by different attestation hardware, ii.) enabling for a rigorous
design and validation for security-critical software in a non-trivial paradigm such as the one
made available by these technologies, and iii.) providing relevant implementation/deployment
feedback for both the designers of trusted hardware, and for the developers of software to be
run in said environments.

Behaviour of remote attestation hardware is abstracted as functionality Gatt. Gatt is pro-
grammed to run a key generation upon initialization, producing (pk, sk) as a result – sk

being the device key and pk the public material for verifying attestation. The functionality
then makes getpk() available, allowing for the public parameters to be accessible at any time.
Calls to enclaves are install, used to load programs into IEEs, and resume, used to run IEEs
(or resume executions) with some provided input. Initialization matches the proposedM.Init,
where the public key is directly provided to all participants in the protocol, and resume and
install are reincarnations of the expected machine “regular” behaviourM.Load andM.Run,
respectively.

The major difference between the two approaches lies on how one represents the behaviour
of IEE machines on the MPC security model, in particular in their initialization procedure.
Gatt is seen as a global functionality, over which the simulator has no control over (other than
basic interactions via its API). Our work considers that simulators are allowed to initialize
our machine, as is the case with the security analysis of Functional Encryption [LOS+10]
protocols, which enables the extraction of outputs in an intuitive way.

[PST16] trusted hardware is abstracted as a global functionality Gatt. On the ideal world,
simulator S must emulate the protocol behaviour with only access to the public pa-

8.3. RELATION TO THE UC APPROACH 153

rameters initialized by Gatt, which it can retrieve via getpk(). Without trapdoors on
the programs run nor additional setup options, output extraction is demonstrably not
possible.

This work trusted hardware is abstracted as a local functionalityM. On the ideal world,
simulator S must emulate the protocol behaviour, but can programM in a way that
allows for the extraction of corrupt outputs, which can be intuitively achieved by having
S performingM.Init and resorting to the secret cryptographic material.

The impossibility of output extraction for [PST16] is intuitively similar to the impossibility
of UC-commitments without a common reference string (CRS) [CF01]. Consider a real-
world corrupt committer participant A and a honest receiver R. The simulation proof of
this protocol requires for the simulator S to present A with an indistinguishable transcript,
which involves extracting the committed value and forwarding it to the associated global
functionality F . However, allowing for the simulator to extract a value from F implies
that the real-world R must also be able to extract that commitment, thus violating the
hiding property of commitments. This is circumvented by considering a CRS as a local
functionality, which can programmed by S, allowing him to embed a trapdoor on the CRS
and thus trivially extract the commitment without that being possible on the real world
(since R does not possess such trapdoor).

This is closely translated for the approach on using Gatt for two-party secure computation, as
the programs being loaded to the trusted hardware are extended with a trapdoor, allowing
for S to emulate corrupt outputs without implying security vulnerabilities on the real-world
protocol execution. More specifically, after a key exchange has been performed to obtain
key key, the enclave’s program that will compute the functionality with the two participants’
inputs F(inp0, inp1) can either produce a signed legitimate output, or a signed output forgery.
More specifically, the enclave’s program is extended with a backdoor parameter v in its
execution, as follows

compute(ct, v) :

inp1 ← AE.Dec(key, ct) // private input is received and decrypted

If v 6=⊥ : // checks for forgery flag

Return v // if ⊥ return forged output

Else: Return F(inp0, inp1) // otherwise, produce legitimate output

this has no impact in the real-world, as honest participants will always run with v =⊥,
and enables S to specifically request a forgery for the corrupt output provided by the ideal
functionality. This mechanism can be extended to the MPC setting analogously, where
outputs for corrupt participants can be programmed given the respective participant key.

154 CHAPTER 8. SECURE MULTIPARTY COMPUTATION

Indeed, Pass et al. clearly identify this difference in design, where they declare that consider-
ing a local Gatt functionality (the research direction taken in this thesis) implies that a fresh
initialization (i.e. M.Init) must be performed before all protocol executions, if one wants
to claim composability. In this regard, note that mechanisms such as the TrustZone key
establishment and update described in Section 4.2 allows for the algorithm that instantiates
M.Init to be run again, and could facilitate the need for repeated hardware initializations
in real-world deployments. Their paper also demonstrates how composability considering a
global functionality leads to the development of less intuitive protocols for secure compu-
tation. The author considers this work to nicely complement the results presented in this
thesis, especially as a demonstration of the advantages and limitations of considering different
abstractions for the behaviour of IEE-enabling hardware.

Models and definitions

The models presented in this thesis consider n + 1 participants P1, . . . , Pn,M, where any
number of parties can be statically corrupted, except M, which is considered incorruptible
(the designated tamper-proof hardware assumption). Note that, unlike Katz [Kat07],M is
viewed as an honest participant, rather than an ideal functionality in some hybrid world;
this is because in real-world scenarios the communication withM is always controlled by the
adversary. Furthermore, it is necessary to rely upon the PKI set up assumption that permits
protocol participants P1, . . . , Pn to authenticate each others’ public parameters and also those
of the special participantM. With these restrictions, the proposed formalization is essentially
a code-based presentation of the UC model in the “dummy adversary” setting, which is an
equivalent setting to general UC (see Section 4.4.1 in [Can01] for more details). The security
adversary A combines both the environment and the dummy adversary; it can add inputs
and retrieve outputs from honest parties adaptively (after statically defining the number
of corrupt parties); and it controls the entire communications between all parties with the
Send, Load and Run oracles. The associated simulator in the ideal world is able to control the
scheduling of the ideal functionality; it obtains leakage of honest inputs and outputs (leakage
here is parametrizable, but only input/output lengths are considered, for simplicity); and it
can control the inputs and see the outputs of corrupt parties when interacting with the ideal
functionality.

In what follows, it is shown how the proposed view of ideal functionalities as transition
functions permits expressing general reactive functionalities studied in other works rely-
ing on the UC framework. An interesting direction for future work is to relate the de-
scribed general approach with the systematic methodology proposed by Garay, Kiayias
and Zhou [GKZ08a, GKZ08b] for the specification of ideal functionalities for the Universal
Composability framework. In particular, the presented work deviates slightly from the notion
of canonical functionalities specified in [GKZ08a, GKZ08b], since these models factor out from

8.3. RELATION TO THE UC APPROACH 155

the functionality transition function all aspects related to party corruption and leakage, but
the insights gained on how to specify sound functionalities carry over to this setting.

Functionalities

Recasting ideal functionalities expressed in the UC style amounts to describing a transition
function that emulates the same behaviour. Three examples are now provided: commitments,
oblivious transfer and secure function evaluation.

The commitment [CF01] functionality FCOM is shown in Figure 8.15. It permits a single
commitment operation between two parties, and it operates in three stages: first, it expects
to receive some commit value b from some party idS to some party idR; from that point on, in
stage 1, it allows party idR to check that some value has been committed without revealing
it. Once the open command is received from idA, the functionality enters stage 2 in which
the committed value b can be provided to party idR. Leakage functions reveal the involved
identities and the lengths of inputs and outputs.

The oblivious transfer [CLOS02] functionality FOT is shown in Figure 8.16. Again, it permits
oblivious transfer from some party idS to some party idR, and is structured in three stages.
In the first stage it expects to receive a list of messages list of arbitrary size (the length may
be leaked by the protocol). The sender specifies the identities of the sending and receiving
parties. In the second stage, it accepts an index idx from idR and it returns the corresponding
list element. A single reading is allowed, which puts the functionality in a non responsive
stage 2.

Finally, the secure function evaluation functionality FSFE for a function f with n inputs and
n outputs is given in Figure 8.17. The functionality has two stages. In the first stage it
accepts one input from each party. Once these are all collected, it computes f on these
values and enters stage 2, where each party can collect its corresponding output. Leakage
reveals input and output lengths.

Observe that, contrary to [CF01, CLOS02], the syntax defined in this thesis explicitly distin-
guishes the functional aspect (F) from the leakage associated with its execution (Lin, Lout).
Many similarities can also be identified among the provided examples, which suggests the
construction of these functionalities can be done in a systematic way, such as the explicit
management of states in stF.st, and the leakage of length associated with sensitive input/out-
put values. A rigorous method for converting UC-flavoured ideal functionality descriptions
into this syntax is suggested as future work.

