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Abstract

The main objective of this thesis is to provide a contribution to the body of results currently
available in the optimal-control theory for dynamic control systems modeled by a fractional
derivative of the state variable with respect to time. Therefore, the principal focus of this
dissertation is on obtaining the smooth and nonsmooth necessary conditions of optimality
in the form of a maximum principle of the Pontryagin type for fractional optimal-control

problems.

The fractional optimal-control is a generalization of the corresponding integer optimal-
control theories, which exhibit controlled system dynamics with arbitrary-order derivatives

and integrals (usually, and without any loss of generality, of integer order).

The first aim of this thesis is to display a maximum principle of the Pontryagin type for the
generalization of nonlinear fractional optimal-control problems, under proper assumptions
with smooth data, and we propose an approach contributing to obtain a maximum principle
concerning the recommended problem. The novelty of our approach consists in a more
precise insight inherent to the use of optimal-control variational methods in the original
modeling framework, which are quite distinct from those originated in the calculus of
variation framework frequently used in the literature. Moreover, we apply the proposed
necessary conditions to illustrate an example of generalization of fractional optimal-control

problems, which is solved by the Mittag-Leffler function.

Before moving to the main goal of this thesis, ¢.e., to derive a nonsmooth maximum prin-
ciple for fractional optimal-control problems with state constraints, we extend fractional
integrals to more general Radon measures. Being these results of independent interest, they
play an important role in the derivation of the maximum principle with state constraints,

since the associated adjoint multiplier encompass such a type of measures.

We also present a nonsmooth necessary condition of fractional differential inclusion with
state constraints under weak assumptions, and we introduce important concepts and results

concerning the existence and compactness of sets of the fractional trajectories.

Finally, we address the main goal of this dissertation, 4.e., to state a fractional optimal-
control formulation, which requires very weak assumptions on the data of the problem, and
exhibit important types of constraints, notably control constraints and state constraints,

that have not been yet considered in the fractional context. The approach to the proof of
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the necessary conditions of optimality in the form of a maximum principle of Pontryagin
type is based on penalization techniques, variational principles, nonsmooth analysis, and
fractional calculus results. An example illustrating the application of the derived maximum

principle is also included.
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Resumo

O principal objetivo desta tese é proporcionar uma contribuicao para o conjunto de resul-
tados, atualmente existente, da teoria de controle 6étimo de sistemas de controles dindmicos
modelados por derivadas fracionérias, nas varidveis de estado, em relacao ao tempo. Neste
sentido, o enfoque principal desta dissertacao é estabelecer condicoes necessarias de otimal-
idade, suaves e ndo-suaves, sob a forma de um principio de maximo do tipo de Pontryagin

para problemas de controlo éptimo fracionarios.

O controle 6timo fraciondrio é uma generalizacdo da correspondente teoria de controle
6timo, em derivadas inteiras, onde a dinamica do sistema é controlada por derivadas e
integrais de ordem arbitréria (geralmente, e sem qualquer perda de generalidade, de ordem

inteira).

O primeiro objetivo deste trabalho é apresentar um principio do maximo, do tipo de Pon-
tryagin, que genaraliza problemas de controle 6timo fracionarios nao-lineares, sob hipdteses
adequadas, com dados suaves, e propomos uma abordagem que constréi um principio do
méximo. A novidade da nossa abordagem consiste numa visdo mais precisa inerente ao uso
de métodos variacionais de controlo 6timo no quadro da modelagdo original, que é muito
distinto do que se obtém no campo do calculo de variagoese e, frequentemente, encontra-
dos na literatura. Mais ainda, as condi¢Oes necessarias que propomos, sao ilustradas num
exemplo que generaliza um conjunto de problemas de controle 6timo fracionarios, que se

resolvem gragas ao uso da funcao de Mittag-LefHer.

Antes de passar ao objetivo principal desta tese, por outras palavras, estabelecer um princi-
pio do méaximo nao-suave para problemas de controlo éptimo fracionario com restricdes de
estado, estendemos os integrais fraciondrios ao caso mais geral de medidas de Radon. Tendo
este resultado o seu interesse proprio, ele desempenha um papel importante na derivagao
do principio do maximo com restrigoes de estado, uma vez que o multiplicador adjunto

associado engloba uma medida deste tipo.

Também apresentamos, sob hipoteses fracas, uma condi¢cdo necessaria nao-suave de in-
clusao diferencial fracionaria com restri¢oes de estado e introduzimos conceitos importantes

e resultados sobre a existéncia e compacidade dos conjuntos das trajetérias fracionarias.

Finalmente, abordamos o objetivo principal desta dissertacdo, isto €, estabelecer uma for-

mulacdo de controle 6timo fracionario, a qual requer, nos dados do problema, hipoteses
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muito fracas e exibem importantes tipos de restri¢coes, nomeadamente, restrices de con-
trolo e restricoes de estado, as que ainda nao foram consideradas no contexto fracionario.
A demonstracao das condi¢oes necessérias de otimalidade, sob a forma de um principio do
maximo do tipo Pontryagin, usa técnicas de penalizacao, principios variacionais, anélise
nao-suave e resultados de calculo fracionario. Um exemplo, que ilustra a aplicacao deste

principio do méximo que apresentamos, estd também aqui incluido.
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Chapter 1

Introduction

1.1

Objectives

The goals of this thesis are the following:

a)

Improvement of the fractional optimal-control (FOC) formulation and refinement of
methods and approaches required for the developments of necessary conditions of

optimality in the form of a Maximum Principle.

This goal requires a new general formulation for fractional optimal-control problems
(FOCPs), for which the objective function is given by an integral of fractional order,
the velocity set is closed (it could even be a finite set of points), and a new approach to
provide a necessary condition of optimality (a maximum principle of the Pontryagin

type). The proposed approach is illustrated by an application example.

Formulation of optimal-control problems (OCPs) with fractional differential dynam-
ics of incrementally increasing complexity, notably, in the presence of either control,
endpoint, or state constraints, whose data features assumptions weaker than those
usually considered for FOCPs, and more in line with the ones currently adopted for

problems with integer derivatives.

This goal requires not only the consideration of appropriate solution concepts, but
also some investigation on the assumptions to be imposed in order to ensure the

usefulness of the necessary conditions of optimality.

Refinement of methods and approaches — notably penalization techniques and
variational methods — required to address the issues arising in item d) below, in

the context of fractional differential control systems.

This goal is an intermediate step required to address the remaining aims. It is clear
that new approaches, with respect to the ones considered in the past for FOCPs, are

required in order to deal with the challenges arising in the FOCP formulations to



be considered, namely, new variational principles and new penalization techniques

which, in turn, imply the need of nonsmooth calculus.

Fractional calculus (FC) will be exploited in order to investigate the new methods

to be employed in the proofs of the results to be obtained.

d) Statement and proof of necessary conditions of optimality — a maximum principle
of the Pontryagin type — for the case where we have fractional dynamics with state

trajectories satisfying state constraints.

To pursue this goal, several concepts of solutions for conventional OCPs are ex-
amined, and an essential role is played by the investigation of how the aspects
intrinsic to the fractional nature of the derivatives in FOCPs affect these concepts.
Moreover, it is expected that some aspects of the problem formulation, in particular,
the assumptions on the data of the problem, might come into play when addressing

these issues.

The general approach to pursue this goal is to seek the application of Fermat’s rule
for a suitably defined infinite-dimensional optimization problem with constraints.
This requires the use of specifically-defined penalization techniques coupled with a
variational principle. Also, an example is included to illustrate the applicability of

this approach.

1.2 Motivation

FOCPs are a generalization of classic OCPs for which either the dynamics of the control
system is described by fractional differential equations, or the performance index is given
by a fractional integration operator. The reason behind the use of fractional derivatives lies
in the fact that they provide a more accurate description of the behavior of the considered
dynamic system, and constitute an excellent tool for the characterization of memory and
hereditary properties of several dynamic processes (see e.g., Caponetto et al. [37], Das [48],
Kilbas et al. [87], and Podlubny [125]).

OCPs have found applications in many different fields in real life, including biology (see e.g.,
Behncke [29], Hawkins and Cornell [67], Jung et al. [79], and Lenhart and Workman [94]),
ecology (see e.g., Cohen [45], and Grigorieva et al. [64]), engineering (see e.g., Torokhti and
Howlett [145], and Zelikin and Borisov [156]), economics (see e.g., Sethi and Thompson
[136], and Zelikin and Borisov [156]), finance (see e.g., Chen and Islam [40], and Davis
and Elzinga [49]), resource allocation and management (see e.g., Clark [41], and Sethi and
Thompson [136]), medicine (see e.g., Abello et al. [1], and Swan [137]), and so on.

In the last three decades, FC has attracted significant interest due to its multiple
applications in many areas. In particular, fractional systems can be used in wide areas of

application to indicate systems with long-range interactions or power-law memory (see e.g.,



Laskin and Zaslavsky [92]|, and Luo and Afraimovich [99]). Fractional systems are often
more appropriate than the usual ones (integer-order systems) in real-life applications, such
as electrochemistry (Ichise et al. [72]), dielectric materials (Tarasov [138,139]), viscoelastic
materials (see e.g., Bagley and Torvik [25,26], and Renardy [130]), fractal networks (see
e.g., West et al. [152], and Arena et al. [10]), robotics (see e.g., Gutiérrez et al. [65], Valério
and Sa da Costa [148]), biological tissues (liver, valves, heart, brain, etc.; see, e.g., Doehring
et al. [52], Hoyt et al. [71], Kobayashi et al. [88], and Macé et al. [102]), electric circuits
(see e.g., Caponetto et al. [37], and Petras [124]), signal processing (see e.g., Tseng and Lee
[147], and Vinagre et al. [149]), control systems (see e.g., Axtell and Bise [24], Caponetto
et al. [37], Monje et al. [109], and Podlubny [126]), and so on.

In these years, some popular and simple structures have been proposed for fractional-order
controllers, such as fractional-order Proportional-Integral-Derivative (PID) controllers,
which are widely used in the industry (see e.g., Hamamci [66], Podlubny [126], and Tavazoei
[140]), and their subclasses, i.e. fractional-order PI and PD controllers (see e.g., Jin et al.
[74], and Luo and Chen [100]), as well as different generations of Commande Robuste Ordre
Non Entier (CRONE) controllers which represent the first framework for non-integer-order
system application in the automatic-control area (see e.g., Lanusse et al. [90], Lanusse and
Sabatier [91], and Oustaloup et al. [118], etc.). Moreover, fractional-order controllers have
been employed in many useful applications, such as control of hard-disk drive servo systems
(Luo et al. [101]), control of cement milling processes (Efe [54]), suppression of chaos in
chaotic electrical circuits (Tavazoei et al. [141]), control of power electronic converters
(Calderon et al. |36]), control of composite hydraulic cylinders (Zhao et al. [157]), control

of irrigation canals (Feliu-Batlle et al. [57]), and many others.

The difference of complexity in defining and using calculus between the integer and
fractional contexts together with the associated differences in the geometric interpretation,
may explain why the development extents of the respective associated bodies of optimal-
control theory differ so much. An overview on the research carried out on optimality
conditions and methods for solving FOCPs reveals tremendous between both classes of
problems. Similarly, huge gap exists for the extent of the development of existing optimal-
control theory for conventional OCPs and FOCPs for which only performance integer

integrals have been considered.

Starting with the pioneering work by Pontryagin and his team [127], in which a wide
range of OCPs have been considered, notably, state constraints, discrete-time and the
sophisticated concept of relaxed solution had already been exploited, conventional optimal-
control theory went over the years through extremely-complicated developments, in which
the assumptions of the problem were strongly weakened. Very diverse formulations (wide
variety of constraints and also unbounded time horizons) and delicate issues of well
posedness, sensitivity, nonsmoothness, and non-degeneracy have been considered, as it
is easily attested in the works of many researchers, among which Pereira et al. [122],
Arutyunov [11], Arutyunov et al. [14], Vinter [150], Clarke [42], and Clarke et al. [44].



Within the objectives of this thesis, steps towards contributions to close this gap are
pursued. This effort requires the investigation of new methods that are centered on the
development of variational results appropriated for FOCPs, as well as on the refinement

of FC required to meet the demands of the challenges to be addressed.

1.3 Contributions

The first contribution of this thesis is the development of FOCPs by using a general
formulation, where we employ the fractional integral operator in the cost function and
describe the dynamics of the control system through the Caputo fractional derivative.
Moreover, we introduce a new approach to prove necessary optimality conditions in the
form of Pontryagin’s maximum principle for the general formulation of fractional non-linear
OCP under smooth assumptions on the data of the problem. Furthermore, we provide an
example for this class of FOCP, we use the generalization of the Mittag-Leffler function
to solve it, and compare our results with the classical ones (when a = 1) to illustrate the
effectiveness of these fundamental findings. The results of this chapter were presented as
an abstract at the International Meeting AMS / EMS / SPM, 2015, Porto, Portugal. The

complete version of the results has been published in [8].

The definition of fractional integral with respect to a general Radon (regular Borel) measure
(designated by fractional Stieltjes integral) is also one of the contributions of this thesis,
where this measure can be written as a decomposition of atomic (discrete), absolutely
continuous, and singular continuous measures. We present some properties for this concept,
too. These results will be relevant in the next two chapters, when we investigate the

minimizer of the FOCP with state constraints. These results are submitted for publication.

Another contribution of this thesis is the construction of the necessary conditions for
nonsmooth FOCPs, in which the dynamic system is characterized by a fractional differential
inclusion with state constraints under some weak assumptions. These results will be
relevant in the next chapter, in which we investigate the maximum principle for nonsmooth
FOCPs with state constraints.

The final contribution deals with a new approach in the fractional context to prove the
nonsmooth necessary conditions of optimality, in the form of a nonsmooth maximum
principle for FOCP under weak assumptions on the data of the problem with state
constraints. Here, we adopt the Jumarie fractional derivative to express the dynamics of the
control system (they are defined for a continuous function not necessarily differentiable).
Furthermore, we display an example for this type of fractional optimal-control problem
with state constraint to show the effectiveness of our results. The results of this chapter

are submitted for publication.



1.4 Organization

This thesis is organized as follows.

In Chapter 2, we talk about the state-of-the-art, present a brief overview of the fractional
calculus, conventional optimal-control theory, and some methods to solve optimization

problems with fractional differential equations.

In Chapter 3, we introduce an overview of the key results on conventional optimal-control
theory, i.e., the ones addressing problems whose dynamics is given by integer differential
control systems. This includes the problem formulation, the necessary conditions of
optimality — notably the ones in the form of a maximum principle — and OCP with
constraints. Then, we pursue with developments on the optimal-control of fractional
differential control systems. These include the problem formulation, necessary conditions

of optimality, and numerical techniques to solve these problems.

In Chapter 4, we present a new approach to prove necessary conditions for optimality in the
form of Pontryagin maximum principle for a general formulation of fractional non-linear
OCPs, whose performance index is in the fractional integral form, and whose dynamics is
given by a set of fractional differential equations (FDEs) in the Caputo sense. Moreover,
we use a generalization of the Mittag-Leffler function to solve an example of this general
formulation of FOCP, in order to illustrate the efficiency of our result. The results of this

chapter have been accepted for publication in MMAS [8].

