
Flux:
A platform for
mobile data sensing
using personal
devices
Nuno Miguel Alves da Silva
Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos
Departamento de Ciência de Computadores
2017

Orientador
Luı́s Lopes, Professor Associado,
Faculdade de Ciências da Universidade do Porto

Co-Orientador
Eduardo Marques, Professor Auxiliar Convidado,
Faculdade de Ciências da Universidade do Porto

Todas as correções determinadas
pelo júri, e só essas, foram
efetuadas.

O Presidente do Júri,

Porto, / /

To my family and friends...

I

Acknowledgements

I would first like to thank my dissertation advisors, Professor Lúıs Lopes and Pro-

fessor Eduardo Marques for their assistance and dedicated involvement in every step,

throughout the process.

Thanks to Tadeu Freitas and Diogo Machado, for their insightful comments and

encouragement.

Most importantly, I would like to thank my parents, my brother and sister for sup-

porting me and providing a continuous encouragement throughout my years of study,

with a lot of patience. This accomplishment would not have been possible without

them.

The work carried out in this dissertation was supported by the SMILES project

(NORTE-01-0145-FEDER-000020) / Norte2020.

II

Resumo

Dispositivos móveis, como por exemplo telemóveis, estão a tornar-se cada vez mais

poderosos, em que combinados com o incremento do numero de sensores embutidos,

expandem sua aplicabilidade. Em particular, estes sensores podem ser usados para

aplicações de recolha de dados. No entanto, a utilização de dispositivos móveis para

recolher dados pode revelar-se um desafio. Primeiro, temos a dificuldade de enviar

tarefas de recolha de dados para os dispositivos e subsequente agregação dos dados

capturados. E em segundo lugar, esses dispositivos não são dedicados para captura

de dados, logo é preciso ter em conta o consumo de recursos no dispositivo. Esses

requisitos foram parcialmente abordados em redes de sensores wireless, por isso torna-

se relevante avaliar esses sistemas.

Nesta dissertação, descrevemos Flux, uma plataforma para captura de dados, através

de tarefas de recolha de dados reconfiguradas dinamicamente em dispositivos móveis.

Realiza a atribuição de tarefas periódicas em tempo real para os dispositivos presentes

numa região geográfica, e faz a respetiva recolha dos dados, tornando-os acesśıveis

como fluxos de dados, disponibilizados por um publish/subscribe broker. As tarefas

de recolha de dados são programadas usando a Flux Task Language e compiladas para

byte-code que é executado numa máquina virtual de baixo consumo de recursos.

Implementamos um protótipo do Flux e avaliamos a influência do serviço nos dispos-

itivos móveis, o que mostrou o baixo consumo de recursos. Em seguida, realizamos

dois casos de estudo. O primeiro, onde um grupo de voluntários percorreu uma área

de especifica usando smartphones e tablets, para recolher dados sobre do sinal da

rede wireless. O segundo caso de estudo demonstrou a capacidade do sistema em

reconfigurar dinamicamente as tarefas nos dispositivos, com base na sua localização.

III

Abstract

Mobile devices, such as smartphones or wearables are becoming more powerful, that

combined with the increment of available embedded sensors, expands their applica-

bility. In particular, sensing capabilities can be put to use for mobile data sensing

applications. Nevertheless, the exploit of mobile devices for sensing can prove a

challenge. First, there is the adversity of disseminating the sensing tasks and the

subsequent aggregation of the captured data. And second, these devices are not

dedicated for sensing, so the overhead on the device must be as low as possible. These

requirements have been partially addressed in Wireless Sensor Networks so it becomes

relevant to evaluate these systems.

In this dissertation we describe Flux, a platform for dynamically reconfigurable data

sensing using mobile devices. It performs on-the-fly injection of periodic tasks on

devices present in a geographical region, and gathers the sensing data, making it ac-

cessible as data streams by a publish/subscribe broker. Sensing tasks are programmed

using the Flux Task Language and compiled to byte-code that is executed by a low-

footprint virtual machine.

We implemented a prototype of Flux and assessed the overhead of the service on

the mobile devices, which showed a low-footprint pattern. Then we conducted two

case-studies, one where a group of volunteers walked over a survey area using smart-

phones and tablets, to take measurements of the Wifi signal. The second case-study

demonstrated the ability of the system to dynamically reconfigure the task pool on

the devices, based on their location.

Keywords: Mobile Data Sensing, Mobile Crowd-Sensing, Software Architecture,

Domain-Specific Language, Virtual Machine, Android.

IV

Acronyms

DSL Domain Specific Language.

GPS Global Positioning System.

HDOP Horizontal Dilution Of Precision.

MCS Mobile Crowd Sensing.

MDS Mobile Data Sensing.

SONAR Sensor Observation aNd Actuation aRchitecture.

SSID Service Set Identifier.

VM Virtual Machine.

WSN Wireless Sensor Networks.

V

Contents

Resumo III

Abstract IV

List of Tables VIII

List of Figures IX

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 3

1.3 Contributions . 4

1.4 Outline . 5

2 Related Work 6

2.1 SONAR . 6

2.2 Wireless Sensor Networks . 9

2.3 Mobile Crowd Sensing Systems . 12

2.4 Summary . 14

3 The Flux Framework 16

3.1 Framework Requirements . 16

VI

3.2 Architecture . 17

3.3 Data Layer . 19

3.4 Processing Layer . 21

3.5 Client Layer . 22

3.6 Message Flow . 22

3.7 Summary . 24

4 Implementation 25

4.1 Programming framework . 25

4.2 Communication . 26

4.3 Gateway . 27

4.4 Broker . 29

4.5 Android Service . 31

4.6 Client interface and Gateway Manager 34

5 Evaluation 37

5.1 Resource Consumption . 37

5.2 Wifi coverage case-study . 39

5.3 Gateway roaming case-study . 43

5.4 Summary . 48

6 Conclusion 49

6.1 Discussion . 49

6.2 Future Work . 50

VII

List of Tables

4.1 Technologies used. 26

4.2 Commands available on the shell-based client. 35

4.3 Commands available on the gateway manager interface. 36

5.1 Resource consumption. 38

5.2 Byte-code size and execution time. 39

5.3 Android device characteristics . 42

VIII

List of Figures

1.1 Dynamic task reconfiguration . 4

2.1 SONAR architecture. 7

3.1 Flux architecture. 18

3.2 Dynamic task reconfiguration . 19

3.3 Android Service. 20

3.4 Message flow - new deployment . 23

3.5 Message flow - task management . 23

3.6 Message flow - new node. 24

4.1 Specification of a geographic region for a deployment. 28

4.2 Android Service graphical user interface. 32

4.3 Web client. 35

5.1 Survey area for the Wifi coverage case-study. 40

5.2 Data plots for collected data . 43

5.3 Survey area for the roaming case-study. 44

5.4 Location of the samples. 47

5.5 Average of microphone readings by corridor (absolute reading). 48

IX

Chapter 1

Introduction

The use of sensors to monitor physical or environmental phenomena has been ad-

vantageous in several applications. Systems that take advantage from this concept

can diverge from a simple gathering of information to gain knowledge about the

environment, to systems capable of automated interaction based on values of the sensed

data. With this demand for better systems to sense data, the Wireless Sensor Networks

(WSN) emerged consisting of embedded devices distributed spatially (called nodes),

usually low-cost and low-power. Each of these devices uses a set of multiple hardware

components: a radio transceiver, a microcontroller, an energy source, one or multiple

sensors and, if needed, some actuators. From the set of nodes, it is common to see at

least one that acts as a gateway to the network and is responsible for disseminating

the sensing tasks as well as collecting the captured data from all the nodes. These

devices are usually programmed using domain-specific languages [1, 2, 3] easing the

complexity defining sensing tasks unique for each sensing scenario.

Nowadays the collection of data is becoming more relevant to different areas of appli-

cation, leading to a change in the needed requirements to better fulfill the demand. On

the other hand, the technological development also presents new opportunities and in

that sense, there are millions of potential multi-sensor personal devices in our mobile

devices.

Devices, such as smartphones or wearables, are becoming more and more advanced

both in software as in hardware, including a rich set of embedded sensors, for example,

the gyroscope, the accelerometer, the Global Positioning System (GPS), among others.

These sensors primary objective is to improve the user experience, but since most

mobile devices are programmable and their popularity is increasing, these devices

1

CHAPTER 1. INTRODUCTION 2

could have a great potential for data sensing. Thus, appears the paradigm of Mobile

Data Sensing (MDS), though it is mainly used for individual sensing in applications

areas such as health monitoring or social interaction.

Another sensing paradigm that focuses on human-centric computing is Mobile Crowd

Sensing (MCS) where a group of people is tasked to collect and contribute data

using their mobile devices resulting in a larger scale sensing. MCS provides a way to

overcome several limitations such as installation costs or insufficient spatial coverage,

significantly increasing the quantity and the quality of the collected data. However,

there are a few constraints to what can be achieved as well as the limitations related

to the fact that the devices used are not dedicated for sensing.

1.1 Motivation

Using mobile devices as a tool for sensing purposes can be advantageous. Even more

if the data that is going to be gathered is human-centric, e.g. in areas were the

human behavior is monitored, in commerce or in social interaction, because mobile

devices are evermore present in peoples lives and are rarely switched off. This added

to the computing, sensing and communication capabilities of these devices, it makes

a promising concept to explore.

However, there are some obstacles that must be taken into consideration. Although

the hardware of a typical mobile device such as a smartphone can be several times more

powerful than a node used in WSN, there is the problem that these devices are not

dedicated for sensing, so the overhead of running such applications must be as low as

possible mitigating the impact on the user experience. Another relevant requirement

is the infrastructure for managing the sensing tasks. This includes disseminating

different tasks to the nodes, collect the captured data and make it available to the

person responsible for handling and processing the data.