156 CHAPTER 8. SECURE MULTIPARTY COMPUTATION

G2F,π,A(1λ):

(n,F, Lin, Lout)← F
(prms, sk)←$ SMInit(1λ)

hdl← 0

fake← []

(stA, k)←$ A(prms)

For id ∈ [1..k]:
(stid.stL, stid.pub)← SetupKE(1λ, id)

Pub← (pub1, ..., pubk)

For id ∈ [k + 1..n]:
(stA, pubid)←$ A(stA, id,Pub)

Pub← (pub1, ..., pubn)

For id ∈ [1..k]:
stid.ListIn← []; stid.ListOut← []; stid.stage← 0

stid.seqin ← 0; stid.seqout ← 1; stid.inlast ← ε

(Rem1
KE, . . . ,Remn

KE)← Pub

P ← 〈 〈Rem1
KE, . . . ,Remn

KE〉1,...,n ; Box〈F ,Λ〉 〉φkey,p,q

L← {(p, (stid.id, ε)), (q, stid.id)}
stid.stV ← (P,L)

P ∗ ← LAC.Compile(prms, P, L)

b←$ AO(stA)

Oracle Run(hdl, l,msg):

(P, seq, sthdl)← HdlList[hdl]

If P = P ∗: //The agreed protocol.
If (p, (id, ε)) 6∈ L: Return ⊥
If sthdl[id].stage = 0 :

(id, in)← msg

msg′←$ P ∗[sthdl, sk](id,msg)

If stid 6= ε ∧ sthdl[id].key 6∈ fake∧
sthdl[id].δ ∈ {derived, accept}:

key∗←$ {0, 1}1λ

st.fake← (sthdl[id].key, key∗) : fake

Else If sthdl[id].stage = 1 :

(seqin, id, in)← msg

If (seq[id] 6= seqin): Return ⊥
If stid 6= ε: //Honest participant

msg′ ← Λ.Dec(fake(stid.stL.key), in)

If msg′ = (seq[id], out′) :

out← F[stF](id, InList[seq[id]])

stid.OutList[seq[id] + 1]← out

msg′←$ Λ.Enc(fake(sthdl.key[id]),

(seq[id] + 1, {0}|out|))

Else: //Corrupt participant
in∗←$ Λ.Dec(sthdl.key[id], (seq[id] + 1, in))

out← F[stF](id, in)

msg′←$ Λ.Enc(sthdl.key[id], (seq[id] + 1, out))

seq[id]← seq[id] + 2

Else: //Any other program onM.
(id, in)← msg

msg′←$ P ∗[sthdl, st.sk](id,msg)

HdlList[hdl]← (P, seq, sthdl)

Return msg′

Oracle Load(P):

hdl← hdl + 1

For i ∈ L: seq[i]← 0

HdlList← (hdl, seq, ε)

Return hdl

Oracle SetInput(in, id):

If id 6∈ [1..k] Return ⊥
stid.InList← stid.InList + [in]

Oracle Send(id,msg):

If id 6∈ [1..k] Return ⊥
If stid.stage = 0 :

(i, stid.stV)← LAC.Verify(stid.prms, (p, (stid.id, ε)), inlast,

msg, stV)

If i =⊥: Return ⊥
(o, stid.stL)←$ LocKE(stid.stL, i)

stid.inlast ← o

If stid.stL.key 6∈ fake ∧ stid.stL.δ ∈ {derived, accept}:
key∗←$ {0, 1}λ

st.fake← (stid.stL.key, key∗) : fake

If (stid.stL.stKE.δ) = accept : Then stage← 1

msg′ ← (stid.stage, stid.id, o)

Return msg′

If stid.stage = 1 :

If msg = ε :

in← stid.InList[0]

(in1, . . . , ink)← stid.ListInid

stid.ListInid ← (in1, . . . , ink)

stid.InList[stid.seqin]← in

o←$ Λ.Enc(fake(stid.stL.key), (stid.seqin, {0}|in|))
stid.inlast ← o

stid.seqin ← stid.seqin + 2

msg′ ← (stid.stage, stid.id, o)

Return msg′

Else:
msg′ ← Λ.Dec(fake(stid.stL.key),msg)

If msg′ = (stid.seqout, out′) :

stid.ListOut← stid.OutList[stid.seqout] : stid.ListOut

stid.seqout ← stid.seqout + 2

msg′ ← (stid.stage, stid.id, ε)

Return msg′

Else: Return ⊥

Oracle GetOutput(id):

If id 6∈ [1..k] Return ⊥
(out1, . . . , outk)← stid.ListOut

Return out1 || . . . || outi

Figure 8.13: Second hop of the proof.

8.3. RELATION TO THE UC APPROACH 157

G3F,π,A(1λ):

(n,F, Lin, Lout)← F
(prms, sk)←$ SMInit(1λ)

hdl← 0

fake← []

forgeAuth← F

authList← []

(stA, k)←$ A(prms)

For id ∈ [1..k]:
(stid.stL, stid.pub)← SetupKE(1λ, id)

Pub← (pub1, ..., pubk)

For id ∈ [k + 1..n]:
(stA, pubid)←$ A(stA, id,Pub)

Pub← (pub1, ..., pubn)

For id ∈ [1..k]:
stid.ListIn← []; stid.ListOut← []; stid.stage← 0

stid.seqin ← 0; stid.seqout ← 1; stid.inlast ← ε

(Rem1
KE, . . . ,Remn

KE)← Pub

P ← 〈 〈Rem1
KE, . . . ,Remn

KE〉1,...,n ; Box〈F ,Λ〉 〉φkey,p,q

L← {(p, (stid.id, ε)), (q, stid.id)}
stid.stV ← (P,L)

P ∗ ← LAC.Compile(prms, P, L)

b←$ AO(stA)

If forgeAuth = T: b←$ {0, 1}

Oracle Run(hdl, l,msg):

(P, seq, sthdl)← HdlList[hdl]

If P = P ∗: //The agreed protocol.
If (p, (id, ε)) 6∈ L: Return ⊥
If sthdl[id].stage = 0 :

(id, in)← msg

msg′←$ P ∗[sthdl, sk](id,msg)

If stid 6= ε ∧ sthdl[id].key 6∈ fake∧
sthdl[id].δ ∈ {derived, accept}:

key∗←$ {0, 1}1λ

st.fake← (sthdl[id].key, key∗) : fake

Else If sthdl[id].stage = 1 :

(seqin, id, in)← msg

If (seq[id] 6= seqin): Return ⊥
If stid 6= ε: //Honest participant

If msg′ = (seq[id], out′) :

out← F[stF](id, InList[seq[id]])

stid.OutList[seq[id] + 1]← out

msg′←$ Λ.Enc(fake(sthdl.key[id]),

(seq[id] + 1, {0}|out|))

authList← (fake(sthdl.key[id]),

(seq[id] + 1, {0}|out|)) : authList

Else: //Corrupt participant
in∗←$ Λ.Dec(sthdl.key[id], (seq[id] + 1, in))

out← F[stF](id, in)

msg′←$ Λ.Enc(sthdl.key[id], (seq[id] + 1, out))

seq[id]← seq[id] + 2

Else: //Any other program onM.
(id, in)← msg

msg′←$ P ∗[sthdl, st.sk](id,msg)

HdlList[hdl]← (P, seq, sthdl)

Return msg′

Oracle Load(P):

hdl← hdl + 1

For i ∈ L: seq[i]← 0

HdlList← (hdl, seq, ε)

Return hdl

Oracle SetInput(in, id):

If id 6∈ [1..k] Return ⊥
stid.InList← stid.InList + [in]

Oracle Send(id,msg):

If id 6∈ [1..k] Return ⊥
If stid.stage = 0 :

(i, stid.stV)← LAC.Verify(stid.prms, (p, (stid.id, ε)), inlast,msg,

msg, stV)

If i =⊥: Return ⊥
(o, stid.stL)←$ LocKE(stid.stL, i)

stid.inlast ← o

If stid.stL.key 6∈ fake ∧ stid.stL.δ ∈ {derived, accept}:
key∗←$ {0, 1}λ

st.fake← (stid.stL.key, key∗) : fake

If (stid.stL.stKE.δ) = accept : Then stage← 1

msg′ ← (stid.stage, stid.id, o)

Return msg′

If stid.stage = 1 :

If msg = ε :

in← stid.InList[0]

(in1, . . . , ink)← stid.ListInid

stid.ListInid ← (in1, . . . , ink)

stid.InList[stid.seqin]← in

o←$ Λ.Enc(fake(stid.stL.key), (stid.seqin, {0}|in|))
authList← (fake(sthdl.key[id]), (stid.seqin, {0}|in|)):

authList

stid.inlast ← o

stid.seqin ← stid.seqin + 2

msg′ ← (stid.stage, stid.id, o)

Return msg′

Else:
msg′ ← Λ.Dec(fake(stid.stL.key),msg)

If msg′ 6=⊥ ∧ (fake(stid.stL.key),msg) 6∈ authList:
forgeAuth← T

If msg′ = (stid.seqout, out′) :

stid.ListOut← stid.OutList[stid.seqout] : stid.ListOut

stid.seqout ← stid.seqout + 2

stid.out← out′

msg′ ← (stid.stage, stid.id, ε)

Return msg′

Else: Return ⊥

Oracle GetOutput(id):

If id 6∈ [1..k] Return ⊥
(out1, . . . , outk)← ListOutid

Return out1 || . . . || outi

Figure 8.14: Third hop of the proof.

158 CHAPTER 8. SECURE MULTIPARTY COMPUTATION

F[stF](id, in):

If (stF = ε) :

stF.st = 0; stF.ids = ε; stF.com = ε

If (in.type = Commit ∧ stF.st = 0) :

stF.st← 1; stF.ids← (id, in.id)

stF.com← in.b

If (in.type = Open ∧ stF.st = 1):
If (id, in.id) = (stF.ids) :

stF.st← 2

If in.type = GetOutput ∧ stF.st = 2) :

If (in.id, id) = (stF.ids):
Return (stF.st, stF.ids, stF.com)

Return (stF.st, stF.ids, ε)

Lin(id, in, stF):

(type, id, b)← in

Return (type, id, |b|)

Lout(id, out, stF):

(st, ids, b)← out

Return (st, ids, |b|)

Figure 8.15: Description of functionality FCOM.

F[stF](id, in):
If (stF = ε) :

stF.st = 0; stF.ids = ε; stF.list = ε

If (in.type = Send ∧ stF.st = 0):
stF.st← 1; stF .ids← (id, in.id)

stF.list← in.list

If (in.type = Receive ∧ stF.st = 1):
If stF.ids = (in.id, id):

stF.st← 2

Return (stF.st, stF.list[in.idx])

Return (stF.st, ε)

Lin[stF](id, in):

(type, id, i)← in

Return (type, id, |i|)

Lout(id, out, stF):

(st, ids, o)← out

Return (st, ids, |o|)

Figure 8.16: Description of functionality FOT.