In Chapter 5, we present some important concepts of measure and integration theory, which
help us understand the fractional Stieltjes integral, especially when we have a jump in the
function. Furthermore, we find a formula for the fractional integral with respect to the
measure in the Jumarie fractional integral sense. In this formula we are interested in the
nonsmooth case, where the measure can be decomposed into an atomic and a non-atomic

measure. Also, we present some properties of this formula.

In Chapter 6, we investigate the problem with dynamics given by a fractional differential
inclusion, defined by a set valued map of the type (¢t,2) — F(t,x). We prove some
important results related to differential inclusions (DI) in the fractional context, such
as existence and compactness of fractional trajectories, and we formulate the nonsmooth
necessary conditions for the fractional differential-inclusion problem with state constraints

under certain weak assumptions.

In Chapter 7, we introduce a new procedure in the fractional context to provide necessary
conditions in the form of a Pontryagin maximum principle for the FOCP, whose dynamics
is given by the Jumarie fractional derivative subject to state constraints and under weak
assumptions on the data of the problem. Moreover, we present an example to illustrate

the effectiveness of our results.

Finally, in Chapter 8, we close this thesis by giving a summary of the present contributions

from our works, and a few recommendations for future works.






Chapter 2

State-of-the-Art

In this chapter, we will introduce a brief review of key concepts and results of various
domains — of fractional calculus, conventional optimal-control theory, and some methods
to solve optimization problems with FDEs — which are relevant for the research developed
in the thesis. Moreover, this overview will be also most helpful to appreciate the added

value of this thesis with respect to the state of the art.

2.1 Fractional Calculus

Fractional calculus (FC) is a field of mathematics that deals with integrals and derivatives
whose order may be an arbitrary real or complex number, thus generalizing the integer-
order differentiation and integration. This field may be considered old and yet a quite
young one. It is an old topic because its beginning can be traced back to Leibniz’s letter
to L’Hépital in 1695, in which the notation for differentiation of non-integer order % is
discussed. Since then, fractional calculus has been developed gradually, being now one of
the strongly researched areas of the mathematical analysis as attested by the number of

publications.

The motivation for this lies in the increasing range of applications requiring the use of
fractional differentiation and integration operators in various fields, notably, in pure and
applied mathematics, physics, chemical, biological processes, engineering, economics, and
control theory, among others (see e.g., Hilfer et al. [70], Koh and Kelly [89], Mainardi [104],
Makris et al. [105], and Rossikhin and Shitikova [133]). Thus, it can be considered a novel

topic as well.

There are many definitions and several different approaches in fractional derivatives and
integrals (see e.g., De Oliveira and Tenreiro [51], Kilbas et al. [87], and Samko et al. [135]).
Here, we introduce a review of some special functions that are used in FC as help tools,
and some definitions for fractional integrals and derivatives of which we consider only the

most useful ones for our purposes.



2.1.1 Special functions

Here, we present an overview of some definitions for special functions that were used along
this thesis.

e Gamma function.

One imperative function of the fractional calculus represents a continuous extension
of the factorial function. That is, the Gamma function generalizes the factorial
function to non-integer, negative and complex arguments. Also, called the Euler

Gamma function, I'(z) is defined by

F(z):/ e 't*Ldt,
0

this integral being convergent for all complex z € C,R(z) > 0.

e Mittag-Leffler function and generalization.

The Mittag-Leffler function plays a very important role in fractional calculus. It was
first introduced in 1903 by the Swedish mathematician Gosta Mittag-Leffler (Mittag-
Leffler [108]) and is given by

o0 n

Eo(2) = Z%W7

where z is a complex variable, @ > 0 and I'(-) is the Gamma function. It is called
the one-parameter Mittag-Leffler function, as there is also a Mittag-Leffler function

with two parameters in following form:

oo Zn
Eaﬁ(Z) = Z m Oé,ﬁ > 0.

n=0

In fact, the two-parameter Mittag-Leffler was introduced by Agarwal in 1953. The
reason why now the two-parameter Mittag-Leffler is not called the Agarwal function,
but simply the Mittag-Leffler function, is because Agarwal left the same notation as
for the one-parameter Mittag-LefHler function (see e.g., Das [48|, Podlubny [125]). If

B =1, we have E1 = Fq, i.e., the original one-parameter Mittag-Leffler function.

The generalization of the Mittag-Leffler function is obtained by writing the argument
in the form t*. It is very important to solving FDEs, and defined as follows: Let
A e R"™ « >0, 8 > 0. Then, the generalization of the two-parameter Mittag-

Leffler function is
tTLOé

E,p(AtY) =Y A"———.
7;) I'no+ B]



If B = 1 we obtain the generalization of the one-parameter Mittag-Leffler function as
tna

The generalization of the Mittag-Leffler function satisfies some interesting properties
(see e.g., Mozyrska and Torres [112], Prajapati [129]).

Proposition 2.1. Let o > 0 and t € [a,b]. Then, the fractional derivative of the
generalized Mittag-Leffler function obeys:

cDEa(A(t —a)*) = AE(A(t—a)%),

where thO‘ is called the Caputo fractional operator, which is defined in the next

section.

2.1.2 Fractional integrals and derivatives

There are many definitions and several different approaches for fractional derivatives and
integrals (see Appendix A). Here, we introduce the fractional derivatives and integrals

important for our work, such as the Caputo, Riemann-Liouville and Jumarie ones.

Definition 2.1. Let f(-) be an integrable function in interval [a,b]. For t € [a,b] and
a > 0, the left and right Riemann-Liouville fractional integrals are, respectively, defined by

1

IO = s [ @=n s

b
JE() = F(la) / (r — )" f(r)dr,

where I'(-) is the Euler Gamma function.

Definition 2.2. Let f(-) be an absolutely continuous function in the interval [a,b]. For
a >0, and t € [a,b], the left and right Riemann-Liouville fractional derivatives are,

respectively, defined by

DEFO) = G I 0) = e () [ €= e mar

d

n rb
DES) = (-5 (B0 0) = o () [ - o war

where n € N s such thatn — 1 < a < n.



Definition 2.3. Let f(-) € AC™[a,b]. For t € [a,b] and o > 0, the left and the right

Caputo fractional derivatives are, respectively, defined by

d" _ 1 ! n—a—1 r(n)
0 = s [ = O ar

CDEf(t) = I T a)

n _1\n b
eops0) =2 (- 5) 10 =i [ ot

where n € N is such thatn —1 < a <n.

If & = n € Ny, then the Caputo and Riemann-Liouville fractional derivatives coincide with

d" f(t)

n

the ordinary derivative . For some properties and relations between the Caputo and

Riemann-Liouville derivatives, see Appendix A.

FOCPs make use of different types of fractional derivatives. The most popular among
them are the Caputo and Riemann-Liouville fractional derivatives, but both have some
disadvantages. For example, the Caputo fractional derivative does not apply when
the functions are not differentiable (et al. [132])), and the Riemann-Liouville fractional

derivative of a constant is not equal zero.

To overcome this issue, there are a results proposed by Jumarie which involve a slightly
modified definition of the fractional derivative of the Riemann-Liouville derivative (Jumarie
[76-78]) in order to eliminate the disadvantages of the Riemann-Liouville and Caputo
fractional derivatives. The Jumarie fractional derivative of a constant is equal to zero, and

it is defined for a continuous (not necessarily differentiable) function.

Definition 2.4. Let f : [a,b] — R be a continuous function, 0 < a < 1 and t € [a,b).
Then, the left and right Jumarie fractional derivatives fjga) (t) and f](%a) (t) are, respectively,
defined by

D) = WP — F@))(@)
1 d [tf(r) - f(a)
- F(l—a)dt/a G—re "

) = GDRLFO) — FOD@)

If a > 1, we define

(n)
) = (f(“_”)(t)) , n<a<n+1l, n>1



For the special case 0 < a < 1, we have

FO) = (£ @)

Remark 2.1. If f(a) = 0, then the left Jumarie fractional derivative coincides with the

Riemann-Liouville fractional derivative.

Definition 2.5. Let f : [a,b] — R be a continuous function and o > 0 a real number in

the interval [a,b]. The Jumarie fractional integral is defined by
1 t
WIS = —— dr)®, <1.
T = s L SO0, 0<as
Moreover, Jumarie introduced a fractional integral notation (dt)®, defined by

/a fo)(dr) = a / (6= e ()

Important properties of the Jumarie fractional derivative and integral are shown in

Appendix A.

Definition 2.6. Let n — 1 < o < n. The function f(-) is said to be an a—absolutely

continuous if satisfies

n—1 (k) a
1) = X s = o +alfa ), telad]

where g(t) = o DY f(t), t € [a,b].

For more details, see, e.g., Hilfer [69], or Kilbas et al. [87].

2.1.3 Fractional integration by parts

Integration by parts plays an important role in deriving the generalized Euler-Lagrange
equations for fractional variational problems, and in proving necessary optimality condi-
tions for fractional optimal-control problems (see e.g., Agrawal [4], Kilbas et al. [87], and
Samko et al. [135]).

e Let o(t) € LP([a,b]), ¥(t) € LY([a,b]), 1 <p <oo,1<¢q< oo and %4—% <1l+a(we
assume that p > 1 and ¢ > 1, when % + % =1+ «), then,

b b
| eottroma = [ v
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o Let f(t) € I (LP), g(t) € (I (L9), where oIf(LP), (I{*(L?) denote the ranges of the
operators (I*, (I on LP, LY respectively. Then,

[ rowngswa= [ soesna
and (I (LP), (I (L7) for any 1 < p < o0, 1 < ¢ < 00, a > 0 are defined by
i (LP) :=Af: [ =alie, ¢ € LP(a,b)},
Iy (L) :={g: g =gy, ¢ €L a,b)}.

There is a formula for fractional integration by parts for the Caputo fractional derivatives,
such that

b b n—1
/ FOEDeg) )t = / g (DY F)(O)dt+ Y (D f()g" (1) 122,
a @ i=0

b b .
[ roeEpgawa = [ aeben@a+ Z 1) (DRI (1) g1 1) [,
and in particular, for « € (0,1), we have

b b
/ FOCDrg) (Dt = / g (O (:DE )Yt + (I F(1)a(t) =0,

b b
/ F)(EDgg) (1)t = / 9()(aD§ F) (D)t — (T1 2 F(£))g(8) |1

In the previous equations, when o — 1 we have the classical formula of integration by
parts, (i.e., f(f ft) g (t)dt = f(t)g f gt ), because ¢ D¢ = dt, Dg = %,
oDy = %, DY = —%, and I}~ 0‘, tlg “ are the 1dent1ty operators.

Furthermore, Jumarie introduced a formula of integration by parts as follows

b b b
/ F@@g(t)(dr) = / (F()g() @ (dt)* — / £()g® () (dt)°

= T(a+1DI[f /f (dt)®.

2.2 Overview on Conventional Optimal Control Theory

Classic OCPs arise naturally in many various fields and have been discussed for a long
time, therefore a lot of work exists in the area of optimal-control of integer-order dynamic
systems in engineering, science, economics, and many other fields. Thus, it is not surprising

that a wide diversity of OCPs have been considered. The range of issues and problems

12



include; (i) multiple types of the considered control variations which are related to the
various types of minimum; (ii) types of constraints (state, control, mixed, isoperimetric,
endpoint and intermediate state constraints, (iv) finite or infinite time-horizons, (v) sets
of assumptions to avoid several types of non-degeneracies of the conditions; (vi) sensitivity
results; (vil) robustness to perturbations and to unknown model parameters; (viii) different
types of multipliers; and (ix) control measures (impulsive control), among others, (see e.g.,
Arutyunov [11], Arutyunov et al. [13-18,22], Arutyunov and Pereira [20,21], Arutyunov et
al. [12], Arutyunov et al. [19], Bryson [35], Clarke [42], Clarke et al. [44], Fraga and Pereira
[59], Gamkrelidze [60], Dubovitskii and Milyutin [53], Gregory and Lin [63], Hestenes [68],
Karamzin et al. [84,85], Neustadt [115]|, Pereira and Silva [119-122], Pontryagin et al.
[127], Vinter and Pereira [151], Pereira et al. [123], and Vinter [150]). In general, the
specification of an OCP requires the following items: (i) state and control spaces; (ii) a
performance index or a cost function, usually depending on the state and control variables,
usually denoted by z(-) and u(-), respectively, to be minimized over the set of all admissible
control processes; (iii) dynamic constraints that establish the relation between the state
trajectory with the control input and an endpoint state variable value; and, possibly, (iv)
one or more types of constraints such as pointwise control and/or state constraints, and
joint control and state constraints. Above, by control process we mean any pair (z;u) that
satisfies the dynamic constraints. A control process is feasible or viable if it satisfies all the
constraints, and it is optimal if provides a cost lower than that associated with any other

feasible control process.

The main objective of OCPs is to determine the (open- or closed-loop) control strategy
that optimizes (minimizes or maximizes) a given optimality criterion or performance index
usually denoted by J(-). The performance index may be very general. It may simply be
a function depending on the state and/or time (for free-time problems) endpoints, or also
involve an integral whose integrand may be a function of the values of both the state and

the control variables.

Remark that, since min{J(-)} = —max{—J(-)}, it is indifferent to consider either
maximization (more often used in economics) or minimization (more often used in

engineering). We will adopt the latter.

Let J[z,u] be a performance index, z € X a set of state variables taking values in R", a
control variable u is a Borel measurable function, U a closed set of control variables such
that u € U taking values on some closed set Q@ C R™, t € [a,b], and L(-), f(-) and g()
continuously differentiable functions in all three formulations. Remark that if f(¢,z,Q) is
an open set for all (¢,z), we have a calculus of variations problem. In what concerns the

cost function, there are three main types of OCPs:

1. Bolza formulation

b
J|z,u] = g(a, xz(a),b, (b)) +/ L(t,x(t), u(t))dt,

13



2. Lagrange formulation
b
Tiaa) = [ Lt (0. u0)ar,

3. Mayer formulation

J[z,u] = g(a,z(a),b, z(b)).

Subject to
o(t) = f(t,xz(t),u(?), xz(a)= o

Theorem 2.1. (Rodrigues et al. [131]). There are conditions under which these three

optimal-control problems are equivalent.

2.2.1 Necessary optimality conditions

Consider the simplest nonlinear OCP that can be formulated as follows

b
Minimize  J[z,u] :/ L(t, z(t),u(t))dt,

subject to  @(t) = f(t, (), u(t)),

In this OCP, z(t) € R" is the state variable, u € U is the control variable, L : [a,b] X
R™ x R™ — R is called the integrand, f : [a,b] x R™ x R™ — R™ is a function defining the
dynamics of the system for the case where the first-order derivative of the state variable x is
considered, and the points a and b are called the initial and final time points, respectively.
The pair (x;u) is designated as control process. The hypotheses to be satisfied by L(-) and
f(-) have to be such that a number of purposes can be considered in the investigation of
the OCP. The simplest subset of purposes concerns the proper definition of the problem
— existence and uniqueness of the solution of the differential equation for a given initial
state and control function — and the necessary conditions of optimality are informative
in the sense that they enable the successful reduction of the number of candidates to the

solution of the problem.

