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ABSTRACT

Identification of diseases based on processing and analysis of medical images is of great importance
for medical doctors to assist them in their decision making. In this work, a new feature extraction
method based on human tissue density patterns, named Analysis of Human Tissue Densities (AHTD)
is presented. The proposed method uses radiological densities of human tissues in Hounsfield Units
to tackle the extraction of suitable features from medical images. This new method was compared
against: the Gray Level Co-occurrence Matrix, Hu’s moments, Statistical moments, Zernike’s mo-
ments, Elliptic Fourier features, Tamura’s features and the Statistical Co-occurrence Matrix. Four
machine learning classifiers were applied to each feature extractor for two CT image datasets:, one to
classify lung disease in CT images of the thorax and the other to classify stroke in CT images of the
brain. The attributes were extracted from the lung images in 5.2 milliseconds and obtained an accu-
racy of 99.01% for the detection and classification of lung diseases, while the attributes from the brain
images were extracted in 3.8 milliseconds and obtained an accuracy of 98.81% for the detection and
classification of stroke. These results show that the proposed method can be used to classify diseases
in medical images, and can be used in real-time applications due to its fast extraction time of suitable
attributes.

c⃝ 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Identification of diseases using techniques of processing and
analysis of medical images is nowadays of great importance
to assist medical doctors in making accurate diagnoses. Con-
sequently, various studies aiming to extract representative in-
formation from medical images in order to identify diseases
have been developed. In [1], structural imaging biomarkers
were proposed to predict the progression of Alzheimer’s dis-
ease; in [2], textural features are extracted from multimodal
MRI to compute a Prognostic value for glioblastoma; in [3],
3D lung fissures are identified in Computed Tomography (CT)
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images based on texture; in [4], a generalized framework is pro-
posed for medical image classification; and in [5], a Spatial In-
terdependence Matrix (SIM) is applied to classify pulmonary
diseases in CT images.

Computed Tomography (CT) was developed by the engineer
Godfrey N. Hounsfield and the physicist Allan M. Comark in
1972. The two scientists were awarded the Nobel Prize for
Medicine in 1979 [6]. Hounsfield and Cormack proved that
mathematical formulae could be used in the production of im-
ages with sufficient detail to aid analyses of the human body.
By quantifying an X-ray beam transmitted through the human
body, information concerning the body tissues is obtained, thus
creating CT [7]. Each slice of the CT aims to determine the
composition of a single dry body and is formed by a set of pix-
els. The amount and thickness of the cuts are directly related to
the pixel sizes, which influence the quality of the final image.
Finer cuts produce sharper images.
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CT images have a great variety of shades of gray, which obey
a scale, according to the attenuation value of each tissue of the
human body. In homage to the inventor of the CT, this scale
is called the Hounsfield scale and presents values from 1000 to
−1000 and is expressed in Hounsfield Units (UH), where 0 is
the attenuation value adopted for water and −1000 the attenua-
tion value adopted for air [8].

The extraction of relevant image information is characterized
by the computation of attributes from the input image that rep-
resent the structures of interest [9]. These attributes are com-
monly used as input data to a classifier which automatically
identifies the structures or related characteristics, like shape or
condition.

Statistical moments (SM) are computed using the distribu-
tion of the gray levels of an input image, and are therefore usu-
ally computed from the image histogram. These characteris-
tics provide a statistical description of the relationship between
the different image gray levels [9]. According to [10], cen-
tral moments are very important in pattern recognition. These
moments are obtained from the spatial moments of a structure
by referring the spatial moments relative to the centroid of the
structure. The main advantage of central moments is their in-
variance to translations, and can therefore, in many cases, be
used to describe the shape of a structure [11].

Hu [12] proposed a theory of two-dimensional moment in-
variants for planar geometric figures. The principle of Hu’s
moments (HM), also known as Invariant Moments, is to allow
the recognition of structures independently of their position,
size and orientation. Despite their invariant properties, HM are
highly dependent on the spatial resolution of the image [13].
However, many authors have applied HM as global or local fea-
ture descriptors in pattern recognition problems [14].These mo-
ments are often used to recognize structures in general, because
of their ability to describe the shape of structures eectively [15].

