

Suscetibilidade Magnética, in situ, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Juliana dos Santos Silva Mestrado em Geologia Departamento de Geociências, Ambiente e Ordenamento do Território 2017 Orientador Helena Sant`Ovaia Mendes da Silva, Professora Associada, FCUP

Coorientador

Pedro Miguel Madureira Pimenta Nogueira, Professor Auxiliar, UEVORA

Ш

Todas as correções determinadas pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ____/____ _/_

Agradecimentos

A vida por vezes faz-nos tropeçar nos nossos passos, cair e levantar tem sido o meu percurso de vida até agora. Tudo acontece, mas acredito que há uma razão no fundo mas nem sempre é visível aos nossos olhos, mas sim aos olhos dos outros.

Os meus agradecimentos vão para todos aqueles que cederam um bocado do seu tempo para me acompanhar na tristeza, na alegria e na esperança. A todos um obrigado sentido de todas as maneiras possíveis.

Professora Doutora Helena Sant`Ovaia quero agradecer-lhe pela disponibilidade atendida sempre quando possível e necessário, até ao último segundo. Apesar do meu ritmo não ter sido constante, acompanhou-me nunca desencorajando mesmo quando era improvável eu chegar à meta. Um muito obrigado

Professor Doutor Nogueira quero agradecer-lhe pelo carinho e disponibilidade nunca negada. Um dia consigo é um dia de conhecimento, o tempo nunca é perdido, é só ganhos. A vida no campo é uma aventura ao seu lado, sempre descontraído e sempre pronto a ajudar e a transmitir conhecimento. Nunca vou esquecer o que fez por mim.

Professor Doutor Noronha apesar do pouco tempo que passei consigo, obrigada por nesse tempo ter-me incutido o "bichinho" da geologia, e mostrar a verdadeira função de um geólogo. A sua paixão pela geologia, essa essência contagiou e ajudou a posicionar-me no caminho certo. Nunca baixar os braços nas adversidades. Um obrigado com admiração.

Quero agradecer também à Professora Paula Gonçalves que envolveu-me no mundo do conhecimento de uma forma natural, simples mas apaixonada. Estendeu-me a mão sem eu aperceber-me e fiquei sem reação. A frase registada foi "Não desistas agora" e nunca será esquecida.

Querida Claúdia sempre com um sorriso e sempre disponível para ajudar, agradeço-te o tempo dispensado e a ajuda prestada de forma ilimitada. Um beijinho.

Esta tese teve apoio do projeto "Modelos metalogénicos 3D da zona de Ossa Morena: valorização dos recursos minerais do Alentejo" financiado pela União Europeia através do Fundo Europeu de Desenvolvimento Regional, enquadrado no Programa ALENTEJO 2020 (Programa Operacional Regional do Alentejo) desenvolvido pelo professor Pedro Nogueira.

O tamanho da terra é pequeno para simbolizar o meu agradecimento, todos os momentos da minha vida ao teu lado foi uma fonte de conhecimento diversificado. És o meu alento e a minha alma gémea, tudo o que sou devo-te ati. Um sorriso mereces! O

FCUP

VI

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

amor de mãe é incrível. Meu querido pai apesar das divergências temos muitas parecenças e uma coisa que aprendi é nunca deixar de ser quem sou.

Tiago perante as adversidades da vida ainda continuas ao meu lado, obrigado pela paciência e pelos bons momentos. Chegou ao fim esta etapa e estou pronta para novas experiências. Ana quero agradecer-te pela tua companhia ao longo da minha vida de forma direta ou indireta, estarei sempre aqui. Aos meus melhores amigos, obrigado por me aturarem positivamente, sempre na diversão.

O meu crescimento e percurso académico foi acompanhado pelos meus avós maternos. Nunca me deixaram ao alento, sempre me apoiaram e deram-me força, a eles devo tudo. Aos meu avós paternos quero agradecer o amor, os ensinamentos e a companhia durante a minha infância e adolescência, durante os momentos mais importantes da minha vida.

A vida é uma incerteza, por isso, o tempo deve de ser rentabilizado vivendo sempre ao lado do conhecimento e crescendo quanto individuo.

Resumo

O Complexo Plutónico de Santa Eulália (CPSE) é um corpo granítico intrusivo calco-alcalino, localizado nos domínios setentrionais da Zona Ossa Morena (ZOM), próximo do limite entre a Zona Centro Ibérica e a Zona Ossa Morena. É um corpo granítico tardi-varisco com uma área de 400 km², e situa-se entre a Faixa Blastomilonítica e o sector Alter do Chão-Elvas. Este complexo intrui de forma discordante as estruturas litoestatigráficas hercínicas (de orientação geral NW-SE), formações do Proterozóico e Paleozóico inferior provocando uma extensa orla metamórfica por metamorfismo de contacto.

O objetivo principal do presente trabalho é integrar a informação obtida pela medição da suscetibilidade magnética (Km), com equipamento portátil, em amostras obtidas em trabalhos anteriores e *in situ*, em afloramento (no CPSE), assim como comparar com os valores de Km obtidos laboratorialmente. A suscetibilidade magnética permite inferir a composição mineralógica da rocha de acordo com o comportamento magnético dos minerais presentes.

O maciço de Santa Eulalia apresenta duas fácies graníticas, a fácies G0 e a fácies G1. A fácies G0 é representada pelos granitos biotíticos rosa, de carácter metaluminosos com uma textura granular médio-grosseira, não porfiroide. A fácies G1 representa os granitos cinzentos monzoníticos porfiroides, de carácter peraluminoso com uma granulometria fina a média.

O estudo comparativo da suscetibilidade magnética das duas fácies graníticas, quando se utilizam diferentes métodos de medição, equipamento portátil e laboratorial, permitiu demonstrar que apesar dos valores de suscetibilidade medidos *in situ* serem mais baixos para todas as rochas em estudo, quando comprados com as medições na balança de suscetibilidade (em laboratório), o comportamento das amostras é semelhante, ou seja, a fácies do granito G0 apresenta valores mais altos e mais variáveis que a fácies do granito G1.

Esta variação nos valores de Km quando se utiliza um equipamento portátil e um equipamento laboratorial, pode ser inerente ao próprio equipamento. Com o equipamento portátil a medição de Km é feita num ponto da rocha, enquanto que no equipamento laboratorial, a medição de Km é feita num volume de cerca de 10 cm³. O aumento do volume faz aumentar o sinal magnético, o que conduz a aumento da suscetibilidade magnética.

FCUP

VIII Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Nas medições feitas in situ, verifica-se que duma maneira geral, os valores de

Km são sempre mais altos em solos do que em rocha.

IX

Abstract

The Santa Eulália Plutonic Complex (SEPC) is a calc-alkaline intrusive granitic body, located in the northern area of the Ossa Morena Zone (OMZ), near the limit with Central Iberian Zone. It is a late Variscan granitic body with an area of 400 km², located between the Blastomilonitic strip and the Alter do Chão sector. The area surrounding the SPEC is characterized by a Variscan senestral tectonic regime, which is marked by the NW-SE shear zone, namely the Coimbra-Cordoba Shear Zone and the Alter do Chão Shear zone.

The main objective of this work is to integrate the information obtained by measuring the magnetic susceptibility (Km), in the field, using a portable equipment, and in samples obtained in previous works. Finally these magnetic susceptibility measurements were, compared with values of Km using laboratory equipment. The magnetic susceptibility allows inferring the mineralogical composition of the rock according to the magnetic behavior of the mineralogical paragenesis.

The Santa Eulália Massif presents two granitic-type, G0 and G1 facies. The G0type is a pink coarse-grained granite. The G1-type is a gray medium-grained granite. The latter sometimes shows a slight porphyritic tendency.

The comparative study of the magnetic susceptibility of the two granite types, using different measurement methods, portable and laboratory equipment, allow us to demonstrate that the magnetic susceptibility values measured *in situ* are lower for all studied rocks, when comparing with measurements in laboratory. , However the magnetic behavior of the samples is similar: the G0 granite present higher and more variable values than the granite G1.

This change in the values of Km when using portable and laboratory equipment may be inherent to the equipment itself. With the portable equipment the measurement is made in point of the rock, whereas in the laboratory equipment, the measurement of Km is made in a sample with a volume of about 10 cm³. Increasing the volume increases the magnetic signal, which leads to an increase of the magnetic susceptibility.

Another result is that the Km values are always higher in the soil than in rock outcrops.

XI

Índice

Agradecimentos	V
Resumo	VI
Abstract	IX
Índice de Figuras	XIII
Indice de Tabelas	XVII
Lista de Acrónimos	XV
I.Introdução	1
II.Enquadramento Geográfico e Regional	3
i) Enquadramento Geográfico	3
ii) Enquadramento Regional	4
III.Complexo Plutónico de Santa Eulália	11
i) Enquadramento Geológico	11
ii) Rochas Graníticas	18
IV.Metodologia e Amostragem	27
i) Anisotropia da Suscetibilidade Magnética	27
ii) Metodologia	31
iii) Amostragem	
V.Resultados e Discussão	35
VI.Conclusão	45
Referências Bibliográficas	47

Índice de Figuras

Figura 1. Enquadramento geográfico de Santa Eulália (fonte: Google Earth e Carta
Militar de Portugal à escala 1:25 000, folha 399)3
Figura 2. Principais subdivisões da Zona de Ossa Morena: 1) Sector da Faixa
Blastomilonítica; 2) Sector de Alter do Chão-Elvas; 3) Sector de Estremoz-Barrancos;
3a) Subsector do Anticlinal de Estremoz; 4) Sector de Montemor-Ficalho; 4a) Maciço de
Évora;5) Complexo Ígneo de Beja; 6) Complexo Ígneo de Beja-Acebuches (Araújo,
2013)
Figura 3. Principais setores da Zona de Ossa Morena (adaptado de Oliveira et al., 1991
<i>in</i> Araújo <i>et al.</i> , 2013)5
Figura 4. Sequência estratigráfica do sector Alter do Chão (Oliveira et al., 1991)6
Figura 5. Modelos esquemáticos da evolução geodinâmica da margem setentrional do
supercontinente Gondwana desde o Ediacariano até ao Devónico inferior (in Pereira et
<i>al.</i> , 2010)7
Figura 6. Representação das unidades estratigráficas da ZOM (Ouguela-Elvas-Terena)
e correlação com Espanha (Venta del Ciervo-Monestério) para o registo Ediacariano-
Devónico inferior (in Pereira et al., 2010)8
Figura 7. Quadro dos principais eventos tectono-estatigráficos na Zona Ossa Morena
(Quesada, 1990)9
Figura 8. Folhas 32B, 32D, 33A, 33C, 36B e 37A da Carta Geológica de Portugal à
escala 1:50 000 (Área de estudo). Carta Geológica de Portugal à escala 1:500 000 (à
esquerda)
Figura 9. Sequência litoestatigráfica esquemática da Zona de Cisalhamento Tomar-
Badajoz-Córdova (in Oliveira et al., 1991) e representação esquemática da flower
struture centrada na ZCTPBC (in Araújo, 2013)13
Figura 10. Mapa geológico do Nordeste Alentejano (in Pereira,2013)
Figura 11. Complexo Tardi-Varisco de Santa Eulália (<i>in</i> Cruz, 2013)14
Figura 12: Mapa Geológico do Complexo de Santa Eulália (CPSE) (<i>in</i> Cruz, 2013)17
Figura 13. Classificação e nomenclatura das rochas ígneas plutónicas de acordo com
os conteúdos félsicos e quando contêm menos de 90%.de minerais máficos; Q, quartzo;
A, feldspato alcalino; P, plagioclase; F, feldspatóides (foid) (Streckeisen, 1976 e 1979).
Figura 14. Diagrama Classificativo de Barker (1979) para rochas granitóides20
Figura 15. Diagrama de Harker (1909) adaptado de Winter (2011)

FCUP

XIV Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Figura 16. Classificação das rochas ígneas com base nas proporções moleculares de Al₂O₃/CaO+Na₂O+K₂O (A/CNK) (Shand, 1927; Clarke, 1992; Winter, 2001).22 Figura 17. Classificação geotectónica das rochas granitóides. Os granitos portugueses são granitos do tipo Hercinótipo, segundo a classificação de Pitcher (1987). O quadrado azul representa os granitóides portugueses (hercynotype-type). Adapt. Pitcher (1987). Figura 18. Classificação dos granitóides considerando o contexto geotectónico; no quadro os granitóides do tipo Hercinótipo estão identificados a azul. Adapt. Winter Figura 19: Modelos de elipsoides de anisotropia de suscetibilidade magnética. Adapt. Gomes & Sant`Ovaia (2015)......28 Figura 20. Curvas de magnetização induzida em função do campo magnético aplicado. Suscetibilidade magnética (K); magnetização (M) em função do campo magnético externo induzido (H); Ms: magnetização de saturação, Mr: magnetização remanescente. Figura 21. Suscetibilímetro portátil (KT-10) do Departamento de Geociências, Ambiente Figura 22. Realização de medições pontuais, in situ, com auxílio do suscetibilímetro portátil num afloramento do CPSE......32 Figura 23: Mapa da Localização das medições da Suscetibilidade Magnética no CPSE. Figura 24. Jardim do edifício FC3 da FCUP, local onde se realizou as medições da suscetibilidade magnética das amostras previamente recolhidas no CPSE (Sant'Ovaia Figura 25. Dados da suscetibilidade magnética (Km), para os diferentes tipos de rochas (granitos G0 e G1, rochas do Grupo-M e dos roof pendant) (Sant`Ovaia et al., 2014).42 Figura 26. Dados da suscetibilidade magnética (Km), para os diferentes tipos de rochas (granitos G0 e G1, rochas do Grupo-M e dos roof pendant) medidos, com o equipamento portátil, em laboratório no DGAOT, FCUP.42 Figura 27: Mapa das medições de campo da suscetibilidade magnética do CPSE.....43

Índice de Tabelas

Tabela 1. Percentagem de elementos maiores das rochas graníticas expressos em
óxidos (Raguin, 1958)21
Tabela 2. Características dos granitos do tipo M, I, S e A (adaptado de Winter (2001)).
Tabela 3. Dados da suscetibilidade magnética medidos, in situ, com o suscetibilímetro
(K-10) na campanha de campo ao CPSE34
Tabela 4. Dados de suscetibilidade magnética medidos nas amostras recolhidas durante
as campanhas de campo anteriores no CPSE (Sant`Ovaia et al., 2014)

XV

XVII

Lista de Acrónimos

- ASM Anisotropia da Suscetibilidade Magnética
- COBA Complexo-Ofiolítico de Beja-Acebuches
- CPSE Complexo Plutónico de Santa Eulália
- DGAOT Departamento de Geociências, Ambiente e Ordenamento do Território
- FCUP Faculdade de Ciências da Universidade do Porto
- H Campo Magnético
- Km Suscetibilidade Magnética
- ZCCC Zona de Cisalhamento Coimbra-Córdova
- ZCI Zona Centro Ibérica
- ZCTBC Zona de Cisalhamento Tomar-Badajoz-Córdova
- ZOM Zona Ossa Morena

I. Introdução

A presente dissertação incide no estudo do Complexo Plutónico de Santa Eulália (CPSE), um corpo granítico intrusivo enquadrado numa das zonas geotectónicas mais complexas do Maciço Ibérico, a Zona Ossa Morena, mais concretamente na região do NE Alentejano. Os eventos geológicos (metamorfismo, deformação e tectónica,) resultantes da orogenia varisca encontram-se visíveis na litoestatigrafia da zona de estudo.