When © = R™ where () is the set of values taken by the control function, the necessary

conditions of optimality can be written down by using Lagrange multiplier as follows:

B0) = S (t(t), u(t), M),
M) = a0, u(0), M),



0 = %t a(t) ult), A)

where A(+) is a Lagrange multiplier and H (¢, x,u, A) is the Pontryagin function defined by

H(t,z,u,\) = L(t,z,u) + /\Tf(t, x,u).

2.2.2 Pontryagin maximum principle

The maximum principle of optimal-control provides necessary conditions to be satisfied by
the optimal-control process, the pair (z;u). It has been an important tool in the many
areas in which optimal-control plays a role. The well known Pontryagin Maximum Principle
was developed in the mid 1950s in the Soviet Union by the Russian mathematician Lev

Semenovich Pontryagin and his colleagues [127].

The Pontryagin maximum principle is stated as follows. Let (z*; u*) be an optimal solution

of the control problem

b
Minimize  J(z,u) :/ L(t, x(t),u(t))dt,

subject to  x(t) = f(t, z(t),u(t)),

where z(a) = zo, v € U C R™, and t € [a,b]. The Pontryagin function H(t,x,u, ) is
defined as follows
H(t,z,u,\) = L(t,z,u) + )\Tf(t, x,u),

where the functions f : [a,b] x R" x R™ — R™ and L : [a,b] x R x R™ — R are,
respectively, the state variable dynamics and the integrand of the cost functional. Both
are differentiable with respect to (w.r.t.) x, Lebesgue-measurable w.r.t. ¢, and Borel-
measurable w.r.t. u. Pontryagin’s maximum principle states that the optimal input w*(-)

maximizes H(t, z(t),u(t), A(t)) among all admissible inputs u(-), that is
H(t, " (8), ult), N'() < H(t, 2" (8), 0" (1), X*(1)),

for almost all (a.a.) t € [a,b], where u*(-) € U is the optimal-control for the problem,
A*(+) is the optimal co-state trajectory, and x*(-) is the optimal state trajectory satisfying,
respectively, the adjoint equation, )\*(t) = - %H(t, x*(t),u*(t),A\*(t)), and the state
equations £*(t) = %H(t, x*(t),u*(t), \*(t)), with the boundary conditions z*(a) = x¢ and
(b)) =0

When the final time is fixed and the Pontryagin function does not depend explicitly on
time, then

H(x*(t),u"(t),\"(t)) = constant,
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and, if the final time is free, then

H(a* (), u*(£), \*(t)) = 0.

2.2.3 Optimal control problems with constraints

Constraints appear in different ways in OCPs. These constraints restrict the range of

values of both the state and the control variables.

If the constraints are imposed on the control u(-) of the OCPs, they are called control

constraints.

If the constraints are imposed only on the state trajectories of the OCPs z(-), they are

called pure state constraints.

Finally, if the constraints are imposed on both the state and the control variables they are

called mixed state constraints.

Let us show some types of the aforementioned constraints, imposed in the OCPs.

1. Control constraints

The control u € U is called control constraint, where u(t) takes values in a closed set
Q(t) for almost every ¢ € [a,b] and U : [a,b] — Q(t) C R™ is a multifunction taking

on closed values.

2. Endpoint constraints

The endpoint constraints can be imposed at the initial and /or terminal point(s) of

a fixed time interval [a,b], and the most general way to write them is
(z(a), (b)) € C,

where C is a closed set.
3. State constraints

— Inclusion state constraints
Let X : [a,b] — R™ be a multifunction taking on closed values. Then, the

inclusion state constraint is defined by
x(t) € X(t), vt € [a, b].

— Inequality state constraints
Let h : [a,b] x R™ — R be a given function. Then, an inequality state constraint

is defined by
h(t,z(t)) <0, Vt € [a,b].
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— Equality state constraints

Let h : [a,b] x R™ — R be a given function. Then, an equality state constraint
is defined by
h(t,z(t)) =0, Vt € [a,b].

4. Mixed state constraints

— Inequality mixed state constraints
Let h : [a,b] x R® x R¥ — R™ be a given function. Then, an inequality mixed

state constraint is defined by
h(t,z(t),u(t)) <0, a.e. t € [a,b)].

— Equality mixed state constraints
Let h : [a,b] x R® x R¥ — R™ be a given function. Then, an equality mixed

state constraint is defined by

h(t,x(t),u(t)) =0, a.e. t € [a,b].

2.2.4 Maximum principle

Here, we give an overview the nonsmooth maximum principle for OCPs with and without
state constraints. In the 1970s Francis Clarke generalized the convex subdifferentials
of Rockafellar to cover Lipschitz-continuous functions and, to some extent, lower semi-
continuous functions (Clarke [43]). He applied nonsmooth analysis to optimization
and optimal-control theory. Also in the 1970s, Mordukhovich proposed the idea of
limiting subdifferentials, and demonstrated how transversality conditions in the nonsmooth
maximum principle could be improved, thus, making the necessary conditions of optimality

more precise.

We will consider the nonsmooth OCP with state constraints as the following

Minimize g(z(a),z(b))

subject to  &(t) = f(t,z(t),u(t)), a.e. t€ [a,b],
(P) h(t,x(t)) <0, VtE€ la,b],

u€elU, ae. teE]lalb],

(x(a),z(b)) € C.

The problem (P) satisfies the following hypotheses:

(H1) the function (t,u) — f(t,z.u) is £ x B—measurable;

(H2) the function f(t,.,u) is Lipschitz with a function Ky in L' for all (¢,u) € {(t,Q()) :
t € [a,b]};
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(H3) the graph of Q(¢) is £ x B—measurable, where Gr(f?) is the graph of the multifunction
U : [a,b] — R™ defined by

Gr(Q) :={(t,u) € [a,b] x R™ :u € Q(t)};

(H4) the function g is Lipschitz of rank Kg;

(H5) the function h is upper semicontinuous and for each ¢ € [a,b] the function h(t,-) is

Lipschitz with constant k.
The Pontryagin function H : [a,b] x R™ x R™ x R™ — R is defined by
H(ta x,p, U) = <p7 f(tv Z, U)) .

Theorem 2.2. (The Nonsmooth Mazimum Principle for Optimal Control Problem (P)
with State Constraints (Theorem 5.2.1; Clarke [43]).

Let (z*,u*) be a strong local minimizer for the problem (P), and assume the previous
hypotheses (H1)-(H5) are satisfied. Then, there exist an arcp, a scalar X > 0, a non-
negative Radon measure (i(-) on [a, b], and a measurable function y(-) such that the following

expressions are satisfied:

(i) The Non-triviality Condition

Il + [l + A >0,
(ii) the adjoint equation
—p(t) € O H (t,27(t), q(t),u" (), V),
(iii) the mazimum condition
H(t,z"(t),q(t),u"(t),\) = max {H(t,x*(t),q(t), w,\) :w e U(t)},
(iv) the transversality condition
(p(a), =q(b)) € Adg(a"(a), 2" (b)) + Ne(z*(a), z* (b)),
(v) () € 07 h(t,xz*(t)), and p is supported on the set

{t: h(t,2*(t)) = O}.
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Here, ¢(-) (referred to in conditions (ii), (iii) and (iv)) is

t) V(S)M(dS% le [a7 b)7
b] ’y(S),u,(dS), t=b,

and 07 (+) is a certain generalized gradient that takes as values certain subsets of the well

known Clarke’s generalized gradient, defined by

7 h(t,z) := co{y = lim ~; : v; € Ozh(ts, i), (ti, ;) — (t, ), h(t;, ;) > 0 Vi}.
21— 00

As it is clear from this result, there are a number of other objects inherent to the generalized
nonsmooth calculus whose understanding requires an overview of several basic concepts.

We provide an overview of these in what follows next.

Definition 2.7. (Clarke [43], Liu and Zeng [96]). Let a function f: X — R is Lipschitz
near a given point x. The Clarke’s generalized directional derivative of f(-) at the point
x € X in the direction d defined by

o(2:d) = lim sup LY FAD =)

A—0 y—x )\ ’

where ¥ is a vector in X and A is a positive scalar.

The Clarke’s subdifferential or generalized gradient of the function f(-) at the point x € X,
denoted by df(x) is a subset of X*

of(x) :={z" € X*: f°(x;d) > (z*,d),Vd € X},

where X* is a dual space of X.

Remark 2.2. [f the state constraints are absent, then either v(-) = 0 or the measure

du(-) = 0 and the conditions become simpler.

It is easy to see that under some circumstances, these conditions may degenerate. For
example, if C' = {zo} x R", h is smooth with h(t,z¢) = 0, and h(t,z(t)) < 0 for all
feasible x(-) with ¢ > to, then is immediate to see that the multiplier A = 0, v(0) =
Vh(to,zo) du = 64 (-) and p(0) = —Vh(tg,zo) satisfies the condition of the maximum
principle of Pontryagin (in particular, is nontrivial) and, at the same time, does not give

any information to select the extremals of the OCP.

This problem has been addressed by several authors with various approaches , being the
more significant ones found in (see e.g., Arutyunov et al. [14], and Dubovitskiil and
Milyutin [53]).

There are to key approaches to address this challenge: Either to impose additional

conditions on the data of the problem like in (see e.g., Vinter [150]|, and Arutyunov et
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al. [17,18]) , or resort to higher order information in order to make sure that the multiplier
specified by the conditions of the maximum principle does not yield non-informative
multipliers like in Mordukhovich [110].

2.3 Overview of some Methods to Solve Optimization Prob-

lems with Fractional Differential Equations

In this section, we review some recent papers in which some optimization problems with
fractional differential constraints (OPFDC) (of which FOCPs are a special case) were

solved.

While integer-order OCPs have been discussed for a long time, and a large body of theory
and numerical techniques has been developed to solve them, the FOCPs constitute a new
area with a limited number of publications and many open issues. A general formulation
and a solution scheme for OPFDC were first introduced by Agrawal 3], where the OPFDC
formulation was expressed using the fractional variational principle and the Lagrange-
multiplier technique, and the fractional dynamics of the OPFDC is defined in terms of the
Riemann-Liouville fractional derivatives. He considered the state and the control variables
as linear combinations of test functions, and dealt with the linear quadratic optimal-control
problem as follows. Let the functions ¢(¢) > 0 and r(¢t) > 0, then
1

1
(P) Minimize () = | /0 lg(B)22() + r(E)a(0)]dt, (2.1)

subject to  oDfx(t) = a(t)z(t) + b(t)u(t), (2.2)

where (0) = zp and a € (0,1). The necessary conditions of optimality for (P), in the

Euler-Lagrange form, lead to a system of equations composed by (2.2) and

0 = r(t)ult) + b)), (2.3)
DI = q(t)a(t) + a(t)A(D). (2.4)

The control variable u(t) is obtained by using (2.3) as a function of the unknown co-state
variable A(+). In order to determine both the state and co-state functions, this equation

together with equation (2.2) yields
oDz (t) = a(t)x(t) — r L (E)D2(E)A(2). (2.5)

Thus, the control function is determined by jointly solving (2.4) and (2.5) subject to the
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terminal conditions x(0) = xg, A(1) = 0. Agrawal used an approximate numerical method

to find z(¢) and A(t), by using the shifted Legendre polynomials
() (It k k
P =07y () (73 F) o
k=0
that satisfy the following orthonormality conditions:

' 0, j=k,
/ P;(t)P(t)dt = 651, =
0 1, j#k,

(here 6, is the Kronecker delta function). After some calculations and simplifications, we

obtain the following system of 2m + 2 equations in 2m + 2 unknowns:

[F1(j, k) — Fa(j, B)lex + Y Fa(j, k)dy + Py(0)pa,
k=1

[FOCU(]7 ck+ZF4 j7 FQ(j7k)]dk+P)J(1)M27
k=1

I
NE

B
Il

@)
I
M=~

Il
—

ro = k‘(o)ck’a

[z
.

B
Il
—

( )dk7

[
Ms

e
I
—

where p; and po are the Lagrange multipliers associated with the terminal conditions, and
Fox(j, k) and Fi(j, k) to Fy(j, k) are defined as:

1
Fou(j.F) = /0 o(8)P; (1) Pi(t)dt,
1
Rk = /0 Py(t)o DS Po(t)dr,
1
Fy(jik) = /0 a(t)P;(1) Py (1) dt.
1
Fy(j.k) = /0 r ()62 (0) Py (1) Pi(t)dt,

1
RR) = [ PR

An approximate solution to this problem is obtained by linear combinations of the shifted

Legendre polynomials.

A direct numerical technique to solve OPFDC was used by Agrawal and Baleanu [5], where
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the authors consider a Hamiltonian formulation. They consider the following OPFDC, find

the optimal-control u(-) that minimizes the performance index

1
Tw) = [ falt),u(e). )
0
subject to the system dynamic constraints
oD x(t) = g(x(t), u(t), t),

with the initial condition x(0) = xg, where x(t) is the state variable, f(:) and g(-) are two
given functions, and 0 < o < 1. Let A(-) be the Lagrange multiplier. The Hamiltonian of
the system is given by

H(x(t), u(t), A(t), 1) = f(2(t),u(t), t) + Mt)g(x(t), u(t),?).

Then, the necessary conditions in terms of a Hamiltonian for the OPFDC are given by

o _ oOH
tDl A(t) - %7
oH

0= S0

o oH
oDf'x(t) = %

subject to the endpoint conditions x2(0) = g, and A(1) = 0. The authors focus on the
problems with quadratic performance index like in equations (2.1) to (2.5), and they use
a direct numerical method to compute z(-) and A(-), by adopting the Griinwald-Letnikov
definition. In this method, the entire time domain is organized into N equal domains,
labeled by 0,1,..., N. Then, the time at node j is given by t; = jh, where h = % By
using the Griinwald-Letnikov concept, equation (2.5) at node i can be approximated as
(see e.g., Kilbas et al. [87], and Podlubny [125])

1 (o
e ij( ):ci_j = a(ih)x; — r 1 (ih)b*(ih)\;, i=1,...,N,
=0

where z; and \; are the numerical approximations of z(-) and A(-) at node i, and w](»a),
7 =0,...,1, are the coefficients defined by
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Similarly, equation (2.4) at node i can be approximated as

N

1 .

e Z wj(a)z)\J q(ih)x; + a(ih)\;, i=0,...,N—1
j=i

These equations provide a system of 2N equations in 2N unknowns, that can be solved by

using various schemes such as a direct Gaussian elimination. From this system we can get

z(t) and A(t), and substitute in (2.3) to obtain u(t).