F[stF](id, in):

If (stF = ε) :

stF.st = 0

stF.inputs = ε; stF.outputs = ε

If (in.type = Input ∧ stF.st = 0)

If stF.inputs[id] = ε

stF.inputs[id]← in.msg

If stF.inputs[i] 6= ε, for all i ∈ [1..n]:
stF.outputs← f(stF.inputs)

stF.st← 1

If (in.type = GetOutput ∧ stF.st = 1):
Return (stF.st, stF.outputs[id])

Return (stF.st, ε)

Lin[stF](id, in):

(type, i)← in

Return (type, |i|)

Lout[stF](id, out):

(st, o)← out

Return (st, |o|)

Figure 8.17: Description of functionality FSFE.

Chapter 9

Experimental results

In Section 8.2, we proposed an implementation of an MPC protocol relying on trusted
hardware technology. On this chapter, we present implementations for the proposed protocol
in Intel’s SGX, overview their vulnerabilities against side-channel attacks, and provide ex-
perimental measurements allowing for conclusions to be drawn regarding protocol feasibility.
This is accompanied by similar experimental runs of the same operations on a software-based
MPC framework, to be regarded as a baseline for the proposed approach.

9.1 Methodology and micro-benchmarks

Experimentation presents two implementations of the proposed MPC protocol—sgx-mpc-
mbed and sgx-mpc-nacl— which differ in the underlying cryptography: sgx-mpc-mbed relies
on the mbed TLS (formerly PolarSSL) library and sgx-mpc-nacl which relies on the NaCl.
Furthermore, sgx-mpc-mbed uses standard RSA technology for the key exchange stage, and
an AES128-CTR and HMAC-SHA256 Encrypt-Then-Mac construction for authenticated
encryption, whereas sgx-mpc-nacl uses elliptic-curves both for key exchange (Diffie-Hellman)
and digital signatures, and a combination of the Salsa20 and Poly1305 encryption and
authentication schemes [BLS12] for authenticated encryption.

Both implementations rely on Intel’s Software Development Kit (SDK) for dealing with
the SGX low-level operations. These include loading a piece of code into an IEE (the
Load abstraction), calling a top-level function within the IEE (the Run abstraction), and
constructing an attested message (first getting a MAC’ed message within the IEE, and
then using the quoting enclave to convert it into a digital signature). Furthermore, both
implementations build on top of this cryptographic underpinning and share the structure in
Figure 9.1. They employ the LAC scheme proposed in Section 5.3, and include wrappers
that match the abstractions of digital signatures and authenticated encryption. These are
then used to construct the secure bootstrapping protocol (AttKE) that enables each party to

159

160 CHAPTER 9. EXPERIMENTAL RESULTS

Secure
MPC

Client-side and server-side
protocol (code running both

inside and outside IEE)

Boot-
strap,
Box

Secure channel bootstrapping
and encrypted I/O stages of the
protocol (functionality agnostic)

AttKE,
secure
channel

Attested key agreement
and secure communications

LAC,
KE,

AEAD

Attestation and cryptographic
substract (key exchange and
authenticated encryption)

SGX,
crypto
library

Intel’s SDK and either
mbed TLS or NaCl

Figure 9.1: Bird’s eye view of the implementations.

establish an independent secret key, and a secure channel that uses this key to communicate
with the refined Box construction in Figure 8.6 running inside the enclave. Finally, both
implementations of this Box are agnostic of the functionality that should be computed by
the protocol, and can be linked to arbitrary functionality implementations, provided that
these comply with a simple labelled I/O interface. The top-level interface to the proposed
protocol includes the code that should be run inside the IEE, the code that runs outside the
IEE in the remote machine to perform the book-keeping operations and the client-side code
that permits bootstrapping a secure channel and then send inputs/receive outputs from the
functionality.

The evaluation was performed on a SGX-enabled platform, equipped with an Intel Core i7-
6700 processor (3.4 MHz) and 8 GB DDR4 RAM, running 64 bit Ubuntu 14.04. Performing
fine grained performance measurements for SGX is a challenging task due to the lack of
methods to directly measure the runtime of subcomponents inside an enclave, leading to
noisy results. Neither system calls to request time from the OS nor hardware features to
directly obtain timing values, like the Time Stamp Counter of the CPU, are available within
an enclave [Cor16].1 This means all timing measurements must be performed outside the
enclave, i.e., measuring the time elapsed between entering an enclave until the execution
of the enclave ends. For measuring the performance of individual components inside an
enclave, a differential approach was employed: the runtime of an enclave was measured with
and without the component of interest. Afterwards, the execution times were compared to
determine the fraction of the runtime associated with the evaluated component. However,
these methods cause the measurements to be noisy, e.g., due to interruption of the enclave
execution because of system interrupts. To eliminate the noise, or at least minimize its effect,

1The time stamp counter will be available in SGX version 2 [Cor16], however, SGX2 hardware is not
publicly available at the time of development.

9.2. SIDE CHANNELS AND RESILIENCE AGAINST TIMING ATTACKS 161

each measurement was repeated 100 times and only the average value was reported.

Micro-Benchmarks

The first results are protocol agnostic, and show the SGX-specific inherent overhead of creat-
ing an enclave, invoking an enclave, generating MAC-based reports and signature generation
by the quoting enclave (QE). Table 9.1 lists the runtime of those components with fixed run
times. The invocation of an enclave cannot be measured on its own. As such, the time to
enter an enclave and immediately returning was measured, specified as SGX context switch
in Table 9.1. However, this measurement comprises both the time required for entering the
enclave, as well as the time required for leaving the enclave.

Component Time (ms)
SGX context switch 0.0054
MAC-based report (ERPORT) 0.2887
QE signatur 23.930

Table 9.1: SGX Micro-Benchmarks

The creation time of an SGX enclave is dependent on its size. The initial enclave state must
be copied into the enclave memory area; the execution time of this operation is, as would
be expected, linear in the size of the enclave. Additionally, the initial state of the enclave is
“measured” (i.e., hashed with SHA-256) during enclave creation. Again, this operation takes
an amount of time that is linear in the size of the enclave.2 The creation time of an enclave
was measured to be 202.55µs+ S · 0.72µs with enclave size S in KB.

9.2 Side channels and resilience against timing attacks

Section 4.4 references several works pointing out that IEE-enabled systems such as Intel’s
SGX do not offer more protection against side-channel attacks than traditional microproces-
sors. This is a relevant concern, since the IEE trust model adopted throughout this work
admits that the code outside IEEs is potentially malicious and that the machine is under
the control of an untrusted party. In this respect, there are two aspects to this problem
that should be considered separately. The first aspect is related to the production of the
IEE-enabled hardware/firmware itself and the protection of the long-term secrets that are
used by the attestation security module. If the computations performed by the attestation
infrastructure itself are vulnerable to side-channel attacks, then there is nothing that can be

2SGX does not require the measurement of the entire initial memory state of an enclave. However, the
SDK’s default behaviour is to measure the entire enclave (code and data) which is what is required for this
MPC protocol.

162 CHAPTER 9. EXPERIMENTAL RESULTS

done at the protocol design/implementation level. This aspect of trust is within the remit of
the equipment manufacturers.

An orthogonal issue is the possibility that software running inside an IEE leaks part of
its state or short-term secrets via side channels. Here one should distinguish between
software observations and hardware/physical observations. In the former, software co-located
in the machine observes timing channels based on memory access patterns, control flow,
branch prediction, cache-based based attacks [CD16], page-fault side channels [XCP15], etc.
Protection against this type of side-channel attacks has been widely studied in the practical
crypto community, where a consensus exists that writing so-called constant-time software
is the most effective countermeasure [Ber05, Lan13]. As mentioned above, constant-time
software has the property that the entire sequence of memory addresses (in both data and
code memory) accessed by a program can be predicted in advance from public inputs, e.g.,
the length of messages. When it comes to hardware/physical side-channel attacks such as
those relying on temperature measurements, power analysis, or electromagnetic radiation, the
effectiveness of software countermeasures is very limited, and improving hardware defences
again implies obtaining additional guarantees from the equipment manufacturer.

For clarity, recall that the two implementations differ in the way they deal with timing chan-
nels significantly: while sgx-mpc-nacl enforces a strict constant-time policy that is consistent
with the IEE trust model, sgx-mpc-mbed relies on a standard TLS implementation that was
not designed to deal with attacks by an adversary co-located in the same machine.

Countermeasures against timing attacks

To assess the practical impact of assuming a stronger attack model in which the remote party
may launch timing attacks against implementations running inside enclaves, the two imple-
mentations of were compared. More specifically, the focus was to evaluate the performance
of the individual steps in the protocol, namely the key exchange between IEE with an input
party, and the Box component which decrypts all inputs and encrypts all outputs in stage
two of the protocol.3

Table 9.2 lists the measurements for the individual components of the two proposed imple-
mentations, sgx-mpc-nacl and sgx-mpc-mbed. The reported time comprises the key exchange
with one input party, and so the overhead will accumulate linearly with an increasing
number of input parties. Interestingly, the Box components of the sgx-mpc-nacl imple-
mentation is faster than in the sgx-mpc-mbed implementation, which shows that highly
optimized constant-time software (deploying cryptographic primitives designed specifically
for this purpose) can be faster than their non-constant-time counterparts, as argued for

3Note that, when such an attacker is considered, not only the cryptographic components must be
implemented following the constant-time coding policies, but also the code that implements the functionality
itself (!), and so an additional penalty may be payed in addition to the overhead reported here.