A área geológica envolvente ao CPSE é constituída por rochas metassedimentares e meta-ígneas com características mineralógicas, geoquímicas, texturais e magnéticas distintas das litologias deste complexo.

O objetivo deste trabalho é o estudo petrofísico da fáceis granítica periférica, granito G0 (granitos róseos) e da fácies central, granito G1 (granitos cinzentos) do CPSE. A suscetibilidade magnética (Km) é o parâmetro que se irá usar para o estudo magnético das rochas graníticas, pois é útil na distinção de fácies graníticas.

As propriedades magnéticas dos minerais influenciam os valores da suscetibilidade magnética (Km) total da rocha quando esta é exposta a um campo magnético (H). Os comportamentos magnéticos dos diferentes granitos ajudam a identificar os minerais presentes nas rochas e as condições geológicas e tectónicas que implicaram a sua génese e instalação.

Sant'Ovaia *et al.* (2014) analisou as fácies graníticas G0 e G1 do CPSE recorrendo à técnica de estudo "Anisotropia da suscetibilidade Magnética" (ASM) e propôs um mecanismo de instalação o CPSE com base no *fabric* magnético.

O objetivo principal do presente trabalho é integrar a informação obtida pela medição da suscetibilidade magnética (Km), *in situ*, em amostras obtidas em trabalhos anteriores (Sant'Ovaia *et al.*, 2014) e no campo (Santa Eulália). Posteriormente, em função dos resultados obtidos, realizar uma discussão baseada na comparação dos valores da suscetibilidade magnética com os dados presentes no trabalho de Sant'Ovaia *et al.* (2014). Este estudo vai contribuir para um melhor conhecimento geológico do CPSE e para analisar a qualidade dos dados adquiridos por esta metodologia.

O Capítulo II desta dissertação é dedicado ao Enquadramento Geográfico e Regional do CPSE. Neste capítulo faz-se uma breve descrição da geologia regional da Zona Ossa Morena (ZOM) e da localização geográfica da área de estudo. No Capítulo III descrevem-se as rochas do CPSE e no Capítulo IV irá ser abordado o tema "Anisotropia da Suscetibilidade Magnética" (ASM) e as propriedades magnéticas das rochas. O

FCUP Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Capítulo V faz referência ao tipo de método e procedimento utilizado para a recolha dos dados em amostras (Sant'Ovaia et al., 2014) e no campo (Santa Eulália). O último Capítulo é reservado para a e apresentação e discussão dos resultados obtidos com as respetivas conclusões.

II. Enquadramento Geográfico e Geológico

Neste capítulo pretende-se fazer uma breve síntese das características da Zona Ossa Morena (ZOM), como sendo um dos sectores do maciço ibérico e enquadrar a área de estudo no seu contexto geológico e geográfico.

i) Enquadramento Geográfico

O Complexo Plutónico de Santa Eulália (CPSE) situa-se na região do Alentejo, na sub-região do Alto Alentejo e localiza-se na freguesia de Santa Eulália, a norte do concelho de Elvas, distrito de Portalegre.

A freguesia de Santa Eulália possui 98,63 km² encontra-se a aproximadamente a 9 km de Barbacena, 16 km de Monforte, 17 Km de Campo Maior, 18 km de Arronches, 23 km de Elvas, aproximadamente 40 km de Alter do Chão e 45 km de Portalegre. No concelho de Elvas desagua o rio Caia, um dos rios da bacia hidrográfica do Guadiana que passa por Arronches e Caia. Este rio é o mais próximo da área em estudo (Fig.1).

Figura 1. Enquadramento geográfico de Santa Eulália (fonte: Google Earth e Carta Militar de Portugal à escala 1:25 000, folha 399).

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

ii) Enquadramento Regional

O Complexo Plutónico de Santa Eulália (CPSE) está localizado nos domínios setentrionais da Zona Ossa Morena (ZOM). A ZOM representa uma das unidades geotectónicas do Maciço Ibérico situada no sector sul do maciço, conhecida por Terreno Ibérico, encontrando-se limitada a Norte pela Zona de Cisalhamento Tomar-Badajoz-Córdova (ZCTBC), uma zona de transição, e a Sul pelo Complexo-Ofiolítico de Beja-Acebuches (COBA), sutura ibérica varisca (Araújo, 2013).

A ZOM é caracterizada pela sua grande heterogeneidade paleogeográfica, tectónica e metamórfica que permite subdividi-la em sectores ou zonas e em sub-zonas, consoante as características predominantes de cada local (Figs. 2 e 3). Os sectores identificados, de acordo com Araújo (2013), são os seguintes:

- Faixa Blastomilonítica
- Sector Alter do Chão-Elvas
- Estremoz-Barrancos
 - Subsector do Anticlinal de Estremoz
- Sector Montemor-Ficalho
 - o Maciço de Évora
- Complexo Ígneo de Beja
- Complexo Ofiolítico de Beja-Acebuches (COBA).

Figura 2. Principais subdivisões da Zona de Ossa Morena: 1) Sector da Faixa Blastomilonítica; 2) Sector de Alter do Chão-Elvas; 3) Sector de Estremoz-Barrancos; 3a) Subsector do Anticlinal de Estremoz; 4) Sector de Montemor-Ficalho; 4a) Maciço de Évora;5) Complexo Ígneo de Beja; 6) Complexo Ígneo de Beja-Acebuches (Araújo, 2013).

FCUP Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Figura 3. Principais setores da Zona de Ossa Morena (adaptado de Oliveira et al., 1991 in Araújo et al., 2013)

O presente estudo vai incidir-se preferencialmente na zona de transição ZCI-ZOM, mais concretamente na Faixa Blastomilonítica e no sector Alter do Chão-Elvas (Lopes, 1998; Sant'Ovaia *et al.*, 2014). Os registos geológicos da ZOM indicam a existência de dois ciclos orogénicos, a orogenia Cadomiana (Neoproterozico) e a orogenia Varisca (Paleozoico) (Lopes, 1989; Lopes, 2003; Ribeiro, 2013; Araújo, 2013)

A ZCTBC (Faixa Blastomilonítica) é considerada para vários autores uma zona limite que separa a Zona Ossa Morena (ZOM) da Zona Centro Ibérica (ZCI). É considerada uma sutura Cadomiana com geometria *flower structure* reativada durante a orogenia Varisca (Pereira *et al.*, 2013; Araújo, 2013).

Segundo Araújo (2013), no eixo de maior deformação da ZCTBC aparece um conjunto de rochas de grau metamórfico elevado (gnaisses, migmatitos, anfibolitos) de idade câmbrica designada por Formação de Campo Maior, que aflora e cavalga a NE e SW as formações conhecidas por "Série Negra" (Formação de Morenos e Formação de Mosteiros).

O sector Alter do Chão-Elvas é limitado a nordeste pelo domínio da Faixa Blastomilonítica através do cavalgamento de Alter do Chão e a sul pelo sector Estremoz-Barrancos. Quanto ao limite sul, há várias interpretações, e a mais aceite é interpretada como sendo o carreamento de Juromenha (Araújo *et al.*, 2013). Este carreamento é uma estrutura tectónica do tipo de cavalgamento que se situa no contacto das unidades câmbricas de Alter do Chão-Elvas e as litologias do Silúrico do sector Estremoz-Barrancos (Araújo, 2013). Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Segundo Araújo (2013), a sequência estratigráfica do sector inicia-se da base para o topo, com a formação de Mosteiros (xistos negros e grauvaques intercalados com chertes negros), discordante sobre o soco Pré-câmbrico (clastos dos conglomerados deformados-deformação Cadomiana). Em discordância com a formação anterior, temos a Série Carbonatada predominantemente dolomítica, concordante com a Formação de Vila Boim, série flyshóide (Gonçalves *et al.*, 1975; Gonçalves *et al.*, 1978), composta por arenitos, grauvaques e xistos, intercalados por rochas félsicas e máficas (Barra Quartzítica). A sequência estratigráfica termina com a sucessão estratigráfica da Formação de Fatuquedo, Complexo Vulcano-Sedimentar de Terrugem e da Formação de Barrancos (Fig. 4).

O metamorfismo neste domínio é baixo e as fases de deformação varisca que afetaram este sector foram: a fase D2 (deformação regional) representada pelas dobras deitadas de orientação NNW-SSE, à escala meso e macroscópica, com vergência a oeste; e a fase D3, a segunda fase varisca, originou a sobreposição das estruturas geológicas anteriores produzindo dobramentos com orientação NW-SE, a existência de crenulação (plano axial sub-vertical) pós-metamórfica (Ribeiro *et al.,* 1979).

Figura 4. Sequência estratigráfica do sector Alter do Chão (Oliveira et al., 1991).

FCUP Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Na Zona Ossa Morena os traços da passagem de um ambiente geodinâmico de margem ativa Neoproterozoica (arco magmático) para um ambiente de rifte intracontinental (Câmbrico), estão preservados na sequência litoestatigráfica (Pereira *et al.*, 2010). O ambiente tectónico originou discordâncias entre as formações devido a emersão continental, ao processo de rifte intra-continental e pela migração do ambiente de rift que se prolonga do Ordovícico, Silúrico ao Devónico (Fase da Margem Passiva; c. 470-410 Ma; Fig. 5) (Pereira *et al.*, 2010).

Figura 5. Modelos esquemáticos da evolução geodinâmica da margem setentrional do supercontinente Gondwana desde o Ediacariano até ao Devónico inferior (*in* Pereira *et al.*, 2010).

A passagem do Pré-câmbrico ao Câmbrico é marcada por uma discordância angular sob a formação da Série Negra (Formação de Mosteiros) por níveis de conglomerados. Esta situação é acompanhada por vulcanismo ácido e pela acumulação de fragmentos de rochas metamórficas (gnaisses, metavulcanitos ácidos e metachertes) nos níveis conglomeráticos (Araújo, 2013).

Os fragmentos são resultado do metamorfismo e da deformação que se fez sentir nas formações do soco Proterozóico, depositando-se posteriormente numa bacia de sedimentação, o que justifica a diversidade composicional presente nas colunas estratigráficas em toda a ZOM. As condições de margem distensiva são sentidas no Câmbrico superior pela existência de estruturas *graben e horst*, o que originou diversas sub-bacias (Araújo, 2013).

No Silúrico a continuação dos processos de sedimentação do Paleozoico Inferior originou a formação de Xistos com Nódulos, contendo fósseis (graptólitos). O Devónico é Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

marcado pelo evento tectono-metamórfico varisco em toda a ZOM que originou uma estrutura tectónica em *flake*, marcada por várias lâminas ofiolíticas associadas aos processos de obducção e subdução que deram origem ao complexo Ofiolítico Beja-Acebuches (COBA) (Fig. 6) (Araújo, 2013).

Figura 6. Representação das unidades estratigráficas da ZOM (Ouguela-Elvas-Terena) e correlação com Espanha (Venta del Ciervo-Monestério) para o registo Ediacariano-Devónico inferior (*in* Pereira *et al.*, 2010).

O metamorfismo regional na ZOM (Fig. 7) é registado pela variação de fácies de baixo grau e grau médio a elevado (fácies dos xistos verdes à anfibolítica) resultante de eventos tectono-metamórficos (Pré-câmbrico e/ou Paleozóico Inferior e do Paleozóico Superior) (Quesada e Munhá, 1990; Pereira e Quesada, 2006 *in* Moita, 2007).

Idade	е	Tectono-estratigrafia		Magmatismo	Metamorfismo
PALEOZÓICO ov Silur Devon Carb Parm		Bacias intramontanhosas poll-aparts 'Flysch" e molassos Estádio de Margem Passiva	Orogenia Hercínica	 Pós-colisional Vulcanismo calco-alcalino sinorogénico Alcalino bimodal 	 Contacto Regional
PRÉ-CÀMBRICO Proterozóico Sup	Rifeano S P – W S	Fase de "rifting" Seq. V.S "Flysch" sinorogénicas Sequéncias Pré-orogénicas	Orogenia Cadomiana	 Peralcalino bimodal Acalino Peralmon Plutonismo peralmiano Cato-aicalino Cato-aicalino Cato-aicalino Toleitico bimodal 	Contacto Regional Plunfacial

Figura 7. Quadro dos principais eventos tectono-estatigráficos na Zona Ossa Morena (Quesada, 1990)

O magmatismo da ZOM (Pré-câmbrico - vulcanismo calco-alcalino e Paleozóico com intrusões magmáticas (Bard, 1977; Santos, 1990 *in* Moita, 2007) é considerado um magmatismo bimodal devido à existência de uma associação temporal e espacial entre as rochas ácidas e as rochas básicas da ZCI que ocorrem na ZOM (Fig. 7).