Agrawal et al. [6] used the above-mentioned idea — Hamiltonian formulations for OPFDC
and fractional derivative Griinwald-Letnikov concept — to solve the FDE involving the
state and control variables. However, they considered OPFDC with vector-valued state
and control variables. They state the OPFDC as follows

1

1
Minimize J(u) = /0 lg(B)22(8) + (&) (D)]dt,

subject to  oDf'z(t) = a(t)x(t) + b(t)u(t),

with endpoint conditions x(a) = ¢ and z(b) = d. Here, the state and control variables,
x(t) and wu(t), are respectively n, and n,, vectors, f and g are respectively a scalar and a
ny vector functions, and ¢ and d are given vectors. The dimensions n, and n, satisfy the

relation n, < ng.

Another slightly different variation of the previous method was introduced by Baleanu et
al. [27]. The authors considered the same problem but used modified Griinwald-Letnikov

approximations for left and right fractional derivatives

1 ¢ ‘
()D?{L'(ti_%) = ﬁij(-a)xi_j, 1:1,...,71,
§=0
1 n—i
th‘x(tH%) = ﬁZwﬁa)xiH, i=n—1,n-2,...,0,
§=0
where w](-a) are the coefficients satisfying w(()a) = 1land wj(.a) = (1 — ‘%1) w](f)l,j =1,...,n.

These approximations are carried out at the central points of a certain discretization of the
time horizon. Then, the time domain [0, 1] is divided into n equal parts, and the fractional
derivatives o Df*z and (D{'\ are approximated at the center of each segment, z(t, 1 ) being
defined as the average of the two end values of the segment:

Ti—1 + x;
o(ty) = =5

Similar approximations are considered for z(¢; 1), A(t;_1) and A(;, 1).
2 2 2
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By substituting these approximations in (2.4) and (2.5), the following system of equations

is obtained:

)

1 (o) 1 1 1/ 2. .
hia j;owj Ti—j = §a(z1h)(xi_1 + xz) — 57’ (’Llh)b (’Llh)()\i_l + /\i)7 1=1,...,n,
inifw(a)x = o) @i + 20 + alish) iy + M), i=n—1,...,0
ho 2 b i+j = 26] 2 i+1 i 9 2 i—1 i)y = yeeey YU,y
=i

where 11 = i—% and io = i+ % This system of 2n linear equations in terms of 2n unknowns

can be solved using a standard linear solver.

A numerical technique based on the Legendre orthonormal polynomial is the basis for
solving OPFDC as discussed by Lotfi et al. [98]. The authors focus on OCPs with the
quadratic performance index, and the fractional dynamics is defined in terms of the Caputo
fractional derivatives, the solution method being based on the Legendre orthonormal
polynomial approximation without using Hamiltonian conditions. They consider the
following OPFDC formulation:

1
(P) Minimize  J(u) = /0 [q(t)x2(t) + r(t)u?(t)]dt,

subject to  oDi'x(t) = a(t)x(t) + b(t)u(t),
z(0) = xo,

where ¢(t) > 0, r(t) > 0 and b(t) # 0.
The state and control variables, z(-) and u(-), are expanded by using the Legendre basis
U(-) as follows:

z(t) ~ (CTI1*+4d")v(1),

ut) ~ UTWw(),
where I is the matrix operator of fractional integration of order o, CT = [co,...,cm],
UT = [ug,...,un] and dT" = [20,0,...,0].
After some calculations, the performance index J can be approximated by

J ~ JC,U]

- % /01 (QTE(M))(CTI +d") U () ¥ ()" (CT1* +d")T) + (BT (1)) (UT W () ¥ () U)]dt,

and the dynamical system as

CTw(t) — ATw () w )T (T 1+ d")T — BT (t)w(t)'U = 0.
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Then, the authors show that the dynamical-system approximation can be converted into

a linear system of algebraic equations of the form
cT — (T +dHTv —uTw =,

for some operators V and W.

Now, define
JC,U N = J[C, U]+ [CT — (CT1* + dD)YTV —UTW)A,

where AT = [\, A1, -, Am), Vo= [05]1<; semyr a0d W= [ @3], scpyr - Then, the

application of the necessary conditions of optimality yields

o0J*
= 0,
oC
oJ*
=0
ou ’
oJ*
=0
O\ ’
where by % = 0 the system gé; =0, 7=0,...,m is meant. These equations can be

solved for C, U and A by using the Newton iterative method.

After computing C' and U, the approximate values of u(t) and z(¢) are obtained with the
equations of the Legendre expansion. Some properties of Legendre polynomials and the

convergence are also considered in this work (see Lotfi et al. [98]).

Another slightly different approach is discussed by Yousefi et al. [155]. In this work,
the Hamiltonian conditions, the Riemann-Liouville fractional derivative and the Legendre
multiwavelet collocation method are used to solve the OPFDC. The OPFDC is stated as

follows:

Minimize  J(u)= [ fa(t)u(t) t)dt,
to
subject to  oDj'x(t) = g(x(t),u(t),t),

where x(tg) = xg, 2(t) € R™, u(t) € R™, f and g are respectively a scalar and a n vector-
valued functions. Then, the necessary conditions in terms of a Pontryagin function for the
OPFDC are given by:

oH
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OH

=
o oH
toDfz(t) = %

:L'(to) = Xy, )\(tf):O.

The adopted solution method is based on the approximation of x(-), u(-) and A(-) by a

truncated series of Legendre multiwavelets for ¢ € [to, t¢] as follows:

2k—_1 M

x(t) =~ Z Z(t —to)exijVii(t) + o,

i=0 j=0

2k 1

M
Z Z cuij\I!ij (t),

i=0 j=0

£
—~
=

12

2k—1 M

DD = t)ed; i),

i=0 j=0

>~
—~
=

12

Grfrto) 4y,

25 2k (t — t)
V() = VoM F 1P, ( _ n) ,

Vi —to tr —to

P,,(+) being shifted Legendre polynomials. After using the collocation points P;, such that
1 < i < 2F(M + 1), as the roots of Chebyshev polynomials of degree 2¥(M + 1), the

following algebraic system of equations is obtained:

where, for w +tp<t<

where Fy(x(t),u(t),\(t)), Fa(z(t),u(t),\(t)) and F3(x(t),u(t), A(t)) correspond to the
equations of the necessary conditions of optimality. After solving these equations, the
coefficients of the series by Legendre multiwavelets that approximate z(t), u(t) and A(t) are
obtained. The well-known Chebyshev polynomials on the interval [to, ¢ ] can be determined

by the following recurrence formula:

2 to+ty

Tpir () = 2
n1(f) (tf—to tr —to

)Tn (t) —Th (ﬂ?

with Tp(t) = 1 and Ty(t) = 24 — #255E.

Another idea for solving OPFDC, introduced by Jelicic and Petrovacki [73], consists
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in transforming the fractional problem into a classic integer-order problem by using an
expansion formula for fractional derivatives. The work is based on an approximation
formula obtained by Atanackovic and Stankovic [23]. The authors state the OPFDC as

follows:

1
Minimize — J(u) = /O F@(®), u(t), )dt,

subject to  &(t) + k oDz (t) = g(z(t), u(t), ),

where z(ty) = xo and k is a given constant. The necessary conditions of optimality for this

problem are

#(t) = —koDi'z(t) +g(x(t), u(t), ),
_ of

dg

M) = DR — A1) 5

subject to x(0) = xg and A(1) = 0. After some calculations, the approximation

N
oDfx(t) ~ A(a)t™z(t) + ) Bla,p)t' """V, (t),
p=2
is used, where
B 1 1 al F'p—1+«)
A = T e T —are—a pz:; p—1
1 'p—1+a)
Per) = riare-w @1

t
Vo (z®)(t) = / 2P (r)r"dr,  neN,  t>0,
0

denoting by V,,(z®)(t), n € N, the n* moment of the function z®)(.), and by z®) (),
p € N, the p” derivative of z. Then, the problem becomes a classic integer-order problem,

and the fractional system is transformed into the following ordinary system:

Minimize / ft,x(t),u(t))dt
—k(A(@)t™a(t) = Yol Bla,p)t = PVp(1)+  f(t,2(t), u(t)),

subject to



with the endpoint conditions V,,(0) = 0 for p = 2,..., N, and z(0) = zo. This problem
can be solved by means of classical optimal-control theory, since fractional derivatives do

not appear in its formulation.

Another similar procedure is discussed by Pooseh et al. [128]. The authors adopt the
Caputo fractional derivative to model the dynamic constraints, and use an approximation

formula to convert the fractional problem into an integer-order one with free terminal time.
The OPFDC is stated as follows:

T
Minimize J(u) = / L(t,z(t),u(t))dt + ¢(T,z(T)),
subject to  Mi(t) + N SDfx(t) = f(t, z(t), u(t)),

with the endpoint condition z(a) = z,. Here, M and N are non-zero and z, is a fixed real

number.

The optimal triplet (z,w,T) must satisfy the necessary conditions of optimality which are

given in the next theorem.

Theorem 2.3. If (x,u,T) minimizes the performance index while satisfying the dynamic
constraints with the boundary condition, then there exists a function X\(-) for which the

following conditions hold:
e The Hamiltonian system

Mi(t) + N $Dga(t) = 2L(t, x(t),u(t),\(t)),  t€la,T],
MA(t) = N (DENt) = =2 (¢, 2(t), u(®), A1),  t€[a,T].

e The stationary condition

%(t, x(t),u(t),\(t)) = 0.

e The transversality conditions

[H (t, (1), u(t), A(t) = NA@®)SDPa(t) + Ni(t) L1 A(t) + %(t, z(t))]e=r = 0,
[MA(t) + NI M) + %(t, z(t))|e=r = 0,

where H(t,x(t),u(t), A(t)) is the Ponlryagin function given by

H(t,z(t),u(t), \(t)) = L(t,x(t), u(t)) + X(t) f(t, z(t), u(t)).
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The authors use the expansion formula for fractional derivatives and the relation between
Riemann-Liouville and Caputo derivatives to transform the given OPFDC into a classic
integer-order optimal optimization problem as follows. The left Riemann-Liouville frac-

tional derivative is approximated by
N

aDifx(t) = A(a, N)(t —a) “x(t) + B(o, N)(t — a) ZC a,p)(t —a)' 7 PVL(1),
p=2

where V,,(¢) is the solution of the system Vj,(t) = (1 — p)(t — a)P~2x(t), with V,(a) = 0 and

A@N) = Fioo 1+ZF _Ha)
1 Y Tp-1+a

Bla,N) = F(2a)[1+; I(‘z(jozl)p!)]’

Clarp) = 1 'p—1+a)

Ta-1I2—a) « (p-1)

The right Riemann-Liouville fractional derivative is approximated by
¢DEa(t) =~ A(a, N) (b —t)"%x(t) — B(a, N) (b — ) %0 (t) + Z C(a,p)(b— t)l_o‘_pr(t),

where W),(t) is the solution of the system W, (t) = —(1 —p)(b— t)P~2x(t), with W,(b) =0,
and A(a, N), B(a, N) and C(a, p) are as above.

The authors study some particular cases for which restrictions are imposed on the end
time T or on x(7T).

Numerical methods are discussed by Tricaud and Chen [146]. In this work the fractional
differentiation operator used in the OPFDC is approximated using Oustaloup’s approxi-
mation into a state space realization form, and the OPFDC is reformulated into an integer
OCP by using RIOTS-95, a Matlab toolbox to solve this problem. The problem considered

in this work is

T
Minimize  J(u) = G(z(a),x(b)) —l—/ L(t,z(t), u(t))dt,

subject to  Dix(t) = F(t,z(t),u(t)),
with initial condition x(a) = z, and with the following constraints

umin<t) < u(t) < umax(t)a
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xmin(a) < x(a) < -'Ernax(a)>
Lfi(tv fL‘(t), u(t)) < O)

Gei(z(a), z(b)) <0,

Gee(2(a), 2(b)) = 0,

where L(-), G(-) and F(-) are arbitrary given non-linear functions. The subscripts ti, ei,
and ee on the functions L(-), G(-) are trajectory constraint, endpoint inequality constraint

and endpoint equality constraint, respectively. The idea is to use the approximation

HN 1+3/wz,n
n=1 14s/wpn

operator as follows:

§* =

to transform the fractional differentiation operator into an integer

Z(t) = Az(t) + Bu(t),
ey [0 = A0+ Bu)
z(t) = C=z(t) + Du(t),
[ —by_1 —by_o —by —bo | (1]
1 0 0 0 0
where A = 0 1 0 0 ,B=10|,D=d, and
i 0 0 1 0 | i 0 |
C=|Cy1 Cna . G Gy .

Then, the OPFDC is converted to the following integer OCP:

Minimize  J(u) = G(Cz(a) + Du(a),Cz(b) + Du(b)) + /b L(t,Cz(t) + Du(t), u(t))dt,

subject to

with initial condition z(a)

constraints:

oDix(t) = Az(t) + BF(t,CZ(t) + Du(t),u(t)),

&, where w = [ 10

Umin(t) < u(t) < Umax(t),

ZTmin(a) < Cz(a) + Du(a) < zpax(a),

LY(t, C=(t) + Du(t), u(t)) <0,
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GY;(Cz(a) + Du(a),Cz(b) + Du(b)) <0,

G{.(Cz(a) + Du(a),Cz(b) + Du(b)) = 0.
The state x(f) of the initial OPFDC can be retrieved form x(t) = Cz(t) + Du(t). The

resulting setting is appropriate as an input for RIOTs-95 Matlab Toolbox.

Kamocki [81]| presents optimality conditions of the Pontryagin type for OPFDC under
convexity assumptions of the velocity set and cost function, in which the fractional dynamic
system involves the Riemann-Liouville derivative. Moreover, he stated the optimality
conditions in two cases, first with the initial condition o = 0 and secondly when it is
different from zero (xg # 0). He consider the following OPFDC:

b
Minimize  J[z,u] :/ fo(t, (), u(t))dt,

subject to  Dfz(t) = f(t,z(t),u(t)), tela,b]ae.,
oI 7 (a) = o,

u(t) e M CR™, te€la,b,

where f:[a,b] x R" x M — R", fo:]a,b] x R" x M - R, 0< a <1, and g € R"\ {0}.
This problem is stated under the following assumptions on the data:
(H1) the function f € C! with respect to x € R™;

(H2) the function fy(-, z,u) is measurable on [a, b] for all x € R™, u(t) € M, and fy(¢,z, )

is continuous on M for a.e. t € [a,b] and all z € R™;

(H3) the function fo € C! with respect to x € R™, for 1 < p < ——, a € (0, 1), satisfies

1-a’

|f0(t,x,u)] < al(t)+cl ’I|pa

(fo)a(t.z,w)| < as(t) +ea el

for a.e. t € [a,b] and all z € R", where ay € L”([a,b],R{), (
a1 € LY(a, b],Rg), and c1,ca > 0;

+ 1=,

1 1
P P’

(H4) the functions f. (-, z,u), (fo)z(+, x,u) are measurable on [a,b] for all z € R", u € M,

(H5) the functions f,(¢,z,-), (fo)z(t,x,-) are continuous on M for a.e. t € [a,b] and all
r € R™;

(H6) the set M is compact;
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(H7) for a.e. t € [a,b] and all x € R™ the set
{(fo(t,z,u), f(t,z,u)) € R we M},
is convex.
Let Uy be the set valued mapping defined by
Uy = {u(") € LY([a,b],R™) :  u(t) € M,t e [a,b]} .