9.3. COMPARISON WITH STATE-OF-THE-ART MPC PROTOCOLS 163

example in [BLS12]. In the key exchange stage, the better performance of RSA public-key
operations (encryption and signature verification) gives sgx-mpc-mbed and advantage.

Component sgx-mpc-mbed (ms) sgx-mpc-nacl (ms)
Key exchange (Stage 1) 35.17 127.6
Box (Stage 2) 0.036 0.012

Table 9.2: LAC Components Benchmarks

Throughout the remainder of the Chapter, protocol comparison with other solutions will
report to the evaluation results for constant-time implementation sgx-mpc-nacl. The overhead
of sgx-mpc-nacl over sgx-mpc-mbed occurs mostly in the key exchange phase, this means that
from the execution times of sgx-mpc-mbed can reasonably be inferred from the sgx-mpc-nacl
results.

9.3 Comparison with state-of-the-art MPC protocols

The proposed implementation is compared with measurements performed using the ABY
framework, described in Section 3.2. By choosing ABY for comparison, one was able to
evaluate it on the same platform used for assessing the protocol, therefore avoiding differences
due to performance disparities of heterogeneous evaluation platforms. Although it is specific
to the two-party secure computation setting, ABY is representative of state-of-the-art MPC
implementations and it is expected for results for other frameworks such as Sharemind and
SPDZ, described in the same Section, to lead to similar conclusions. Indeed, the crux of the
aforementioned performance gains resides in the fact that the proposed solution does not
require encoding the computation in circuit form, which happens in one form or another for
all of the mentioned protocols.4

Evaluation was compared with four different secure two-party computation use cases: min-
imum, Hamming distance, private set intersection, and AES. Similarly to the proposed
approach, the ABY protocol also has two phases: a preparation phase and an online phase.
The preparation phase comprises the key exchange between the input parties by means of
oblivious transfer, and the generation of the garbled circuit representing the desired function.
In the online phase the GC gets evaluated and the result are send back to the output party.
In this thesis’ MPC protocol, the preparation phase is used to establish a secure channel
between the IEE and the input parties. The online phase of the protocol comprises the
decryption of inputs in the Box component, the evaluation of the payload function, and the
encryption of the results, again by the Box component.

4It should also be noted that ABY assumes a passive adversary, which is weaker than the one considered
in this thesis; and nevertheless, performance gains are significant.

164 CHAPTER 9. EXPERIMENTAL RESULTS

Phase ABY sgx-mpc-nacl
Preparation (ms) 196.3 127.7
Online (ms) 0.404 0.024
Total (ms) 196.7 127.7

Table 9.3: Minimum of two inputs

Determination of minimum

Table 9.3 shows the performance of the two stages of ABY and sgx-mpc-nacl for determining
the minimum of two inputs, 32 bits each. For both phases the runtime of sgx-mpc-nacl is
shorter than ABY’s runtime; however the performance gains of this approach are not too
noticeable for such low-demanding computations, since the preparation stage takes the large
majority of the overall runtime (99.79% for ABY and 99.98% for ours).

AES

The results for comparing the secure multi-party computation of AES with ABY and with
sgx-mpc-nacl are presented in Table 9.4. AES has become a standard for evaluating MPC
protocols, hence, evaluation results for AES are available in a number of related works.

Phase ABY sgx-mpc-nacl
Preparation (ms) 197.9 115.84
Online (ms) 3.249 0.661
Total (ms) 201.1 116.50

Table 9.4: AES – 128 bit key and 128 bit block size

The most noticeable difference is in the setup, which in ABY implies a larger preparation
stage for the AES, while the preparation stage for the MPC protocol proposed is always fixed
to the establishment of secure channels. While this presents some performance gains, the
following examples will explore increasing input sizes for computation, and will allow for a
more clear display of performance gain with respect to ABY.

Hamming Distance

Next, ABY is compared with sgx-mpc-nacl for computing the Hamming Distance of two
inputs. The performance was evaluated for different input sizes to demonstrate the scaling
behaviour for the different solutions, as detailed in Table 9.5.

Again, the preparation phase as well as the online phase of sgx-mpc-nacl is faster, compared
to ABY. However, the more noticeable difference relies on how much faster performance in

9.3. COMPARISON WITH STATE-OF-THE-ART MPC PROTOCOLS 165

Phase Preparation (ms) Online (ms) Total (ms)
Protocol ABY sgx-mpc-nacl ABY sgx-mpc-nacl ABY sgx-mpc-nacl

In
pu

t
si

ze
(b
it
s) 160 196.3 115.7 0.752 0.050 197.1 117.75

1600 196.7 115.7 1.819 0.302 198.5 116.00
16000 201.6 115.7 13.14 2.798 214.7 118.50
160000 226.2 115.2 144.4 27.77 370.6 142.97

Table 9.5: Hamming distance with different input sizes

ABY degrades with increasing input sizes, when compared to the proposed protocol. This
is the expected outcome, since the actual computation is performed in the clear, within an
IEE.

Private set intersection

Table 9.6 lists the comparative results for private set intersection. Consistently to the
previous use cases, the runtime of ABY’s preparation phase is increasing with the size
of the input data, while sgx-mpc-nacl’s preparation phase remains constant (modulo some
measurement inaccuracies). Additionally, the growth in runtime of ABY’s online phase is
much stronger compared to sgx-mpc-nacl, for the same reasons listed previously.

Phase Preparation Online Total
Protocol ABY sgx-mpc-nacl ABY sgx-mpc-nacl ABY sgx-mpc-nacl

Se
t
si
ze

100 224.8 115.8 1.084 0.043 225.9 115.84
1000 368.1 115.8 2.168 0.199 370.3 116.00

10,000 1442.2 115.8 12.88 1.758 1455.1 117.56
100,000 10,699 115.7 109.5 17.39 10,808 133.09

1,000,000 84,097 115.7 1616.0 173.1 85,713 288.80

Table 9.6: Private set intersection with different set sizes

In comparison to ABY, the preparation phase and online phase are shorter with sgx-mpc-
nacl, and consequently the overall runtime is faster as well. In general, sgx-mpc-nacl is
faster for all the testing computations performed. However, the gains are considerably more
noticeable when input size and computation are increased. This has the highest significance
on evaluation of the private set intersection with the largest input size (1 mill.), where the
proposed implementation is roughly 300 times faster.

166 CHAPTER 9. EXPERIMENTAL RESULTS

Chapter 10

Conclusion

Emerging technological developments allow for programmers to design software to be exe-
cuted within protected execution environments, with strict enforcement of resource isolation
– IEEs. A major advantage of employing IEE-enabling hardware in software design comes
from the fact that these systems can produce cryptographic signatures of code running
within these environments, and of outputs produced by them. Having feasible hardware-
based runtime guarantees allows for the design of security-critical applications that would
otherwise require computationally heavy cryptographic mechanisms such as input commit-
ment and zero-knowledge proofs. This has led to a flurry of publications making use of
these hardware assumptions to enable highly efficient protocols for applications such as
secure map-reduce operations [SCF+15b], Functional encryption [FVBG], private genome
analysis [SAM+17], block-chain systems [MHWK16], two-party computation [GMF+16] or
secure database management [FBB+17].

However, performing a provable security analysis of systems employing this novel approach of
IEEs is non-trivial. This is a direct consequence of the paradigm imposed by these hardware
assumptions, namely the lack of long-term uniquely identifying cryptographic material, and
the requirement of loading code as a monolithic program where state is necessarily shared.
Towards this goal, Attested Computation and Labelled Attested Computation are crypto-
graphic primitives proposed to abstract the behaviour of IEE-enabling hardware, and for
which one can rigorously specify the obtained security properties.

In this context, a highly efficient key-exchange protocol is proposed, considering an asym-
metric setting where a participant wants to establish a secure channel with a (potentially
malicious) remote machine equipped with an IEE. Combining such a key-exchange protocol
with the previously specified guarantees of AC/LAC also allows for proving utility theorems
where key secrecy withstands composition of key-exchange protocols with arbitrary code.

The application of these theorems enables the design of protocols for Secure Outsourced
Computation, Secure Function Evaluation and Secure Multiparty Computation. A significant

167

168 CHAPTER 10. CONCLUSION

benefit of developing security-critical applications taking such an approach is that all results
are accompanied by specific security properties and validating cryptographic proofs. By
using isolated execution environments and mechanisms for output attestation in the process
of secure channel establishment, we can converge to algorithm designs that are theoretically
much more efficient than their software-based counterparts. This is an intuitive result, since
most of the cryptographic effort is made on the key-exchange stage (preparation) and the
processing stage (online) can be done mostly in the clear within IEEs. Experimental results
demonstrate the magnitude of these gains, especially when considering scalability, where the
efficiency of the online phase is most relevant.

Future work

The contributions proposed in this thesis and the obtained results suggest additional research
directions. The most promising are now listed.

• Exploring other real-world applications using the developed results. For instance,
this approach can be used as a mechanism for secure data processing to be included
on the (originally unrelated) work of [MPP+17], where a framework for employing
cryptographic mechanisms for NoSQL execution is presented. This would enable for
a more extensive evaluation of IEEs under the secure database processing use case,
where NoSQL benchmarks can be employed for comparing IEE-based techniques and
standard privacy-preserving cryptographic approaches.

• Extending theoretical MPC results to consider adaptively corrupting adversaries. The
security model proposed in Chapter 8 considers adversaries behaving arbitrarily, with
static corruptions (the participants corrupted by the adversary must be fixed a priori).
Intuitively, the presented MPC approach should also withstand adversaries that trigger
corruptions while the protocol is ongoing (adaptive corruptions), however a full rigorous
proof is yet to be formalised.