III. Complexo Plutónico de Santa Eulália

No seguimento do Capítulo II, este capítulo pretende identificar a geologia presente no Complexo Plutónico de Santa Eulália e abordar o tema "rochas graníticas" referindo alguns dos sistemas de classificação das rochas granitóides usados para o estudo dos granitos.

i) Enquadramento Geológico

O Complexo Plutónico de Santa Eulália (CPSE) e o seu encaixante encontram-se representados na Folha Sul da Carta Geológica de Portugal à escala de 1:500 000, assim como, na Carta Geológica de Portugal à escala de 1:50 000 nas Folhas: 32B - Portalegre, 32D - Sousel, 33A - Assumar, 33C - Campo Maior, 36B - Estremoz e 37A - Elvas em 1992, pelos Serviços Geológicos de Portugal (Fig. 8).

Figura 8. Folhas 32B, 32D, 33A, 33C, 36B e 37A da Carta Geológica de Portugal à escala 1:50 000 (Área de estudo). Carta Geológica de Portugal à escala 1:500 000 (à esquerda).

O CPSE é um corpo granítico tardi-varisco (290 Ma) com uma área de 400 km², apresenta uma geometria anelar com um eixo elíptico superior a 30 km e orientação W-E (Lopes *et al.*, 1998; Lopes, 2003; Lopes *et al.*, 1997;Sant`Ovaia *et al.*, 2014). Este complexo situa-se entre a Faixa Blastomilonítica e o sector Alter do Chão-Elvas, sectores mais setentrionais do NE Alentejano, descrito por Pereira *et al.* (2013) como Zona de Cisalhamento Coimbra-Córdova (ZCCC) e Bordo meridional da ZCCC (Fig. 9).

A ZCCC (segmento Nordeste Alentejano) está situada entre as falhas de

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Mosteiros e de Assumar (de orientação NW-SE). É uma sutura Cadomiana resultante de eventos tectono-metamórficos e reativada no início da orogenia Varisca em regime transpressivo esquerdo originando uma estrutura em flor, *flower struture* (Araújo, 2013).

Na ZCCC, aparece representada a formação de Mosteiros, formação do Proterozoico superior (c. 545 Ma), constituída por metagrauvaques, metapelitos, metachertes e por rochas mais antigas com grau de metamorfismo superior (formação de Campo Maior: gnaisses, migmatitos e anfibolítos; toleítos continentais) onde sob esta se depositou de forma discordante o Complexo Vulcano-sedimentar de Nave de Grou-Azeiteiros (Pereira *et al.*, 2013).

No que diz respeito aos processos de deformação, os eventos de tectónica ativa (subsidência/ obducção) condicionou a geometria da zona de transição ZCI-ZOM, a uma estrutura em leque, dissimétrica, designada por *flower structure* com uma vergência para NE, com um plano axial oblíquo em comparação com as unidades tectónicas (Pereira *et al.*, 2013). O regime associado a esta situação é transpressivo esquerdo e consoante a natureza das rochas, a deformação e o grau de metamorfismo, pode-se ter modificações a nível textural e composicional do tipo fácies anfibolítica.

A unidade de Arronches é uma das cinco unidades tectónicas principais que se encontram na ZCCC, é uma formação constituída por rochas metamórficas (micaxistos granatíferos, metachertes negros, mármores, anfibolitos, gnaisses blastomiloníticos) que através da afinidade MORB em combinação com o estudo isotópico U-Pb da unidade de Campo Maior e, valores Nd=+10.89 com razão inicial ¹⁴³Nd/¹⁴⁴Nd=0,51256, permitiu identificar a idade dos protólitos magmáticos (Pereira *et al.,* 2013).

O bordo meridional do ZCCC é limitado pela falha de Assumar e a falha de Alter do Chão e inclui a Megaestrutura de Assumar (Pereira, 1990 *in* Pereira *et al.*, 2013). No bordo meridional, a formação de Mosteiros (Série Negra, c.545 MA) aflorante contém evidências da existência de um ambiente de arcos oceânicos através do aparecimento de intercalações de níveis de mármores com metagrauvaques, metapelitos. paragnaisses biotíticos, micaxistos biotíticos e metachertes negros, assim como, os anfibolitos de Besteiros (Pereira *et al.*, 2013) no Neoproterozoico. Os episódios de erosão desta formação contribuíram para a geração de uma matriz arcósica com clastos de metachertes e micaxistos. Estes materiais estão presentes nos conglomerados constituintes do complexo Vulcano-sedimentar de Freixo-Segóvia (Pereira, 1999; Pereira e Silva, 2002 *in* Pereira *et al.*, 2013) situado sob a Série Negra.

A Série Negra é representada por rochas metamórficas, intercalações de metagrauvaques e metapelitos com níveis carbonatados na transição do Câmbrico inferior (Pereira *et al.*, 2013). A deformação dúctil varisca (fácies xistos verdes) em

ambientes de baixa temperatura originou diversas estruturas em leque com certas diferenças de vergência. Durante o Câmbrico a foliação da Série Negra é intruída pelos granitoídes milonitizados na fácies de xistos verdes (Figs. 9 e 10).

Figura 9. Sequência litoestatigráfica esquemática da Zona de Cisalhamento Tomar-Badajoz-Córdova (*in* Oliveira et *al.*, 1991) e representação esquemática da *flower struture* centrada na ZCTPBC (*in* Araújo, 2013).

Figura 10. Mapa geológico do Nordeste Alentejano (in Pereira, 2013).

Relativamente ao CPSE, é um corpo granítico que intrui de forma discordante as

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

estruturas litoestatigráficas hercínicas (de orientação geral NW-SE), formações do Proterozoico e Paleozoico inferior, cujas litologias dominantes são gnaisses, xistos, rochas carbonatadas e formações metassedimentares detríticas, provocando uma extensa orla metamórfica por metamorfismo de contacto (Fig. 11; Gonçalves et al., 1972; Gonçalves et al., 1975; Lopes, 1989; Lopes, 2003; Lopes et al., 1998). Este evento está relacionado com a evolução da tectónica regional. O metamorfismo de contacto resultante das fases de deformação varisca é identificado pela existência corneanas de composições distintas (calcossilicatadas, pelíticas e básicas) e xistos mosqueados sob formas alongadas no complexo. Podem ser confundidas no campo por rochas do Grupo - M (rochas ígneas máficas) (Gonçalves et al., 1972; Lopes et al., 1998; Sant'Ovaia et al., 2014). Os anéis graníticos do complexo exibem uma simetria bilateral e um centro deslocado para leste. Ainda associado a estes, ocorre um anel incompleto constituído por gabros, dioritos e rochas híbridas dioríticas (rochas mais antigas) (Gonçalves et al., 1972). As características referidas anteriormente, justificam a hipótese do carácter sub-vulcânico do maciço de Santa Eulália (Gonçalves et al., 1972; Gonçalves et al., 1975; Lopes et al.,1998). É limitado a norte pelo cavalgamento de Portalegre, a sul pelo carreamento da Juromenha, a este pela falha da Messejana e a oeste pela falha Castelo de Vide (Lopes, 1989).

No maciço de Santa Eulália (Fig.11 e 12) é possível verificar uma variação radial de fácies graníticas distintas na sua composição e textura, do núcleo para a periferia, a fácies G1 e G0 (Lopes, 1989; Lopes *et al.*, 1997; Lopes *et al.*, 1998; Menéndez *et al.*, 2006; Sant'Ovaia *et al.*, 2014).

Figura 11. Complexo Tardi-Varisco de Santa Eulália (in Cruz, 2013).

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

A fácies G0 representa os granitos biotíticos rosa, de carácter metaluminoso com uma textura granular médio-grosseira, não porfiroíde (granitos do tipo Barbacena) (Gonçalves *et al.*, 1972; Lopes *et al.*, 1998). Os resultados obtidos pelo estudo petrográfico realizado por Sant'Ovaia *et al.* (2014) mostram que o granito é constituído por feldspato potássico, mineral mais abundante, por plagioclase (megacristais alterados com zonamento bem marcado), quartzo (grãos anédricos a sub-euédricos), e anfíbola sódica (hornoblenda). Estão também presentes zircão e esfena. Um dos processos de alteração presente no granito é a cloritização parcial ou completa da biotite. O feldspato potássico é outro mineral que se encontra alterado, neste caso pela ocorrência da albitização localizada no interior ou em volta do cristal. No caso da anfíbola, esta é afetada pelo processo de cloritização. Para além destes minerais, o estudo revelou a existência de um intercrescimento de mirmequite no bordo da plagioclase aquando do contacto com o feldspato potássico e a presença de microclina sob a forma de cristal intersticial bem desenvolvido ou como cristal heterogranular.

A tonalidade rosa destes granitos intensifica-se em determinados locais devido a minúsculas inclusões de hematite e outros óxidos castanho-avermelhados de ferro nos cristais de quartzo e feldspato, e por outros difíceis de caracterizar dada a sua dimensão. O carácter alcalino do granito é justificado pela abundância da microclina e pela ocorrência de albite e horneblenda (Gonçalves *et al.*,1972).

No anel granítico G0 estão instalados os seguintes corpos: corpos de composição gabróica e granodiorítica classificados como rochas constituintes do Grupo-M e corneanas de diversas composições categorizada como *roof pendants* (rochas metassedimentares e meta-ígneas) (Sant'Ovaia *et al.*, 2014). A presença desta associação de rochas indica sinais de hibridismo (Lopes, 1989; Lopes *et al.*, 1998; Sant'Ovaia *et al.*, 2014.).

A fácies G1 representa os granitos cinzentos monzoníticos porfiroides, de carácter peraluminoso com uma granulometria fina a média, são granitos predominantemente biotíticos (Lopes *et al.*,1998; Menéndez *et al.*,2006; Sant'Ovaia *et al.*, 2014). Em relação à mineralogia, os granitos do grupo de fácies G1 contêm plagióclases com zonamento e sericitizadas (grãos euédricos ou sub-euédricos), quartzo, moscovite e biotite parcialmente cloritizada. O quartzo aparece sob a forma de grão anédrico e quando observado ao microscópio exibe uma extinção ondulante e alinhamentos de inclusões fluídas (Lopes *et al.*,1998; Sant'Ovaia *et al.*, 2014). Na passagem da fácies G0 para a fácies G1, o feldspato potássico sofre um decréscimo favorecendo a plagioclase e um aumento de moscovite. Segundo Gonçalves *et al.*, (1972), a plagioclase contida no granito é a oligoclase.

FCUP

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Lopes (1989) refere a biotite como sendo um mineral acessório principal, que ocorre em cristais sub-euédricos (cristais prismáticos) na matriz da rocha, alterando-se para clorite quando ocorrem processos de cloritização. A biotite pode estar incluída nos cristais de feldspato potássico e a moscovite ser considerada como mineral de alteração dos feldspatos potássicos. Como minerais secundários, surge a apatite e o zircão (Lopes, 1989; Sant'Ovaia *et al.*, 2014). Na fácies G1, o feldspato potássico presente é a ortoclase que se encontra acompanhada pelo mineral microclina (grãos de pequena dimensão) devido aos processos de microclinização nos feldspatos pré-existentes.

O carácter porfiroide da rocha é dado pelos cristais anédricos e sub-euédricos do feldspato potássico e pela microclina, apesar de ser menos abundante no granito.

No CPSE, associado à fácies central G1, ocorrem zonas de greisen associados ou não a filões de quartzo , que apresentam mineralizações em cassiterite, e scheelite. Os filões de quartzo contêm calcopirite, esfalerite, galena, calcocite, covelite e cerussite. As zonas de greisen são compostas por quartzo e moscovite e como minerais acessórios a fluorite (mineral vestigial nas fases minerais principais), cassiterite, pirite, arsenopirite, calcopirite, blenda, bismutinite e escorodite (Gonçalves *et al*, 1975; Lopes, 1989). Este tipo de mineralizações é compatível com o quimismo reconhecido para os granitos da fácies G1.

FCUP

17

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Figura 12: Mapa Geológico do Complexo de Santa Eulália (CPSE) (in Cruz, 2013).

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

ii) Rochas Graníticas

Mineralogia, Petrologia e Geoquímica das rochas graníticas

Os granitóides são os principais constituintes da crosta continental, são rochas plutónicas com características semelhantes às do granito, incluindo o granito (p. ex. granodioritos, quartzo-dioritos, etc.), associadas a ambientes geotectónicos distintos (intraplaca continental, *rift*, arcos insulares). A composição química do granito depende das características da sua fonte. O estudo do granito é essencial para se obter informações sobre a evolução da crusta ao longo do tempo geológico numa determinada região.

Existem diversos sistemas de classificações que surgiram após vários estudos realizados por determinados autores (Chappel e White, 1974; Pitcher, 1987; Barbarain,1990; entre outros) utilizando a petrologia, geoquímica (minerais e rocha) e a geocronologia. A composição mineralógica, composição química, granularidade (textura), e geotectónica, são alguns dos parâmetros usados para o estudo dos granitos.

O granito é classificado, de modo geral, como uma rocha ígnea plutónica de cor clara com uma textura granular, porfiroide ou não porfiroide, constituída maioritariamente por quartzo e feldspatos (ortoclase e plagioclase), e como fase acessória tem as micas (moscovite, biotite), anfíbola (horneblenda) e zircão.

A análise petrográfica da rocha permite identificar as fases mineralógicas presentes, assim como, os diferentes minerais acessórios: as micas (moscovite e biotite), clorite, zircão, apatite, sericite, rútilo, esfena, cordierite, andaluzite, silimanite, monazite, ilmenite e magnetite. O uso deste método possibilita a análise geométrica dos grãos (grãos euédricos, sub-euédricos e anédricos) e a sua orientação que têm influência na textura da rocha (textura isotrópica ou anisotrópica (orientada)). Quando os minerais se encontram dispersos na rocha, sem qualquer orientação preferencial (disposição aleatória), esta é caracterizada como uma rocha de textura isotrópica, caso contrário, está-se nas condições de textura anisotrópica.

Relativamente às características dos minerais, a forma do grão está intimamente relacionada com o estádio de evolução magmática em que ocorreu o processo de cristalização, e as sequências de cristalização dos minerais constituintes das rochas vulcânicas e plutónicas são manifestadas pelas relações texturais existentes.