Haralick [16] proposed a methodology to describe textures
based on second-order statistics, where features are derived
from co-occurrence matrices, which are built by counting the
dierent combinations of gray levels of an image according to
certain directions [16]. Gray Level Co-occurrence Matrices
(GLCMs) are the basis of various statistical measures known as
Haralick’s descriptors. This technique is widely used to char-
acterize images in many dierent applications of pattern recog-
nition [17, 18]. Texture based analysis has also been widely
used in dierent image based applications, such as medical im-
age analysis [19], visual interpretation of remote sensing im-
ages [20] and image search [21].

In [22], a new set of rotation invariant features was presented.
These features are the magnitudes of a set of orthogonal com-
plex moments of the image known as Zernike moments (ZM).
Scale and translation invariance are obtained by first normaliz-
ing the image with respect to these parameters using its regular
geometrical moments.

Kuhl et al. [23] presented a procedure to obtain the Fourier
coecients of a chain-encoded contour. The advantage of the
Elliptic Fourier features (EFF) are that they do not require inte-
gration or the use of fast Fourier transform techniques, and that
bounds on the accuracy of the image contour reconstruction are

easy to especify.
Tamura et al. [24] developed textural features approximating

visual perception on the basis of psychological experiments.
The authors approximated, in computational form, six basic
textural features, namely, coarseness, contrast, directionality,
line-likeness, regularity, and roughness. In the most cases, only
the first three of Tamura’s features (TF) are used for Content-
based image retrieval. These features capture the high-level
perceptual attributes of a texture effectively and are useful for
image browsing.

Ramalho et al. [25] presented a rotation-invariant feature ex-
traction methodology based on a structural approach using co-
occurrence statistics (SCM). The results show that this method
provides an ecient and fast way to analyze digital images.

In this paper, a new feature extraction method based on hu-
man tissue density patterns, named Analysis of Human Tissue
Densities (AHTD), is proposed. AHTD is based on radiological
densities of human tissues in Hounsfield Units (HU) following
a dedicated approach for medical images. This approach tends
to increase the quality of the classification results compared
to the current extraction feature methods used. The proposed
method is compared against GLCM, IM, SM, ZM, EFF, TF and
SCM in pattern recognition experiments using two dierent im-
age databases.

The efficiency of the proposed feature extraction method was
evaluated using two CT datasets: one related to brain dis-
eases and the other to lung diseases. Both datasets presented
non-regular patterns, uneven illumination and dierent structural
characteristics. These distinct CT image datasets were cho-
sen because of their importance to global health. The World
Health Organization (WHO) estimates that 300 million people
have asthma and this disease causes about 250 thousand deaths
per year worldwide [26]; also WHO reported that the number
of deaths from chronic obstructive pulmonary disease (COPD)
increased by 30% in 2015, and that this disease will be the
third major cause of death worldwide in 2030 [27]. While for
brain diseases, WHO estimated that 17.5 million people died
of cardiovascular disease in 2012, which is 31% of all global
deaths. Of these deaths, 6.7 million were estimated to be due
to brain stroke [28]. In 2012, heart disease and stroke were
among the three top causes of premature mortality in the world
[29]. Hence, good results obtained with the proposed method
would be a potential to improve medical diagnoses and assist in
making more accurate and ecient decisions for these two major
health problems.

2. Analysis of Human Tissue Densities

The concept behind the analysis of human tissue densities
using the Hounsfield Units (HU) obtained from CT scanners
was proposed by Rebouças Filho et al. [30]. In this study,
the authors proposed a decision tree based on the analysis of
the neighborhood density to find the best position to initialize
an active contour model, and also to decide whether objects
of interest are inside or outside the lung under segmentation.
Rebouças Filho et al. [31] applied the same concept to achieve
the same segmentation task by means of an Artificial Neural
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Fig. 1. Examples of the chest CT images used for diagnosing lung diseases: a)-c) original images, d)-e) healthy lungs, f)-g) lungs with emphysema, h)-i)
lungs with fibrosis, and j)-o) map of AHTD lung features.

Network. The same concept was also applied to segment the
airways [32] and blood vessels [33] inside the lungs in CT im-
ages. Here, the same concept was used in the development of
a new method to extract features from medical images based
on the analysis of human tissue densities in HU, which are par-
ticularly interesting for the identification and classification of
diseases.

The proposed feature extraction method uses the percentages
Pi of healthy human tissues based on their density analysis in
HU, according to:

Pi =
f (vi)

N−1∑
j=0

f (vi)
, (1)

where N is the number of the tissues under analysis.