• Develop side-channel countermeasures for software running within IEEs. The presented
implementation of sgx-mpc-nacl makes use of the NaCl cryptographic library with
constant-time algorithms, which is often considered to be the most efficient countermea-
sure to these attacks, however it must also be the case for the actual function running
securely to run in constant-time. This motivates orthogonal work on the design of
an additional constant-time verification stage before allowing for any function to be
executed within the IEE.

• Implement and produce experimental results for ARM TrustZone. Despite the signifi-
cant number of publications for TrustZone-enabled applications, no actual implementa-
tion of this specific flavour of key-exchange and secure computation exists in TrustZone.

169

One expects the results and gains to be comparable, however it would be interesting
to produce experimental values for efficiency comparison, as it might provide insights
regarding under which conditions each hardware can overperform its alternative.

• Explore alternative trusted hardware frameworks for protocols relying on IEEs. Recent
contributions, such as Sanctum [CLD] and TrustLite [KSSV14], propose interesting al-
ternatives to the SGX/TrustZone. In particular, it would be interesting to validate and
refine our abstraction to capture the machine behaviour delimited by these approaches.

• Employ computer-aided cryptographic proof assistants to verify the presented security
proofs. To further validate the theoretical results proposed, the usage of automated
tools for cryptographic proof verification such as EasyCrypt 1 or ProVerif 2 would allow
for a higher level or rigour in the mathematical verification of results, and thus reduce
the possibility of human error.

• Develop protocols that rely on LAC to achieve the required security properties. One of
the main advantages of our approach is its modularity, as the establishment of multiple
secure channels may be overkill some use cases. The implementation of a protocol using
LAC for applications such as a public bulletin board, where integrity and verifiability
are necessary but confidentiality is not, might provide even better experimental results
for execution time and scalability.

1https://www.easycrypt.info/trac/
2http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

https://www.easycrypt.info/trac/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

170 CHAPTER 10. CONCLUSION

References

[AAD+16] Tigist Abera, N Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman,
Andrew Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. C-flat: control-
flow attestation for embedded systems software. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pages
743–754. ACM, 2016.

[ABL+04] Mikhail Atallah, Marina Bykova, Jiangtao Li, Keith Frikken, and Mercan
Topkara. Private collaborative forecasting and benchmarking. In Proceedings
of the 2004 ACM workshop on Privacy in the electronic society, pages 103–114.
ACM, 2004.

[AF04] Tiago Alves and Don Felton. Trustzone: Integrated hardware and software
security. ARM white paper, 3(4):18–24, 2004.

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma
Ohara. High-throughput semi-honest secure three-party computation with
an honest majority. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 805–817. ACM, 2016.

[AGJS13] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology for
cpu based attestation and sealing. InWorkshop on Hardware and Architectural
Support for Security and Privacy, page 10, 2013.

[AL17] Na-Young Ahn and Dong Hoon Lee. Countermeasure against side-channel
attack in shared memory of trustzone. arXiv preprint arXiv:1705.08279, 2017.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More
efficient oblivious transfer and extensions for faster secure computation. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communi-
cations security, pages 535–548. ACM, 2013.

[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More
efficient oblivious transfer extensions with security for malicious adversaries.
EUROCRYPT (1), 9056:673–701, 2015.

171

172 REFERENCES

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-
interactive secure computation based on cut-and-choose. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, pages 387–404. Springer, 2014.

[And] Ross Anderson. Security engineering: A guide to building dependable
distributed systems. 2001.

[ARM09] ARM ARM. Security technology building a secure system using trustzone
technology (white paper). ARM Limited, 2009.

[BBB+17] Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo Portela,
Ahmad-Reza Sadeghi, Guillaume Scerri, and Bogdan Warinschi. Secure
multiparty computation from sgx. In Financial Cryptography, volume 10322.
Springer, 2017.

[BCC04] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous
attestation. In Proceedings of the 11th ACM Conference on Computer and
Communications Security, CCS 2004, Washington, DC, USA, October 25-29,
2004, pages 132–145. ACM, 2004.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler,
Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, et al. Secure multiparty computation
goes live. In International Conference on Financial Cryptography and Data
Security, pages 325–343. Springer, 2009.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Omer Paneth, and Rafail
Ostrovsky. Succinct non-interactive arguments via linear interactive proofs.
In Theory of Cryptography, pages 315–333. Springer, 2013.

[BCK+14] Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky,
and Gregory Neven. Better zero-knowledge proofs for lattice encryption and
their application to group signatures. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 551–
572. Springer, 2014.

[BCL08] Ernie Brickell, Liqun Chen, and Jiangtao Li. A new direct anonymous
attestation scheme from bilinear maps. In Trusted Computing - Challenges
and Applications, First International Conference on Trusted Computing and
Trust in Information Technologies, Trust 2008, Villach, Austria, March 11-
12, 2008, Proceedings, volume 4968 of Lecture Notes in Computer Science,
pages 166–178. Springer, 2008.

REFERENCES 173

[BCLK17] Marcus Brandenburger, Christian Cachin, Matthias Lorenz, and Rüdiger
Kapitza. Rollback and forking detection for trusted execution environments
using lightweight collective memory. arXiv preprint arXiv:1701.00981, 2017.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: a system for
secure multi-party computation. In Proceedings of the 15th ACM conference
on Computer and communications security, pages 257–266. ACM, 2008.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In
Annual International Cryptology Conference, pages 420–432. Springer, 1991.

[Bea95] Donald Beaver. Precomputing oblivious transfer. In Annual International
Cryptology Conference, pages 97–109. Springer, 1995.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on aes, 2005. http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf.

[BGN+16] Robert Buhren, Shay Gueron, Jan Nordholz, Jean-Pierre Seifert, and Julian
Vetter. Fault attacks on encrypted general purpose compute platforms. arXiv
preprint arXiv:1612.03744, 2016.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT), 6(3):13, 2014.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway.
Efficient garbling from a fixed-key blockcipher. In Security and Privacy (SP),
2013 IEEE Symposium on, pages 478–492. IEEE, 2013.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 784–796. ACM, 2012.

[BJL12] Dan Bogdanov, Roman Jagomägis, and Sven Laur. A universal toolkit for
cryptographically secure privacy-preserving data mining. In Pacific-Asia
Workshop on Intelligence and Security Informatics, pages 112–126. Springer,
2012.

[BKLP15] Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof
Pietrzak. Efficient zero-knowledge proofs for commitments from learning with
errors over rings. In European Symposium on Research in Computer Security,
pages 305–325. Springer, 2015.

[BKLS16a] Dan Bogdanov, Liina Kamm, Sven Laur, and Ville Sokk. Implementation and
evaluation of an algorithm for cryptographically private principal component

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

174 REFERENCES

analysis on genomic data. In Proceedings of the 3rd International Workshop
on Genome Privacy and Security (GenoPri’16), GenoPri ’16, pages 1–8, 2016.

[BKLS16b] Dan Bogdanov, Liina Kamm, Swen Laur, and Ville Sokk. Rmind: a
tool for cryptographically secure statistical analysis. IEEE Transactions on
Dependable and Secure Computing, 2016.

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher block
chaining. In CRYPTO, volume 839 of Lecture Notes in Computer Science,
pages 341–358. Springer, 1994.

[BL11] Ernie Brickell and Jiangtao Li. Enhanced privacy id from bilinear pairing for
hardware authentication and attestation. International Journal of Information
Privacy, Security and Integrity 2, 1(1):3–33, 2011.

[Bla79] George Robert Blakley. Safeguarding cryptographic keys. Proc. of the National
Computer Conference1979, 48:313–317, 1979.

[BLLP14] Dan Bogdanov, Peeter Laud, Sven Laur, and Pille Pullonen. From input
private to universally composable secure multi-party computation primitives.
In Computer Security Foundations Symposium (CSF), 2014 IEEE 27th, pages
184–198. IEEE, 2014.

[BLS12] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of
a new cryptographic library. In LATINCRYPT, volume 7533 of Lecture Notes
in Computer Science, pages 159–176. Springer, 2012.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for
fast privacy-preserving computations. In European Symposium on Research in
Computer Security, pages 192–206. Springer, 2008.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudorandom bits. SIAM journal on Computing, 13(4):850–864,
1984.

[BMD+17] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure: Sgx
cache attacks are practical. arXiv preprint arXiv:1702.07521, 2017.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of
secure protocols. In Proceedings of the twenty-second annual ACM symposium
on Theory of computing, pages 503–513. ACM, 1990.

[BMS+15] Ferdinand Brasser, Hiva Mahmoodi, Ahmad-Reza Sadeghi, Martin Haerterich,
Ágnes Kiss, Michael Stausholm, Cem Kazan, Sander Siim, Manuel Barbosa,

REFERENCES 175

Bernardo Portela, Meilof Veeningen, Niels de Vreede, Antonio Zilli, and Stelvio
Cimato. PRACTICE Deliverable D12.2: adversary, trust, communication and
system models, 2015. Available from http://www.practice-project.eu.

[BNB+15] Niklas Buescher, Peter Nordholt, Dan Bogdanov, Roman Jagomägis, Jaak
Randmets, José Bacelar Almeida, Bernardo Portela, and Hugo Pacheco.
PRACTICE Deliverable D12.3: formal verification requirements, 2015. Avail-
able from http://www.practice-project.eu.

[BNTW12] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-
performance secure multi-party computation for data mining applications.
International Journal of Information Security, 11(6):403–418, 2012.

[Bog13] Dan Bogdanov. Sharemind: programmable secure computations with practical
applications. PhD thesis, 2013.