Os granitos são excelentes indicadores dos processos magmáticos, vulcânicos, metamórficos e tectónicos envolvidos na sua génese (processos petrogenéticos), e permitem inferir sobre a geologia e tectónica local e regional antes de iniciar a sua
cristalização, durante a sua formação (cristalização), pós-formação (posterior à sua cristalização) e antes de iniciar a sua cristalização.

Streckeisen (1976, 1979) propôs um sistema de classificação para as rochas granitoides baseado no diagrama QAPF que situa o granito no campo correspondente a valores de Q (quartzo) compreendidos entre 20% e 60% seguido de valores de P (plagioclase) inferiores a 90%. Esta classificação é obtida através da análise modal da rocha, proporção dos minerais constituintes da rocha (Fig. 13).

Figura 13. Classificação e nomenclatura das rochas ígneas plutónicas de acordo com os conteúdos félsicos e quando contêm menos de 90%.de minerais máficos; Q, quartzo; A, feldspato alcalino; P, plagioclase; F, feldspatóides (foid) (Streckeisen, 1976 e 1979).

Quando é difícil determinar a composição mineralógica real da rocha, o estudo pode ser completado pelo cálculo da Norma CIPW (introduzido por Cross, Iddings, Pirsson e Washington em 1903), cujo objetivo é estimar a composição mineralógica da rocha (composição mineralógica virtual) através de um conjunto de regras de cálculo estipuladas em função dos resultados das análises químicas (elementos maiores, elementos menores). O grau de saturação em sílica e em alumínio da rocha pode ser obtido através deste método geoquímico (Winter, 2001).

Durante o cálculo da norma, a ordem pela qual os componentes/minerais normativos vão sendo constituídos ajuda a reconstituir as sequências de cristalização e associações químico-mineralógicas característicos nos processos ígneos. Os resultados desta análise são exibidos em determinados diagramas, como por exemplo, o diagrama Q`-ANOR de Streckeisen & Le Maitre (1979) e o diagrama de Barker (1979) (Fig.14), com a finalidade de classificar rochas granitóides (> 10% de volume de quartzo).

20

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Relativamente aos parâmetros do diagrama Q`-ANOR, cada parâmetro é calculado através de uma equação que utiliza as composições normativas dos minerais, Q (100 x (Qtz/ (Qtz+Ab+Or+Na)) e ANOR (100 x (An / Na+Or)).

Figura 14. Diagrama Classificativo de Barker (1979) para rochas granitóides. Composição dos feldspatos (Na - anortite, Ab - albite, Or - ortoclase).

Relativamente às análises químicas, a análise dos elementos constituintes das rochas, sob a forma de óxidos (SiO₂, Al₂O₃, Na₂O, K₂O, CaO, Fe₂O₃, FeO, MgO, P₂O₅, TiO₂, MnO e H₂O⁺) permite determinar as fases minerais principais da rocha. Os diagramas (X-Y), diagramas de Harker (1909), projetam estes óxidos em função de um índice de diferenciação (SiO₂ em percentagem de peso) com o objetivo de exibir as tendências de cada óxido e as associações minerais durante o processo de cristalização fracionada (Fig.15).

Figura 15. Diagrama de Harker (1909) adaptado de Winter (2011).

Os elementos maiores, sob a forma de óxidos presentes nas estruturas dos principais minerais das rochas graníticas são: SiO₂ (quartzo), Al₂O₃, Na₂O, CaO (plagioclase), K₂O, Na₂O, Al₂O₃ (feldspato alcalino), Fe₂O₃, FeO, MgO, TiO₂ (silicatos ferromagnesianos e óxidos). O P₂O₅, TiO₂ aparecem normalmente em pequenas quantidades na rocha e podem ser incorporados na estrutura cristalina das fases máficas (horneblenda, biotite, titanomagnetite, ilmenite e rútilo - MnO, TiO₂) ou nos minerais acessórios (apatite - P₂O₅). Alguns dos elementos vestigiais (Sr, Li) substituem os elementos maiores na rede cristalina da plagioclase e das micas ou podem concentrarse nas fases acessórias (zircão, monazite). Raguin (1958) elaborou uma tabela de elementos maiores característicos das rochas graníticas expressos em percentagem (Tabela 1). Esta análise foi concluída após várias amostragens a inúmeras rochas graníticas.

Elementos Maiores	Percentagem (%)
SiO ₂	69 a 73
Na ₂ 0	3.2 a 4.5
CaO	0.5 a 2.2
Fe ₂ O ₃	1.5 a 2.6
Al ₂ O ₃	12 a 15
K ₂ O	4.0 a 4.5
FeO	1.3 a 1.8
MgO	0.2 a 1.0

Tabela 1. Percentagem de elementos maiores das rochas graníticas expressos em óxidos (Raguin, 1958).

Outro exemplo de classificação, de uso mais generalizado, foi proposto por Shand (1947), baseando-se no conceito de saturação em alumínio (dada pela razão molar (A/CNK: Al₂O₃ / Na₂O+CaO+K₂O); A= Al-(K+Na+2Ca)) utilizando os valores dos elementos maiores constituintes da rocha.

Em função do índice A/CNK, as rochas granitóides podem ser classificadas em: Peraluminosas (A/CNK>1), Metaluminosas (A/CNK<1 e Al₂O₃>Na₂O+K₂O) e Peralcalinas (A/CNK<1 e Al₂O₃ < Na₂O+K₂O) (Fig. 16). 22 Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Figura 16. Classificação das rochas ígneas com base nas proporções moleculares de $Al_2O_3/CaO+Na_2O+K_2O$ (A/CNK) (Shand, 1927; Clarke, 1992; Winter, 2001).

Chappell e White (1974) criaram uma classificação para os granitos de acordo com as características da sua fonte, introduzindo a conceito de granitos tipo-I (fontes crustais ígneas, infracrustais), e granitos tipo-S (fontes crustais sedimentares, supracrustais). Esta divisão é claramente genética e justificada perante os parâmetros mineralógicos, químicos e isotópicos obtidos para cada tipo de granito.

Os granitos tipo-I são granitos metaluminosos e pouco peraluminosos, contêm concentrações altas de Na, Ca e Sr, e baixas de Cr, Ni, assim como, valores elevados da razão Fe^{3+/}Fe²⁺, da razão inicial ⁸⁷Sr/⁸⁶Sr, 8¹⁸O e baixos da razão ¹⁴³Nd/¹⁴⁴Nd. O granito resultou da fusão parcial de rochas ígneas máficas e/ou intermédias da crusta inferior, em condições de alta temperatura. A rocha é rica em horneblenda e a magnetite é o óxido comum neste tipo de granito (Winter, 2001).

Os granitos tipo-S são rochas peraluminosos e derivaram da fusão parcial de uma fonte constituída por rochas sedimentares peraluminosas incluídas na crusta. São granitos ricos em biotite e podem ter na sua constituição moscovite, andaluzite, silimanite e/ou granada, e a ilmenite (óxido comum) (Winter, 2001).

White (1979) definiu um terceiro grupo, os granitos do tipo-M, granitos de origem mantélica, gerados por fusão parcial da crusta oceânica subductada ou por cristalização fracionada de magmas mantélicos (Winter, 2001). Loiselle & Wones (1979) adicionaram um novo grupo de granitos à classificação anteriormente proposta, os granitos tipo-A. Este tipo de granitos é característico de ambientes anarogénicos e exibe teores mais elevados de Zr, Nb, Y, La, Ce, Sc, Zn, Ga e mais baixos de Al, Mg, Ca, e Sr quando comparados com os granitos do tipo-I e tipo-S (Winter, 2001). Na Tabela 2 encontram-se resumidas as características principais dos granitos do tipo I, S, M e A.

Тіро	SiO ₂	K ₂ O/Na ₂ O	Ca, Sr	A/ (CNK)	Fe ³⁺ /Fe ²⁺	Cr, Ni	δ ¹⁸ Ο	⁸⁷ Sr/ ⁸⁶ Sr	Geoquímica	Petrogénese
м	46- 70%	baixo	alto	baixa	baixa	baixo	<9 ‰	< 0,705	baixo Rb, Th, U baixo LILE e HFSE	Zonas de subducção ou intraplaca oceânica derivados do manto
I	53- 76%	baixo	alto em rochas máficas	baixa: metaluminos o a peraluminoso	moderada	baixo	<9 ‰	<0,705	alto LILE/HFSE médio R, Th,U Hornoblend a Magnetite	Zona de subducção Fonte Ígnea máfica a intermédia infra-crustal
S	65- 74%	alto	baixo	alto peraluminoso	baixa		>9 ‰	>0,708	variável LILE/HFSE alto Rb,Th,U moscovite cordierite ilmenite	Zona de subducção -Fonte sedimentar supra-crustal
A	>77 %	Na₂O alto	var peralcalina	var	var	baixo	var	var	baixo LILE/HFSE alto Fe/Mg alto Ga/Al alto REE, Zr alto F, Cl	Anarogénico Cratão estável Zona de Rift

Tabela 2. Características do	s granitos do tipo M, I, S e A ((adaptado de Winter (2001)).
------------------------------	----------------------------------	------------------------------

Var: variável.

i) Classificação das rochas graníticas baseada na tectónica

As características químicas das fontes (crustais / mantélicas) que dão origem às rochas graníticas e os processos envolvidos na sua petrogénese simultaneamente com a tectónica influenciam a composição química das rochas.

Pitcher (1987) estudou as rochas granitóides e classificou-as de acordo com o contexto geotéctónico associado à sua génese e instalação. As diferentes fácies graníticas (granitos tipo-I, tipo-S, tipo-M e tipo-A) estão identificadas nos diferentes ambientes geotectónicos. (Fig.17).

Figura 17. Classificação geotectónica das rochas granitóides. Os granitos portugueses são granitos do tipo Hercinótipo, segundo a classificação de Pitcher (1987). O quadrado azul representa os granitóides portugueses (*hercynotype-type*). Adapt. Pitcher (1987).

Os granitos portugueses são granitos do tipo hercinótipo (colisão oblíqua; colisão placa continental - placa continental), são granitos sin-orogénicos que se encontram localizados em cadeias dobradas com idades semelhantes às cadeias vizinhas. Enquanto que, os granitos anarogénicos estão localizados num soco com idade e natureza distinta (Pitcher,1987) (Figs. 17 e 18).

		OROGENIC		TRANSITIONAL	ANOR	OGENIC
	Oceanic Island Arc	Continental Arc	Continental Collision	Post-Orogenic Uplift/Collapse	Contintntal Rifting, Hot Spot	Mid-Ocean Ridge, Ocean Islands
= granitoid magma underplated mantle melts	*	manite wedge melting	batch anatexis	decompression melting	decompression not spot plume	hot spot plume
Examples	Bougainville, Solomon Islands, Papua New Guinea	Mesozoic Cordilleran batholiths of west Americas Gander Terrane	Manaslu and Lhotse of Nepal, Amorican Massif of Brittany	Late Caledonian Plutons of Britain, Basin and Range, late Variscan, early Northern Proterozoic	Nigerian ring complexes, Oslo rift, British Tertiary Igneous Province, Yellowstone hotspot	Oman and Troodos ophiolites; Iceland, Ascension, and Reunion Island intrusives
Geo	Calc-alkaline > thol.	Calc-alkaline	Calc-alkaline	Calc-alkaline	Alkaline	Tholeiitic
chemistry	M-type & I-M hybrid I-type > S-type		S-type	I-type S-type (A-type)	A-type	M-type
	Metaluminous	Met-Al to sl. Per-Al	Peraluminous	Metalum. to Peralum	Peralkaline	Metaluminous
Rock types	qtz-diorite in mature arcs	tonalite & granodior. > granite or gabbro	migmatites & leucogranite	bimodal granodiorite + diroite-gabbro	Granite, syenite + diorite-gabbro.	Plagiogranite
Associated Minerals	Hbl > Bt	Hbl, Bt	Bt, Ms, Hbl, Grt, Als, Crd	Hbl > Bt	Hbl, Bt, aegirine fayalite, Rbk, arfved.	НЫ
Associated Volcanism	Island-arc basalt to andesite	Andesite and dacite in great volume	often lacking	basalt and rhyolite	alkali lavas, tuffs, and caldera infill	MORB and ocean island basalt
Classification Barbarin (1990)	T _{IA} tholeiite island arc	H _{CA} hybrid calc-alkaline	C _{ST} C _{CA} C _{CI} continental types	H _{LO} hybrid late orogenic	A alkaline	T _{or} tholeiite ocean ridge
Pearce et al. (1984)	VAG (volcar	nic arc granites)	COLG (collis	ion granites)	WPG and or (within plate and or	nd ORG cean ridge granites)
Maniar & Piccoli (1989)	IAG island arc granite	CAG contin. arc granite	CCG cont. collision gran.	POG post-orogenic gran.	RRG CEUG rift & aborted/hotspot	OP ocean plagiogranite
Origin	Partial melting of mantle-derived mafic underplate	PM of mantle-derived mafic underplate + crustal contribution	Partial melting of recycled crustal material	Partial melting of lower crust+ mantle and mid-crust contrib	Partial melting of mantle and/or lower crust (anhydrous)	Partial melting of mantle and frac- tional crystallization
Melting Mechanism	Subduction energy: dissolved species Melting of wedge, tra	transfer of fluids and from slab to wedge. ansfer of heat upward	Tectonic thickening plus radiogenic crustal hea	Crustal heat plus mantle heat (rising asthen. + magmas)	Hot spot and/or ad	liabatic mantle rise

After Pitcher (1983, 1993), Barbarin (1990)

Figura 18. Classificação dos granitóides considerando o contexto geotectónico; no quadro os granitóides do tipo Hercinótipo estão identificados a azul. Adapt. Winter (2001).