In a way, some of the major problems can be addressed using knowledge from the

development of typical WSN. WSN has come a long way, introducing techniques to

better cope with sensing challenges and improve the approach needed to collect large

amounts of data. In that sense, we intend to reuse some of the work done in the Sensor

Observation aNd Actuation aRchitecture (SONAR) project [4] that tackles some of

the common obstacles, and then develop the MCS framework from there.

CHAPTER 1. INTRODUCTION 3

1.2 Problem Statement

To enable general-purpose sensing while using mobile devices, we intend to develop

the Flux framework, by taking advantage of the progress achieved in SONAR.

SONAR is a WSN framework that enables the definition of sensing tasks and the

respective dissemination to the devices that will perform the actual sensing, also

providing the necessary infrastructure to aggregate and present the collected data

to interested users. SONAR has an architecture with three layers: the data layer

that represents the components that perform the data collection and the sensing tasks

management, the processing layer that is composed by a broker that receives the

published data, and the client layer composed of modules that received captured data

using a publish-subscribe interface provided by the broker.

Our aim is to adopt the key features that compose the SONAR framework and are

compatible to be used as part of an MCS system. More specifically, we want to use

the publish/subscribe system that handles the data aggregation and distribution for

the clients, and the domain-specific programming language for defining sensing tasks

that will be disseminated on the mobile devices.

There are however several challenges to address when adapting a WSN platform for

mobile data sensing using personal devices. In this case, all the layers in the SONAR

framework need to be updated and improved, with special emphasis to the data layer

that needs to be completely rethought so it can handle the differences between the

typical nodes used in a WSN framework and the mobile devices.

Furthermore, in WSN the physical location of nodes is static, whereas personal devices

move as they are carried by users. We see this as an advantage that enables the

possibility of a specific mobile device to participate in different sensing activities. In

other words, we pretend a system that is capable of dynamic reconfiguration of the

sensing tasks running on the mobile device based on in its own location, as shown in

Figure 1.1. We envision regions that require a specific set of sensing tasks and, as

the mobile device moves through different geographic regions, it selects automatically

which tasks should be running.

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Dynamic task reconfiguration

In summary, the overall research questions are:

Is it possible to build a general-purpose platform to acquire data from sensors present

on mobile devices? If so, can it be implemented without affecting the user-experience

since the hardware is not dedicated to data acquisition? Can it profit from the mobility

of devices? How does it compare to other proposals in the state-of-the-art?

1.3 Contributions

With the work described in this dissertation we made the following contributions:

• The implementation of an Android service for running sensing tasks, based on a

VM and a domain-specific programming language intended for WSN. Moreover,

introducing the additional components for the correct operation of the service:

a task scheduler, a sensor/actuator interface, and a connection handler;

• A framework for handling the task dissemination to the mobile devices, depend-

ing on the location of the devices. Also, providing the necessary infrastructure

for gathering the captured data from the devices and forward it to the clients

CHAPTER 1. INTRODUCTION 5

that made a subscription. Primarily as a live data stream, but also giving the

option for accessing older data;

• A client interface for accessing the data streams from the sensing tasks that can

be used with a browser and an internet connection. Provides the visualization

of the data in live charts that are updated as the data arrives;

• A validation of the developed system, by performing a resource consumption

evaluation of the Android service, to ensure the low-footprint profile. In addition,

two case-studies were carried out, one using volunteers that performed a Wifi

signal coverage survey. And a second case-study that proved the dynamic task

pool reconfiguration based using only the device location.

1.4 Outline

The remainder of this thesis is structured as follows. Chapter 2 presents an overview

of the SONAR framework followed by an enumeration of the more relevant related

work regarding WSN that take advantage of virtualization and systems that employ

the paradigm of MCS. Chapter 3 details the architecture of the developed framework.

Chapter 4 presents the details for the implementation achieved. Chapter 5 presents

an evaluation to the performance overhead of running the Android Service on the

device and an overall validation of the framework through two case studies. Finally,

on Chapter 6 we present our remarks about the developed system and give some future

work.

Chapter 2

Related Work

In this Chapter, we present the most relevant state-of-the-art for this dissertation

including a description of the SONAR framework. In Section 2.1 we depict the

SONAR framework architecture and the respective task language utilized to define

sensing tasks. Section 2.2 lists several WSN frameworks that take advantages in virtual

machines. In Section 2.3 are listed some systems that use the concept of Mobile Crowd

Sensing.

2.1 SONAR

SONAR is a general purpose WSN framework. It implements virtualization on the

nodes, allowing the dissemination of tasks in the form of byte-code, generated from a

simple domain-specific programming language. This framework consists of a publish/-

subscribe model separated in a three-layer layout as shown in the Figure 2.1: Client

layer, Processing layer, and Data layer.

The Data Layer consists of multiple deployments that are characterized by a mesh

of nodes and the respective adapter and gateway, where each deployment can be

configured to have its own set of tasks. The adapter receives connections from the

administrative client interface allowing the management of the deployment and also

forwards the messages coming from the gateway to the SONAR P/S Engine. The

gateway is equipped with a radio device to enable the communication between the

adapter and the mesh of nodes. The nodes are responsible for the data acquisition

and controlling the actuators.

6

CHAPTER 2. RELATED WORK 7

Figure 2.1: SONAR architecture.

The Processing Layer is composed of the SONAR P/S Engine that acts as a message

broker. The main purpose is to forward the data streams from the Data Layer to the

respective subscribers and to keep information about all the available deployments

and associated tasks.

The Client Layer connects to the SONAR P/S Engine and allows the user to list the

available deployments and the respective running tasks. The user can also subscribe

or unsubscribe the data streams associated with each task.

2.1.1 Domain Specific Language (DSL)

The tasks are written in a domain-specific language designed for periodic sensing tasks.

This is a statically-typed language that is compiled to a machine-independent byte-

CHAPTER 2. RELATED WORK 8

code, thus abstracting the hardware of the machine where the VM will run. The DSL

is quite constrained in order to provide guarantees of safe execution also providing a

predictable memory footprint. The period for the task activation is not defined by the

task code, instead, it is configured when the task is installed.

The DSL code for a task is structured in five sections. The first two sections define the

sensors and actuators that can be used in a task, where each of them is defined by a

signature, one or more argument types and the return type. The init block declares

and initializes task variables that persist in memory across task invocations. After

that is indicated the definition for the message that is sent by the task, describing for

each field a type, a label, and a description of the units used. The loop block that

contains the actual instructions, that execute every time the task is activated.

The DSL code supports sensor reading, actuator control, variable assignments, basic

arithmetic, conditional branching and data transmission. Some of this is shown in the

task displayed in Listing 2.1 that is intended to collect the temperature and humidity

values.

Listing 2.1: DSL task for collecting temperature and humidity values.

sensors {
t empe ra tu r e : void −> f l oa t ,

humid i t y : void −> f l o a t

}

i n i t {
f l o a t x = 5 . 0 ;

f l o a t y = 0 . 0 ;

}

[f l o a t @ ” tempe ra tu r e : C e l s i u s ” ,

f l o a t @ ” humid i t y :%”]

loop {
x = tempe ra tu r e () ;

y = humid i t y () ;

rad io [x , y] ;

}

A task expressed in the DSL is compiled onto abstract byte-code that will be inter-

preted by a VM installed on the nodes in charge of the data collection. The byte-code

runs on a typical stack-based VM, i.e., each byte-code operation pops operands from

CHAPTER 2. RELATED WORK 9

a stack and/or pushes its results onto to the stack. It has four segments: header,

data, stack, and text. The header segment contains the total size of the byte-

code and the offset to the text segment. The data section contains all the space for

the program variables, corresponding initial values, and other program constants. The

stack, whose size is calculated at compile time, is used for data manipulation. Finally,

the text section contains the actual instructions to be executed.

Listing 2.2 shows a human readable representation of the byte-code resulting from the

compilation of the task in Listing 2.1.

Listing 2.2: Representation of the byte-code generated from the task shown in 2.1.

. t o t a l 45

. o f f s e t 7

. data

. 0 5 . 0

. 4 0 .0

. 8 x

. 12 y

. stack

. 16 0

.20 0

.24 0

. text

. 0 rd 0 0

. 3 s t 2

. 5 rd 1 0

. 8 s t 3

. 10 l d 2

. 12 l d 3

. 14 rad 2

.16 r e t

2.2 Wireless Sensor Networks

In this Section, we focus in WSN systems but more specifically on the ones that use

virtualization for handling the sensing tasks. Implementing a Virtual Machine (VM)

comes with a cost to both memory and processing performance but this is becoming

CHAPTER 2. RELATED WORK 10

less of an issue since the hardware is gradually improving his capabilities.

The use of virtualization provides multiples advantages namely portability, and flexibil-

ity. In the context of WSN, this can be quite relevant since it can provide, for example,

an abstraction to the platform hardware and provide a standard programming interface

for different target devices. This enables, for instance, the possibility of increasing

the number of nodes without being too restricted by the hardware specifications.

Running byte-code in a separate layer of the operating system, on the device, allows to

dynamically load the VM program and help deal with the challenges of fault tolerance.

There are already some solutions that implement VM’s for WSN’s with different

approaches and features.

SwissQM [5] is an implementation of a WSN that uses a gateway node and one

or more sensor nodes. The gateway serves as an interface to the sensor network

where it processes the user queries and replies with data streams. On the nodes

is installed a stack-based Virtual Machine on top of TinyOS [6] where it interprets

a specific byte-code that is generated on the gateway, based on the user-submitted

query for the data acquisition tasks. The queries are written in a generic high-level

declarative programming model that supports both SQL and XQuery. To disseminate

the programs in the WSN, they are split into several fragment messages and sent as

payload over the broadcast layer. Programs are executed at a configured interval.

The byte-code instruction set is independent of the sensor platform and it defines

a set of instructions that allows stack, arithmetic and control operations, load/store

instructions, as well as instructions for sensing, transmission and data aggregation.