[BoSV16] Dan Bogdanov, Marko J oemets, Sander Siim, and Meril Vaht. Privacy-
preserving tax fraud detection in the cloud with realistic data volumes.
Technical Report T-4-24, Cybernetica AS, http://research.cyber.ee/.,
2016.

[BPS+16] Manuel Barbosa, Bernardo Portela, Berry Schoenmakers, Niels de Vreede,
Guilaume Scerri, and Bogdan Warinschi. PRACTICE Deliverable D12.3:
efficient verifiability and precise specification of secure computation function-
alities, 2016. Available from http://www.practice-project.eu.

[BPSW16] Manuel Barbosa, Bernardo Portela, Guillaume Scerri, and Bogdan Warinschi.
Foundations of hardware-based attested computation and application to SGX.
In EuroS&P, pages 245–260. IEEE, 2016.

[BR05] Mihir Bellare and Phillip Rogaway. Introduction to modern cryptography.
Ucsd Cse, 207:207, 2005.

[Bra93] Stefan Brands. Untraceable off-line cash in wallet with observers. In Annual
International Cryptology Conference, pages 302–318. Springer, 1993.

[Bra13] Luís TAN Brandão. Secure two-party computation with reusable bit-
commitments, via a cut-and-choose with forge-and-lose technique. In In-
ternational Conference on the Theory and Application of Cryptology and
Information Security, pages 441–463. Springer, 2013.

[BSCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. Snarks for c: Verifying program executions succinctly and in
zero knowledge. In Advances in Cryptology–CRYPTO 2013, pages 90–108.
Springer, 2013.

http://www.practice-project.eu
http://www.practice-project.eu
http://research.cyber.ee/
http://www.practice-project.eu

176 REFERENCES

[BSCG+15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and
Madars Virza. Secure sampling of public parameters for succinct zero
knowledge proofs. In Security and Privacy (SP), 2015 IEEE Symposium on,
pages 287–304. IEEE, 2015.

[BSCTV14a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable
zero knowledge via cycles of elliptic curves. In International Cryptology
Conference, pages 276–294. Springer, 2014.

[BSCTV14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct
non-interactive zero knowledge for a von neumann architecture. In USENIX
Security Symposium, pages 781–796, 2014.

[BSWW13] Christina Brzuska, Nigel P. Smart, Bogdan Warinschi, and Gaven J. Watson.
An analysis of the EMV channel establishment protocol. In 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013, pages 373–386. ACM, 2013.

[BTS+17a] Dan Bogdanov, Karl Tarbe, Ville Sokk, João Paulo, Francisco Maia, Tiago
Oliveira, Rogério Pontes, and Bernardo Portela. SAFECLOUD Deliverable
D3.5: secret-sharing and order-preserving encryption based private computa-
tion, 2017. Available from http://www.safecloud-project.eu/.

[BTS+17b] Dan Bogdanov, Karl Tarbe, Ville Sokk, João Paulo, Francisco Maia, and
Bernardo Portela. SAFECLOUD Deliverable D3.4: non-elastic restricted
secure sql engine, 2017. Available from http://www.safecloud-project.eu/.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption
from ring-lwe and security for key dependent messages. In Annual cryptology
conference, pages 505–524. Springer, 2011.

[CAGAA+13] R An C Anetti, Ju An A G Ar Ay, et al. Advances in cryptology-crypto 2013,
2013.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136–145. IEEE Computer Society, 2001.

[CC+08] Jan Camenisch, Rafik Chaabouni, et al. Efficient protocols for set membership
and range proofs. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 234–252. Springer, 2008.

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally
composable security for standard multiparty computation. In CRYPTO (2),
volume 9216 of Lecture Notes in Computer Science, pages 3–22. Springer,
2015.

http://www.safecloud-project.eu/
http://www.safecloud-project.eu/

REFERENCES 177

[CD] Victor Costan and Srinivas Devadas. Intel sgx explained. Technical report,
Cryptology ePrint Archive, Report 2016/086, 20 16. http://eprint. iacr. org.

[CD16] Victor Costan and Srinivas Devadas. Intel SGX explained, 2016.

[CDN05] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty
computation, an introduction. Contemporary cryptology, pages 41–87, 2005.

[CDVdG87] David Chaum, Ivan B Damgård, and Jeroen Van de Graaf. Multiparty
computations ensuring privacy of each party’s input and correctness of
the result. In Conference on the Theory and Application of Cryptographic
Techniques, pages 87–119. Springer, 1987.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In
CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 19–40.
Springer, 2001.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and
optimally efficient multi-authority election scheme. Transactions on Emerging
Telecommunications Technologies, 8(5):481–490, 1997.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and
their use for building secure channels. Advances in Cryptology—EUROCRYPT
2001, pages 453–474, 2001.

[CLD] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hard-
ware extensions for strong software isolation. Technical report, Cryptology
ePrint Archive, Report 2015/564, 201 5. http://eprint. iacr. org.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, pages
494–503. ACM, 2002.

[Cor16] Intel Corporation. Intel 64 and ia-32 architectures software developer’s man-
ual. http://www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-software-developer-manual-325462.

pdf, 2016.

[CP92] David Chaum and Torben P Pedersen. Wallet databases with observers. In
Crypto, volume 92, pages 89–105. Springer, 1992.

[CP93] Ronald JF Cramer and Torben P Pedersen. Improved privacy in wallets with
observers. In Workshop on the Theory and Application of of Cryptographic
Techniques, pages 329–343. Springer, 1993.

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf

178 REFERENCES

[DJ01] Ivan Damgård and Mads Jurik. A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system. In International
Workshop on Public Key Cryptography, pages 119–136. Springer, 2001.

[DKL+13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P Smart. Practical covertly secure mpc for dishonest majority–or:
breaking the spdz limits. In European Symposium on Research in Computer
Security, pages 1–18. Springer, 2013.

[DM15] Léo Ducas and Daniele Micciancio. Fhew: Bootstrapping homomorphic
encryption in less than a second. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 617–640.
Springer, 2015.

[DNNR16] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci.
Gate-scrambling revisited-or: The tinytable protocol for 2-party secure
computation. IACR Cryptology ePrint Archive, 2016:695, 2016.

[DPR+13] Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault, Damien Vergniaud, and
Daniel Wichs. Security analysis of pseudo-random number generators with
input:/dev/random is not robust. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 647–658. ACM,
2013.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In CRYPTO, volume
7417 of Lecture Notes in Computer Science, pages 643–662. Springer, 2012.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a framework
for efficient mixed-protocol secure two-party computation. In NDSS, 2015.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol
for signing contracts. Communications of the ACM, 28(6):637–647, 1985.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE transactions on information theory, 31(4):469–472,
1985.

[FBB+17] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian
Kerschbaum, and Ahmad-Reza Sadeghi. Hardidx: Practical and secure index
with sgx. arXiv preprint arXiv:1703.04583, 2017.

[FJN14] Tore Kasper Frederiksen, Thomas P. Jakobsen, and Jesper Buus Nielsen.
Faster Maliciously Secure Two-Party Computation Using the GPU, pages 358–
379. Springer International Publishing, Cham, 2014.

REFERENCES 179

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput
secure three-party computation for malicious adversaries and an honest
majority. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 225–255. Springer, 2017.

[FMSW11] Atanas Filyanov, Jonathan M McCuney, Ahmad-Reza Sadeghiz, and Marcel
Winandy. Uni-directional trusted path: Transaction confirmation on just one
device. In Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st
International Conference on, pages 1–12. IEEE, 2011.

[FNRT14] Aurélien Francillon, Quan Nguyen, Kasper Bonne Rasmussen, and Gene
Tsudik. A minimalist approach to remote attestation. In Design, Automation
& Test in Europe Conference & Exhibition, DATE 2014, Dresden, Germany,
March 24-28, 2014, pages 1–6. European Design and Automation Association,
2014.

[FVBG] Ben A Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gorbunov.
Iron: Functional encryption using intel sgx.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
pages 169–178, 2009.

[Gen10] Craig Gentry. Computing arbitrary functions of encrypted data. Communi-
cations of the ACM, 53(3):97–105, 2010.

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and functional
encryption for all circuits. SIAM Journal on Computing, 45(3):882–929, 2016.

[GH11] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic
encryption scheme. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 129–148. Springer, 2011.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-
knowledge proof systems for np. Journal of Cryptology, 9(3):167–189, 1996.

[GKZ08a] Juan A. Garay, Aggelos Kiayias, and Hong-Sheng Zhou. A framework for the
sound specification of cryptographic tasks. IACR Cryptology ePrint Archive,
2008:132, 2008.

[GKZ08b] Juan A. Garay, Aggelos Kiayias, and Hong-Sheng Zhou. Sound and fine-grain
specification of ideal functionalities. In Theoretical Foundations of Practical
Information Security, 2008.

180 REFERENCES

[GLX+17] Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng Yu, and
Trent Jaeger. Trustshadow: Secure execution of unmodified applications with
arm trustzone. arXiv preprint arXiv:1704.05600, 2017.

[GMF+16] Debayan Gupta, Benjamin Mood, Joan Feigenbaum, Kevin Butler, and
Patrick Traynor. Using intel software guard extensions for efficient two-
party secure function evaluation. In Proceedings of the 2016 FC Workshop
on Encrypted Computing and Applied Homomorphic Cryptography, 2016.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM J. Comput.,
17(2):281–308, 1988.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity and a methodology of cryptographic protocol design. In
Foundations of Computer Science, 1986., 27th Annual Symposium on, pages
174–187. IEEE, 1986.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game. In Proceedings of the nineteenth annual ACM symposium on Theory of
computing, pages 218–229. ACM, 1987.