Considering a region to be analyzed previously segmented,
the function that determines the number of points with densities

presented in each class vi is defined as:

f (vi) =
W∑

x=0

H∑
y=0

R(x, y), (2)

where W and H are the dimensions of the image, width and
height respectively, and R(x, y) is given by:

R(x, y) =
{

1, limin f (vi) < T (x, y) < limsup(vi),
0, otherwise, (3)

where limin f (vi) and limsup(vi) are the lower and upper limits
of the density range in HU for the class vi, and T (x, y) denotes
each pixel of the image under analysis.

The proposed feature extraction method was applied to both
CT datasets (lung and brain) using five density classes (vi) (with
i varying from 0 to 4) classes. The following classes were used
for the lung CT dataset [30]: hyper-inflated air (1000 to 950
HU), normally inflated air (950 to 500 HU), low inflated air



4

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2. Examples of the CT brain images used for diagnosing brain diseases: a)-c) original images, d) healthy brain, e) brain with hemorrhagic stroke, f)
brain with ischemic stroke, g)-i) maps of AHTD brain features, and j)-l) brains divided into two regions of interest (ROIs).

(500 to 100 HU), non-inflated air (100 to 100 HU) and bone (600 to 2000 HU). The classes for the brain CT dataset were
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defined as [34]: blood (56 to 76 HU), bone (200 to 2000 HU),
brain spinal fluid (−5 to 5 HU), brain white matter (23 to 34
HU) and brain gray matter (32 to 41 HU).

To introduce the features extracted by the proposed method,
the third row in the Figs. 1 and 2 show the lung and brain AHTD
distribution maps, respectively. The AHT D maps were built in
RGB according to:

AHT DMAP =


R(x, y) = P2,

G(x, y) = P3+2×P4
3 ,

B(x, y) = P0+2×P1
3 ,

(4)

where Pi is defined by Eq. 1.
In order to classify the brain diseases, the brain CT image

was divided into two regions of interest (ROIs) and the at-
tributes, i.e., the features, were extracted from both ROIs, as
shown in the fourth row of Fig. 2.

3. Datasets description

CT systems used to acquire image datasets have a resolution
of 512 × 512 pixels with 16 bits, and the tomographic planes
are defined on the basis of the axial plane. The CT chest dataset
was obtained from Walter Cantidio University Hospital, Fort-
aleza, Brazil; they had been successfully used in previous stud-
ies [30, 31, 34]. This dataset consists of 12 images of healthy
volunteers and 24 patients: 12 with fibrosis and 12 with pul-
monary emphysema. Given that each image presents two lungs,
there were 24 examples of each class (healthy volunteers, pa-
tients with fibrosis and patients with emphysema). The first
row of Fig. 1 shows an example image for each class from
the dataset. The second row of Fig. 1 shows examples of the
lungs under study, which were segmented from the original im-
ages using the method proposed in [35]. The grayscale lung
images were obtained from the original chest CT images by us-
ing a window with 600 HU of width and centered at 1000 HU
[36]. The brain dataset was obtained in partnership with the
Hearth Hospital in Fortaleza, Cear, Brazil. This dataset con-
tains 100 images of healthy volunteers and 200 patients: 100
hemorrhagic and 100 ischemic stroke images. The first row
of Fig. 2 shows an example image for each class included in
this dataset. The second row of Fig. 2 shows examples of the
brain CT images under study, which were segmented from the
original images using the method proposed in [35, 37]. The
grayscale brain images were obtained from the original brain
CT images by using a window with 100 HU of width and cen-
tered at 50 HU [38].

4. Results

In this section, the results of each feature extraction method
from the two experimental datasets are presented and discussed
in terms of computational cost and classification performance.
The tests were performed using a Macbook Pro with an Intel
Core i5 2.4 GHz, 8 GB of RAM, and running MAC OS X El
Capitan 10.11.2. The proposed feature extraction method was
compared against GLCM [39], SM [9], HM [40], ZM [22], EFF

[23] and TF [24]. All of these methods are invariant to rota-
tion, including the isotropic GLCM feature space obtained by
computing the correlation, contrast, homogeneity and energy
texture descriptors in 4 directions.