Maté [7] is another Virtual Machine designed to work on top of TinyOS. This VM is

a stack-based binary code interpreter, that implements two stacks, one for instructions

that control the flow of the program and another for all other instructions. The

programs are written in TinyScript [7], a simple BASIC like language. The instructions

supported can be divided into three groups: instructions for arithmetic operations and

activation of sensors/actuators, instructions for memory access and instructions for

branch operations. It is also possible to define user instructions but they can only be

established when Maté is installed on the nodes. To disseminate a program through

the nodes, Maté uses packages denominated as capsules that can accommodate at most

24 instructions, so when needed, a program can be divided in multiple capsules. To

forward them, it is only required one instruction that uses the built-in ad-hoc routing

CHAPTER 2. RELATED WORK 11

algorithm. During the process of diffusion of the capsules, to determinate if a given

node needs to install a new application code, it only needs to verify the version number

present in every capsule.

Agilla [8] provides a style of mobile-agent programming, where each agent can

proactively migrate their code and state across the network. Unlike the previously

mentioned systems, in which the entire network runs the same task or tasks, a given

agent (task) can be executed only on some nodes of the sensor network. In other words,

each node of the network can execute several agents or even none, if not justified.

That is why Agilla addresses nodes by their location. To facilitate the mobile agent

interactions, each node keeps two data abstractions: a neighbor list and a tuple space.

The tuple space is a shared memory for communications between mobile agents. The

agents are defined in a stack-based architecture in which their programming is done

through an assembly-like language. On the nodes, Aggila runs on top of TinyOS.

Scylla [9] is a VM that supports inter-device communication, power management,

and error recovery. Supports the migration of the running task to other devices while

preserving its state. This VM does not interpret the received task byte-code, instead,

it compiles the Scylla byte-code into native machine code. To facilitate the on-the-fly

compilation, most of the Scylla instructions can be directly mapped onto instructions

of modern microprocessors and microcontrollers.

Before receiving a task, the node receives information about the task requirements so

the VM can decide if it is possible to compile and run the task. This information can

be the amount of memory needed, the requirements of energy to run the task or the

sensors required. A task is composed of the application code that contains the Scylla

byte-code, the memory image with the data to be loaded into memory prior to the

task execution, and the structure of the fault handler.

WSN has been meaningful for sensing work so it is important to review the consider-

ations that they offer on the matter. On a brief comparison of these systems with our

framework, they all focus on execution sensing tasks over VM but they differ in some

points. SwissQM and Maté were targeted to be deployed on static nodes, so there is

no notion of location when running a sensing task inside a deployment. Agilla does

not force a sensing task to run on the entire deployment and even can address the

location of the nodes but again, assumes that nodes are geographically static. Scylla

CHAPTER 2. RELATED WORK 12

also does not provide a framework to handle changes on the location of the sensing

nodes.

2.3 Mobile Crowd Sensing Systems

Following the concept of MCS, there are already several systems that try to exploit the

use of mobile devices. These systems are integrated into several areas, for example,

health, environment, and traffic monitoring, among others. However, there are several

aspects to consider in the development of applications that have the objective of

collecting data, highlighting the impact that these have on the mobile device in terms

of processor utilization and energy consumption.

In terms of MDS, it becomes important to acknowledge a few characteristics about

the sensing applications, for example, the user participation. In Participatory Sensing,

the user is directly involved and in Opportunistic Sensing, the user does not have to

actively participate. Another relevant characteristic is the type of sampling: continu-

ous sensing, when the data is being constantly recorded, or event-triggered when the

data is collected after a certain occurrence. There are also a few other challenges such

as data validation and how to send the data to aggregate.

SmartRoad [10] is a crowd-sensing road system for mapping traffic regulators, such

as traffic lights and stop signs. It aims to avoid expensive road surveys and provide

data that can improve both safety and help compile fuel-efficient routes. It resorts to

a smartphone based Crowd Sensing system that in a participatory way, collects data

from the GPS sensor. This system is intended to minimize the user’s intervention as

much as possible, and with that, the user only needs to install the application and

start it when it is necessary to collect data.

This system uses a client-server framework where the smartphone main function is

to acquire data and send it to the server. Then on the server, the data is processed

to detect and identify the traffic regulators. Some pre-processing is applied to the

raw data to reduce the bandwidth required to send it to the server and thus reducing

possible data communication costs. Another feature is that to reduce errors due to

poor sensor quality, environmental noise or even improper handling of the phone, the

information of multiple vehicles is combined in a selective way which can improve the

results. This system also explores a way of motivating users to join in by using the

collected data as input for navigation systems and assisted driving. There is also the

CHAPTER 2. RELATED WORK 13

possibility of visualization of the detection and identification results via web service

interface.

NoizCrowd [11] proposes the use of smartphone sensors to collect noise levels from

a region and generate noise models. For the generation of these models it is necessary

a great amount of data and to collect a sufficiently large data set this system used

a crowdsourcing initiative. This system consists of four components. An application

located in the smartphones that are responsible for recording the noise levels using

the microphone, also adding the location of the sample through the GPS sensor. A

warehouse layer to store all the data received from the application. A module that,

using the collected data, generates the noise models. And a layer that allows the

visualization and export of the generated data to the user.

The data collection consists of recording the mean noise levels in decibels, as well as

measuring peaks, at intervals of only a few seconds. The data is then sent to the

system’s data storage via a web service. The data storage is done in a database based

on arrays with three dimensions: latitude, longitude and time. Because of a large

amount of data, these are compressed and stored in a sparse array, that is, only cells

that contain values are written to disk.

Medusa [12] is a programming framework for general purpose crowd-sensing. It

defines a sensing objective as a task that is provided by a requestor and is carried

out by volunteers that act as workers. Medusa has the principle that the workers

can receive an incentive to contribute sensor data. Each task is defined by a XML-

based domain-specific language, that provides a high-level abstraction for specifying a

sequence of stages or steps on the sensing task, for example taking a video or uploading

the generated data.

This framework consists of a distributed runtime system separated into two main com-

ponents: the Medusa Cloud Runtime and the Medusa Runtime on the Smartphone.

The Cloud Runtime is responsible for receiving and parse the tasks, keep track of the

different generated instances for each task and manage the associated workers. This

uses the Amazon Mechanical Turk [13] system as a backend. The Runtime on the

Smartphone is in charge of receiving the tasks from the Cloud Runtime and running

them in a sandbox environment. It is also responsible for downloading the stage

binary’s when is necessary, access the sensors and transfer the respective data.

CHAPTER 2. RELATED WORK 14

Sensus [14] is a general-purpose system for MCS-based human-subject studies. The

aim is to support scheduled and sensor-triggered surveys and integrate the survey

response with data from the embedded sensors on the participant mobile device. This

MCS system is composed by the application that runs on the mobile devices and

a cloud storage. To create a sensing task the researchers use the mobile application.

Using the platform Amazon Mechanical Turk [13], the task is disseminated to the study

participants as an encrypted JSON file. Each participant then decrypts the sensing

task and loads it into the Sensus mobile application. When the task is complete, the

collected data is submitted to Amazon Web Services Simple Storage Service [15] for

retrieval and analysis by researchers.

Device Analyzer [16] is a mobile application, developed at the University of

Cambridge, that collects data from mobile phones usage and transmits it to a central

server where the dataset is kept and analyzed for pattern extraction. The scope of the

gathered data focused on several areas such as frequency and duration of interactions

of the user with the phone, availability of a data communication, energy consumption,

among others. The authors mention that several patterns emerge from the data and

can be used to implement recommendation systems, e.g., the best phone plan based

on phone usage by the user and apps that may be of interest.

2.4 Summary

In this Chapter, we presented the SONAR framework that provided some relevant

elements to the development of the Flux Framework. Followed by some WSN’s that

despite not being intended to use mobile devices as sensing nodes they share some

characteristics in design.

In the last section of this chapter we described the most relevant related work in MCS

systems, and in comparison to our system there are several differences. The differences

that are most relevant: is the capability of reconfiguring sensing tasks without having

to redesign and reinstall the application on the device, and the idea of minimizing the

need for the user intervention on a sensing session.

In particular, the SmartRoad, the NoizCrowd, and the Device Analyzer are designed

for a specific sensing task only, so it is not possible to change the type or the char-

acteristics of the collected data. Medusa and Sensus are general-purpose frameworks

and like our system, use domain-specific languages to define the sensing tasks. Medusa

CHAPTER 2. RELATED WORK 15

and Sensus are designed with user interaction in mind, in particular, Medusa requires

that the user first validates the sensing task that will be performed and the Sensus

framework is specific for surveys that a user has to explicitly answer. In summary,

these systems do not allow a dynamic reconfiguration of the tasks to be performed

while minimizing the user intervention.

Chapter 3

The Flux Framework

In this chapter we present the organization of all components that form the Flux

Framework and their relevance to the system. In Section 3.1 we start by enumerating

the main requirements for the Flux Framework. In Section 3.2 we give a brief descrip-

tion of the main elements that compose the framework. Sections 3.3, 3.4 and 3.5 give

a more detailed description for each of the layers.

3.1 Framework Requirements

The use of mobile devices for sensing purposes adds several concerns that have to be

considered in the framework design when comparing to a typical WSN. First, it is not

guaranteed that a mobile device always has an active data connection, either because

the user is in an area without network access or simply because the user imposes

periods without a connection. Similarly, a user can enter or leave a sensing session

without notice. There is also the constraint that these devices are not dedicated to

sensing. Finally, the definition and distribution of sensing tasks must be done in a

straightforward way, also ensuring that the captured data reaches interested clients.

With these concerns in mind, we considered the following requirements for the Flux

framework:

• to be able to disseminate sensing tasks to be performed by mobile devices and

aggregate the captured data to be forward to interested clients;

• to allow the configuration of tasks to be executed in specific regions, where the

16

CHAPTER 3. THE FLUX FRAMEWORK 17

task pool on the mobile devices are automatically updated if they enter such

regions;

• to operate without requiring user intervention, unless explicitly requested by the

user, e.g., for management or monitoring;

• to be able to work on any type of mobile devices, provided that it is possible to

implement the virtual machine for that devices;

• to have a low execution footprint in terms of resource consumption.