[Gol09] Oded Goldreich. Foundations of cryptography: volume 2, basic applications.
Cambridge university press, 2009.

[Gra09] David Grawrock. Dynamics of a Trusted Platform: A building block approach.
Intel Press, 2009.

[GT07] He Ge and Stephen R. Tate. A direct anonymous attestation scheme
for embedded devices. In Public Key Cryptography - PKC 2007, 10th
International Conference on Practice and Theory in Public-Key Cryptography,
Beijing, China, April 16-20, 2007, Proceedings, volume 4450 of Lecture Notes
in Computer Science, pages 16–30. Springer, 2007.

[GVJ14] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. Sprobes: En-
forcing kernel code integrity on the trustzone architecture. arXiv preprint
arXiv:1410.7747, 2014.

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-
party computation using garbled circuits. In USENIX Security Symposium,
volume 201, 2011.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the
web: Computing without simultaneous interaction. In CRYPTO, volume 6841
of Lecture Notes in Computer Science, pages 132–150. Springer, 2011.

REFERENCES 181

[HLP+13] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and
Juan del Cuvillo. Using innovative instructions to create trustworthy
software solutions. In HASP 2013, The Second Workshop on Hardware and
Architectural Support for Security and Privacy, Tel-Aviv, Israel, June 23-24,
2013, page 11. ACM, 2013.

[hSas11] Chih hao Shen and a. shelat. Two-output secure computation with malicious
adversaries. In Eurocrypt 2011, 2011.

[HSS+10] Wilko Henecka, Ahmad-Reza Sadeghi, Thomas Schneider, Immo Wehrenberg,
et al. Tasty: tool for automating secure two-party computations. In
Proceedings of the 17th ACM conference on Computer and communications
security, pages 451–462. ACM, 2010.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers efficiently. In Annual International Cryptology Conference, pages
145–161. Springer, 2003.

[Jag10] Roman Jagomägis. Secrec: a privacy-aware programming language with
applications in data mining. Master’s thesis, University of Tartu, 2010.

[JTM+] Yaoqi Jia, Shruti Tople, Tarik Moataz, Deli Gong, Prateek Saxena, and
Zhenkai Liang. Robust synchronous p2p primitives using sgx enclaves.

[Kat07] Jonathan Katz. Universally composable multi-party computation using
tamper-proof hardware. In EUROCRYPT, volume 4515 of Lecture Notes in
Computer Science, pages 115–128. Springer, 2007.

[KJ01] Paul C Kocher and Joshua M Jaffe. Secure modular exponentiation with leak
minimization for smartcards and other cryptosystems, October 2 2001. US
Patent 6,298,442.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.
CRC press, 2014.

[KMR14] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. Flexor: Flexible
garbling for xor gates that beats free-xor. In International Cryptology
Conference, pages 440–457. Springer, 2014.

[KOR+17] Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Eduardo
Soria-Vazquez, and Srinivas Vivek. Faster secure multi-party computation of
aes and des using lookup tables. Cryptology ePrint Archive, Report 2017/378,
2017. http://eprint.iacr.org/2017/378.

http://eprint.iacr.org/2017/378

182 REFERENCES

[KRW17] Jonathan Katz, Samuel Ranellucci, and Xiao Wang. Authenticated garbling
and communication-efficient, constant-round, secure two-party computation.
IACR Cryptology ePrint Archive, 2017:30, 2017.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free
xor gates and applications. Automata, Languages and Programming, pages
486–498, 2008.

[KSH+15] Seongmin Kim, Youjung Shin, Jaehyung Ha, Taesoo Kim, and Dongsu Han.
A first step towards leveraging commodity trusted execution environments
for network applications. In Proceedings of the 14th ACM Workshop on Hot
Topics in Networks, page 7. ACM, 2015.

[KSS09] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. Improved
garbled circuit building blocks and applications to auctions and computing
minima. In International Conference on Cryptology and Network Security,
pages 1–20. Springer, 2009.

[KSS10] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. From
dust to dawn: Practically efficient two-party secure function evaluation
protocols and their modular design. IACR Cryptology ePrint Archive, 2010:79,
2010.

[KSS13a] Marcel Keller, Peter Scholl, and Nigel P Smart. An architecture for practical
actively secure mpc with dishonest majority. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages 549–560.
ACM, 2013.

[KSS13b] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. A
systematic approach to practically efficient general two-party secure function
evaluation protocols and their modular design. Journal of Computer Security,
21(2):283–315, 2013.

[KSS14] Florian Kerschbaum, Thomas Schneider, and Axel Schröpfer. Automatic pro-
tocol selection in secure two-party computations. In International Conference
on Applied Cryptography and Network Security, pages 566–584. Springer, 2014.

[KSSV14] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varad-
harajan. Trustlite: A security architecture for tiny embedded devices. In
Proceedings of the Ninth European Conference on Computer Systems, page 10.
ACM, 2014.

[KW15] Liina Kamm and Jan Willemson. Secure floating point arithmetic and private
satellite collision analysis. International Journal of Information Security,
14(6):531–548, 2015.

REFERENCES 183

[KY00] Jonathan Katz and Moti Yung. Unforgeable encryption and chosen ciphertext
secure modes of operation. In FSE, volume 1978 of Lecture Notes in Computer
Science, pages 284–299. Springer, 2000.

[KY03] Jonathan Katz and Moti Yung. Scalable protocols for authenticated group
key exchange. In Advances in Cryptology - CRYPTO 2003, 23rd Annual
International Cryptology Conference, Santa Barbara, California, USA, August
17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Computer Science,
pages 110–125. Springer, 2003.

[Lan13] Adam Langley. Lucky thirteen attack on TLS CBC. Imperial Violet, Febru-
ary 2013. https://www.imperialviolet.org/2013/02/04/luckythirteen.

html, Accessed October 25th, 2015.

[Lar14] Enrique Larraia. Extending oblivious transfer efficiently. In International
Conference on Cryptology and Information Security in Latin America, pages
368–386. Springer, 2014.

[LEPS16] Joshua Lind, Ittay Eyal, Peter Pietzuch, and Emin Gün Sirer. Teechan:
Payment channels using trusted execution environments. arXiv preprint
arXiv:1612.07766, 2016.

[LGS+16] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and
Stefan Mangard. Armageddon: Cache attacks on mobile devices. In
Proceedings of the 25th USENIX Security Symposium, pages 549–564, 2016.

[Lin16] Yehuda Lindell. Fast cut-and-choose-based protocols for malicious and covert
adversaries. Journal of Cryptology, 29(2):456–490, 2016.

[LLXX05] Bao Li, Hongda Li, Guangwu Xu, and Haixia Xu. Efficient reduction of 1
out of n oblivious transfers in random oracle model. IACR Cryptology ePrint
Archive, 2005:279, 2005.

[LOS+10] Allison B Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryption
and (hierarchical) inner product encryption. In Eurocrypt, volume 6110, pages
62–91. Springer, 2010.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party
computation in the presence of malicious adversaries. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 52–78. Springer, 2007.

[LP12] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-
choose oblivious transfer. Journal of cryptology, 25(4):680–722, 2012.

https://www.imperialviolet.org/2013/02/04/luckythirteen.html
https://www.imperialviolet.org/2013/02/04/luckythirteen.html

184 REFERENCES

[LPS08] Yehuda Lindell, Benny Pinkas, and Nigel P Smart. Implementing two-
party computation efficiently with security against malicious adversaries. In
International Conference on Security and Cryptography for Networks, pages
2–20. Springer, 2008.

[LSG+16] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and
Marcus Peinado. Inferring fine-grained control flow inside sgx enclaves with
branch shadowing. arXiv preprint arXiv:1611.06952, 2016.

[LTW13] Sven Laur, Riivo Talviste, and Jan Willemson. From oblivious aes to efficient
and secure database join in the multiparty setting. In International Conference
on Applied Cryptography and Network Security, pages 84–101. Springer, 2013.

[MF06] Payman Mohassel and Matthew Franklin. Efficiency tradeoffs for malicious
two-party computation. In Public Key Cryptography, volume 3958, pages 458–
473. Springer, 2006.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zerocoin:
Anonymous distributed e-cash from bitcoin. In Security and Privacy (SP),
2013 IEEE Symposium on, pages 397–411. IEEE, 2013.

[MHWK16] Mitar Milutinovic, Warren He, Howard Wu, and Maxinder Kanwal. Proof
of luck: an efficient blockchain consensus protocol. In Proceedings of the 1st
Workshop on System Software for Trusted Execution, page 2. ACM, 2016.

[MIE17] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom: How
sgx amplifies the power of cache attacks. arXiv preprint arXiv:1703.06986,
2017.

[MKD+] Sinisa Matetic, Kari Kostiainen, Aritra Dhar, David Sommer, Mansoor
Ahmed, Arthur Gervais, Ari Juels, and Srdjan Capkun. Rote: Rollback
protection for trusted execution.

[MPP+17] Ricardo Macedo, João Paulo, Rogério Pontes, Bernardo Portela, Tiago
Oliveira, Miguel Matos, and Rui Oliveira. A practical framework for privacy-
preserving nosql databases. In Symposium on Reliable Distributed Systems,
2017.

[MZ] R. Morelos-Zaragoza. Encoder/decoder for binary bch codes in c (ver-
sion 3.1). http://www.rajivchakravorty.com/source-code/uncertainty/

multimedia-sim/html/bch_8c-source.html.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of cryptology,
4(2):151–158, 1991.

http://www.rajivchakravorty.com/source-code/uncertainty/multimedia-sim/html/bch_8c-source.html
http://www.rajivchakravorty.com/source-code/uncertainty/multimedia-sim/html/bch_8c-source.html

REFERENCES 185

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. A new approach to practical active-secure two-party
computation. In CRYPTO, volume 7417, pages 681–700. Springer, 2012.