Em Portugal, os granitos foram classificados de acordo com a idade e a sua relação com as fases de deformação hercínica (Neiva & Gomes, 2001). No norte e centro de Portugal, mais concretamente na zona centro Ibérica (ZCI) e zona Galiza-Trás-dos-Montes (ZGTM), predominam os granitos tipo-S (peraluminosos), granitos de duas micas, e os granitos tipo-I (metaluminosos) (Neiva & Gomes, 2001; Sant'Ovaia & Noronha, 2005). De acordo com as fases de deformação, os granitos estão classificados relativamente à fase D3 (terceira fase de deformação varisca) em granitos sin- a póstectónicos (Ferreira *et al.*,1987; Neiva & Gomes, 2001). Os granitos de duas micas com moscovite dominante (moscovite>> biotite), podem ser granitos sin-tectónicos ou tardi-

tectónicos, enquanto que os granitos biotíticos (biotite dominante) são granitos tardi- a pós-tectónicos, a pós-tectónicos (Nogueira, 1997; Neiva & Gomes, 2001; Sant'Ovaia & Noronha, 2005). Nogueira (1997) refere que o *fabric* da rocha é um bom indicador tectónico, pois a existência de compatibilidade entre o *fabric* de deformação ou magmático da rocha com uma determinada fase é o necessário para identificar a que classe pertence (sin-, tardi- e pós-tectónico).

IV. Metodologia e Amostragem

i) Anisotropia da Suscetibilidade Magnética (ASM)

Uma rocha pode conter uma variedade de minerais com comportamento ferromagnético, paramagnético ou diamagnético. Cada grão mineral da rocha contribui para a suscetibilidade magnética média e para a sua anisotropia magnética.

A anisotropia da suscetibilidade magnética (ASM) permite avaliar qualitativamente a geometria e retirar informações acerca do *fabric* magmático ou da deformação da rocha. O estudo da ASM possibilita a identificação do *fabric* (tridimensional) e da orientação dos minerais, representando o alinhamento de minerais no seio de toda a rocha.

No terreno é possível analisar o *fabric* em determinadas rochas (rochas metamórficas, entre outras) desde que sejam visíveis orientações de minerais ou lineações de estiramento. A biotite é um mineral marcador que no terreno permite identificar o *fabric* das rochas, no entanto nem todas as rochas é possível observar um *fabric* macroscópico ou microscópico, como é o caso das rochas graníticas.

A suscetibilidade magnética (K) de um mineral (ou rocha) está relacionada com o campo magnético, H e com magnetização induzida, M. Esta relação é expressa pela fórmula matemática:

M=KH

O campo magnético e a magnetização induzida têm as mesmas unidades, A/m (ampère por metro, no sistema internacional), logo a suscetibilidade magnética não tem dimensões, é uma grandeza adimensional no Sistema Internacional de Unidades.

No caso da rocha ser isotrópica, K é um escalar, caso contrário a rocha é anisotrópica. Sendo K não escalar, este é representado por um tensor simétrico de 2^a ordem da forma Mi=K_{ij}H_j (i, j = 1,2,3) em que M_i traduz a magnetização na direção i, e H_j representa o campo indutor efetivo na direção j (Sant'Ovaia & Noronha, 2005). O tensor de suscetibilidade magnética é representado por um elipsoide triaxial com 3 eixos principais ortogonais que definem as direções principais, suscetibilidades principais. A suscetibilidade máxima é designada por K1; a intermédia por K2 e a mínima por K3 (Kmax> Kint> Kmin) (Graham, 1954; Hrouda, 1982; Collinson, 1983; Bouchez, 1997 *in* Sant`Ovaia *et al.*, 2014; Sant`Ovaia *et al.*, 2008) (Fig.1).

28

A geometria do elipsoide é influenciada pelos valores das suscetibilidades principais (K1, K2, K3) e a orientação dos eixos do elipsoide da suscetibilidade magnética permite inferir as lineações dos minerais (direção dos sedimentos, das rochas intrusivas e extrusivas, etc.) (Dubey, 2014).

Segundo Gomes & Sant'Ovaia, (2015), o elipsoide pode exibir uma geometria esférica caso os valores de K1, K2 e K3 sejam similares e K seja escalar (corpo isotrópico). Pode apresentar-se também com uma geometria em forma de "charuto" (elipsoide prolato) devido ao *fabric* ser linear, ou seja, K1>K2 e K2 com valores semelhantes a K3. No caso do elipsoide ser plano-linear indica possui valores de K diferentes (K1>K2>K3). Quando os valores de K1 são similares aos de K2 e K2 apresenta valores superiores a K3, ocorre um *fabric* linear (Fig.19).

Figura 19: Modelos de elipsoides de anisotropia de suscetibilidade magnética. Adapt. Gomes & Sant'Ovaia (2015).

O valor da suscetibilidade magnética varia em função da intensidade do campo aplicado, da temperatura e da direção em que é realizada a medição.

A suscetibilidade magnética permite inferir a composição mineral da rocha de acordo com o comportamento magnético dos minerais presentes: minerais diamagnéticos (quartzo ou feldspato), paramagnéticos (biotite, moscovite ou horneblenda) ou ferromagnéticos (magnetite ou hematite) (Sant`Ovaia *et al.*, 2014).

Se uma amostra (rocha ou mineral) tem um valor de K elevado indica que a rocha se magnetiza com facilidade, enquanto que um K baixo mostra que a rocha é pouco suscetível à magnetização. A suscetibilidade é uma propriedade anisotrópica, depende

da direção da aplicação do campo magnético na amostra e pode apresentar direções diferentes devido há heterogeneidade textural e mineralógica das rochas

Os granitos não são rochas isotrópicas, apresentam uma mineralogia muito variada, quartzo, feldspato e micas (moscovite e biotite ou só biotite) e acessórios. Os valores de ASM no granito são mais elevados quando este é constituído por magnetite. A anisotropia global (ASM) de uma rocha vai depender dos minerais presentes, na sua estrutura.

Os minerais ferromagnéticos apresentam suscetibilidades magnéticas superiores a 10⁻³ SI e é exemplo de mineral ferromagnético, a magnetite. Os minerais paramagnéticos apresentam valores positivos mas baixos de K, compreendidos entre 10⁻ ⁴ a 10⁻³ SI. Este comportamento deve-se aos iões de Fe³⁺ e Fe²⁺ presentes na estrutura dos silicatos. Exemplos de minerais paramagnéticos são a biotite, moscovite, anfíbola, horneblenda, ilmenite e a pirite, entre outros.

O comportamento antiferromagnetismo é semelhante ao paramagnetismo, em termos de valores de K, e é exemplo de mineral antiferromagnético, a goethite.

Nos granitos, o principal mineral responsável por o comportamento ferromagnético é a magnetite (Fig. 20).

Figura 20. Curvas de magnetização induzida em função do campo magnético aplicado. Suscetibilidade magnética (K); magnetização (M) em função do campo magnético externo induzido (H); Ms: magnetização de saturação, Mr: magnetização remanescente. Adapt. Bouchez (1997).

Quando os valores de suscetibilidade magnética são negativos está-se numa situação de diamagnetismo e são exemplo, os minerais quartzo e feldspatos.

A suscetibilidade magnética é um parâmetro útil na distinção de fácies graníticas de acordo com o tipo de fração mineral presente na rocha. No caso da presença de uma

30

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

fração ferromagnética (magnetite) nos granitos os valores de suscetibilidade podem ser superiores a 10⁻³ SI, caracterizando o granito como "*magnetite type granite*" (Ishiarahara,1977 *in* Sant`Ovaia & Noronha, 2005). Quando a rocha apresenta valores de suscetibilidade baixos, inferiores a 10⁻⁴ SI, estão presentes frações minerais ferromagnéticos e paramagnéticos (ilmenite e biotite), e o granito é classificado como pertencente aos"*Ilmenite type granite*".

A ilmenite e magnetite são minerais que podem estar presentes nos granitos e a presença ou não de um destes minerais, pode permitir inferir acerca do contexto de formação do granito, nomeadamente, verificar se os ambientes são de oxidação ou de redução. A ilmenite é formada em contextos redutores e magnetite em contextos oxidantes. O grau de oxidação dos magmas graníticos pode influenciar as mineralizações associadas a estes granitos. A presença de magnetite pode funcionar como um marcador, um guia de prospeção, para as mineralizações (molibdénio, volfrâmio, entre outros).

Os objetivos principais do estudo de anisotropia da suscetibilidade magnética são:

- a caracterização petrofísica das rochas;
- o estudo do fabric magnético das rochas;
- o conhecimento das microestruturas dos granitos;
- o conhecimento da geometria tridimensional dos corpos graníticos;
- a localização das zonas de enraizamento dos corpos graníticos;
- o estabelecimento de um modelo de instalação coerente com contexto tectónico;
- o estabelecimento das relações espaciais com as mineralizações associadas.

ii) Metodologia

O objetivo desta dissertação é o estudo da suscetibilidade magnética (Km) de litologias do Complexo Plutónico de Santa Eulália (CPSE), comparando os dados de Km obtidos *in situ* (em afloramento) com os valores de Km obtidos em amostras, previamente recolhidas. Para o respetivo estudo, utilizou-se como metodologia de trabalho a medição da suscetibilidade magnética (Km) *in situ* nos granitos (G0 e G1) do CPSE, com auxílio de um suscetibilímetro portátil (equipamento *Magnetic Susceptibility Meter*, K-10 da Terra Plus). Este equipamento permite medir pontualmente a suscetibilidade magnética (Fig.21) e, posteriormente, utilizando o *software GeoView*, efetuar um tratamento posterior dos dados.

As medições realizadas pelo suscetibilímetro permitem obter a suscetibilidade magnética (Km). Uma das qualidades deste aparelho é o acesso instantâneo aos dados após o momento da aplicação do campo magnético no material.

Figura 21. Suscetibilímetro portátil (KT-10) do Departamento de Geociências, Ambiente e Ordenamento do Território (DGAOT, FCUP).

iii) Amostragem

Na campanha de campo realizada no CPSE, várias medições do Km foram realizadas com o suscetibilímetro portátil. Para tal, em cada paragem identificou-se o local de amostragem e as litologias e retiraram-se 5 medições de Km, quer no solo quer na rocha, anotando-se a sua respetiva localização GPS (Fig. 22). A localização dos locais de amostragem está representada no mapa da figura 23.

Figura 22. Realização de medições pontuais, in situ, com auxílio do suscetibilímetro portátil num afloramento do CPSE.

Figura 23: Mapa da Localização das medições da Suscetibilidade Magnética no CPSE.

Este estudo foi complementado em laboratório, selecionando um conjunto de amostras anteriormente recolhidas (Sant'Ovaia *et al.*, 2014), e nestas amostras a suscetibilidade magnética foi medida, com o mesmo equipamento portátil utilizado no campo. O critério de seleção das amostras teve em conta a localização dos locais de medições realizadas no campo no CPSE, embora nem sempre a localização fosse exatamente a mesma. No entanto, o trabalho de campo foi realizado de modo a percorrer todas as litologias constituintes do CPSE, assim como, os locais próximos dos pontos de amostragem das campanhas anteriores (Sant'Ovaia *et al.*, 2014).

A medição da suscetibilidade magnética das amostras selecionadas foi realizada no jardim lateral ao edifício FC3, no DGAOT, na Faculdade da Universidade do Porto. As medições foram realizadas num local afastado de estruturas metálicas, de modo a não interferir com o sinal magnético das amostras e sempre em condições atmosféricas não adversas (Fig. 24).

Figura 24. Jardim do edifício FC3 da FCUP, local onde se realizou as medições da suscetibilidade magnética das amostras previamente recolhidas no CPSE (Sant`Ovaia *et al.*,2014)

V. Resultados e Discussão

Neste capítulo são apresentados os resultados das medições da suscetibilidade magnética (Km) obtidos no campo (Santa Eulália), em afloramento, com os valores de Km obtidos em laboratório em amostras, recolhidas anteriormente, recorrendo-se em ambos os casos a um suscetibilímetro portátil.

Os resultados da suscetibilidade magnética dos materiais analisados no campo (Santa Eulália), com suscetibilímetro portátil, encontram-se expressos na tabela 3. Os valores da suscetibilidade média (Km) revelaram-se muito heterogéneos, de acordo com o local e o tipo de material (granitos, corneanas e solo). Verifica-se ainda, que de uma maneira geral, o valor de Km médio é superior nas amostras de solo quando comparados com as amostras de rocha (525,3 x 10⁻⁶ SI e 243,5 x10⁻⁶ SI, respetivamente).

No caso das corneanas os valores de Km obtidos no solo variam entre 236,0 x10⁻⁶ SI e 1422,3 x10⁻⁶ SI com um Km médio de 719,0 x10⁻⁶ SI, enquanto que, na rocha os valores são mais baixos com um Km médio 217,8 x10⁻⁶ SI.

As fácies graníticas (G0 e G1) têm comportamentos de Km diversos, quer se trate de rocha ou solo. Relativamente à fácies G0, os valores medidos no solo oscilam entre 156,7 x10⁻⁶ SI e 1133,3 x10⁻⁶ SI com um valor de Km médio 617,6 x10⁻⁶ SI. Na rocha os valores são, geralmente, inferiores variando no intervalo 32,7 - 1586,7 x10⁻⁶ SI, apresentando um valor Km médio 426,5 x10⁻⁶ SI. O granito G1 exibe valores de Km inferiores a 100 x10⁻⁶ SI tanto no solo (87,3 x10⁻⁶) como na rocha (34,0 - 72,3x10⁻⁶ SI).

Foram ainda realizadas duas medições de Km em rochas aparentemente pertencentes à série negra (SN) revelando os seguintes valores: 352,0 x10⁻⁶ SI e 395,3 x10⁻⁶ SI.

FCUP

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Tabela 3. Dados da suscetibilidade magnética medidos, in situ, com o suscetibilímetro (K-10) na campanha de campo ao CPSE.