The SONAR framework meets some of the defined requirements so it is suitable to

harness part of developed work to hasten the Flux development. However, the SONAR

framework was developed in the context of WSN, so it is necessary to make several

changes in order to comply with the remaining requirements.

The Data Layer needs to be redesigned, from the component that will manage the

sensing tasks for each region, to the service that will run on the mobile devices. In

particular, we need to migrate the SONAR VM to Android and build the other neces-

sary components, such as a connection handler, a task scheduler, and a sensor/actuator

manager since the access to the sensors in the mobile devices is done in a more elaborate

way.

On the Processing Layer, we need to add two modules: one to store the captured data

from the sensing tasks and the other to manage the assignment of deployments to the

mobile devices depending on the location of the device, that is, verifies if the device is

in a deployment region.

On the Client Layer, we need to add a client interface that can be accessed using a

web browser with an internet connection.

3.2 Architecture

Flux is a system for gathering sensing data using mobile devices. Provides an in-

frastructure for the distribution of sensing tasks on the devices and also gathers the

produced data. It implements a publish/subscribe model where clients can access data

streams that are made available by a broker. The data streams are published on the

broker by multiple gateways that collect the data generated by the mobile devices.

CHAPTER 3. THE FLUX FRAMEWORK 18

It follows a three-layer architecture represented in Figure 3.1. The Data Layer contains

multiple deployments that are composed of a gateway and several mobile devices. The

gateway handles the task injection on the devices and also retrieves the data. Its

configuration is done by an administrator, that uses the gateway manager. In the

mobile devices is installed the Android Service, that executes the tasks on a VM and

manages all the details for participating in a deployment.

Figure 3.1: Flux architecture.

The Processing Layer receives all the data streams from the Data Layer and forwards

the data to the respective clients. This layer has knowledge of all deployments and also

manages the gateway attribution to mobile devices that are going to retrieve data. In

addition, the broker stores all the received data streams in a database, allowing more

flexibility for the clients to fetch data. The Client Layer is composed of different

interfaces that grant access to the data streams.

Deployments can be defined to specific regions, by doing this a mobile device can only

connect to the respective gateway if it is within the designated area. On the other

hand, since the attribution of gateways is done dynamically, if a user crosses such

regions, then the tasks performed on the device will be reconfigured to match the ones

on each deployment. Figure 3.2 illustrates this feature.

CHAPTER 3. THE FLUX FRAMEWORK 19

Figure 3.2: Dynamic task reconfiguration

3.3 Data Layer

The Data Layer is formed by all registered deployments on the framework where each

deployment can only have one gateway associated with it. When a device is assigned

to a deployment, then the respective gateway uploads the tasks to the device and keeps

the device updated as long as it is associated with the deployment. The gateway also

retrieves the data streams generated by the device and forwards them to the broker.

The configuration of the gateways is done through a gateway manager that connects

directly to the gateway. The mobile devices act as sensing nodes, executing the tasks

provided by the gateway to whom they were assigned. The number of nodes is not

fixed because the mobile devices can enter or leave the deployment at any moment,

and when they leave, the tasks are removed.

3.3.1 Gateway

The gateway can be viewed as the main component for every deployment. It is

responsible for assigning tasks to every node that enters it. A deployment can have

multiple sensing tasks that are assigned to every device in the deployment, except if a

device does not have all the required sensors and actuators for a specific task. In this

case, that specific task is not loaded to that specific mobile device.

The gateway is constantly connected to the broker in order to keep the broker always

updated. This information includes the description of the active tasks and the location

CHAPTER 3. THE FLUX FRAMEWORK 20

restrictions for the deployment if any. This connection also serves for the gateway to

send the data generated on the deployment to the broker.

3.3.2 Android Service

The Android Service is installed on the mobile devices. It runs in the background,

without the need for the user intervention. The service manages all the process in

which a mobile device participates in the sensing. Including handling the reception,

scheduling and executing tasks, and the sensor/actuator control. It is depicted on the

Figure 3.3.

Figure 3.3: Android Service.

The most relevant components that comprise the service are:

• a connection handler that is responsible for contacting the gateway to download

the tasks (byte-code and properties) that are assigned to the deployment that

the device is currently associated with, and to upload the data captured when

CHAPTER 3. THE FLUX FRAMEWORK 21

performing the tasks. And to request the available gateways that the device can

connect to.

• a Virtual Machine that runs the task byte-code. This is a compact VM, single

threaded and run-time safe.

• a scheduler that handles the order for the task execution. It uses a priority

queue ordered by the earliest-deadline-first scheduling algorithm. It loads the

tasks byte-code into the VM and controls its activation based on the period as-

sociated with each task, also managing the task reschedule. The scheduler is also

responsible for informing the sensor/actuator interface about the requirements

for each task.

• a sensor/actuator interface responsible for abstracting the implementation de-

tails about the different sensors and provide a unique interface for all requests

from the VM. It also handles the initiation of the sensors, since most of them

need to be activated before getting a reading.

Besides the mentioned components, there is also an interface that allows the user of

the mobile device to activate and deactivate the service. When the service is enabled,

it also provides information about which gateway is currently connected to, and the

tasks running on the device.

3.3.3 Gateway Manager

The configuration of a gateway is done using the gateway manager. It allows an

administrator to register and unregister a gateway on the broker and change deploy-

ment settings, for instance, the geographic location where the tasks are intended to

be performed. The task pool on the gateway is also managed using this interface,

allowing to add/remove tasks and update the period of execution of a task.

3.4 Processing Layer

The Processing Layer is composed by the broker and acts as a central point between

the Data Layer and the Client Layer. It maintains all the information about the

available deployments, their registered tasks and the number of devices connected to

each gateway. It also keeps a list of clients that are subscribing streams, so when data

CHAPTER 3. THE FLUX FRAMEWORK 22

arrives from the gateways, the broker knows to which clients send it. A client can

request the broker, at any moment, to retrieve data that was collected prior to its

connection, from the database connected to the broker.

The Broker also manages the Gateway assignment to the mobile devices. When a

node wants to participate on the sensing, first sends a request to the Broker, for which

the Broker answers with a list of available Gateways.

3.5 Client Layer

The subscription of data streams is done through the client interface. It provides a set

of commands to list the available streams and their description and to subscribe/un-

subscribe the desired data streams. Clients can use, a shell-like version, but also a web

version that abstracts the use of commands. Both these clients connect to the Flux

broker.

3.6 Message Flow

Messages are exchanged between the different components that make the Flux frame-

work. These messages have different proposes, depending on the type of the operation

that they represent. In the next figures, we describe the message flow for the more

relevant scenarios of message exchange.

Figure 3.4 shows the message flow when a new deployment is registered. The gateway

manager connects to the gateway that will handle the new deployment, sending the

command with all the parameters necessary for the registration (1). The gateway

contacts the broker announcing its configuration (2).

Figure 3.5 shows the message flow that happens in operations related to the manage-

ment of the task pool of the gateway. When updating or removing a task, the gateway

manager will send a command to the gateway (1), then the gateway will inform both

the broker (2) and the nodes that are currently connected in the deployment (3). If

a client is receiving the stream from the broker, it will also be notified (4) about

the changes. When a task is added, the message propagation will be the same with

the exception for the notification to the clients, since at that point, that task has no

subscribers.

CHAPTER 3. THE FLUX FRAMEWORK 23

Figure 3.4: Message flow - new deployment

Figure 3.5: Message flow - task management

When a new mobile device wants to participate, first connects to the broker to get a list

of available gateways, as shown in figure 3.6, annotation (1). Then the device receives

the list of available gateways (2) and connects to one of the suggested gateways (3)

and upon a successful connection, it receives the tasks defined for that deployment

(4). The broker (5) and the clients (6) are notified about of the new node when they

CHAPTER 3. THE FLUX FRAMEWORK 24

receive the data that is generated on that node. When a mobile device changes from

a gateway, this message exchange starts from the beginning.

Figure 3.6: Message flow - new node.

3.7 Summary

In this Chapter we described the main aspects that compose the Flux framework by

presenting the different components that defined each of the three layer architecture

and the framework requirements that were identified. We also illustrated the message

flow for the most relevant operations between the Flux components.

Chapter 4

Implementation

In this chapter, we present the most relevant details of the prototype implementation

of the Flux architecture. Section 4.1 catalogs the main technologies and program-

ming languages used in the prototype. In section 4.2 we describe how the various

communication-related technologies were used in the implementation. The remaining

sections depict the major implementation aspects for the distinct elements that form

the Flux framework.

4.1 Programming framework

For implementing the Flux prototype, Java version 8 was the main programing lan-

guage for all components, with the exception of the web client, that was implemented

with HTML5 and JavaScript.

Several technologies were employed on the implementation of the prototype, the

Table 4.1 summarizes the most relevant technologies used on the system.

The Apache Tomcat is an open source implementation of the Java Servlet, Java

WebSocket technologies, Java Expression Language and JavaServer Pages, but for

this implementation, we used the first two technologies.

Google Protocol Buffers was developed for serializing structured data in an efficient

format [21]. It provides a language-neutral mechanism where we define the desired data

structure for the serialization and, using the Protocol Buffers compiler, it generates

the source code files for a variety of languages. This source files provide methods to

write and read structured data.

25

CHAPTER 4. IMPLEMENTATION 26

Technology Used for

Apache Tomcat [17] Java Servlet Container

Plain TCP/IP Sockets Communications Protocol

Google Protocol Buffers [18] Serialization of structured data

SQLite [19] Database

ANTLR [20] Parser generator

Table 4.1: Technologies used.

SQLite is a library that implements a self-contained, transactional SQL database

engine. It is designed to be a compact library, that requires low resources and does

not need a separate server process.