Therefore, he derived the optimality conditions as follows: if the pair

(" (), () € <aI§‘(L”)+ {(t_d) deR”}) < Uy,

is a locally optimal solution of the problem stated before, then there exists a function
A € (If (L") such that

tDENE) = fE(t, (), u* (£))NE) — (fo)a(t, 2*(t),u*(t)) for a.e. t € [a,b],
tIz}_a)‘(b) =0,
and

fo(t, % (@), w™(8)) = M) f (£, 27 (2), w" () = min { fo(t, 2" (2), u(t)) — A(E) f (¢, 2" (1), u(t))},

ueM

for a.e. t € [a,b]. Furthermore, he derived optimality conditions for an initial condition
zo = 0 (see Kamocki [81]).
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Chapter 3

Formulation of Fractional Optimal

Control Problems

3.1 Introduction

By FOCPs we denote an OCPs for which either the performance index and/or the

dynamical system displays at least one fractional operator.

Although several FOCPs formulations are possible, in general we will consider one for which
the performance index is the integral of a function that depends on both the state and
the control variables, and the dynamical constraints are described by FDEs. The reason
to use FDEs to describe dynamic systems in FOCPs is because we consider instances in
which fractional derivatives provide a description of the behavior of the dynamic system
which is more accurate than the one given by integer derivatives. More specifically, this
is particularly relevant for systems with long-range memory and non-local effects. FOCPs
can be defined with respect to different definitions of fractional derivatives. However, the
ones in the sense of Riemann-Liouville and of Caputo have been used more widely. There

are also a number of specific numerical techniques to solve FOCPs.

FOCPs has a much wider application range of dynamic-control problems with respect
to fractional calculus of variations (FCVs), which in its simplest version is defined by

minimizing a cost
b
T = [ Lita(o). oD (o)
a
subject to boundary conditions

z(a) = xq, x(b) = xp.

For more details on FCVs (see e.g., Agrawal [2], Malinowska and Torres [107], and
Malinowska et al. [106]).

The main focus of this thesis is FOCPs. Their versatility and wider range of applications
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constitute key advantages over FCVs. As it will be clear, the methods applied for FOCPs
differ substantially from those for FCVs. For example, FOCPs employs the Pontryagin
maximum principle, in which the general maximum condition (i.e., max, H(-)) allows the
control variable to be discontinuous (jumping at the boundary point) and this forces the

consideration of the space of absolutely continuous functions for the state variable.

3.2 A General Formulation of Fractional Optimal Control

Problems

There are several definitions for FOCPs because the diverse types of fractional derivatives
make it impossible to consider a typical problem that represents all possibilities. We will

consider a FOCP as follows.

We shall be concerned with a given interval [a,b] C R. We are given a multifunction U
mapping [a,b] — R™, and a control is a selection u(-) for @ C R™. The function u(-) may
be either measurable, continuous, integrable, piecewise continuous or defined otherwise,

depending on the problem, satisfying u(t) € Q in a time ¢, with a <t <b.

We are given a dynamic function F' : [a,b]xR"™ x R™ — R™. A fractional trajectory (or
state) x(-) on [a,b], corresponding to the control u(-), satisfies the fractional dynamical
system (FDS)

JDa(t) = F(t,2(t), u(t)),

where the point z(a) is free to be chosen within a given set Cp. Our aim is to find a control
u(t) for FOCP that minimizes the cost function

b
Jlz,u] = / L(t, 2(t), u(t))dt,

where J[x,u| is a performance index (or a cost function), and L(-) is a running cost (or

Lagrangian).

In summary, a FOCP is given by

b
(P) Minimize  J[z,u] :/ L(t,z(t),u(t))dt

subject to  Dix(t) = F(t,z(t),u(t)) a.e.t € |a,b], (3.1)
uel, (3.2)
z(a) =z9 € R" a.e. tela,b. (3.3)

Here, ,Df* represents a fractional differential operator, such as Riemann-Liouville operator,
Caputo operator, Jumarie operator, or another one; x(-) is the state variable, ¢ represents

time, and L : [a,b] x R" x R™ — R and F : [a,b] x R” x R™ — R™ are two given mappings.
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Moreover, the FOCPs in which the cost function is given, as in problem (P), are known
as problems in the Lagrange form, or Lagrange FOCPs. There are two other FOCPs, the
first being the Bolza FOCP, in which there is a terminal cost g(a,z(a),b, z(b)) in addition
to the running cost in the performance index J[x,u]. The second one is Mayer FOCP, in
which the performance index only consists in the terminal cost and there is no running
cost (i.e., L(-) = 0).

A fractional trajectory is a solution of the fractional differential equation (3.1) with the

boundary condition (3.3) and for a given control function satisfy (3.2).

Any pair (z; u) satisfies the fractional dynamic is called control process. If a control process
whose fractional trajectory remains in the boundary of the attainable set ( a set of state
space points that can be reached from the initial state with admissible control strategies)

is called Boundary process.

Minimum is a solution of FOCPs, and this minimum can be global or local. For instance,
consider a function f : R"™ — R, D C R", then a point z* € D is a local minimum of f(+)

over D if there exists £ > 0 such that for all x € D satisfying |z — 2*| < €, we have

f(@®) < f(a), (3.4)

*

i.e., ¥ is a local minimum if in some ball around it, f(-) does not attain a value smaller

than f(z*). If (3.4) holds for all x € D, then the minimum is global over D. However,
in this thesis, we consider a local minimum of the Pontryagin type, which state that the

control Hamiltonian must take a minimum value over feasible controls in the feasible set.

A maximum principle which govern solutions to the problem (P) will be obtained under

some assumptions on the data such as:

(H1) The cost function is Lower semi-continuous and Lipschitz,
(H2) Q(t) is compact valued set valued map V¢ € [a,b], and t — Q(¢) is B—measurable,
(H3) the function F is continuous,

(H4) the function F'(¢,-,u) is Lipschitz such that

|F(t,x1,u) — F(t,x9,u)| < k(t,u) |x; — x2|.

In this thesis we state, discuss and derive necessary conditions of optimality not only for
the FOCP (P) but also from this same problem with additional constraints on the state
variable of the form h(t,z(t)) < 0, for all ¢t € [a, b].

One important observation is in order. Necessary conditions of optimality are only
meaningful if the existence of solution is guaranteed. There are various sets of sufficient
conditions for the existence of solution to FOCPs. For instance, if the cost functional is

at least lower semicontinuous and, at the same time, the set defined by the constraints of
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the problem is compact, in a sense defined in a context of compatible topologies, then a
solution exists. However, in this thesis, we assume that such an optimal-control process
already exists and we are concerned only with the assumptions on the data of the problem

under which the necessary conditions of optimality can be derived.
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Chapter 4

Maximum Principle for the basic

Fractional Optimal Control Problem

4.1 Introduction

In this chapter, we present a new general formulation of FOCPs, we consider FOCP for
which the performance index is given by an integral of fractional order, and the dynamics
is a mapping specifying the Caputo fractional derivative of the state variable with respect
to time. The reasons to choose the Caputo fractional derivative is because it is the most
popular one among physicists and scientists, and also the fact that the fractional derivative
of constants are zero. Moreover, the assumptions that we impose on the data of the problem
enables a novel approach to the proof based on a generalization of Taylor’s expansion and a
fractional mean value theorem. Another contribution of this chapter consists on an analytic
method to solve the fractional differential equation. This is illustrated by an example based

on a generalization of the Mittag-LefHler function.

Our approach consists into converting the FOCP into an equivalent OCP and, then,
decoding the obtained necessary conditions of optimality into the data of the original
problem. It has two key advantages relatively to the alternatives often adopted in the
literature: i) more precise insight inherent to the use of variational methods in the original
modeling framework; and ii) more direct approximating computational procedures guided

by the maximum principle conditions.

It should be remarked that our result differs substantially from the one presented by
Kamocki [81] where, by using the quite different calculus of variations approach, necessary
conditions of optimality are derived for a different OCP that requires the velocity set
(i.e., the set of time derivatives of the state variable) to be convex. This is a very strong
assumption and constitutes a key difference from our result which covers dynamic control
systems whose velocity sets might be a mere discrete set of points. Moreover, our approach

is much more in line with the celebrated classic work of Pontryagin et al. [127].
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This chapter is organized as follows. In the next Section, we state, discuss, and prove
necessary conditions of optimality in the form of a Pontryagin Maximum Principle for
non-linear FOCPs. In Section 4.4, a simple illustrative example of a FOCP solved by
a method based on the Mittag-Leffler function is presented. Finally, in Section 4.5, we
present some conclusions of this research as well as some open challenges. The results of

this chapter have been announced in [§]

4.2 The Statement and Assumptions

In this section, we discuss the FOCP considered in this chapter, state the associated
necessary conditions of optimality, and present its proof which uses an approach that

differs from the ones usually adopted in the literature for this class of FOCPs.

Let us consider the simple general problem as follows

(P) Minimize 4,17 L(t, Z(t), u(t))

subject to ngi(t = f(t,z(t),u(t), [to,tf] £L—ae., (4.1)
Z(to) = 7o € R", (4.2)
u(t) € U, (4.3)

where U = {u : [to,tf] = R™ : wu(t) € Q1)}, Q : [to,ty] — R™ is a given set
valued mapping, L : [to,tf] x R®" x R™ — R™ and f : [to,tf] x R" x R™ — R" are
given functions defining respectively the running cost (or Lagrangian) functional and the
fractional dynamics, ¢, It"} is the Riemann-Liouville fractional integral and ng‘ is the left

Caputo fractional derivative of order 0 < oo < 1 of the state variable with respect to time.

It is not hard to see that a simple transformation allows us to convert the problem (P)

into an equivalent one, simply by defining an additional state variable component y by
C _
oDt y(t) = L(£, Z(t), u(t)),

satisfying the initial condition y(#o) = 0. Then, we conclude that problem (P) is equivalent

to the one as follows

(P)Minimize  g(z(ts))

subject to tc;Dtaa:(t) = f(t,z(t),u(t)), [to,ts] L—a.e., (4.4)
I(to) =X € Rn, (45)
u(t) e, (4.6)

Y

” ], i.e., it includes y as a first
T

where now g(x(ty)) = y(ty), the state variable x = [
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L
component with initial value at 0, and the mapping f = [ 7 ] , 4.e., it has L as first

component.

From now on, we consider this as the basic FOCP in the normal form. We remark that
the above problem statement is the simplest one that can be considered while containing
all the ingredients required by a “bona fide” OCP.

Now, we will state the assumptions on the data of the problem under which our result will

be proved.

(H1) The function g is C; in R™, i.e., continuously differentiable in its domain.

(H2) The function f is C; and Lipschitz continuous with constant Ky in x, for all
(t,u) € {(t,Qt)) : t € [to, t7]}.

(H3) The function f is continuous in (¢,u), for all z € R™.
(H4) The set valued map Q2 : [to,tf] = R™ is compact valued.

(H5) There is M > 0 such that |f(¢,z,Q(¢))] < M, for all (t,x) € [to,tf] x R™

These are, by no means, the weakest hypotheses enabling the proof of the maximum
principles for FOCPs. However, they are of interest in that they allows the particularly
simple proof adopted in this chapter.

The existence of optimal solutions for the linear case has been recently discussed by
Kamocki [80]. Existence of solutions is essential to ensure the meaning of the necessary
conditions of optimality. Although this chapter does not concern conditions for the
existence of a solution to (P) — as the maximum principle assumes a given optimal-control
process a priori — it is not difficult to conclude that this is the case under the assumptions
(H1)-(H5).

Indeed, the existence of a solution to (P) is guaranteed if: (i) the cost functional g is
at least lower semi-continuous; and (ii) the set of points of the state space, R(t¢; %o, x0),
that can be reached at the final time ¢; is compact. Observe that, while condition (i) is
implied by (H1), condition (ii) follows from (H5) the fact that t; < oo which implies that
R(ts;to, xo) is bounded, and these together with (H2) and (H3) and the convexifying effect
of the integration of the dynamics implies that R(t¢; o, x0) is closed.

Consider
H(t,z,p,u) := pr(t, x,u),

with p € R", to be the Pontryagin function associated to problem (P).
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4.3 Maximum Principle of Optimality
Before we are going to the main theorem, we will introduce some definitions which help us
to prove this theorem.

Definition 4.1. Let 0 < o < 1. An a-Lebesgue point of an integrable function f: R — R
s a point tg € R satisfying

. ]- [6% 2—«
i eIy 10— f(t) P =0,

By directly using the definition a-fractional integral it is easy to conclude that the set
of Lebesgue points includes those of the integer order integral (see e.g., Karapetyants and
Ginsburg [86]). It is important to point out the well known fact that the subset of Lebesgue
points of an integrable function f(-) constitutes a full Lebesgue measure subset (see e.g.,
Taylor [142]).

In what follows, the definition of fractional state transition matrix (FSTM) for a linear

time varying vector valued fractional differential equation of the type
cDix(t) = A(t)e(t), () =, (4.7)

where A(-) : R — R"™" and z(-) € R" is required.

Definition 4.2. The matriz valued map ®, : R x R — R"*™ 4s the F'STM to the linear
fractional differential equation (4.7) on the interval [a,t], if it salisfies

ODXD,(t,5) = A(t)Do(t,5), Polt,t) =1, and Pu(t,s) =0,, ift <s, (4.8)

where I, and 0,, are, respectively, the identity and zero matrices of order n. It is a simple
to conclude that z(t) = ®4(¢, a)z, is solution to (4.7).

Definition 4.3. A pair (z*,u*) is an optimal-control process for problem (P) if it yields

a cost lower than that assoctated with any other feasible control process.

Obviously, given the equivalence between (P) and (P) the same definition holds for (x,u)
with respect to (P).

Theorem 4.1. Let (z*,u*) be optimal-control process for (P).

Then, there exists a function p: [to,ty] — R™ satisfying
o the adjoint equation
D2 (8) = T (0D, f (1,2 (1), (1), (4.9)
where the operator tDtO} s right Riemann-Liouville fractional derivative, and
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e the transversality condition
— ' (ty) = Vag(a*(ty)), (4.10)

o u :[to,ty] = R™ is a control strategy such that u*(t) mazimizes [to,ts] L-a.e., the
map
u— H(t,z*(t),p(t), u),

on Q(t).

Proof. The first key idea is that any perturbation of the optimal-control w*(-) that affects
the final value of the state trajectory can not strictly decrease the cost. Thus, the proof
relies on the comparison between the optimal trajectory z*(-) and trajectories x(-) which

are obtained by perturbing the optimal-control u*(-).

Let 7 be a Lebesgue point in (Z9,%f), and € > 0 sufficiently small so that 7 — e > ¢5. The

Lebesgue point in the fractional context define in the Definition 4.1.
Now, let us consider the perturbed control strategy u,. defined by

_Joa), if telr—e1),
ure(f) _{ u*(t), if t € [to,ts]\ [T —&,7), (4.11)

where u(-) € Q(t) for all t € [T —e,7), being 7 a Lebesgue point of the reference optimal-
control strategy. Note that, there is no loss of generality of the choice of 7 due to the fact

that the set Lebesgue points is of full Lebesgue measure.