Local	Coordena	adas GPS			Km (x10⁻ [€]	⁵ SI)		Km			
Pontos de amostragem	Latitude	Longitude	L1	L2	L3	L4	L5	médio (x10 ⁻⁶ SI)	Litologia		Observações
1	38,9968332	-7,4697483	0,030	0,030	0,043	0,028	0,038	32,7	Rocha	G0	Granito Rosa Grosseiro-Junto à IP2
2	39,0135199	-7,4669299	0,737	0,432	1,880	0,500	0,543	570,7	Solo	G0	Granito Rosa-Estrada Herdade Chaminé
2a			0,116	0,117	0,235	0,540	0,519	290,3	Solo	G0	Repetição
3	39,0265650	-7,5573399	0,454	0,543	0,499	0,590	0,399	480,3	Solo	G0	Estrada ainda
4	39,0391417	-7,4542332	0,103	0,241	0,171	0,129	0,177	196,3	Rocha	G0	Granito Rosa grosseiros- Estrada Avis- Afloramento Saibro
5	39,0458066	-7,4470350	1,050	0,725	0,867	1,000	1,120	904,0	Solo	CC	Corneanas- Estrada Monforte
6	39,0599665	-7,4475149	0,809	0,966	0,913	0,637	0,710	863,0	Rocha?		Estrada W Monforte - Rocha ?
6a			1,260	0,411	0,637	1,860	0,811	619,7	Solo	G0	Granito Rosa Grosseiro- Repetição
7	39,0557115	-7,4285549	0,911	1,900	1,770	0,983	0,597	1422,3	Solo	CC	Corneanas-Estrada Arronches
8	39,0623032	-7,4106865	1,410	0,838	1,060	0,909	2,160	1352,7	Solo	CC	Corneanas-Olival
9	39,0721099	-7,3910500	0,624	0,257	0,322	0,547	0,566	381,7	Rocha	G0	Granito Rosa grão fino
10	39,0742416	-7,3722315	0,815	1,060	0,926	1,010	1,230	1072,0	Solo	G0	Granito Rosa grão fino
11	39,0869832	-7,3510065	0,191	0,176	0,140	0,158	0,154	156,7	Solo	G0	Granito Rosa
12	39,0964149	-7,3320150	0,270	0,295	0,230	0,247	0,192	239,0	Rocha	G0	Granito Rosa-Herdade Couto
13	39,1013133	-7,3119499	0,068	0,077	0,084	0,117	0,044	68,3	Rocha	G0	Granito Rosa grão médio
14	39,1133850	-7,2969949	0,328	0,548	0,342	0,462	0,296	395,3	Solo	SN	Série Negra- Perto de Arronches- Solo Anfibolitico
15	39,1031316	-7,2748833	0,296	0,256	0,350	0,354	0,450	352,0	Solo	SN	Série Negra??- Depois de Arronches
15a			0,080	0,235	0,429	0,302	0,058	240,7	Rocha	G0	Repetição- Granito
16	39,0845382	-7,2829549	0,076	0,069	0,083	0,065	0,046	66,0	Rocha	G0	Granito Rosa Grosseiro
17	39,0678633	-7,2777063	0,055	0,061	0,033	0,054	0,059	51,0	Rocha	G1	Granito Cinzento Porfiroide

34

Tabela 3. Dados da suscetibilidade magnética medidos, in situ, com o suscetibilímete	tro (K-10) na campanha de campo ao CPSE (cont.).
--	--

Local	Coordena	adas GPS		ŀ	۲m (x10 ⁻⁶	SI)		Km			
Pontos de	Latitude	Longitude	L1	L2	L3	L4	L5	médio	Litologia		Observações
amostragem								(x10 ⁻⁶ SI)			
17a			0,172	0,111	0,012	0,148	0,139	87,3	Solo	G1	
18	39,0371349	-7,2586066	0,136	0,015	0,023	0,027	0,064	34,0	Rocha	G1	Granito Cinzento - Junto à Herdade
19	39,0053299	-7,1365116	0,139	0,103	0,172	0,170	0,180	151,7	Rocha		Liditos-Depois de Barbacena
19a			0,339	0,107	0,169	0,098	0,133	136,3	Rocha	CC	Rochas Calcossilicatadas
20	39,9975549	-7,1472016	0,014	0,011	0,014	0,018	0,008	11,0	Rocha		Granito-depois de Barbacena
21	39,9982333	-7,1757416	1,200	1,570	1,000	0,664	0,888	1152,7	Rocha	G0	Granito Rosa-Casa da Ermida
22	39,9992798	-7,1983816	0,065	0,059	0,060	0,058	0,051	56,7	Rocha	G1	Granito Cinzento Grosseiro Porfiroide
23	39,0015016	-7,2134082	0,040	0,063	0,075	0,069	0,068	68,7	Rocha	G1	Granito Cinzento Porfiroide grão médio
24	39,0146933	-7,2387666	0,079	0,059	0,052	0,066	0,058	56,3	Rocha	G1	Granito Cinzento grão fino não Porfiroide
25	39,0069500	-7,2682282	0,063	0,053	0,640	0,059	0,057	250,0	Rocha	CC	Estrada Sta. Eulália- Monforte
26	39,0104316	-7,3034533	0,063	0,067	0,081	0,013	0,069	72,3	Rocha	G1	Granito Cinzento grão médio
27	39,0157449	-7,3239300	0,069	0,072	0,037	0,044	0,064	57,7	Rocha		Granito Cinzento ?? grão médio
27a			0,045	0,039	0,057	0,048	0,060	52,0	Solo		Repetição
28	39,0334716	-7,3503549	0,047	0,042	0,044	0,064	0,045	43,7	Rocha	G1	Granito Cinzento Porfiroide grão médio
28a			0,147	0,186	0,188	0,271	0,170	181,3	Solo		O solo pode ter mistura
29	39,0175899	-7,3824682	0,213	0,322	0,236	0,182	0,201	253,0	Solo	CC	Corneanas
30	39,0251266	-7,3980516	0,247	0,532	0,423	0,440	0,453	469,3	Solo	CC	Corneanas
31	38,9496682	-7,4108315	0,495	0,370	0,589	0,470	0,535	498,0	Solo		Estrada Sto. Aleixo-Monforte
32	38,9543299	-7,4061616	0,079	0,050	0,052	0,090	0,059	53,7	Rocha	G0	Granito Rosa Grosseiro - junto ao contacto
33	38,9649449	-7,4122600	0,232	0,265	0,296	0,256	0,279	280,0	Rocha	CC	Corneanas (Anfibolitos)

FCUP

36

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Tabela 3. Dados da suscetibilidade magnética medidos, in situ, com o suscetibilímetro (K-10) na campanha de campo ao CPSE (cont.).

Local	Coorden	adas GPS		K	m (x10-6	SI)		Km			
Pontos de	Latitude	Longitude	L1	L2	L3	L4	L5	médio	Litologia		Observações
amostragem			0.040	0.407	0.000	0.500	0.044		Cala	~~~	
33a			0,340	0,197	0,200	0,502	0,311	236,0	5010		
34	38,9835349	-7,4216933	0,249	0,155	0,228	0,176	0,231	204,7	Rocha	CC	Corneanas (Anfíbolitos)
35	39,0058382	-7,4255032	1,330	0,172	0,680	2,330	0,195	349,0	Rocha	G0	Granito rosa Grosseiro
35a			0,724	0,182	0,075	1,580	0,027	94,7	Solo		Valores muito instáveis
36	39,0280732	-7,4314133	0,670	0,311	0,468	0,511	1,180	653,0	Solo	CC	Correspond Colosseilisatedas o Résisso
36a			1,210	0,518	0,565	1,090	0,303	462,0	Solo	CC	Comeanas Calcossilicatadas e Dasicas
37	38,9871398	-7,3355949	0,830	2,100	1,070	0,133	1,590	1586,7	Rocha	G0	Granito Rosa grão médio
37a			0,338	0,282	0,243	0,354	0,513	346,0	Solo		O solo dá valores baixos de Km; Valores muito instáveis
38	38,9742949	-7,3146199	1,280	1,120	0,850	1,310	1,430	1133,3	Solo	G0	Granito Rosa
39	38,9624749	-7,2933166	0,323	1,240	0,484	0,205	0,531	751,7	Rocha	G0	Granito Rosa Grosseiro com foliação sub- horizontal
40	38,9911083	-7,2669582	0,054	0,051	0,054	0,072	0,061	55,3	Rocha	G1	Granito Cinzento de grão médio Porfiroide
41	38,9885649	-7,2401500	0,191	0,179	0,160	0,185	0,175	171,3	Rocha		Diorito grão fino

FCUP Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Em laboratório, a suscetibilidade magnética foi também medida, com um suscetibilímetro portátil, mas em amostras do CPSE recolhidas anteriormente. Os resultados obtidos mostraram valores de Km mais baixos do que as medidas *in situ*. Na tabela 4 são apresentados os valores obtidos.

Tabela 4.	Dados	de	suscetibilidade	magnética	medidos	nas	amostras	recolhidas	durante	as	campanhas	de	campo
anteriores	no CPS	SE (Sant`Ovaia et a	<i>l.</i> , 2014).									

							Km			Suscetibilidade	
			Kn	n (x10 ⁻³	SI)		(x10 ⁻³ SI)	Km	Km	Magnética	
Amostr	as						Média	(x10 ⁻³ SI)	(x10 ⁻⁶ SI)	Km (x 10 ⁻⁶ SI)	Litologia
		L1	L2	L3	L4	L5	(sem mín.	(((Sant`Ovaia <i>et</i>	
	1						e máx.)			<i>a</i> l., 2014)	
002	C1	0,164	0,167	0,160	0,144	0,110	0,147	0,150	150,3	1165,6	G0
006	B1	0,014	0,017	0,022	0,013	0,012	0,015	0.016	16 3	94.4	G1
000	D2	0,024	0,016	0,024	0,014	0,012	0,018	0,010	10,0	04,4	01
	C2	0,012	0,010	0,021	0,015	0,008	0,012				
007	B2	0,015	0,012	0,016	0,018	0,019	0,016	0.015	447	109.2	C1
007	C2	0,014	0,012	0,024	0,013	0,018	0,015	0,015	14,7	108,3	GI
	D1	0,005	0,016	0,015	0,014	0,020	0,015				
	A1	0,016	0,020	0,012	0,013	0,021	0,016				
000	B1	0,012	0,014	0,023	0,017	0,025	0,018	0.047	474	440.0	04
008	C2	0,021	0,017	0,016	0,018	0,023	0,019	0,017	17,1	118,3	G1
	D1	0,016	0,013	0,017	0,011	0,021	0,015				
009	C1	0,009	0,015	0,018	0,017	0,010	0,014	0,014	14,0	94,0	G1
	A1	0,016	0,011	0,019	0,015	0,020	0,017				
011	B1	0,087	0,036	0,047	0,052	0,065	0,055	0.019	47 6	110.9	G1
UTT	C1	0,091	0,059	0,143	0,156	0,083	0,106	0,018	17,5	110,0	
	D2	0,094	0,064	0,080	0,071	0,051	0,072				
	A1	0,069	0,069	0,084	0,079	0,081	0,076				
045	C1	0,070	0,069	0,079	0,084	0,060	0,073	0.074	74.0	664.0	Course M
015	C2	0,082	0,070	0,079	0,076	0,062	0,075	0,074	74,0	664,8	Grupo-Ivi
	D1	0,067	0,070	0,070	0,084	0,076	0,072				
047	D1	0,151	0,083	0,128	0,138	0,191	0,141	0.470	470 5	4500.0	<u> </u>
017	B2	0,190	0,143	0,245	0,206	0,220	0,205	0,173	172,5	1562,6	GU
	A1	0,013	0,009	0,015	0,027	0,016	0,015				
020	B1	0,020	0,010	0,017	0,009	0,007	0,012	0,014	14,2	91,6	G0
	C2	0,016	0,011	0,012	0,015	0,009	0,013				
	A1	0,013	0,015	0,018	0,024	0,020	0,018				
021	C1	0,015	0,016	0,023	0,014	0,020	0,017			100 7	64
	C2	0,024	0,018	0,018	0,016	0,028	0,020	0,019	10,7	133,7	GT
	D1	0,028	0,015	0,030	0,014	0,017	0,020				

37

FCUP

38

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Tabela 4. Dados de suscetibilidade magnética medidos nas amostras recolhidas durante as campanhas de campo anteriores no CPSE (Sant'Ovaia *et al.*, 2014) (cont.).

Amostras			Kn	n (x10 ⁻³	SI)		Km (x10 ⁻³ SI) Média	Km (x10 ⁻³ SI)	۲ (×10 ⁻⁶ SI)	Suscetibilidade Magnética Km (x 10 ⁻⁶ SI)	Litologia
		L1	L2	L3	L4	L5	(sem mín.	(x10 31)	(x10 * 31)	(Sant`Ovaia <i>et</i>	
							e máx.)			al., 2014)	
	C1	0,013	0,011	0,020	0,013	0,012	0,013				
024	02	0,013	0,014	0,015	0,010	0,012	0,013	0,012	12,1	65,9	G1
		0,013	0,007	0,017	0,011	0,012	0,012				
		0,012	0,008	0,011	0,014	0,009	0,011				
		0,017	0,011	0,024	0,014	0,000	0,014				
025	C2	0,015	0,011	0,020	0,012	0,000	0,013	0,013	13,3	93,9	G1
	F1	0.017	0.015	0.013	0.009	0.011	0.013				
	 A2	0.015	0.010	0.012	0.017	0.013	0.013				
	B1	0,009	0,012	0,013	0,014	0,016	0,013				
028	C1	0,013	0,007	0,013	0,012	0,009	0,011	0,013	12,9	86,0	G1
	D1	0,007	0,015	0,017	0,010	0,009	0,014				
	A2	0,041	0,057	0,033	0,039	0,029	0,038				
	B2	0,830	0,054	0,057	0,073	0,084	0,071				
075	C1	0,053	0,045	0,034	0,043	0,033	0,041	0,050	50,3	374,0	G0
	C2	0,021	0,052	0,045	0,058	0,056	0,051				
	C3	0,075	0,046	0,050	0,056	0,026	0,051				
	A1	0,202	0,187	0,146	0,191	0,173	0,184				
076	A2	0,305	0,307	0,210	0,282	0,217	0,268	0 202	201 7	2028 8	G0
0/0	D1	0,230	0,298	0,214	0,141	0,195	0,213	0,202	201,7	2020,0	
	D2	0,141	0,162	0,227	0,123	0,121	0,142				
	A2	0,445	0,477	0,165	0,210	0,132	0,273				
	B2	0,328	0,229	0,301	0,566	0,546	0,392				
077	C2	0,188	0,191	0,153	0,114	0,138	0,160	0,310	310,3	2433,0	G0
	D1	0,749	0,685	0,284	0,529	0,438	0,551				
	D2	0,154	0,219	0,148	0,156	0,246	0,176				
	B2	0,059	0,056	0,034	0,046	0,099	0,054				
078		0,309	0,253	0,305	0,260	0,140	0,273	0,339	339,1	3709,3	G0
		0,049	0,080	0,482	0,202	0,287	0,473				
	Δ1	0.086	0,301	0.085	0,303	0,009	0,007				
	B2	0.062	0.067	0.070	0.049	0.044	0.059				
083	D1	0.074	0.072	0.087	0.060	0.054	0.069	0,075	74,8	707,1	G0
	D2	0,095	0,092	0,062	0,086	0,079	0,086				

FCUP Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Tabela 4. Dados de suscetibilidade magnética medidos nas amostras recolhidas durante as campanhas de campo anteriores no CPSE (Sant'Ovaia *et al.*, 2014) (cont.).