ANTLR is a parser generator for reading, processing, or translating structured text or

binary files. It is used to build languages, tools, and frameworks. In our system, was

used to implement the DSL compiler.

4.2 Communication

The gateway and the broker were implemented as an Apache Tomcat web service.

More specifically, the communication points on this components use WebSockets. The

broker used two instances of WebSockets server endpoint, one for receiving connections

from the clients and other for connections from the gateways. The gateways used a

WebSocket server endpoint for listening for connections from the gateway manager.

The connection from the Android service with the gateway and the broker is performed

using plain TCP/IP sockets. Both the gateway and the broker implemented the

ServerSocket side allowing for multiple connections at the same time.

All messages that run through the system are serialized using Google Protocol Buffers

version 3. For each point of communication, a different message structure was defined,

since the transmitted data is distinct. A portion of the schema file devised is shown

on Listing 4.1. The section message AdminRequest of the schema file describes the

structure of the message that is transmitted from the gateway manager to the gateway.

The field type describes the operation that the message is intended to, from a list of

possibilities defined by the enumeration Type. The fields task and deployment are

CHAPTER 4. IMPLEMENTATION 27

sub-messages that serve to encapsulate information regarding the same element, in

this case, a task and a deployment. The use (or not) of this fields depends if the

defined operation requires it. The section message Deployment, as mentioned before,

acts as an enclosure for the information that describes a deployment, containing the

fields that are necessary to describe a deployment.

Listing 4.1: Fraction of the Protobuff Protocol schema file used.

message AdminRequest {
Type type = 1 ;

Task t a s k = 2 ;

Deployment dep loyment = 3 ;

enum Type { REGISTER = 0 ; UNREGISTER = 1 ; LIST = 2 ;

TASK = 3 ; KILL = 4 ; PERIOD = 5 ; RESET = 6 ; HELP = 7 ; }
}

message Deployment {
s t r i ng i d = 1 ;

s t r i ng add r e s s = 2 ;

int32 po r t = 3 ;

s t r i ng d e s c r i p t i o n = 4 ;

repeated s t r i ng s s i d = 5 ;

repeated f l o a t g eo I n f o = 6 ;

repeated Task t a s k = 7 ;

}

4.3 Gateway

The implementation of the gateway started by defining the data structures to accom-

modate the sensing tasks, that will be provided to the mobile devices, and the settings

for the gateway.

When a gateway is registered on the broker, the address from which the mobile devices

can contact the gateway is sent, along with the location restrictions for the deployment,

if applied. The broker requires this information for assigning the gateways to the

mobile devices.

The gateway keeps a list of tasks that are injected on the devices that are assigned to

the gateway. For each task, the gateway saves the byte-code that executes on the VM,

the associated period and the definition of the task output that describes the data

CHAPTER 4. IMPLEMENTATION 28

stream properties, e.g. the number of fields, their types, and description. In addition,

the gateway parses the task byte-code to identify the sensors and actuators required

for the task execution.

When a node connects to a gateway, first sends the actual state of its task pool and

the available sensors and actuators on the device. With this, the gateway sends to the

node, the list of tasks that need to be added or removed from the device, ignoring the

tasks that the device cannot perform. A mobile device also connects to the gateway

to delivering data that was captured, that is then forwarded to the broker.

To restrict a deployment to a region of influence, it is possible to use a geographic

location and/or by the Service Set Identifier (SSID) of the wireless network that the

mobile device is currently connected to. For the latest, multiple choices can be defined.

If a geographic location is set for the deployment, the area must be a rectangular form,

defined by a geographic point in latitude/longitude, a bearing (counterclockwise from

the north), a width and a height. Figure 4.1 depicts the parameters of defining the

geographic region.

Figure 4.1: Specification of a geographic region for a deployment.

CHAPTER 4. IMPLEMENTATION 29

4.4 Broker

The broker tracks all the gateways and their task pools. For this, a permanent

connection from the broker to all the gateways is kept, so when an administrator

changes a setting on a gateway, the information is quickly updated on the broker.

The connection between the broker and the clients that are subscribing a data stream

is also kept permanently open. So the broker can promptly forward the data streams

to the clients when they arrive from the gateways.

In order to maintain all the necessary information from the deployments and the

clients, the broker essentially contains two data structures:

• a deployment index that lists all the registered deployments. It keeps all the

details about the deployment, e.g. id, address, port, but also information about

the associated tasks. From the tasks, only description and configurations are

stored, the byte-code and sensor/actuator requirements are not sent from the

gateways to the broker.

• a table of clients that are subscribing one or more data streams. It associates

the tasks to the connection session of the clients.

This information is required by the broker so that it can provide details for the clients

to select the desired data streams, and to able to assign mobile devices to the more

relevant deployments. Is also used to correctively forward the data streams to the

respective subscribers.

The broker acts as a central component in the framework and in order to minimize

the initial configuration, the gateways, the mobile devices, and the clients only need

to configure the broker public address to join the system.

4.4.1 Gateway assignment to mobile devices

The broker manages the assignment of gateways to the mobile devices. When a mobile

device requests a list of the available gateways, the request message also contains the

current location of the node and/or the SSID of the Wifi network that the device is

currently connected to. Though this information can be omitted if the mobile device

opts to not reveal this information.

CHAPTER 4. IMPLEMENTATION 30

The broker answers with a list of addresses to the available gateways that match the

information given by the mobile device. Put differently, if a gateway was registered

with a geographic location and/or a list of Wifi SSID’s, then the node has to be in

the defined region and to be connected to one of the listed networks. As mentioned

before, these restrictions on the gateway are optional and can be defined separately or

simultaneously.

The provided list of gateways is ordered by the priority that the mobile device should

follow when trying to connect to a gateway. In other words, the mobile device connects

to the first given option, but if for some reason the connection is not successful, it tries

the next, and so on.

The criteria for ordering the list of addresses is determined by comparing the settings

from each of the gateways. Namely, a gateway has more priority if (more relevant

first):

1. is restricted in both geographic coordinates and SSID.

2. is only restricted by geographic coordinates.

3. is only restricted by Wifi SSID.

4. has no restrictions about the location.

The choice to prioritize gateways that have more restrictions was made because it

is most likely that these gateways will have fewer mobile devices assigned, so if any

device meets the requirements to participate, it will be immediately selected.

If more than one gateway matches one criterion, then they are ordered by the number

of mobile devices that are registered on each gateway. More specifically, the gateways

that have a lower number of devices, come first. This way we can add some level of

load-balance and redundancy since multiple gateways can be defined with the same

constraints.

The fact that the broker is responsible for delivering the addresses of the gateways to

the mobile devices, is also relevant in the sense that, this way, a mobile device only

needs to know the address of the broker.

CHAPTER 4. IMPLEMENTATION 31

4.4.2 Database

Clients can request data from streams prior to when the subscription was made. This

is possible since the broker keeps a record of all the data from the streams that were

published by the gateways. When data from a new stream arrives at the broker, a

table on the SQLite database is created. Then all the posterior data from that same

stream is added to that same table. The fields on the table are defined to match the

specific task output, determined by the definitions provided when an administrator

injects a task on the gateway.

Whenever an administrator removes a task from a gateway or unregisters the gateway,

all the data associated to it is deleted.

4.5 Android Service

The Android service was intended to run without the intervention of the user, but still

leaving some level of control. It runs as a background service that in an automatic

way, manages the gateway discovery, the task synchronization and execution, and the

data commit to the respective gateway. This service was developed to be supported

by devices with Android version 4.4 and higher.

The service is composed of multiple modules that handle specific functions. The more

relevant are the connection handler, the task scheduler, the sensor/actuator handler

and the virtual machine.

4.5.1 Graphical user interface

The service has a user interface for enabling/disabling the service as the user sees fit,

as shown in Figure 4.2. It also gives the option for the user to enable/disable the use

of GPS for gateway assignment, providing some sort of privacy for users concerned

with exposing their specific location to the framework. Another option available is

to disable automatic upload of data to the gateway and to cache the generated data

from the tasks executing. With this, a user can choose which data connection to use

for delivering the data to the gateway. A distinct objective of the interface is to show

the user which are the current tasks being executed, their description and also which

gateway they are currently assigned to.

CHAPTER 4. IMPLEMENTATION 32

Figure 4.2: Android Service graphical user interface.

4.5.2 Connection handler

The connection handler is responsible for interacting with the broker when getting

the list of available gateways and also with a gateway when joining the respective

deployment. More specifically, the connection handler implements three different

methods. One to connect to the broker, requesting for a list of available gateways,

sending also information about the current location of the device (if permitted by

the user). A second to connect to the gateway and request the tasks defined for the

deployment, where it first sends the available sensors and actuators on the devices.

This method also serves to test the connection with the gateway or gateways provided

by the broker. The last method is responsible for connecting to the defined gateway

for delivering the data collected by the tasks. The data is buffered rather than

continuously sending the data. Time and buffer size limits may be set and fine-tuned

if desired, so the data transmission to the gateway occurs periodically.

A mobile device can only belong to one deployment at a given time. The connection

handler is also responsible for periodically check with the broker if the gateway that is

currently being used is the most relevant. It also takes into consideration if the current

CHAPTER 4. IMPLEMENTATION 33

deployment has a geographic region and/or Wifi SSID restriction, defining listeners

for when the restrictions location are no longer fulfilled. In this case, the connection

handler requests a new list of available gateways.

4.5.3 Scheduler

The task scheduler uses a priority queue for storing the tasks on the mobile device. It

orders the tasks for execution, based on the earliest-deadline-first scheduling algorithm.

The scheduler is responsible for loading the task with the shortest time for execution on

the VM (byte-code) also setting that time for the VM activation. Upon the complete

execution of the task, the scheduler recalculates the time until the next activation

based on the periodicity of the task and reorders the queue. The scheduler is also

responsible for keeping the sensor/actuator interface updated about the requirements

of the tasks and the time until needed.