Let 2,.(-) be the trajectory associated with u,.(-), and with z,.(t9) = x¢. Clearly, by

definition of optimality of (x*,u*),

0 < g(wre(ty)) — g(@*(ty))

(4.12)
= Vag(@*(ty)lere(ty) = a*(t5)] +o(e),
. ) . . . . r(e)
where V,g(+) is the gradient of g(-), and o(e) is a set of function r satisfying hn% - = 0.
e—
Observe that x,.(t) = z*(t), for all t € [tg, T — €).
Moreover, it is clear that, for all t € [T — &, 7), we have,
[2re(t) 2" (D)] < 7 edP|f (s, 2r2(s), u(s)) = f(s,27(s),u™(s))]
* €a
< P Kplrre(s) — 2™ (s)| + QMW
Me®
4.13
Ma+1)’ (4.13)
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where

It is not difficult to show that this series converges and thus M is some finite positive
number. The last inequality was obtained by the next theorem, and, in particular, holds

fort=r.

Theorem 4.2. Generalized Bellman-Gronwall inequality (see, e.g., Lin [95]).

Suppose a > 0, t € [0,T) and the functions a(t), b(t) and w(t) are a non-negative and

continuous functions on 0 < ¢ < T with

t
w(t) < a(t) + b(t)/ (t — s)* tw(s)ds,
0
where b(t) is a bounded and monotonic increasing function on [0,7"). Then,

o~ (OO ()"

w(t) < a(t) +/0 T(na)

n=1

(t — s)”o‘_la(s)] ds, tel0,7T).

For the proof and more details about Generalized Bellman-Gronwall inequality (see
Appendix B).

Before proceeding with the proof, we need the following auxiliary result.

In what follows, let ®,(-,-) denote the state transition matrix (see Definition 4.2) for the

linear fractional differential system

DRE() = Dy f (8,2 (1), u* (1)E(1)-

Lemma 4.1. Consider the time interval [a,b] and the function F(t,z(t)) = f(t, z(t),u(t)),
where u(t) is a general feasible control function. Moreover, consider Z(-), y(-), and Z,(+) to
be, respectively, the solutions to the following fractional differential systems define on the

interval [a,b] :
o ODei(t) = F(t,%(t)) with Z(a) = x4,
o SD{y(t) = Do F(t,3(t))y(t) with y(a) =g, and
e D23, (t) = F(t,7,(t)) with Z,(a) € x4 + v°F + o(v®)B0).

Then, for all v positive and sufficiently small real number, we have that T,(-) satisfies on
the time interval [a, b]
Z,(t) € Z(t) + v%y(t) + o(v*)B}(0).

Here, B7'(0) denotes the closed unit ball of R™ centered at 0.
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Proof. Let us consider the first-order expansion of the map x — F(¢,-) around Z(t). We

have

F(t,2,(t) = F(t,&(t)) — Do F (8, 2(8)) (20 () — 2(1)) € o([[%(t) —x(t)])),

for all ¢ € [a, b]. Since
eDfy(t) = Do F(t, 2(6))y(1),

with v%y(a) € 7,(a) — Z(a) + o(v*)B}(0), we have that

CDf (2 (8) — 2(1) — v y(1)] = (1),

for some ¢ € L! satisfying ((t) € o(v®*)B}(0) in L*.

By integrating, we have
F(t) = &(t) = vy(t) = piay Jo (t = )TN E (T, 80(7)) = F(7,3(r))

—V D, F(7,8(r))y(r))dr + 155 [, (t = 7)° 7 ¢(7)dr

Before continuing, we should observe that it is a simple exercise to conclude that the
assumption (H2) implies that ||D,F(t,z(t))|| < K;. Note also that it is not difficult to

see that f(t) := ﬁ fat(t — 1) (7)dr € o(v®), for all t € [a, b],
Now, by putting z(t) = Z,(t) — #(t) — v*y(t), using the above observations and the

assumption (H2), we obtain the inequality

t
I < 86+ gy [ (=1 et
a
Theorem 4.2 (Generalized Bellman-Gronwall inequality) yields

KT ()™
Zlf(n(a))(t—f)”“(r—a)\ﬁ(ﬂ! dr.

n=1

I < 18] + /

Let
8= sup B

te[a,b]

Obviously, we have that 3 € o(v®). By performing the integral in the right hand side of
the above inequality, we have that, for all ¢ € [a, b],
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which, by using the one parameter Mittag-Leffler function (see Chapter 2) can be expressed
by
I2(0)]] < BEa,a(K¢T(a)(t —a)®).

Thus, Lemma 4.1 is proved, i.e., for all ¢ € [a, ],
T,(t) € (t) + v*y(t) + o(v*)BT(0). (4.14)

O

Now, by considering (4.12) and applying Lemma 4.1 on the time interval [r,t;] with
F(t,z) = f(t,z,ure(t)), v* =€, a =7, t =1t5, T, = x;. and T = 2*, we conclude
that

o
IN

ng(x*(tf))[xﬂa(tf) - x*(tf)] +o(e)
eVag(x*(ty))y(ty) +o(e) (4.15)
eVaeg(@*(ty))@alts, T)y(r) 4 o(e),

IN

where @ (tf,7) is the fractional state transition matrix associated with the linear system
CDPy(t) = Do F(t, 2" ()y(1),
in the interval [7,tf]. By letting

—p" (ty) = Vag(z*(tf)),
and
P (t) = p" (ty)Palty, 1), (4.16)

we conclude that the adjoint variable p(-) satisfies the right Riemann-Liouville fractional

linear equation

th}PT(t) = pT(t)DﬂfF(tvx*(t))a

i.e., p(-) satisfies the adjoint equation of our maximum principle as well as the associated

transversality condition.

Finally, by putting together (4.15), and (4.16) and by choosing

y(r) = f(r, 2" (), @) = f(7,27(7), u*(7)),
were 4 = u(7), we obtain

0> ep” (1)[f(7,2" (), @) — f(r,2"(7),u*(7))] + o(e).
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By dividing both sides of this inequality by € > 0 and by taking the limit ¢ — 07, we

conclude the inequality
0> p"(r)[f(r,2"(7), ) — f(r,a" (1), u*(7))],

which, from the arbitrariness of @ € €(t), yields the maximum condition at time ¢t = 7,
H(r,z*(7),p(r),u (1)) = H(r,2(7), p(7), 8).

The fact that 7 is an arbitrary Lebesgue point in [tg, t /] implies that the maximum condition
of our main result holds, that is, u*(¢) maximizes on Q(t), the map u — H(t,2*(t), p(t), u),
[to,tf] L-a.e..

Our main result is proved. O

4.4 Illustrative Example

The Pontryagin maximum principle proved in the previous section is now apply to solve
a simple problem of resources management that involves minimizing a certain fractional

integral subject to given controlled FDEs.

We consider the following problem

Minimize  J(u) (4.17)
subject to  §D&x(t) = u(t)z(t), t e [0,T], (4.18)
z(0) = xo, (4.19)
u(t) € [0,1], (4.20)

where J(u) = oI$(1 — u(t))z(t), with 0 < a < 1 and T > T(a + 1)* . Here, oI is

fractional integral and {D§* is left Caputo fractional derivative.

The variable = represents a natural resource that takes positive values (note that xg > 0
necessarily) “grows” according to the law (4.18), where the function wu(-), designated by
control, represents the fraction of the available resource that is used to promote further

growth.

The overall goal is to find the control strategy that maximizes the amount of accumulated

resource over the time interval [0, 7] given by the fractional integral (4.17).

First, we consider an additional state variable component y, satisfying

6D y(t) = (1 —u(®)a(t), y(0) =0,
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in order obtain the canonic problem statement in the form considered in our main result,
that is

Minimize  y(7T)

subject to  §DYx(t) = u(t)z(t), z(0) = zo,
§Dfy(t) = (1 —u(®)a(t), y(0) =0,
u(t) € [0,1].

From Theorem 4.1, the adjoint equation (4.9) and the transversality condition (4.10) for

this problem are

tDTp1(t) = [pru®(t) + p2(1 —u*(#)],  pi(T)
+DTpa(t) = 0, p2(T)

0, (4.21)
1, (4.22)

where D is right Riemann-Liouville fractional derivative of order a. Thus, we have that

p2(t) = po(T) = 1, and equation (4.21) becomes
tDrp1(t) = [(p1(t) — Du™(t) + 1]. (4.23)

From the maximum condition, we know that u*(t) maximizes, L-a.e. in [0, 1], the mapping
v = pT (8 f (62" (), 57 (£),0) = [pr(t)v + pa(t)(1 = v)]z* ().

Since pa(t) = 1 and z*(¢) > 0 for all ¢t € [0, T (this is concluded from the fact that xo > 0),
the mapping to be maximized can be simplified to v — (p1(t) — 1)v. Thus, given that the

system is time invariant, we have that

N 1, ifpl(t) > 1,
ui(t) = :
0, ifpi(t) <1.

Since p1(T') = 0, and p1(-) is continuous, 3 b > 0 s.t. u*(t) =0Vt € [T —b,T]. Thus, from
(4.21), we have ;D$p1(t) = 1 and, by backwards integration we obtain

(T —t)*

TCENYR (4.24)

pit) =
Obviously that, for t* =T — (I'(a+ 1))é, we obtain p;(t*) = 1. Now, Let us determine the

optimal-control for ¢ < ¢t*. Since, independently of the control p;(-) remains monotonically

decreasing, we have for t < t*, u*(t) = 1, and, thus,

tDp1(t) = pa (). (4.25)
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The solution of this linear fractional differential equation (4.25) is given by

pi(t) = pr(t)®a(t", 1),
where p1(t*) = 1 and ®,(t*, 1) is the FSTM (in fact, scalar-valued) that can be computed
by the Mittag-Lefller function defined in Chapter 2.

By setting 8 = a, A = [1] and by replacing ¢ by t* —t =T — (a4 1) ' — ¢, we conclude
that

(4% a— - (t* — t)ka
pi(t) = (" —1) lkZ:OF((k—i-l)OO'
T—t-1

Note that if « = 1, then we have classical solution e . Since we have the optimal-

control u*, we can easily compute the optimal trajectory which satisfies *(0) = z¢, and

2 (t), ift € [0,¢%],
6Dy (t) =
0, if ¢ € [t*,T).

We can compute the optimal trajectory x*(t) by the generalization Mittag-Leffler function.
For all ¢t € [0,t*], *(0) = zo, we conclude that

z*(t) = Eu(at®)
= .%'()Ea(ta)
= x9 -
— I'(ka+1)
Note that if o = 1, then we have classical solution zge’.

Now, we compute the optimal trajectory x*(¢) in the interval [t*,T], which w*(t) = 0,
x*(t) = z*(T), we conclude that

5t = ()

& (T - (D(at1)a)ke
- xokzo T(ka + 1)

whose optimum cost is



Note that if & = 1, then we have classical solution zge’ 1.

4.5 Conclusion

This chapter concerns the derivation of necessary conditions of optimality in the form of
Pontryagin maximum principle for a non-linear FOCP whose differential equation involves
the Caputo derivative of the state variable with respect to time. Under mild assumptions on
the data of the problem the proof involved the direct application of variational arguments,
thus avoiding the often used argument of converting the OCP into a conventional one and,
then, express the optimality conditions for this auxiliary problem back in the fractional
derivative context. Another interesting novelty consists in the fact that, unlike in most
FOCP formulations, we consider the cost functional given by a fractional integral of

Riemann-Liouville type.

A simple example illustrating the application of our maximum principle was presented. The
optimal-control strategy was computed analytically being the fractional differential adjoint

equation solved by using technique based on a generalization Mittag-Leffler function.

A natural sequel of this chapter concerns the weakening of the assumptions on the data of
the problem. Notably the mere measurability dependence of the dynamics with respect to
time and to the control variables. This will certainly require more sophisticated variational
arguments and the use of methods and results of nonsmooth analysis. Another direction of
research cousists in increasing the structure of the FOCP by considering additional state
endpoint constraints, and state and/or mixed constraints in its formulation. In this case,
additional regularity assumptions will be needed to ensure that the obtained necessary

conditions of optimality do not degenerate.
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Chapter 5

Fractional Integration and Measure

Concepts

In this chapter, we will introduce some results that will be of relevance in the next
chapters. Here, we focus our attention on the definition of fractional integral with respect
to general Radon measures, that is, the fractional Stieltjes integral, due to the fact that
these measures appear as multipliers associated with state constraints in the maximum
principle for FOCPs. We adopt the Jumarie fractional integral operator and its properties
to achieve our purposes. The prerequisites for understanding our main results are presented
in the first section of this chapter, as these concepts are important to develop the main

results.

5.1 Introduction

In this section, we present some basic concepts of the theory of measure and integration

required to develop the necessary auxiliary results.

5.1.1 Measures

The measure theory is intimately connected with integration. Specifically, the concept of
measure generalizes the concept of length of an interval, area of a rectangle, volume of
a parallelepiped, etc. The theory of measure and integration can be found in a number
of books (see e.g., Carter and Van Brunt [38|, Folland [58], Natanson [114], Taylor [142],
Thomson [143], Thomson ef al. [144], and Yeh et al. [154]).

The families of sets that serve us the domains of measures, such as algebra, o—algebra and

Borel o—algebra, are defined in Appendix D.

Let X be a set equipped with a o—algebra Q. A set function p(-) is called a measure on
Q (or on (X, Q)) if it satisfies the following conditions:
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(i) u(0) =0, where 0 is a null set;

(i) if {S;} C Q is a countable collection of disjoint sets, then
pl US| =D nls)).
J J

The pair (X, ) is called a measurable space, and the sets in € are called measurable sets.
Moreover, if u(-) is a measure on (X, (), then a triple (X, €, 1) is called a measure space.

Some of the basic properties of measures are summarized in Appendix D.

A measure p: B(X) — [0,00] is called a Borel measure if u(K) < oo for every compact
set K C B(X), where B(X) is the Borel o—algebra in X. Some measures, such as regular
measure, outer regular measure, inner regular measure and Radon measure, are defined in

Appendix D.

Definition 5.1. (Mutual singular measures) Two measures u and v, defined on a c—algebra
of X, are called mutual singular measures if there are disjoint sets A and B such that (i)
X = AUB, (ii) p is zero in all measurable subsets of A, and (i) v is zero in all measurable
subsets of B.

For the particular case where v is the Lebesgue measure on X, we simply say that the

measure p is singular.

Definition 5.2. (Absolutely continuous measures) A measure v on a measurable space
(X, Q) is absolutely continuous with respect to the measure p on the same measurable space

(we write v < ), if for any measurable set E € ), we have
w(E)=0=v(F)=0.

Definition 5.3. (Atomic measure) An atomic measure, or a discrete measure, is a measure

that only takes non-zero values on discrete subsets.
A set A € Q is called an atom of p, if (i) u(A) > 0, and (ii) for every V € Q, with V' C A,
one has p(V) =0 or u(V) = p(A).