[NP00] Moni Naor and Benny Pinkas. Distributed oblivious transfer. In ASIACRYPT,
volume 1976, pages 205–219. Springer, 2000.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions
and mechanism design. In Proceedings of the 1st ACM conference on Electronic
commerce, pages 129–139. ACM, 1999.

[OCN+16] O Ohrimenko, CF Manuel Costa, S Nowozin, A Mehta, F Schuster, and
K Vaswani. Sgx-enabled oblivious machine learning. In Proceedings of the
25th USENIX Security Symposium (Security), Austin, TX, 2016.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: the case of aes. In Cryptographers’ Track at the RSA
Conference, pages 1–20. Springer, 2006.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 223–238. Springer, 1999.

[PBT+16] Bernado Portela, Dan Bogdanov, Karl Tarbe, Reimo Rebane, Francisco
Maia, João Paulo, and Rogério Pontes. SAFECLOUD Deliverable D3.1:
architectural and api proposal for the secure processing stack, 2016. Available
from http://www.safecloud-project.eu/.

[PG16] Nicolae Paladi and Christian Gehrmann. Trusdn: Bootstrapping trust in cloud
network infrastructure. In 12th EAI International Conference on Security and
Privacy in Communication Networks, 2016.

[PPFF17] Rafael Pires, Marcelo Pasin, Pascal Felber, and Christof Fetzer. Se-
cure content-based routing using intel software guard extensions. CoRR,
abs/1701.04612, 2017.

[PPM+16] Bernardo Portela, João Paulo, Francisco Maia, Rogério Pontes, Tiago Oliveira,
Reimo Rebane, and Karl Tarbe. SAFECLOUD Deliverable D3.2: privacy-
preserving storage and computation techniques, 2016. Available from http:

//www.safecloud-project.eu/.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P Smart, and Stephen C Williams.
Secure two-party computation is practical. In International Conference on
the Theory and Application of Cryptology and Information Security, pages
250–267. Springer, 2009.

http://www.safecloud-project.eu/
http://www.safecloud-project.eu/
http://www.safecloud-project.eu/

186 REFERENCES

[PST16] Rafael Pass, Elaine Shi, and Florian Tramer. Formal abstractions for attested
execution secure processors. Cryptology ePrint Archive, Report 2016/1027,
2016. http://eprint.iacr.org/2016/1027.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for
efficient and composable oblivious transfer. In Crypto, volume 5157, pages
554–571. Springer, 2008.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preserva-
tion of secure reactive systems. In Proceedings of the 7th ACM conference on
Computer and communications security, pages 245–254. ACM, 2000.

[RLT15] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital side-
channels through obfuscated execution. In USENIX Security Symposium,
pages 431–446, 2015.

[RR16] Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computation
with online/offline dual execution. In USENIX Security Symposium, pages
297–314, 2016.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[S+13] Chih-hao Shen et al. Fast two-party secure computation with minimal
assumptions. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 523–534. ACM, 2013.

[SAM+17] Md Nazmus Sadat, Md Momin Al Aziz, Noman Mohammed, Feng Chen,
Shuang Wang, and Xiaoqian Jiang. Safety: Secure gwas in federated
environment through a hybrid solution with intel sgx and homomorphic
encryption. arXiv preprint arXiv:1703.02577, 2017.

[SCF+15a] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3: trustworthy data
analytics in the cloud using SGX. In 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 38–54. IEEE
Computer Society, 2015.

[SCF+15b] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. Vc3: trustworthy data
analytics in the cloud using sgx. In 2015 IEEE Symposium on Security and
Privacy, pages 38–54. IEEE, 2015.

http://eprint.iacr.org/2016/1027

REFERENCES 187

[Sch08] Thomas Schneider. Practical secure function evaluation. In Informatiktage,
pages 37–40, 2008.

[SCNS15] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.
Preventing your faults from telling your secrets: Defenses against pigeonhole
attacks. arXiv preprint arXiv:1506.04832, 2015.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, 1979.

[Sol] Integrated Silicon Solution. http://www.alldatasheet.com/

datasheet-pdf/pdf/505020/ISSI/IS61LV6416-10TL.html.

[SRC07] Ben Smyth, Mark Ryan, and Liqun Chen. Direct anonymous attestation
(DAA): ensuring privacy with corrupt administrators. In Security and
Privacy in Ad-hoc and Sensor Networks, 4th European Workshop, ESAS 2007,
Cambridge, UK, July 2-3, 2007, Proceedings, volume 4572 of Lecture Notes in
Computer Science, pages 218–231. Springer, 2007.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, pages 475–484. ACM, 2014.

[SWG+17] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and
Stefan Mangard. Malware guard extension: Using sgx to conceal cache attacks.
arXiv preprint arXiv:1702.08719, 2017.

[T+16] Riivo Talviste et al. Applying secure multi-party computation in practice. PhD
thesis, 2016.

[TLP+16] Sandeep Tamrakar, Jian Liu, Andrew Paverd, Jan-Erik Ekberg, Benny Pinkas,
and N Asokan. The circle game: Scalable private membership test using
trusted hardware. arXiv preprint arXiv:1606.01655, 2016.

[WB15] Michael Walfish and Andrew J Blumberg. Verifying computations without
reexecuting them. Communications of the ACM, 58(2):74–84, 2015.

[WMK17] Xiao Wang, Alex J Malozemoff, and Jonathan Katz. Faster secure two-
party computation in the single-execution setting. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 399–424. Springer, 2017.

[WRK] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. Technical report, Cryptology ePrint Archive, Report
2017/189, 2017. http://eprint. iacr. org/2017/189.

http://www.alldatasheet.com/datasheet-pdf/pdf/505020/ISSI/IS61LV6416-10TL.html
http://www.alldatasheet.com/datasheet-pdf/pdf/505020/ISSI/IS61LV6416-10TL.html

188 REFERENCES

[WW17] Samuel Weiser and Mario Werner. Sgxio: Generic trusted i/o path for intel
sgx. arXiv preprint arXiv:1701.01061, 2017.

[XCP15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In IEEE
Symposium on Security and Privacy, pages 640–656. IEEE Computer Society,
2015.

[Yao82] Andrew C Yao. Protocols for secure computations. In Foundations of
Computer Science, 1982. SFCS’08. 23rd Annual Symposium on, pages 160–
164. IEEE, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Foundations
of Computer Science, 1986., 27th Annual Symposium on, pages 162–167.
IEEE, 1986.

[Yee94] Bennet Yee. Using secure coprocessors. PhD thesis, Citeseer, 1994.

[YYQ+15] Bo Yang, Kang Yang, Yu Qin, Zhenfeng Zhang, and Dengguo Feng. Daa-tz: an
efficient daa scheme for mobile devices using arm trustzone. In International
Conference on Trust and Trustworthy Computing, pages 209–227. Springer,
2015.

[YYZ+16] Bo Yang, Kang Yang, Zhenfeng Zhang, Yu Qin, and Dengguo Feng. Aep-m:
Practical anonymous e-payment for mobile devices using arm trustzone and
divisible e-cash. In International Conference on Information Security, pages
130–146. Springer, 2016.

[ZCC+16] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town
crier: An authenticated data feed for smart contracts. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 270–282. ACM, 2016.

[ZEE+] Fan Zhang, Ittay Eyal, Robert Escriva, Ari Juels, and Robbert van Renesse.
Rem: Resource-efficient mining for blockchains.

[ZGNM12] Zongwei Zhou, Virgil D Gligor, James Newsome, and Jonathan M McCune.
Building verifiable trusted path on commodity x86 computers. In Security and
Privacy (SP), 2012 IEEE Symposium on, pages 616–630. IEEE, 2012.

[ZSS+16] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y Thomas Hou.
Truspy: Cache side-channel information leakage from the secure world on arm
devices. Technical report, Cryptology ePrint Archive, Report 2016/980, 2016.
http://eprint. iacr. org/2016/980, 2016.

REFERENCES 189

[ZZH+14] Shijun Zhao, Qianying Zhang, Guangyao Hu, Yu Qin, and Dengguo Feng.
Providing root of trust for arm trustzone using on-chip sram. In Proceedings
of the 4th International Workshop on Trustworthy Embedded Devices, pages
25–36. ACM, 2014.

	List of Tables
	List of Figures
	Introduction
	Contributions
	Sources and structure

	Preliminaries
	Basic cryptographic primitives
	Key Exchange
	Secure multiparty computation

	Related Work
	Basic mechanisms for secure computation
	Passively secure multiparty computation
	Actively secure multiparty computation

	Trusted hardware in cryptography
	Software Guard Extensions
	TrustZone
	Other approaches to hardware attestation
	Protocols relying on trusted execution
	Side-channel attacks

	Formalising Isolated Execution Environments
	Isolated Execution Environments
	Attested Computation
	Labelled Attested Computation

	Secure Channels to Isolated Execution Environments
	Attested Key Exchange for Attested Computation
	Utility

	Secure Outsourced Computation
	Secure Outsourced Computation
	An implementation of a secure SOC scheme

	Secure Multiparty Computation
	Secure Function Evaluation
	Multiparty Computation from LAC
	Relation to the UC approach

	Experimental results
	Methodology and micro-benchmarks
	Side channels and resilience against timing attacks
	Comparison with state-of-the-art MPC protocols

	Conclusion
	References