4.5.4 Sensor/actuator interface

The sensor/actuator interface is responsible for answering the requests from the VM,

whether they are for retrieving a sensor value or enable an actuator. It provides an

interface for the platform, where the details from the various Android application

programming interfaces are hidden from the VM.

The sensor/actuator interface also balances time a sensor needs to stay active. Active

sensors may consume significant battery power, and on the other hand, their repeated

initialization/shutdown may cause unnecessary latency. In particular, initialization

may imply high latency until valid readings are obtained (for example, the GPS).

Using the information provided by the scheduler about the time for next activation

and periodicity for each task, it implements an activation/deactivation strategy for the

sensors. For a task with a small period (high-frequency), below a certain threshold,

the sensors it uses are enabled before the first task activation and henceforth left on.

Otherwise, for a task with a larger period (low-frequency), the sensors it uses are

turned on and off respectively before and after each task activation. In the latter case,

to avoid stale reads when the task is activated again, the module also takes care to

schedule the sensor activation for a configurable amount of time before the deadline

of the next task activation is reached.

As mentioned, the threshold values for the sensor activation/deactivation depends on

CHAPTER 4. IMPLEMENTATION 34

the sensor type, where these values were selected based on the behavior of the sensors

on some of the devices that were used in the case-study in Section 5.2. For the GPS

sensor was defined that it should be deactivated if the location values are only needed

in intervals superior to 2 minutes, and should be reactivated 30 seconds before the

execution of the next task that required the information about the device location.

For the remaining sensors, was defined a threshold for deactivation of 5 seconds and

reactivation of 600 milliseconds before the next time that a value is required.

4.5.5 Virtual Machine

The virtual machine handles the task execution. In a first moment, the VM is loaded

with the task byte-code that will be carried out and on the moment defined by the

scheduler to initiate the execution, the VM starts performing the task. When a

value from a sensor is needed (or initiate an actuator), the VM interacts with the

sensor/actuator interface. For sending data, it contacts the connection handler for

temporarily storing the data. When the execution is done, the scheduler is notified

for rescheduling the task and load the next on the VM.

4.6 Client interface and Gateway Manager

To access the data streams provided by the broker, it is possible to use one of the two

available types of client interfaces: a web client that can be accessed by using a web

browser and a shell-based client.

The web client grants a more flexible access to the available data streams since it only

needs a web browser. All the expected operations are available: list the deployments

and the associated tasks, and subscribe/unsubscribe the data streams. The subscribed

streams are presented in the form of charts for an immediate visualization, where it

was utilized the Google Charts [22] for its implementation. Figure 4.3 shows a web

client that subscribed two tasks, but is only interested in viewing one value of each

task.

The shell-based client offers the same functionalities as the web client with the addition

that it can provide access to the data stored in the database in the broker. A more

comprehensive list of the available commands is shown in Table 4.2.

The gateway manager is very similar to the shell-based client in terms of implemen-

CHAPTER 4. IMPLEMENTATION 35

Figure 4.3: Web client.

Command Description

list Lists all the available deployments and tasks.

sub TASK ID DEP ID
Subscribes the task TASK ID from

deployment DEP ID.

unsub TASK ID DEP ID
Unsubscribes the task TASK ID from

deployment DEP ID.

query TASK ID DEP ID T1 T2
Requests data from the database from

time T1 to time T2.

help Lists the available commands.

Table 4.2: Commands available on the shell-based client.

tation. It provides a list of commands that enable the administrator to specify all the

settings of the gateway. A list of the available commands is shown in Table 4.3. From

the commands mentioned, the command register needs a more detailed explanation.

When registering a deployment, the only mandatory arguments are the address and

the port that define the link for the gateway to receive the connections from the

CHAPTER 4. IMPLEMENTATION 36

mobile devices. This is the address that is provided by the broker when a mobile

device requests a list of gateways to connect to. After the administrator enters these

details, is prompted to enter the restrictions for where the deployment will be available,

namely the geographic location and the list of SSID’s, which are optional.

Command Description

list Lists all the registered tasks on the gateway.

register ADDRESS PORT DESC
Registers the gateway, accessible from the address

ADDRESS and port PORT on the broker.

unregister Unregisters the deployment.

task PERIOD PATH DESC
Adds the task in PATH (local), with the

period PERIOD and the description DESC.

period TASK ID PERIOD Changes the period of task TASK ID to PERIOD.

kill TASK ID Removes task TASK ID from the gateway.

reset Removes all tasks on the gateway.

help Lists the available commands.

Table 4.3: Commands available on the gateway manager interface.

When a new task is injected on the gateway, it must be already compiled. So the

administrator needs to compile the DSL task, using the DSL compiler.

For both clients and gateway manager, the user must provide the address of the

broker or gateway, respectively, since the framework is meant to be easily accessible

from anywhere that has access to the Internet.

Chapter 5

Evaluation

This chapter presents an evaluation of the Flux framework. We begin with a bench-

mark analysis of the Android service in terms of resource consumption in Section 5.1.

We then present results for a case-study experiment, where real users carried mobile

devices across a certain area to measure Wifi signal coverage in Section 5.2. Finally,

we report on a small-scale experiment where we tested the ability of mobile devices to

roam between different Flux gateways.

5.1 Resource Consumption

We conducted an evaluation of the Android service in terms of resource consumption.

In terms of physical resource utilization, we measured the CPU utilization, the RAM

consumed and the amount of data transferred from the mobile device to the gateway,

in five different configurations for the task pool. Additionally, for the involved tasks

and configurations, we measured the byte-code size of tasks and the time of execution

per task activation.

5.1.1 Setup

The mobile device used was a Google Nexus tablet running Android 6.0 with 2 GB of

RAM and a dual-core 2.3 GHz CPU, plus a gateway and broker installed on a 4-core

machine with 12 GB of RAM that was connected to the same network as the mobile

device. This was done to mitigate exterior interference on the communication between

the device and the gateway, as we wished to evaluate the performance of the service

37

CHAPTER 5. EVALUATION 38

in isolation.

The gateway task pool was setup using five distinct configurations. The first con-

figuration had no tasks running, with the purpose of measuring the footprint of the

service when idle. The other four configurations resulted from successively increasing

the number of running tasks by one, and doubling the frequency of each new task by

a factor of two. The four tasks were: the task used on the Wifi coverage case-study in

Section 5.2 running at 1 Hz, an atmospheric pressure sensing task at 2 Hz, a gyroscope

sensing task at 4 Hz, and an accelerometer sensing task at 8 Hz.

For each configuration, we then conducted 5 monitoring sessions of a 2-minute run of

the service using the Android Debug Shell (adb). In terms of resource consumption,

we sampled the CPU utilization and RAM usage in 1-second intervals, plus the total

of the TCP/IP data transmitted by the service in each 2-minute interval.

5.1.2 Results

The results for the resource consumption (with the corresponding 95% confidence

intervals) are shown in Table 5.1, in terms of average CPU and RAM usage during

the interval, as well as the average network bandwidth used to send the sensed data.

Tasks CPU (%) RAM (KB) Net. (bytes/s)

None (∅) 0.17± 0.04 9731± 2.8 6.2± 1.1

WS 0.25± 0.06 9851± 3.3 86.3± 15.8

WS + AP 0.32± 0.06 9864± 3.3 139.0± 25.0

WS + AP + GS 0.58± 0.08 9877± 3.8 288.9± 52.4

WS + AP + GS + AS 1.39± 0.10 9915± 5.6 576.6± 104.0

WS: Wifi survey (1Hz); AP: atmospheric pressure sensing (2 Hz);

GS: gyroscope sensing (4Hz); AS: accelerometer sensing (8 Hz)

Table 5.1: Resource consumption.

Overall, we can observe that the service has a very low footprint for all the measures

we considered. On average, CPU usage is below 2% in all configurations, the RAM

used is under 10 MB, and the consumed network bandwidth is less than 1 KB/s.

Moreover, the implementation scales well as the number of tasks increase: the CPU and

RAM overhead of adding one more task at double the frequency is almost negligible,

CHAPTER 5. EVALUATION 39

whereas the consumed network bandwidth increases naturally owing up to the need

of transmitting more sensed data.

In addition to resource consumption, we also measured the performance of byte-code

execution within the virtual machine. This was done in terms of the average execution

time per activation for each of the four benchmarking tasks. This was done for the

last evaluation configuration, the one with all tasks enabled. The results (with the

corresponding 95% confidence intervals) are shown in Table 5.2, that lists the byte-code

size and average execution time in milliseconds per each of tasks.

Task Size (bytes) Exec. time (ms)

Wifi survey (WS) 137 4.55± 0.20

Atmospheric pressure sensing (AP) 26 0.23± 0.01

Gyroscope sensing (GS) 74 0.44± 0.02

Accelerometer sensing (AS) 74 0.42± 0.01

Table 5.2: Byte-code size and execution time.

Again, a low-footprint pattern is observed. The Wifi survey task, with larger code

size, is the most time-consuming but still takes less than 5 milliseconds on average to

run. All other tasks run in less than 0.5 milliseconds, on average.

5.2 Wifi coverage case-study

We conducted a controlled real-world experience where Wifi service quality was sur-

veyed over a certain area. Volunteer users carried Android devices and walked through

prescribed paths along the survey area, while the Android service executed an DSL

task to collect GPS-referenced Wifi signal data and streamed that data to a Flux

gateway.

CHAPTER 5. EVALUATION 40

The survey area, depicted in Figure 5.1, has a dimension of roughly 100× 150 meters,

and comprises a department building in our university (A in the figure) plus walkways

in a garden north of the same building. The figure also depicts an outline of the paths

followed by volunteer users carrying mobile devices, covering corridors of the first floor

within the department building plus walkways outside.

Figure 5.1: Survey area for the Wifi coverage case-study.

The Wifi network subject to monitoring is the eduroam installment at our university,

the most commonly used campus network by students and staff. Listing 5.1 shows

the task used for this case-study. The task collects the following data: the Wifi signal

strength for the current connection, the number of Wifi networks, and GPS location

data. The sampling period was set to 4 seconds.