A regular Borel measure can be written as in the canonical decomposition of the sum of an
absolutely continuous measure (iqc), a singular continuous measure () and an atomic

measure (i), that is,

U= lac + Msc + a-

5.1.2 Integration

The classical definition of an integral was firstly proposed by Cauchy and later developed

by Riemann, who defined the integral f: f(x)dx as a limit of the so-called Riemann sums
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(Natanson [114]). (Details on Riemann integrals are presented in Appendix D.) The
functions for which the Riemann integral exists are said to be integrable in the Riemann
sense. In order for the function f(-) to be Riemann-integrable, it is necessary that it
should be bounded and that it does not exhibit any point of accumulation of non-summable
discontinuities. The proof of this statement can be found in many books (see e.g., Carter
and Van Brunt [38], Folland [58], Taylor [142], and Yeh et al. [154]). Thus, this significant
restrictivity inherent to the definition of Riemann integral motivates the introduction of

the Lebesgue integral.

The Lebesgue integral is a generalization of the Riemann integral. For instance, to study
the Riemann integral one needs to subdivide the interval of integration into a finite number
of subintervals, but in the Lebesgue integral the interval is subdivided into more general
sets called measurable sets. On the other hand, the Lebesgue integral makes no distinction
between bounded and unbounded set in integration. There are numerous convincing
arguments for considering the Lebesgue integration (see e.g., Carter and Van Brunt [38],
De Barra [50], Folland [58], Natanson [114], Taylor [142], and Yeh et al. [154]). Details
on Lebesgue integral for simple function, bounded measurable functions, and non-negative

functions are exposed in Appendix D.
Now, we are going to present the definition of a further generalization of integrals to the

so-called the Stieltjes integral.

Definition 5.4. Let ¢(-) be a function defined on the interval t € [a,b], and u(-) be a
Radon measure. Let us partition the interval [a,b] by n points a < t1 <ty < --- <t, <b,
and put to = a, tn+1 = b, Ati = ti+1 — ti, 1= 0, 1, N N and

[ti7ti+1[7 z':(),-~-,n—1,

[ti7ti+1]7 L=n.

By choosing a point & in each D;, we have that the limit

n

mm}gﬁ%;mm(m),

is called the Stieltjes integral of the function ¥ (-) with respect to the measure u(-), and
is denoted by f[a B Y(t)du(t). Here, u(D;) = p(t; ) — pu(t; ), fori =0,---,n—1, and
p(Dn) = p(b*) — plty).

By Radon measure, it is meant an inner regular Borel measure see Definition D.4 in
Appendix D. (For more details and important properties of the Stieltjes integral, see e.g.,
Bray [34], Carter and Van Brunt [38], Natanson [114], and Thomson [143]).

As mentioned before, our focus is on fractional integrals, among which the Riemann-

Liouville one is the most common. In order to investigate our challenge, we will exploit the
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relation between the Riemann-Liouville and Jumarie fractional integrals, already stated
in Chapter 2. The next definition displays the Riemann-Liouville fractional integral for a

function with respect to another function.

Definition 5.5. Let h: [a,b] — R be a monotone increasing function on (a,b], and b’ its
continuous deriwative on (a,b). The fractional integral of order o > 0 of a function f(-)

with respect to the function h(-) on |a,b], is defined as

T80 = s [ 0O =1 Fow (i

Note that, if h(t) =, t € [a, ], the fractional integral I}, f(¢) will be the usual Riemann-

Liouville fractional integration (Samko et al. [135]).

Now, we pursue with the key purposes of this chapter.

5.2 Fractional Integration with respect to a Measure
In this section, we define the integral in a fractional context with respect to a general

Radon measure, and introduce it in the Jumarie fractional integral form.

Definition 5.6. Let f(-) be a function defined on the interval t € [a,b], and u(-) be a
Radon measure. Let us partition the interval [a,b] by n points a < t1 <ty < --- <t, <b,
and put to = a, thy1 =b, At; =t;41 —t;, 1 =0,1,...,n, and

[ti7ti+1[7 i:()v"'an_lv

[ti7ti+l]7 L=n.

By choosing a point & in each D;, we call to the limit

1 n
— i ) (u(D;))?, 1

F(Oé + 1) maxﬁﬁogf(g )(M( )) (5 )
the fractional Stieltjes integral of order « of the function f(-) with respect to the measure

w(+), and denoted by
1

m ] f@)(du(t)",

where o > 0. If « = 1, we have the classic Stieltjes integral which as stated in the
Definition 5.4.
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Proposition 5.1. Let u(-) be a positive Borel measure on R. Then, the fractional integral

for the function f: R — [0,00] with respect to the measure u(-) is given by

oD Jiog fOdu(®)*, if t € Supp(pc),
o f(t) = (5:2)
oty Joy fO@uE)* +V, if t € Supp(pa),

where V= LOQWUIDT ) (64y) = 1) — pu(t7), pa s atomic measure, e = fioc + pisc is

atomless measure, fiqc and jisc are defined before, and o J3,, is operator of Jumarie fractional

integral with respect to the measure u(-).

Proof. The idea of the proof is using some change of variables to transform the integer
Stieltjes integral to Lebesgue integral. Then, the usual expression of the fractional integral
as a convolution given by an integer integral is written down in terms of the original

parametrization.

Two cases have to be considered: the first one when the measure atomless i.e., t € Supp(pc),

and when we have atomic measure i.e., t € Supp(uq).
When ¢ € Supp(iic), e = fhac + tse, the integer Stieltjes integral defined by

| f@®)du(). (5.3)

[0,t

By using the time change of variables, in which for ¢ € [0,T], there is s € [0, u([0,T])]
satisfying

s(t) = /[o,t] du(t), (i.e., ds = du(t)).

Moreover, for all integrable functions f : [0,7] — R", ¢t = 6(s) and s = o(t), exists

f:[0,0(T)] — R™ such that
f(s)=(foO)(s),

consequently, there exist a Lebesgue integral that is equivalent to the Stieltjes integral that
mentioned in (5.3) such that

FOdud) = | F6)is (5.4)

[0,¢] [0,s

Now, we consider the fractional integral of f(-) for a € (0,1], which can be expressed in

the reparametrized time variable as follows

B
ol RCICEE (55)
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By using the assumptions stated before, then (5.5) satisfies

L ~O‘ o — a—1 o
F /@0 — o) do () (56)

[0,5]

Since t > t, we have that

u([ft), ift<T,
pu(t) — p(t) =
w([t,T]), ift=T.

Thus, by using a change of variables in (5.6), we conclude that

1 a—1
o /{0 ROIZOROI0)

This equation represent Riemann-Liouville fractional integral with respect to measure p(-)
for the case in which ¢ € Supp(p.), by applying the relation between Riemann-Liouville
and Jumarie fractional integral operator as in Chapter 2, where the integrating measure
du(t) replaces dr. Consequently the fractional integral with respect to the measure duf(-)
in Jumarie fractional integral form is, for t € Supp(u.), defined by

1

m 0] F(@)(dp(t))™.

When t € Supp(ig), the function f(-) have a discontinuity at a point ¢ € [t7,¢ 1], then we

have

b He ) — )t m(s)ds
oy [, (05 =9 s Omis)as,

where m(s) is the measure distribution function of the measure y satisfy

1, ifse [ult), nt)],

0, otherwise.

m(s) =

Consequently, we conclude that

f(t)

m(ﬂ(ﬁ) —u(t))™

So, we can be write this equation as follows

f(t)

NCE) ({3},

where u({t}) = u(t*) — u(t~). Thus, the general case when t € Supp(u,) is given by
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! GG e —

T+ 1) Joy +7P(a+1)f(t)(u({t})“-

O

Remark 5.1. When t € Supp(ue) U Supp(pa), we can write the measure as the canonical

decomposition of atomic and non-atomic measure, i.e. @ = e+ g, as follows

1

Ta+D) [Otf(i)(d/ici) +ZF +1 (p({t:})"

t; <t

5.3 Fundamental Properties

Here, we introduce some properties for the fractional Stieltjes integral, which are well
known in the literature for Lebesgue fractional integral calculus in Jumarie context, such
as the change of variable. A standard formula of change of variable of fractional integral
introduced by Jumarie |75, 77]

/f )(dz)® /f )2(dt)*, € (0,1),

where we made the substitution x = ¢(¢) in which g(¢) be a non-decreasing differential
function. We derive such a formula for fractional Stieltjes integral as follows: first we
consider a strictly increasing function g: R — R on the interval I, i.e., if for all ¢1,t2 €
with t1 < t9, then, g(t1) < g(t2). Furthermore, let the function g(-) be continuous and

strictly increasing on the interval I, then we can say that g(/) be an interval defined by

g(I) =A{g(t): t € I}.

Proposition 5.2. (Fractional Stieltjes change of variable). Let I be any interval and
g: R — R a continuous function strictly increasing on the interval I. Let p: R — R be a

Radon measure. Then,

/ (f 0 9)(s) (d(u 0 g)(s))* = / RO
g

1

where (fog)(s) denotes the composition of f(s), and g(s) is defined by (fog)(s) = fg(s)],
forall s € 1.

Proof. For the sake of simplify, we assume that t = g(s), ji(s) = (nog)(s), f(s) = (fog)(s)
and ds = (g~ 1) (t)dt.

As we know, the measure have a canonical decomposition such that, for p. = fac + Use,
we have p = . + o satisfying
dp = dpie + dpq.
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Therefore,
i = dfic + djig.

By definition of fi(-), we have for all A C I
[ i) = [ dnett) + pal{ti})
A g9(A)NSe t;€9(A)NSa

where S, = Sy + S5 and S, are the supports of the measures u. and pg, respectively. Let

B be the support of the measure p such that u(B) = ||u|py , and p(B€) = 0.

According to the results of Section 5.2, for s € [0, 5], and t € [0,T], we have

o(s) = /[0 9+ da(s)

= [+ Y s

0 s;€[0,s]

Consequently,

do(s) = dfic(s) + fia(8)0s,
where 8, is a Dirac delta impulse. Furthermore, for s; < S we conclude that

f ()" = F(s)(o(s1) — o(s)* tdo(s
[ Faner =g [ Feo) - o) ots)

1
MNa+1)

By using the definition of o(-). We have
: f [ S f(s i S (o ({s; N o(s
W/[Oml FERE)™ = 505 /[0751] f(s) (/ dfic( )+Si§ﬁ]ua({ Z})) do(s) (5.7)

where we have used the assumptions t; = g(s;), f(t) = (fog™ ) (t), pa({t:}) = fa({g~ (t:)}),
and pc(t) = (fic 0 g71)(t) such that dpc(t) = d ((fico g71)(t)) (g71)' (). Then, the right-
hand side of (5.7) satisfies

a—1
1 1
(@) Jou f(t) ( /t dpc(t) + tiez[:m] ua({ti})) du(t), (5.8)
where du(t) = dpc(t) + pa(t)d;. Therefore, (5.8) will be
1 a1 1 §
L) Jio,u] F@) (e, 6a])) du(t) D(a+1) Jou f(t) (du(t))™ .
Proposition 5.2 are proved. 0
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Chapter 6

Necessary Conditions of Optimality
for Fractional Nonsmooth
Differential Inclusion Problems with

State Constraints

6.1 Introduction

Differential inclusions of fractional order have recently been addressed by several researcher
for many problems and a several results related to fractional differential inclusions have
appeared in the literature (see e.g., Ahmad and Ntouyas [7], Benchohra et al. [30],
Benchohra et al. [31], Cernea [39], El-Sayed and Ibrahim |56, and Kamocki and Obczyniski
[83]).

The main contribution of this chapter is the formulation of necessary conditions in the form
of a Maximum Principle for nonsmooth optimal-control problem with state constraints and
with dynamics given by fractional differential inclusion. Here, we consider the Jumarie

fractional derivative

() e F(t,z(t), L—ae., (6.1)

where 2(®)(.) is fractional Jumarie derivative of order a € (0,1), and F(t,z(t)) is a set

valued map (multifunction) defined on [a, b] x R™.

Consider the following fractional differential inclusion problem
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Minimize  g(z(b))
subject to (¥ (t) € F(t,z(t)), t€ [a,b],

z(a) € C,

@) is the fractional Jumarie

where the function ¢ : R” — R is a given cost function , (
derivative of order o € (0, 1], F(t,z) is a given multifunction defined on [a,b] x R™, the
function h : [a,b] x R™ — R defines the given inequality state constraint, z(a) are initial

point, and C is a given subset of R".

A feasible trajectory of the problem (P) is a solution of fractional differential inclusion
satisfying all the constraints on the problem (P). We say that #* be a local minimum of
the problem (P), if it minimizes the objective function over all other feasible states © € R",

in some neighborhood such that |x — z*| < e.

Definition 6.1. Let x: [a,b] — R"™ be a given continuous function. We say that this
function lies in Q C [a,b] x R™, if the point (t,x(t)) is in Q, for each t € [a,b]. Let € > 0

be a small positive constant. Then, € — tube about x is defined by

T(x;e) ={(t,z) € [a,b] x R" :a <t < b, |z — z(t)| <e}.

t—section of Q C [a,b] x R™ defined by

Q={z eR": (t,z) € Q}, Vt € [a,b].

The multifunction F(t,-) is called Lipschitz of rank k(¢) for all z; and z,, if for all
m € F(t,x1) there exists 1y € F(t,z2) such that

Im = 2| < k(t) |21 — 2] -
The multifunction F(-,x) is Lebesgue measurable if for all open set C' in R" the set
{t € a,b]: F(t,x)NC #0},

is Lebesgue measurable for all x € R™. The measurability of F' can be defined equivalently
if the set C' is an arbitrary closed set (see e.g., Clarke [43], and Vinter [150]). Moreover, a
multifunction F(-,-) is measurably Lipschitz on Q C [a,b] x R™, if (i) for each x € R™, the
multifunction F'(-,x) is measurable on [a, b], and (ii) for each ¢ € [a,b] the multifunction

F(t,-) is nonempty and Lipschitz of rank k(t) on €.
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Basic Hypotheses

(H1) The function g(-) is Lipschitz on €, of rank K, such that
|9 (21(b)) = g (22(b))] < Kg |21 (b) — z2(b)] -

(H2) F(-,z) is closed, and convex valued on €.

(H3) F is a—integrably bounded on £, such that there is an a—integrable function
¢: la,b] — R, such that any measurable selection n(t) for a multifunction F(t,z)

satisfies

In(t)] < o(t).

(H4) The multifunction (t,z) — F(t,x) is measurably Lipschitz along 2 C [a,b] x R™,
that is, for each € R"™, a multifunction F(-,x) is measurable in ¢t € [a, b], and for
each t € [a,b], a multifunction F(¢t,-) is Lipschitz of rank K.

(H5) The function h is upper semicontinuous, and there exists a constant Kj > 0 such
that the function h(t,-) is Lipschitz of rank K} on Q for all ¢ € [a, b], i.e., it satisfies,

|h(t,z1) — h(t,z2)| < K |z1 — 22| .