Amostras			Kn	n (x10 ⁻³	SI)		Km (x10 ⁻³ SI)	Km	K m	Suscetibilidade Magnética	
Amostr	as						Média	r∖m (x10 ⁻³ SI)	r∖m (x10 ⁻⁶ SI)	Km (x 10 ⁻⁶ SI)	Litologia
		L1	L2	L3	L4	L5	(sem mín.	. ,	. ,	(Sant`Ovaia et	
	C2	0.015	0.025	0.010	0.011	0 024	0.017			al., 2014)	
084	02 C1	0.014	0.013	0.015	0.007	0.011	0.013	0.014	13.7	69.7	G1
	B2	0.015	0.007	0.012	0.014	0.009	0.012	-,	; -	;-	
	C2	0,017	0,024	0,013	0,014	0,014	0,015				
	A1	0,015	0,013	0,011	0,013	0,006	0,012				
085	B1	0,049	0,034	0,023	0,024	0,036	0,031	0,017	17,3	126,9	G0
	C3	0,016	0,009	0,012	0,007	0,011	0,011				
	C1	0,013	0,010	0,017	0,007	0,012	0,012				
	C2	0,017	0,014	0,011	0,013	0,018	0,015				
091	C3	0,011	0,016	0,022	0,010	0,013	0,013	0,014	13,7	100,0	G1
	B2	0,014	0,011	0,015	0,018	0,016	0,015				
	C2	0,017	0,016	0,016	0,018	0,019	0,017				
092	C3	0,016	0,016	0,019	0,021	0,012	0,017	0,017	16,6	117,6	G1
	D2	0,024	0,013	0,020	0,014	0,012	0,016				
097	A1	0,015	0,008	0,025	0,019	0,013	0,016	0,016	15,7	87,9	G1
	A1	0,048	0,029	0,044	0,038	0,041	0,041				
100	B3	0,087	0,036	0,047	0,052	0,065	0,055	0.068 68.3	766.9	GO	
100	C2	0,091	0,059	0,143	0,156	0,083	0,106	0,000	00,5	700,3	00
	D3	0,094	0,064	0,080	0,071	0,051	0,072				
	A1	0,017	0,010	0,019	0,015	0,012	0,015				
101	B3	0,013	0,008	0,018	0,016	0,011	0,013	0,014	14,3	86,0	G1
	D2	0,012	0,011	0,015	0,024	0,018	0,015				
	C2	0,012	0,020	0,015	0,019	0,017	0,017				Roof
125	A2	0,018	0,020	0,022	0,018	0,013	0,019	0,018	18,0	139,9	pendant
	C1	0,016	0,018	0,021	0,021	0,013	0,018				-
	A1	0,013	0,009	0,015	0,027	0,016	0,015				
128	B1	0,020	0,010	0,017	0,009	0,007	0,012	0,014	14,2	91,6	G1
	C2	0,016	0,011	0,012	0,015	0,009	0,013				
	C3	0,021	0,008	0,013	0,018	0,023	0,017				
	D2	0,108	0,084	0,102	0,045	0,083	0,090				
130	C2	0,197	0,195	0,186	0,105	0,160	0,180	0,119	119,3	987,9	G0
	A3	0,126	0,141	0,073	0,058	0,065	0,088				
Af2.0G	A2	0,076	0,097	0,810	0,085	0,075	0,086			0.40.0	0.0
0	B1	0,038	0,029	0,038	0,024	0,043	0,035	0,069	69,2	642,2	G0
	A3	0,166	0,069	0,061	0,130	0,055	0,087				

FCUP

40

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Tabela 4. Dados de suscetibilidade magnética medidos nas amostras recolhidas durante as campanhas de campo anteriores no CPSE (Sant'Ovaia *et al.*, 2014) (cont.).

Amostras		Km (v10-3 SI)					Km			Suscetibilidade	
			R.I.	n (x 10 -	51)		(XTU ² SI) Média	Km	Km	Km (x 10 ⁻⁶ SI)	Litologia
		14	1.2	1.2	14	1.5	(sem mín.	(x10 ⁻ ° SI)	(x10 ⁻ ° SI)	(Sant`Ovaia <i>et</i>	
			LZ	LS	L4	LJ	e máx.)			al., 2014)	
Af3G0	A1	0,018	0,014	0,007	0,017	0,006	0,013		10,4	41.6	GO
	C1	0,010	0,011	0,011	0,010	0,009	0,010	0.010			
	A2	0,013	0,019	0,009	0,020	0,010	0,014	0,010		,0	•••
	B2	0,003	0,005	0,011	0,005	0,004	0,005				
Af4.0 G0	A1	0,047	0,051	0,038	0,048	0,042	0,046				
	B2	0,020	0,016	0,009	0,013	0,022	0,016	0.026	25,8	162 1	GO
	B1	0,025	0,027	0,017	0,023	0,025	0,024	0,020		102,1	00
	C2	0,021	0,019	0,010	0,011	0,020	0,017				
Af5G0	А	0,020	0,011	0,021	0,013	0,008	0,015		15,3	80,4	G0
	B2	0,013	0,014	0,019	0,011	0,006	0,013	0.015			
	C2	0,011	0,014	0,012	0,013	0,016	0,013	0,015			
	D1	0,023	0,022	0,015	0,018	0,023	0,021				
Af32,0 G1	B1	0,017	0,014	0,017	0,009	0,018	0,016			106,8	G1
	C1	0,031	0,013	0,022	0,011	0,016	0,017	0.016	16,0		
	D1	0,014	0,013	0,019	0,020	0,013	0,015	0,010			
	E1	0,017	0,014	0,016	0,018	0,011	0,016				
	B1	0,018	0,011	0,014	0,009	0,017	0,014			94,9	G1
Af33,0	B2	0,031	0,013	0,022	0,011	0,016	0,017	0.014	14,3		
G1	D1	0,015	0,013	0,018	0,009	0,014	0,014	0,014			
	D4	0017	0,013	0,014	0,009	0,010	0,012				
Af42,0 G2	C1	0,022	0,009	0,017	0,010	0,014	0,014				G1
	C2	0,016	0,010	0,013	0,011	0,021	0,013	0.013	13,3	97,1	
	C3	0,011	0,005	0,016	0,019	0,013	0,013	0,010			
	B1	0,014	0,012	0,012	0,006	0,014	0,013				
	A4	0,015	0,015	0,012	0,019	0,022	0,016		15,6	104,6	G1
Δf44 0	B1	0,016	0,019	0,008	0,015	0,014	0,015	0,016			
A144,0	C2	0,014	0,013	0,019	0,020	0,013	0,015				
	D1	0,017	0,014	0,016	0,018	0,011	0,016				
Af42G2	A3	0,022	0,016	0,018	0,008	0,014	0,016	0,017	16,9	109,0	G1
	B1	0,012	0,014	0,019	0,023	0,009	0,015				
	D1	0,021	0,017	0,029	0,015	0,016	0,018				
	F1	0,023	0,022	0,016	0,018	0,014	0,019				
Af43G2	A1	0,018	0,014	0,016	0,012	0,027	0,016		15,4	107,4	G1
	B1	0,011	0,015	0,008	0,018	0,019	0,015	0.015			
	D1	0,018	0,015	0,015	0,009	0,014	0,015	0,015			
	D2	0,018	0,014	0,021	0,016	0,015	0,016				

Amostras			Kn	n (x10 ⁻³	SI)		Km (x10⁻³ SI) Média	Km (x10⁻³ SI)	Km (x10 ⁻⁶ SI)	Suscetibilidade Magnética Km (x 10 ⁻⁶ SI)	Litologia
		L1	L2	L3	L4	L5	(sem mín. e máx.)			(Sant`Ovaia <i>et</i> <i>a</i> l., 2014)	
Af44G2	B1	0,015	0,017	0,016	0,015	0,023	0,016		14,8	119,7	G1
	C1	0,018	0,008	0,014	0,011	0,016	0,014	0.015			
	C2	0,017	0,011	0,020	0,014	0,010	0,14	0,013			
	E3	0,018	0,013	0,015	0,022	0,014	0,016				
Af57G1	C1	0,017	0,016	0,013	0,024	0,009	0,015		14 14,2	88,1	G1
	C2	0,018	0,012	0,013	0,021	0,008	0,014	0,014			
	C3	0,006	0,013	0,018	0,011	0,015	0,013				
Af58G1	A1	0,016	0,015	0,014	0,008	0,012	0,014	0,014	13,7	96,5	G1
	A2	0,016	0,010	0,009	0,015	0,020	0,14				

Tabela 4. Dados de suscetibilidade magnética medidos nas amostras recolhidas durante as campanhas de campo anteriores no CPSE (Sant'Ovaia *et al.*, 2014) (cont.).

As amostras das fácies graníticas G0 e G1 possuem comportamentos magnéticos distintos, os valores medidos revelaram-se muito heterogéneos. A fácies G0 apresenta valores de Km mais elevados que a fácies G1. Comparativamente à fácies G0, os valores medidos na fácies G1 variam entre 12,1 x10⁻⁶ e 18,7 x10⁻⁶ SI com um valor de Km médio 14,9 x10⁻⁶ SI, valores portanto mais baixos.

Os valores de Km do granito G0 variam no intervalo 10,4 - 339,1 x10⁻⁶ SI com um Km médio de 111,8 x10⁻⁶ SI. Para além das medições nos granitos, foram realizadas duas medições de Km em amostras classificadas como pertencentes aos *roof pendant* e ao Grupo-M (Sant'Ovaia *et al.,* 2014). O valor de Km da amostra do Grupo-M revelou ser muito elevado relativamente ao valor de Km da amostra do *roof pendant* (74,0 x10⁻⁶ e 18,0 x10⁻⁶ SI, respetivamente). A diferença de resultados entre estes dois tipos de rocha é devido às propriedades magnéticas dos minerais presentes na sua constituição.

Os resultados de Km, obtidos neste estudo, com o equipamento portátil, foram também comparados com os obtidos por Sant'Ovaia *et al. (*2014), em medições efetuadas em laboratório, recorrendo a uma balança de suscetibilidade magnética, da Kappabridge, modelo KLY-4S. Os valores de Km das amostras (granitos G0 e G1, rochas dos *roof pendant* e do Grupo-M) escolhidas para este estudo variam entre 41,6x10⁻⁶ e 3709,3 x10⁻⁶ SI (Fig.25) e podem ser comparados com os obtidos com as medições efetuados com o suscetibilímetro portátil (Fig. 26).

Figura 25. Dados da suscetibilidade magnética (Km), para os diferentes tipos de rochas (granitos G0 e G1, rochas do Grupo-M e dos *roof pendant*) (Sant'Ovaia *et al.*, 2014).

Como se pode observar nas Fig. 25 e Fig. 26, os valores de Km medidos no granito G0 são mais elevados e mais variáveis que no granito G1. Em relação às outras litologias, observa-se que a amostra dos *roof pendant* exibe valores mais baixos do que a amostra máfica do Grupo-M.

Figura 26. Dados da suscetibilidade magnética (Km), para os diferentes tipos de rochas (granitos G0 e G1, rochas do Grupo-M e dos *roof pendant*) medidos, com o equipamento portátil, em laboratório no DGAOT, FCUP.

A análise gráfica (Fig. 25 e 26) pôs em evidência a variação da suscetibilidade magnética nas diferentes rochas em estudo, quando se utilizam diferentes métodos de

medição: equipamento portátil e laboratorial. Apesar dos valores de suscetibilidade medidos *in situ* serem mais baixos para todas as rochas em estudo, quando comprados com as medições na balança de suscetibilidade KLY-4S Kappabridge (em laboratório), o comportamento das amostras é semelhante, ou seja, a fácies do granito G0 apresenta valores mais altos e mais variáveis que a fácies do granito G1.

Esta variação nos valores de Km quando se utiliza um equipamento portátil e um equipamento laboratorial, pode ser inerente ao próprio equipamento. Com o equipamento portátil a medição de Km é feita num ponto da rocha, enquanto que no equipamento laboratorial, a medição de Km é feita num volume de cerca de 10 cm³. O aumento do volume faz aumentar o sinal magnético, o que conduz a aumento da suscetibilidade magnética.

Os resultados das medições de Km para cada local estão representados no mapa da figura 27 elaborado com auxílio do software Arcgis, recorrendo ao método de interpolação Kriging, com o objetivo de apresentar a variação dos valores de Km no CPSE.

Figura 27: Mapa das medições de campo da suscetibilidade magnética do CPSE.

VI. Conclusões

O estudo petrofísico realizado *in situ* nas diferentes litologias durante campanha de campo no CPSE e nas amostras colhidas para trabalhos anteriores (Sant'Ovaia *et al.,* 2014) permitiu adquirir novos dados para a compreensão das variações da suscetibilidade magnética em fácies graníticas num determinado local, utilizando metodologias de trabalho diferentes. A análise da suscetibilidade magnética permite identificar as diferentes fácies, através dos parâmetros petrofísicos das rochas e sugerir as condições geológicas em que se deu a formação e instalação do corpo granito durante o momento da intrusão.