CHAPTER 5. EVALUATION 41

Listing 5.1: DSL task for Geo-referenced Wifi survey.

sensors {
(. . .)

WIFI SIGNAL LEVEL : void −> int ,

NUMBER WIFI NETWORKS: void −> int ,

(. . .)

LOCATION : i n t −> f l o a t

}

i n i t {
i n t n w i f i = 0 ;

i n t w i f i l e v e l = 0 ;

f l o a t l a t = 0 . 0 ;

f l o a t l ong = 0 . 0 ;

f l o a t a l t = 0 . 0 ;

f l o a t acc = 0 . 0 ;

}

[i n t @ ”Number o f w i f i ne tworks : Number ” ,

i n t @ ”Wi f i s i g n a l s t r e n g t h : dBm” ,

f l o a t @ ”Geograph i c l o c a t i o n − l a t i t u d e : d eg r e e s ” ,

f l o a t @ ”Geograph i c l o c a t i o n − l o n g i t u d e : d eg r e e s ” ,

f l o a t @ ”Geograph i c l o c a t i o n − a l t i t u d e : mete r s ” ,

f l o a t @ ”Geograph i c l o c a t i o n − accu racy : mete r s ”]

loop {
n w i f i = NUMBER WIFI NETWORKS () ;

w i f i l e v e l = WIFI SIGNAL LEVEL () ;

l a t = LOCATION(0) ;

l ong = LOCATION(1) ;

a l t = LOCATION(2) ;

acc = LOCATION(3) ;

rad io [n w i f i , w i f i l e v e l , l a t , long , a l t , acc] ;

}

5.2.1 Setup

For the experiment, we used a CentOS Linux virtual machine (CentOS VM) with 2

cores and 1837 MB of RAM, hosted on an OpenStack cloud infrastructure. An Apache

Tomcat application server instance runs on the VM, hosting a Flux gateway and a

Flux P/S broker. The CentOS VM is accessible over the Internet, allowing devices

running the Android service to install tasks (and relay data) from (to) the gateway,

CHAPTER 5. EVALUATION 42

and external clients to access the P/S broker.

For measurements we used a total of 23 devices, divided into two groups: 9 Google

Nexus tablets running Android 6.0 that we provided the volunteers for use, plus

12 personal smartphones owned by the volunteer themselves from various vendors and

running assorted Android versions, predominantly Android 6.0 (the 9 Google tablets

+ 9 smartphones), but also 7.0, 5.1, and 4.4 (one device per each version). Table 5.3

summarizes the basic characteristics of these devices.

Type Version Vendor

Tablet 6.0 Google (9)

Smartphone 7.0 Samsung (1)

6.0 Asus (1), Huawei (1),

Lenovo (1), LG (1), One-

Plus (2), Vodafone (1),

Wiko (2)

5.1 Xiaomi (1)

4.4 Alcatel (1)

Table 5.3: Android device characteristics

The Android service was installed in each of the devices, followed by an automatic

download and installation of the DSL task for the survey by the service itself, as soon

as it got a connection to the gateway.

5.2.2 Results

After setup, the volunteers conducted 33 trips along the prescribed survey paths, re-

sulting in the collection of 2726 data sample measurements, 1193 inside the department

building and 1533 outside. For data analysis, we filtered out measurements for which

the GPS Horizontal Dilution Of Precision (HDOP) exceed 10 meters, reducing our

data set to 710 samples (59% of the original) inside the building and to 1212 samples

(79% of the original) outside. Figure 5.2 depicts the filtered data set as geo-referenced

“heat maps”, in terms of the eduroam Wifi signal strength (5.2a), the number of

detected Wifi networks (5.2b), and the GPS HDOP (5.2c). In the plots, rendered

using QGis [23], the colors depict the average measure for data points within each

hexagon that forms the heat map.

CHAPTER 5. EVALUATION 43

(a) Wifi signal strength (dBm) (b) Number of networks (c) GPS precision (HDOP)

Figure 5.2: Data plots for collected data

From the plots, we can make a few direct observations. Regarding eduroam’s Wifi

signal strength, clearly it is significantly weaker in the outside area. An immediate

decrease in Wifi signal is observable just a few meters outside the building, and the

signal only tended to go up as users move north and get near the two other university

buildings. In contrast, the quality of geo-referencing is less reliable inside the building

(as would be expectable), given that HDOP measures are clearly better (lower) outside

(as also highlighted by the HDOP threshold filtering discussed above).

5.3 Gateway roaming case-study

The second case-study concerns the roaming of devices between gateways.

We deployed two Flux gateways, each responsible for a different geographical region.

As in the Wifi survey case-study, the overall area inside and surrounding the depart-

ment building in our university was considered, but split in two, each under the control

of a different gateway.

CHAPTER 5. EVALUATION 44

More specifically, we defined one deployment inside the building (A in the Figure 5.3),

where the nodes collected data about the maximum amplitude of recorded sound

in samples of one second, by executing the task defined in Listing 5.2. The second

deployment was defined in a portion of the garden (B in the Figure 5.3), where we

measured the atmospheric pressure by resorting to the task shown in Listing 5.3. All

the obtained values were associated with a GPS location information as in the Wifi

survey. The audio sampling task ran with a period of 1 second, and the atmospheric

pressure sensing task ran with a period of 2 seconds.

Area A: deployment collecting audio amplitude data;

Area B: deployment collecting atmospheric pressure data.

Figure 5.3: Survey area for the roaming case-study.

CHAPTER 5. EVALUATION 45

Listing 5.2: DSL task for Geo-referenced audio amplitude survey.

s en so r s {
(. . .)

AUDIO AMPLITUDE : vo id −> i n t ,

LOCATION : i n t −> f l o a t

}

i n i t {
i n t aud i o amp l i t u d e = 0 ;

f l o a t l a t = 0 . 0 ;

f l o a t l ong = 0 . 0 ;

f l o a t acc = 0 . 0 ;

}

[i n t @ ”AUDIO AMPLITUDE : aud io max amp l i t ude ” ,

f l o a t @ ”LOCATION l a t i t u d e : d eg r e e s ” ,

f l o a t @ ”LOCATION l o n g i t u d e : d eg r e e s ” ,

f l o a t @ ”LOCATION accu racy : mete r s ”]

l oop {
aud i o amp l i t u d e = AUDIO AMPLITUDE () ;

l a t = LOCATION(0) ;

l ong = LOCATION(1) ;

acc = LOCATION(3) ;

r a d i o [aud i o amp l i t ude , l a t , long , acc] ;

}

Listing 5.3: DSL task for Geo-referenced atmospheric pressure survey.

s en so r s {
(. . .)

TYPE PRESSURE : vo id −> f l o a t ,

LOCATION : i n t −> f l o a t

}

i n i t {
i n t p r e s s u r e = 0 ;

f l o a t l a t = 0 . 0 ;

f l o a t l ong = 0 . 0 ;

f l o a t acc = 0 . 0 ;

}

[f l o a t @ ”Atmospher i c p r e s s u r e : hPa (m i l l i b a r)”” ,

f l o a t @ ”LOCATION l a t i t u d e : d eg r e e s ” ,

f l o a t @ ”LOCATION l o n g i t u d e : d eg r e e s ” ,

f l o a t @ ”LOCATION accu racy : mete r s ”]

l oop {
p r e s s u r e = TYPE PRESSURE () ;

l a t = LOCATION(0) ;

l ong = LOCATION(1) ;

acc = LOCATION(3) ;

r a d i o [p r e s s u r e , l a t , long , acc] ;

}

CHAPTER 5. EVALUATION 46

When a mobile device was outside of both the regions defined on the deployments, the

Android service entered in an idle mode, since there were no more gateways registered

that included the current area.

During the experiment, the path followed by mobile devices starts on the first floor,

inside the department building (A in the figure), and goes through the corridors on

that floor. It then continues to the outside, following walkways, reaching the outer

limit of the campus area. The path ends with a way back to the department building,

by a walkway on the opposite side.

5.3.1 Setup

The devices used were two Google Nexus tablets running Android 6.0. They used a 3G

data connection to interact with the broker and the gateways in order to prevent data

connection loss. The objective of this experiment is to assess the switching capabilities

between gateways, where data connection problems could alter the results. So we

exclude the use of a Wifi connection since it has a limited coverage on the exterior.

The installation of the Android service was performed on the mobile devices at the

beginning of the experiment.

The broker and the gateways were hosted on the same CentOS Linux virtual machine

mentioned in the Wifi survey, running on the same hardware. A Client was defined to

subscribe the data from both the deployments for subsequent analysis.

5.3.2 Results

From the experiment, we obtain a total of 2285 samples for both tasks: 1843 for the

deployment on region A, 442 for the deployment on region B. As in the previous case

study, we exclude samples that were gathered with a HDOP that exceeded 10 meters,

resulting in 406 samples for the deployment on region A (22% of the original) and 259

for the deployment on region B (59% of the original). This data resulted from a total

of ten trips, five with each device.

The intention was to evaluate the correct execution of the tasks in function of the

CHAPTER 5. EVALUATION 47

location of the device. We compile the data on the Figure 5.4 based on the location

of each sample. Blue markers represent the samples from region A, and red markers

represent the samples from region B.

Figure 5.4: Location of the samples.

From the obtained results, we can conclude that the Android service was able to detect

the regions under the control of the two gateways. Two details are worth remarking,

though. First, on the results from region A, we can notice a few markers on the

boundary that resulted from walking on the outside but close to the building. From

this, it is obvious that when defining the geographic regions for the deployments, it is

important to acknowledge that the readings from the GPS sensor on the devices are

not always reliable. Second, regarding the results from region B, we can notice that

the Android Service can have a small delay when detecting the limit of the boundaries.

Once again, we need to define the regions in a way that can tolerate some degree of

imprecision.