The pattern recognition experiments were performed using
machine learning algorithms with different settings to obtain
the overall classification performance for each feature set built.
The classifiers used were: Bayesian [41], Optimum-Path Forest
(OPF) with Euclidean distance [42, 43], k-Nearest Neighbor
(kNN) with k = 1 [44], and Support Vector Machine configured
with the radial basis function kernel (SVM) and automatic setup
[45]. The classification accuracy was estimated using the 10-
fold cross-validation method.

The OpenCV 2.4 library was used for all feature extraction
methods, except for the new AHTD based method. Figure 3
shows the results of the classification methods in terms of ac-
curacy, f-score, training and test times for the lung and brain
CT image datasets. Figure 4 and shows the extraction time re-
quired by each feature extraction method under comparison for
lung and brain CT images, respectively.

Figure 3 shows that some feature extraction methods get bet-
ter results with specific classifiers, such as HM or GLCM when
applied together with OPF or SVM in the classification of lung
diseases, and SM applied with OPF in the classification of brain
diseases. However, it is noteworthy that the proposed AHTD
method obtained the best accuracy with Bayes, KNN and OPF
for lung disease classification, where the latter has the highest
value obtained among all results. When applied on stroke clas-
sification, the AHTD method shows the best accuracy with the
SVM classifier, and it has the second best result when applied
with Bayes, kNN and OPF. For a further analyze, Tables 1 and
2 show the ranking for each feature extractor, classifying each
in descending order of accuracy, indicating the best classifier
for each feature extractor in each application.

Figure 3 shows that the AHTD based feature extraction
method had classification accuracy rates above 95% for both
datasets and with all classifiers; it had the highest average clas-
sification accuracy in both cases (for the lungs dataset with the
OPF, and for the brain dataset with SVM); it led to classification
accuracies in the two highest ones for all classifiers in two ap-
plication cases, and, finally, the training and testing times were
similar to those obtained by the other methods.

Considering the highest accuracy value obtained by each fea-
ture extraction method in the lung disease classification shown
in Table 1, the AHTD based method had higher values: 0.34%
more than GLCM, 0.86% more than SCM, 1.48% more than
SM and 9.74% more than HM, which are the top five results.
A similar analysis for the brain disease classification is shown
in Table 2 where the AHTD based method also had higher val-
ues: 0.16% more than GLCM, 1.77% more than ZM, 2.54%
more than TF and 3.26% more than SM, which are the top five
results.

Considering the average of all the results for the lung disease
classification, the AHTD based method achieved the best re-
sults; the AHTD was 0.72 higher than SCM and 1.77% higher
than GLCM, which are the three top average accuracies. In a
similar analysis for the brain disease classification, the AHTD
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Fig. 3. Results obtained by the methods under evaluation: lung disease classifications shown on the left, and brain disease classifications on the right, in
terms of: a) and b) classification accuracy, c) and d) f-score, e) and f) training time, and g) and h) testing time.

based method again shows it had a value 2.71% higher than ZM
and 3.26% higher than SM, but 0.89% lower than GLCM.

The AHTD, SM, HM and SCM methods, respectively, are
considerably faster than the TF, ZM and EFF methods, respec-

tively. The times of each sample analyzed are shown in Fig-
ures 4 and 5 for the classification of lung and brain diseases
respectively. For a further analysis, Table 3 presents a ranking
of the extractors under evaluation considering the shortest ex-
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Fig. 4. Time plot of the methods evaluated in the lung disease classification
in CT images of the chest: a) time of 0-1.5s and b) with zoom, (a) time of
0-0.032s.

traction time to establish the rank order. The order considering
the time is the same for the two applications, in which only the
AHTD, SM and HM methods have values close to 5 millisec-
onds, demonstrating that the proposed method also has the best
rates in terms of extraction time.

4.1. Overall results

Figures 4(b) and 5(b) show the main advantage of the pro-
posed method in the detection and classification of diseases in
medical images: the lowest extraction time. In the lung CT im-
age dataset, the proposed method had the lowest extraction time
that was equal to 1.3 ms, and 3.52 times faster than GLCM and
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Fig. 5. Time plot of the methods evaluated in the stroke classification in CT
images of the brain: a) time of 0-1.5s and b) with zoom, (a) time of 0-0.032s.

1.16 faster than HM and SM. In the brain image dataset, the
AHTD based method had an extraction time of 1.4 ms, which
was 4.34 times faster than GLCM, 1.39 times faster than HM
and 1.44 times faster than SM.