Os dados obtidos pelas medições *in situ*, com equipamento portátil, identificaram as corneanas como as rochas que exibem os valores mais elevados de suscetibilidade magnética (Km), tanto no solo com na rocha. A fácies granítica G0, granito biotítico não porfiroide metaluminoso, apresenta valores de Km superiores à fácies G1 (granito cinzento, monzonítico). Comparativamente aos valores de Km das corneanas, os valores de suscetibilidade medidos no solo para o granito G0 também são elevados, enquanto que, a fácies G1 apresenta os valores mais baixos de Km. Apesar do objetivo desta dissertação ser o estudo dos granitos do CPSE, mediram-se também os valores a 300×10^{-6} SI.

Relativamente às medições, utilizando o suscetibilímetro portátil, realizadas em amostras recolhidas em trabalhos anteriores (Sant`Ovaia *et al.*, 2014), observou-se uma descida acentuada dos valores de Km nas diferentes litologias, quando comparado com os valores obtidos no campo.

O estudo comparativo dos resultados da suscetibilidade magnética obtidos em campanhas anteriores (Sant'Ovaia *et al.*, 2014), em laboratório, com agora obtido com equipamento portátil, mostrou que há um comportamento semelhante dos valores de suscetibilidade, nas diferentes litologias e nos diferentes locais de amostragem. A fácies granítica G0 apresenta sempre os valores mais elevados de Km, quer seja em solo ou em rocha, assim como no laboratório comparativamente com a fácies G1. Na fácies G1 os valores da suscetibilidade não variam muito, mantêm-se com uma tendência constante, quando comprados com os valores de Km da fácies G0. Este facto deve-se à própria mineralogia das duas fácies, uma vez que o granito G0 apresenta nalguns locais magnetite, enquanto no granito G1, a magnetite está sempre ausente.

FCUP

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Os valores obtidos através do suscetibilímetro K-10, foram sempre mais baixos quando comparados com os obtidos com o equipamento em laboratório. Como a medição em laboratório é realizada numa amostra com um respetivo volume (cerca de10 cm³), o valor da suscetibilidade magnética vai aumentar dependendo devido ao aumento do sinal magnético. Já na medição com o equipamento portátil, a medição é feita num único ponto da rocha, assim o campo magnético pode não ser suficiente para magnetizar grãos de magnetite, sendo o sinal magnético "mascarado" por minerais diamagnéticos e paramagnéticos, diminuindo o valor da suscetibilidade magnética efetiva da rocha.

Referências Bibliográficas

Araújo, A., 2013. O Varisco do sector Sul de Portugal. Em: Dias, R., Araújo, A., Terrinha, P. & Kullberg, J. C, (Eds.), Geologia de Portugal, Volume I, Geologia Pré-mesozóica de Portugal. Escolar Editora, Lisboa. p. 483 - 492.

Araújo, A., Piçarra Almeida, J., Borrego, J., Pedro, J., Oliveira, J. T., 2013. As regiões central e sul da Zona de Ossa Morena. Em: R. Dias, A. Araújo, P. Terrinha, J. C. Kullerberg (eds.), Geologia de Portugal, Volume I- Geologia Pré-mesozóica de Portugal. Escolar Editora, Lisboa. p. 509 - 549.

Barbarin, B., 1990. Granitoids - main petrogenetic classifications in relation to origin and tectonic setting. Geological Journal 25, 227-238.

Bard, J. (1977) - Signification tectonique des métatholeiites d'affinité abyssale de la ceinture

métamorphique de basse pression d'Aracena (Huelva, Espagne). *Bulletin de la Societé geologique de France*, XIX (2): 385-393.

Barker, F., 1979. Trondhjemite: Definition, environment and hypothesis of origin. Em: F. Barker (Ed.), Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam. p. 1-12.

Bouchez, J. L., 1997. Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Granite: from melt to emplacement fabrics (Eds. J.L. Bouchez, D.H.W. Hutton & W.E. Stephens), Kluwer Academic Publishers, Dordrecht, p. 95-112.

Carta Militar de Portugal 1:25 000 de Santa Eulália: Elvas, Folha 399. Continente, série M888. Serviços Cartográfico do Exército, Portugal, 1959-1993. Ed. 3

Carta Geológica de Portugal. Escala 1:50 000. Serviços Geológicos de Portugal. Lisboa.

Folha 32-B - Portalegre, 1973

Folha 32-D - Sousel, 1975

Folha 33-A - Assumar, 1978

Folha 33-C - Campo Maior, 1972

Folha 36-B - Estremoz, 1974

Folha 37-A - Elvas, 1970

48

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Chappell B. W. & White A. J. R., 1974. Two contrasting granite types. Pacific Geology 8, 173-174.

Clarke, G.L., 1992.Field relationships and tectonic history of the Hinckley Gabbro, felsic to mafic granulites and granitoids, west Hinckley Range and Champ-de-Mars areas, Tomkinson Ranges, Musgrave Block, WA. Bureau of Mineral Resources, Australia, Record 1992/33.

Collinson, D.W., 1983. Methods in rocks magnetism and palaeomagnetism. Chapman & Hall, London.

Cruz, C., 2013. Efeitos metamórficos e fluidos do Complexo Plutónico de Santa Eulália. Universidade do Porto, 204pp. (Dissertação de mestrado).

Dubey, A. K., 2014. Understanding an Orogenic Belt. Springer Geology. 390pp.

Ferreira, N.; Iglesias, M.; Noronha, F.; Pereira, E.; Ribeiro, A. E Ribeiro, M.L. (1987) – Granitóides da Zona Centro Ibérica e seu enquadramento geodinâmico. *In*: Bea, F., Carnicero, A., Gonzalo, J.C., Lopez Plaza, M. e Rodriguez Alonso, M.D. (Eds.) – *Geologia de los granitóides y rocas asociadas del Mazico Hesperico - Livro de Homenagem a L.C. Garcia de Figueirola*. Uni. Salamanca, pp. 37-51.

Gomes, C. & Sant'Ovaia, 2015. Modelos de anisotropia da suscetibilidade magnética versus modelação de processos geológicos. In: Neves, L.J.P.F., Pereira, A.J.S.C., Gomes, C.S.R., Pereira, L.C.G. & Tavares, A.O., 2011. Modelação de sistemas geológicos: livro de homenagem ao Professor Manuel Maria Godinho. Laboratório de Radioatividade Natural da Universidade de Coimbra. Imprensa da Universidade de Coimbra. pp. 237-246.

Gonçalves, F., Assunção, C.T., Coelho, A.V.P, 1972. Notícia Explicativa da Folha 33-C na escala de 1/50 000 da Carta Geológica de Portugal. Direção-Geral de Minas e Serviços Geológicos, Serviços Geológicos, Lisboa, 41pp.

Gonçalves, F., Zbyszewski, G., Coelho, A.V.P., 1975. Notícia Explicativa da Folha 32-D (Sousel) na escala de 1/50 000 da Carta Geológica de Portugal. Direção-Geral de Minas e Serviços Geológicos de Portugal, Serviços Geológicos, Lisboa, 49pp.

Graham, J.W., 1954. Magnetic susceptibility anisotropy, an unexploited petrofabric element. Geol Soc Am Bull 65, 1257-1258.

Harker, A., 1909. The Natural History of Igneous Rocks. Hafner, New York (1965 facsimile of original edition).

Hrouda, F., 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5, 37-82.

Loiselle, M.C. & Wones, D.R., 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs 11, 468.

Lopes, J.M.C.,1989. Geoquímica de Granitóides Hercínicos na Zona de Ossa Morena: O Maciço de Sta. Eulália. Universidade de Évora, 138 pp. (Tese de doutoramento).

Lopes, J.M.C., Munhá, J.M., Gonçalves, F., 1997. Química mineral dos complexos gabro-sieníticos de Alter do Chão e de Elvas (NE Alentejo, Portugal Central). Em: Estudos sobre a geologia da zona da Ossa-Morena (Maciço Ibérico). Livro de homenagem ao Prof. Francisco Gonçalves, Évora. p. 57-90.

Lopes, J.M.C., Munhá, J., Wu. C. T., Oliveira, V. M. J., 1998. O Complexo Plutónico de Monforte-Santa Eulália (Alentejo-NE, Portugal Central): caracterização geoquímica e considerações petrogenéticas. Comunicações do Instituto Geológico e Mineiro 83, 127-142.

Lopes, J.L.G., 2003. Contribuição para o conhecimento tectono-estratigráfico do NE Alentejano (Transversal Terrena-Elvas): Implicações económicas no aproveitamento de rochas ornamentais existentes na região (Mármores e Granitos). Universidade de Évora. (Tese de doutoramento).

Menéndez, L.G., Azor, A., Pereira, M.D., Acosta, A., 2006. Petrogénesis de plutón de Santa Eulália (Alto Alentejo, Portugal). Revista de la Sociedad Geológica de España, 19, 69-86.

Moita, P.S.M., 2007. Granitóides no SW da Zona de Ossa-Morena (Montemor-o-Novo -Évora): Petrogénese e Processos Geodinâmicos. Universidade de Évora, 351 pp. (Tese de doutoramento).

Neiva, A.M.R. & Gomes, M. E. P., 2001 Diferentes tipos de granitos e seus processos petrogenéticos: granitos Hercínicos portugueses. Memórias da Academia de Ciências de Lisboa, Tomo XXXIX. P. 53-95.

Nogueira, P., 1997. Estudo de paleofluídos mineralizantes (Au, Ag, As) e sua migração. Aplicação a regiões auríferas do Norte de Portugal. Universidade do Porto. 220 pp. (Tese de Doutoramento). 50

Suscetibilidade Magnética, *in situ*, em zonas de alteração hidrotermal associadas a mineralizações nos granitos do Complexo Plutónico de Santa Eulália

Oliveira, J.T., Oliveira, V., Piçarra, J.M., 1991. Traços gerais da evolução tectonoestratigráfica da Zona de Ossa Morena, em Portugal. Cadernos do Laboratório Xeológico de Laxe, Coruña, 16, 221-250.

Pereira, M., 1999. Caracterização da estrutura dos domínios setentrionais da Zona de Ossa-Morena e seu limite com a Zona Centro-Ibérica, no Nordeste Alentejano. Universidade de Évora, 115 pp. (Tese de Doutoramento).

Pereira, M. & Quesada, C. (2006) - Ediacaran to Viséan crustal growth processes in the Ossa-Morena Zone (SW Ibéria). Conference Abstracts & Field Trip Guide of the IGCP 497– The Rheic Ocean: Its origin, Evolution and correlatives, Évora Meeting. *Publicaciones del Instituto Geológico y Minero de Espana*, 114 pp.

Pereira, M.F., Silva, J.B., Chichorro, M., Medina, J., Solá, A.R., 2010. Evolução estratigráfica do Sudoeste do Maciço Ibérico do Ediacariano ao Devónico inferior. Em: J.M. Cotelo Neiva... [et al.] (eds.), Ciências Geológicas: Ensino, Investigação e sua História, Volume I, p. 377-389.

Pereira, M.F., Silva, J.B., Solá, A.R., Chichorro, M., 2013. Nordeste Alentejano. Em: R. Dias, A. Araújo, P. Terrinha, J.C. Kullerberg (Eds.), Geologia de Portugal, Volume I-Geologia Pré-mesozóica de Portugal, Escolar Editora. Lisboa.

Pitcher W.S., 1974. The Mesozoic and Cenozoic Batholiths of Peru. Pacific Geology, 8, 51.62.

Pitcher, W.S., 1987. Granites and yet more granites forty years on. Stuttgart. Geologische Rundschau, 76 (1), 51-79.

Quesada, C. & Munhá, J., 1990. Metamorphism in the Ossa - Morena Zone. Em: Dallmeyer, R.D. & Martínez-García, E. (Eds.), Pre-Mesozoic Geology of Iberia, Springer-Verlag, p. 314-320.

Quesada, C., 1990. Ossa - Morena Zone: Introduction. Em: Dallmeyer, R.D. & Martínez-García, E. (Eds.), Pre-Mesozoic Geology of Iberia, Springer-Verlag, p. 249 -251.

Raguin, E., 1958. Géologie du granite. Revue de géographie de Lyon 33, 396-397.

Ribeiro, A., Antunes, M.T., Ferreira, M.P., Rocha, R.B., Soares, A.F., Zbyszewski, G., Moitinho de Almeida, F., Carvalho, D., Monteiro, J.H., 1979. Introduction à la geologia générale du Portugal. Serviços Geológicos de Portugal, Lisboa. 114 pp.

Sant'Ovaia, H. & Noronha, F., 2005. Classification of Portuguese Hercynian granites based on petrophysical characteristics (Classificação de granitos hercínicos

Portugueses com base nas suas características petrofísicas). Cadernos do Laboratrio Xeológico de Laxe. 75 - 86.

Sant'Ovaia, H., Gomes, C.R., Rocha, A.R., 2008. Parâmetros magnéticos das rochas do Complexo Granítico de Castelo Branco, Portugal Central. Em: A terra: conflitos e ordem. Coimbra. p. 265-272.

Sant'Ovaia, H., Ribeiro, M.A., Martins, H.C.B., Ferrão, F., Gomes, C. & Noronha, F., 2014. Estruturas e *fabric* magnético no maciço granítico de Lavadores-Madalena. Comunicações Geológicas 101, 313-317.

Shand, S.J., 1927. Eruptive Rocks, Their Genesis, Composition Classification and Their Reaction to Ore-Deposits, with a Chapter on Meteorites. Murby, London. 350pp.

Streckeisen, A., & Le Maitre, R. W. 1979. A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrbuch fur Mineralogie, Abhandlungen 136, 169-206.

Streckeisen, A., 1976. To each plutonic rock its proper name. Earth Sci. Rev. 12, 1-33.

Streckeisen, A., 1979. Classification and nomenclature of volcanic rocks, lamprophyres, cabonatites and melilitic rocks. Recommendations and suggestions of the IUGS subcommision on the systematic of igneous rocks. Geology 7, 331-335.

White, A. J. R., 1979. Sources of granite magmas. Geological Society of America Abstracts with Programs 11, 539.

Winter, J.D., 2001. An Introduction to Igneous and Metamorphic Petrology. Prentice Hall, USA. 697pp.