Regarding the values of the collected data, for the deployment on region B, we obtain

an average of 1016.9 millibars for the atmospheric pressure. For a region so small the

variation of the actual value for atmospheric pressure should prove negligible, so we

CHAPTER 5. EVALUATION 48

only present the average value for all the samples recorded in that region.

For the deployment on region A, we calculated the average value from all the samples

selected by corridor, as shown in Figure 5.5. The values retrieved from the task refers

to the maximum absolute amplitude measured on recordings of one second (defined

by the task period), where they represent the absolute reading from the microphone

sensor (range from 0 to 32767, since it records with a resolution of 16 bit). We chose

to give the bare reading from the sensor because, given that the microphone is not

calibrated in most mobile devices.

Figure 5.5: Average of microphone readings by corridor (absolute reading).

Considering the obtained values, the difference between the four corridors on the first

floor of the department was what we were expecting. The corridors C and D were

the less noisy because these are the sections of the building with the less movement of

people. Corridor F presented a little higher value since, at the time of the experiment,

there were classes in progress. Corridor E was the noisiest since, in this section of the

department, there is always a constant flow of people.

5.4 Summary

In this chapter we presented a benchmark evaluation of the Android Flux service, and

two case-study scenarios for the entire Flux framework. The benchmark evaluation

demonstrates the feasibility of data sensing with very low-footprint on the mobile

devices. The case-studies demonstrated the applicability of Flux in a real-world

setting. In particular, the Wifi survey illustrates the use of the platform in a relevant

scale and using heterogeneous Android devices. As for the gateway roaming scenario,

it illustrates how region-based data sensing can be accomplished using Flux.

Chapter 6

Conclusion

In this chapter we present a discussion about the dissertation, also proving some

suggestions for future work.

6.1 Discussion

In this dissertation we presented the Flux framework for streaming sensor data from

dynamically reprogrammable tasks, injected in mobile devices. We described its

architecture and its prototype implementation, demonstrating the dynamic injection

of tasks in mobile devices and the acquisition of the corresponding data streams.Flux

tasks are programmed in the DSL domain-specific programming language, boasting

enough expressiveness for basic sensing tasks, compiled to a compact byte-code that

is executed by a low-footprint virtual machine on Android.

The policy used to inject/kill tasks is related to the way region boundaries are detected.

In this work, we took the simple view that tasks are injected as a device enters a

region, and killed as they leave it. We also took into consideration the initialization

and shutdown of the sensors on the device, balancing the time a sensor needs to stay

active, so the resource consumption overhead is reduced while minimizing the latency

of doing so.

The prototype of Flux has been evaluated in terms of the overhead on mobile devices,

demonstrating that low-footprint is a defining trait of Flux. Furthermore, we con-

ducted two case-study experiments, illustrating the capabilities of the entire platform

and potential applicability to real-world scenarios.

49

CHAPTER 6. CONCLUSION 50

6.2 Future Work

For future work, we are considering a few key directions. First, we consider the

challenge of extending the DSL for increased expressiveness in data processing, for

example, adding constructs with support of iteration or array types. Moreover, DSL

has no communication constructs that allow neighboring nodes to exchange data for

aggregation or pre-processing purposes. In particular, we are interested in mobile

edge-cloud environments, where groups of nearby devices form a network to work

collaboratively.[24]

Besides extending the expressiveness of DSL, we are also considering several improve-

ments on the framework, for instance, a mobile device being able to participate in

multiple deployments simultaneously. Given the processing capabilities of the current

mobile devices, this would not prove difficult. Regions could also be defined more

broadly, for instance, set boundaries using conditions on attributes of the sensed data.

Another relevant matter is the user privacy. Most sensing tasks are intended to keep

the participant identity anonymous, but by the nature of the captured data, it can

prove to be a challenge. For example, collecting data using the GPS sensor or the

microphone can give clues about the user identity, becoming even more relevant if the

user participates in multiple sensing tasks where data can be combined to give stronger

indications. On the same topic, the security for the data storage and transmission

channels must be considered.

Bibliography

[1] C.-L. Fok, G.-C. Roman, and C. Lu, “Rapid Development and Flexible De-

ployment of Adaptive Wireless Sensor Network Applications,” in Proc. of the

24th International Conference on Distributed Computing Systems, ser. ICDCS’05.

IEEE, 2005, pp. 653–662.

[2] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler, “The nesC

Language: A Holistic Approach to Network Embedded Systems,” in Proc. of the

2003 ACM Conference on Programming Language Design and Implementation,

ser. PLDI’03. ACM, 2003, pp. 1–11.

[3] R. Newton and M. Welsh, “Region Streams: Functional Macroprogramming

for Sensor Networks,” in Proc. of the 1st International Workshop on Data

Management for Sensor Networks, ser. DMSN’04. ACM, 2004, pp. 78–87.

[4] G. Ferro, R. Silva, and L. Lopes, “Towards out-of-the-box programming of wireless

sensor-actuator networks,” in Computational Science and Engineering (CSE),

2015 IEEE 18th International Conference on. IEEE, 2015, pp. 110–119.

[5] R. Müller, G. Alonso, and D. Kossmann, “SwissQM: Next Generation Data

Processing in Sensor Networks,” in CIDR 2007, Online Proceedings. CIDR,

2007, pp. 1–9.

[6] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,

J. Hill, M. Welsh, E. Brewer, and D. Culler, TinyOS: An Operating System for

Sensor Networks. Springer Berlin Heidelberg, 2005, pp. 115–148.

[7] P. Levis and D. Culler, “Mate: A Tiny Virtual Machine for Sensor Networks,” in

Proceedings of ASPLOS X. ACM, 2002, pp. 85–95.

[8] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: A mobile agent middleware for

self-adaptive wireless sensor networks,” ACM Trans. Auton. Adapt. Syst., pp.

16:1–16:26, 2009.

51

BIBLIOGRAPHY 52

[9] P. Stanley-Marbell and L. Iftode, “Scylla: a smart virtual machine for mobile

embedded systems,” in Proceedings Third IEEE Workshop on Mobile Computing

Systems and Applications. IEEE, 2000, pp. 41–50.

[10] S. Hu, L. Su, H. Liu, H. Wang, and T. F. Abdelzaher, “Smartroad: Smartphone-

based crowd sensing for traffic regulator detection and identification,” ACM

Trans. Sen. Netw., pp. 55:1–55:27, 2015.

[11] M. Wisniewski, G. Demartini, A. Malatras, and P. Cudré-Mauroux, “Noizcrowd:

A crowd-based data gathering and management system for noise level data,”

in Proceedings of the 10th International Conference on Mobile Web Information

Systems. Springer-Verlag New York, Inc., 2013, pp. 172–186.

[12] M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan, “Medusa: A programming

framework for crowd-sensing applications,” in Proceedings of the 10th Interna-

tional Conference on Mobile Systems, Applications, and Services. ACM, 2012,

pp. 337–350.

[13] “Amazon mechanical turk,” https://www.mturk.com, Amazon, 2017, Accessed

in 3 January, 2017.

[14] H. Xiong, Y. Huang, L. E. Barnes, and M. S. Gerber, “Sensus: A cross-platform,

general-purpose system for mobile crowdsensing in human-subject studies,” in

Proceedings of the 2016 ACM International Joint Conference on Pervasive and

Ubiquitous Computing. ACM, 2016, pp. 415–426.

[15] “Amazon Web Services Simple Storage Service (S3),” https://aws.amazon.com/

pt/s3/, Amazon, 2017, Accessed in 3 January, 2017.

[16] D. T. Wagner, A. Rice, and A. R. Beresford, “Device Analyzer: Understanding

smartphone usage,” in Proc. of the 10th International Conference on Mobile and

Ubiquitous Systems: Computing, Networking, and Services, ser. MobiQuitous’13.

Springer, 2013, pp. 195–208.

[17] “Apache Tomcat,” http://tomcat.apache.org/, Apache Software Foundation,

Accessed in 2 September, 2017.

[18] “Google Protocol Buffers,” https://developers.google.com/protocol-buffers/,

Google, Accessed in 2 September, 2017.

[19] “SQLite,” https://www.sqlite.org/, Accessed in 2 September, 2017.

https://www.mturk.com
https://aws.amazon.com/pt/s3/
https://aws.amazon.com/pt/s3/
http://tomcat.apache.org/
https://developers.google.com/protocol-buffers/
https://www.sqlite.org/

BIBLIOGRAPHY 53

[20] T. Parr, “ANTLR (ANother Tool for Language Recognition),” http://www.antlr.

org/, Accessed in 2 September, 2017.

[21] K. Maeda, “Performance evaluation of object serialization libraries in xml, json

and binary formats.” in DICTAP. IEEE, 2012, pp. 177–182.

[22] Google, “Google charts,” https://developers.google.com/chart/, Accessed in 2

September, 2017.

[23] “QGis,” http://www.qgis.org/, Accessed in 2 September, 2017.

[24] P. M. P. Silva, J. Rodrigues, J. Silva, R. Martins, L. Lopes, and F. Silva, “Using

Edge-Clouds to Reduce Load on Traditional WiFi Infrastructure and Improve

Quality of Experience,” in Proc. ICFEC. IEEE Computer Society, 2017, pp.

61–67.

http://www.antlr.org/
http://www.antlr.org/
https://developers.google.com/chart/
http://www.qgis.org/

	Resumo
	Abstract
	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem Statement
	Contributions
	Outline

	Related Work
	SONAR
	Wireless Sensor Networks
	Mobile Crowd Sensing Systems
	Summary

	The Flux Framework
	Framework Requirements
	Architecture
	Data Layer
	Processing Layer
	Client Layer
	Message Flow
	Summary

	Implementation
	Programming framework
	Communication
	Gateway
	Broker
	Android Service
	Client interface and Gateway Manager

	Evaluation
	Resource Consumption
	Wifi coverage case-study
	Gateway roaming case-study
	Summary

	Conclusion
	Discussion
	Future Work