Summarizing the findings, the two best extraction feature
methods in terms of the classification accuracy were AHTD and
GLCM, which can be confirmed by the F-score values obtained.
However, the new AHTD based method required less than 30%
of the time required by GLCM in the extraction process, thus
showing the power of the proposed extraction method (AHTD)
to classify diseases using medical images.
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Table 1. Statistical results obtained by each feature extractor under evalua-
tion for lung disease classification showing the best classifier, ranked by the
maximum (max) accuracy obtained by the feature extractor and machine
learning classifier combination. The average (ave) and minimum (min) ac-
curacy also are presented for each feature extractor.

Ranking Feature Statistic Accuracy (%)

1o AHTD
Max 99.01
Ave 97.83
Min 96.00

2o GLCM
Max 98.67
Ave 96.13
Min 93.78

3o SCM
Max 98.15
Ave 97.11
Min 96.30

4o SM
Max 97.56
Ave 96.34
Min 95.09

5o HM
Max 90.22
Ave 79.24
Min 56.44

6o TF
Max 90.00
Ave 86.94
Min 79.63

7o EFF
Max 83.70
Ave 80.18
Min 75.56

8o ZM
Max 70.37
Ave 68.70
Min 66.30

5. Conclusions

In this work, a novel method for feature extraction from med-
ical images was proposed based on radiological densities of
human tissues. The proposed method was compared against
the Gray Level Co-occurrence Matrix, Hu’s moments, Statis-
tical moments, Zernike’s moments, Elliptic Fourier features,
Tamura’s features and the Statistical Co-occurrence Matrix. For
these analyzes, four machine learning classifiers was applied to
each feature extractor for the two image CT datasets used: one
to classify lung diseases in CT images of the thorax and the
other to classify stroke in CT images of the brain.

The proposed AHTD method presented a faster extraction of
the required attributes, as well as obtaining the best accuracy
and f-score indices in the two datasets evaluated. The attributes
from the lung images were extracted in 5.2 milliseconds and
obtained an accuracy of 99.01% for the detection and classifica-
tion of lung diseases, while the attributes from the brain images
were extracted in 3.8 milliseconds and obtained an accuracy
of 98.81% in the detection and classification of stroke. These
achievements show that the proposed method can be used in the
classification of diseases in medical images, and can be used as
an alternative method for real-time applications due to its fast
extraction time of suitable attributes.

Having demonstrated the potential of the proposed feature
extraction method, future works will be related to the identifi-

Table 2. Statistical results obtained by each feature extractor under evalua-
tion for brain stroke classification showing the best classifier, ranked by the
maximum accuracy obtained by the feature extractor and machine learn-
ing classifier combination. The average (ave) and minimum (min) accuracy
also are presented for each feature extractor.

Ranking Feature Statistic Accuracy (%)

1o AHTD
Max 98.81
Ave 96.60
Min 94.32

2o GLCM
Max 98.65
Ave 97.46
Min 96.62

3o ZM
Max 97.04
Ave 93.89
Min 89.78

4o TF
Max 96.27
Ave 88.91
Min 80.22

5o SM
Max 95.69
Ave 92.67
Min 88.59

6o SCM
Max 95.56
Ave 95.44
Min 95.11

7o EFF
Max 86.76
Ave 85.59
Min 84.00

8o HM
Max 85.37
Ave 77.58
Min 55.84

Table 3. Brain and Lung time extraction rankings.

Ranking Feature Lung Brain
(seconds) (seconds)

1o AHTD 0.0052 ± 0.0011 0.0038 ± 0.0011
2o SM 0.0057 ± 0.0017 0.0055 ± 0.0016
3o HM 0.0058 ± 0.0021 0.0053 ± 0.0017
4o GLCM 0.0167 ± 0.0042 0.0165 ± 0.0028
5o SCM 0.0265 ± 0.0026 0.0271 ± 0.0029
6o ZM 0.4862 ± 0.1009 0.4804 ± 0.1242
7o EFF 0.5229 ± 0.2755 0.5394 ± 0.1104
8o TF 0.8346 ± 0.0641 0.8374 ± 0.1285

cation and classification of other diseases in lung and brain CT
images as well as in other types of medical images. The identi-
fication and classification of structures and organs in the human
body are also goals for future works.
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