Let the Hamiltonian H for the problem (P) is a function H: 2 x R™ — R be defined by

H(t,x,p) = max{(p,v) : v € F(t,x)},

This Chapter is organized as follows. In the next Section we introduce notations,
definitions, and preliminary facts will be used later in this chapter. In Section 6.3, the
necessary optimal conditions are stated and proved. These conditions are used in an
essential way in the proof of the Maximum Principle for nonsmooth fractional optimal-

control problems addressed in Chapter 7.

6.2 Auxiliary Technical Results

In this section, we present and discuss key results on existence solutions for fractional
differential inclusions as well as on the compactness of the set of trajectories for this class
of dynamical systems. The basic idea consists in adapting the results proved in Clarke [43]

from the integer to the fractional context.

The supremum norm ||-|| is defined by

||| :== max {|z(t)[},
t€la,b]
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where || is Euclidean norm.

At this point, some basic definitions and properties on the dynamics are stated. Let
v(+) : [a,b] — R™ be a Lebesgue measurable selection of the set-valued map F(-, z(-)), that
is

v(t) € F(t,z(t)), L —aa.

The solution x(t) of fractional differential inclusion (6.1) satisfies the fractional differential
equation

2 (t) = w(t),

for some v(7) Lebesgue measurable selection of F'(7,z(7)), and integrable with respect to
(t — )% dr, for t € [a,b], such that x(-) satisfying

1 t N
+F(a—|—1)/a o(7)(dT)?,

is well defined. Here, fj()(dt)o‘ is Jumarie fractional integral operator (see Chapter 2).

z(t) = z(a)

Without loss of generality, we consider a € (0,1).

Definition 6.2. Let dp(.y(-) : 2 x R" — [0,00] be the distance function associated to a
multifunction F' : R™ — R", defined by

dr(v) = _int {jo =21},

and x() is an a—absolutely continuous function from [a,b] — R™ lying in Q. By definition

b
@@, F) = 5y | A @ ©) @),

Obviously, dpg 4 (v) = 0, if and only, if v € F(t, ).

Proposition 6.1. Consider the multifunction F : [a,b] x R" — R™. Then, for a fized
t € [a,b], the distance function dp ) (v) is Lipschitz of rank k(t) such that

|dp(t20) (V1) = dp(zy) (v2)| < () |21 — 22| + 01 — v2], (6.2)
where the map t — dp ) (v) is Lebesgue measurable for any x € R and any v € R".
Proof. We can write the left-hand side of (6.2) as follows
| dp(t20) (V1) = dpt ) (V2)| < |dpee) (V1) = A, (V1) |4 | A e) (V1) = i@, (v2)] . (6.3)
Since F(t,-) is k(-) Lipschitz such that

F(t,fL‘l) C F(t,$2) + k‘(t) ’:Ul — {L‘2| Bl(O), Va1, z9 € Rn,
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we conclude that
dp(te) (V1) < dp(e,) (V1) + k() |21 — 22, Vi € F(¢,21).
It follows from this relation, and by exchanging the roles of x; and z9, that
|dp (1) (V1) = dp(ean) (01)] < k() [21 — 22| (6.4)

Let € > 0 be arbitrarily small. Then, from the definition of dp(,.)(-), there is 22 € F(t, z2)
such that

dp@az)(v1) = |v1— 22| —¢€
> fui—z—vatuvel—e¢
> |vg — 29| — |1 —wa| —e
> dpge,)(v2) — [v1 — va| — €.

Since ¢ is arbitrarily small, and by exchanging the roles of vy and vy, we conclude that

|dF(t,0) (V1) = dp (g a0) (v2)| < 01 — 2. (6.5)

Finally, substituting (6.4) and (6.5) in the right-hand side of (6.3), we get the inequality
(6.2). Now, we show the measurability of t — dp(; ,)(v). Let arbitrary open set Cy defined
by Cr = z*+¢e; B, where B is an open unit ball centered at zero. Since F'is L—measurable,
then the set

{t € [a,b] : Cy N F(t,z) # 0},

is L—measurable. Define Wy (z,t) = {|lv — z| : z € C,, N F(t,z)}. It is clear that, for each
z, Wi(z,-) is L—measurable. By defining g (t) = max,{Wy(z,t)}, we also may assert that

gk (+) is L—measurable. So, we conclude that

dF(t,x)(v) = lim gg(t),

k—o0

is L—measurable. O

Theorem 6.1. Let z(-) be an a—absolutely continuous function in the e—tube T'(z;e) C
Q, for some constant € > 0, assume that the multifunction F: Q — R™ is Lipschitz of
rank k(t) on Q, and d*(z,F) < ¢/K, where K = E, (m ff k:(t)(dt)o‘) . Then, there
exists a fractional trajectory y(-) for the multifunction F lying in the tube T (x;e) satisfying
y(a) = x(a), and

|z — H<1/b 2@ (t) — (a)(t)’(dt)o‘<Kda(a; F)<e
YIS0 ), y = ’ ‘

Proof. The idea of the proof is to construct a sequence of approximative fractional
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absolutely continuous functions {x,(t)}, beginning with zo(t) = =z(t), and by choosing
xgloﬁl(t) as the closest point to x%a)(t) of the set F(t,z,(t)), that will converge for a
a—trajectory for F. Let v,(t) be a measurable selection of a multifunction F'(¢,x,(t))

a.e. such that

0nlt) = 28(1)] = (e, (#2(0) (6.6)

Let vo(t) € F(t,x(t)) a.e. be such that

‘Uo(t) — (@ (t)‘ = dF(t,ac(t))(m(a) (t) a.e..

From the above, vy(t) is a—integrable and, thus,

t
21(t) = 2(a) 4+ —— )/UO(T)(dT)a.

Fla+1

is well defined. Consequently, we have
(@) py
zy ' (t) = vo(t).

Therefore,
{7 (8) = 2 (1)) = di e (= (1)): (6.7)

By applying the fractional Jumarie integral operator as well as the standard modulus

integral inequality on both sides of (6.7), we get

1 b
21(6) = 2(0] < oy | At @ O) @0

From Definition 6.2 and a condition of this result, we conclude that
|x1(t) —z(t)| < dY(x, F) < /K. (6.8)

Thus, z1(t) is in the tube T'(x;¢) and, therefore, we may choose v1(t) € F(t,z1(t)) a.e.
such that

0r(t) = o4 (0)] = drga (@1 (1) ace.

As before v1(t) is a—integrable and, we may define x5 by

F(al—i—l) / on(7)(dr)°

Then, we have

i.e.,

25 (1) — 2 (1) = dpgga ) (@7 (). (6.9)



From the Lipschitz condition, we have
dpe ) (@ (1) < dpap) (@0 0) + k(E) |[21(8) — 2(t)] .

Obviously, from above acga) (t) € F(t,z(t)), therefore dp 4 (1)) (xga) (t)) = 0, and, thus, we
conclude that
2y (1) = 21" (1) < k() o1 () — 2(0)]. (6.10)

By integrating both sides in (6.10) and using (6.8), we conclude that

a(t) — 21 ()] < da(x,F)F(alm/ k(7)(dr)°. (6.11)

Note that we can write

|2(t) — x(t)]

IN

|2(t) = 1 (8)] + |1 (t) — 2(t)]

IN

d*(@, F) oy Jo k() (dr)* + d°(a, F)

IN

d*(z, F) {F(%H) I k() (dr)e + 1} (6.12)

< da(x7F)Ea (m f(f ]{Z(T)(dT)a)

< Kd%(z,F) <e,

where the second and third inequalities are due to (6.8) and (6.11). Thus zy lies in
T(z;¢e). These two first steps clearly show how the induction process can be constructed.
Because of the fact that the successive velocities lie in T'(x; ), we may, generally, choose
vn(t) € F(t,x,(t)) a.e. satisfying (6.6), where v, () is a—integrable satisfying

o2 (1) = vn(t).

Let
M(t) = oJ2 (k(tl)aJﬁ (k(tz)“'<a‘]3ﬂk(t”)>>>
(6.13)

= & (wn S K@)

where o Jit | (+) is Jumarie fractional integral operator (see Chapter 2).

(a)

Consequently, z, \; (t) € F(t, z,(t)) satisfies

22 () = 2l (0] < k() fa(t) = 2o ()]
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Thus, the mathematical induction leads to the recursive relation
(1) =2 (1) < a(e, F)ROME (1), n=1,2,---. (6.14)

Therefore,
[Tn41(t) — 2n(t)] < d%(z, F)M(t), n=0,1,2,---. (6.15)

At each step, x,(t) is in the tube T'(z;¢). It follows that

2nt) — ()] < (e, F) Yt ME0

< d%(x, F)E, (ﬁ f;k:(T)(dT)o‘) (6.16)
< d%x, F)K <e.

From (6.14), the sequence {x%a)(t)} is a Cauchy sequence in L%([a,b];R™). Let v(-) €
L%([a,b];R™) be a weak limit of this sequence. From (6.15), we deduce that {z,}

convergences to a continuous function y with y(a) = z(a). It follows that
v(t) € F(t,y(t)) ae.

So, from

Therefore,

Then, the fractional trajectory y(¢) for the multifunction F' satisfies

b
0 o)l < Bty [ M@ ave

< Kd%(z,F).

The result is proved. O

Theorem 6.2. Let Q) C [a,b] x R™ and a multifunction F: Q — R™ be given. Assume that
F is L x B measurable with non empty closed convez values on Q) and that F' be such that
|F(-,z(+)| < ¢(:) where ¢(-) is an essentially bounded and o —integrable function. Assume
also, there is a multifunction G: [a,b] — R™ and a positive valued function 7(t) such that

the following hypotheses are satisfied
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(1) For allt € [a,b], G(t) + w(t)B C Q,
(2) for eacht € [a,b], z € G(t)+n(t)B, the multifunction F(t,-) is upper semiconscious,

(8) for each (t,x) in the interior of , the multifunction F(-,x) is measurable.

Let {x;} be a sequence of a—differentiable functions on [a,b], {r;} be a sequence of
measurable function on [a,b] converging to 0, as i — +oo, and {A\;} is a sequence of
measurable subset of [a,b] such that L — meas(A;) — (b — a) as i — oo. Furthermore,

suppose that

(4) {zi(O)} € G), and [{2{ (0} < 6(0). € [a,b] e,
(5) the sequence {z;(a)} is bounded,

(6) 2 (t) € F(t,2;(t)) + ri(t)B, ¥t € A; a.e..

Then, there is a subsequence of {x;} converging to an a—differentiable function x satisfying

Lebesgue a.e.
() e F(t,z(t)).

Proof. This theorem concerns the compactness (in some sense) of the set of feasible
trajectories as solutions to the a—differential inclusion. For the case o = 1, we have,
from the Arzela-Ascoli theorem, that for a given Banach space, a subset is compact if and
only if any equicontinuous and uniformly bounded sequence has a subsequence converging
to an element of the set. However, in general, this is not the case if a € (0,1). As it
follows from Theorem A of (Okada and Ricker [117]), it is clear that, in general, /¢ is not a
compact operator and thus the Dunford-Pettis property, i.e., all weakly compact operators
transform weakly compact sets from a Banach space into norm-compact sets of another
Banach space (complete continuity)— in particular, for integer integral operators mapping
the space of L' integrable functions into that of continuous functions —, cannot be applied.
For such values of «, weaker notions of operator compactness are investigated in (Salem
and Cichon [134]). For this purpose, the weaker notion of Pettis integrability is exploited
in this article. The function f : T' — X, being T a measurable space endowed with the
structure (7,3, ), is Pettis integrable over A € 3 if 3 a vector e € X so that

w.e) = [ w0 duct)
for all functionals ¢» € X*, where X* is the dual of X. From Theorem 8 in (Salem and

Cichoni [134]), it follows that f : T — X is Pettis integrable, then I®f is defined a.e. in
T, f is fractionally integrable on T, and if, additionally, f is strongly measurable (i.e., f
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is a.e. equal to the limit of a sequence of measurable countably-valued functions) with
T =1[0,1], then I*f : T — X is bounded, weakly continuous and

Zl”lgpl{/ P dt}_F( ||¢>||<1{/ e dt}

Moreover, it follows from an easy extension of the remarks of the above theorem that, for
o < 1, that I* : LP([0,1;R") — LP([0,1];R") is compact, and if p > max{1,1}, that
I*: LP([0,1;R™) — C(]0,1]; R™) is also compact. This means that, by the Arzela-Ascoli
Theorem that we can choose a sequence of bounded and equicontinuous a—differentiable
functions {z;} with a subsequence converging to some continuous function x and that, by
applying Pettis criterion, we can consider a further subsequence for which the sequence
{xga)} converges weakly to a limit v € L%([a, b]; R™).

From the hypothesis (5), we know that {x;(a)} is a bounded sequence, and, thus, there is a
subsequence of {z;(a)} (we do not relabel that converges to z(a)). For such a subsequence,

we have

zilt) = wi(a) + 11)/ 29 (7) (dr)°,

1 t N
I‘(a—l—l)/a v(7)(dr)?,

thus z(-) is fractional trajectory such that z(®)(t) = y(t) a.e

Consider an arbitrary Lebesgue measurable set M C [a,b] and the Hamiltonian H(t, z, p)
defined by
H(t,z,p) = max{(p,v) :v € F(t,z)}.

From its definition, we have the for all t € M,
v € F(t,z) = H(t, z,p) > (p,v), Vp € R™.
Consequently, the function z(-) is an a—trajectory for F' if and only if
H(t,z,p) > <p, z(a)>, Vp e R", Vte M.

Thus, from hypotheses (6), it follows that

/MnAi H(t, zi(t), p)dt > /MmAi <P, xga) (t)> dt — /MnAi ri(t) |pldt — d(b — a — |Ay)),
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where |A;| is the Lebesgue measure of the set A; and ¢ is the essential supremum of the

function ¢(-). By taking upper limit, as ¢ — +o00, we have
lim sup;_, fMﬂAi H(t,z;(t), p)dt > limsup,_, fMﬂAi <p,x£a) (t)> dt

—limsup;_, meAi (ri(®)[p| + ¢(b — a — |As]))dt.

From the hypotheses, we have that the elements of the sequence {azga)} are a—integrably
bounded, ||r;|| = 0, and £ — meas(A;) — (b — a). Then, we conclude that

/ limsup H (¢, z;(t), p)dt — lim sup/ <p,a:§a) (t)> dt > 0.
M i—oo 17— 00 M
From the upper semicontinuity of H, we have
limsup H (t, z(t), p) < H(t, z(t),p).
1—+00

Then, we conclude that

[ (s i)

Since in the previous inequality M is an arbitrary Lebesgue measurable set, we conclude
that

H(t,2(t),p) = (p,2 (1), € a,b] ae.
Since H is continuous in p, this inequality can be obtained Vp € R™.
Thus it follow that
2 9(t) € F(t,a(t)),  t€[a,b]ae.

The proof is complete. O

6.3 Necessary Conditions of Optimality

In this section we present, discuss and prove necessary conditions of optimality of the
Pontryagin type for problem (P) stated in the first section of this chapter which also

included the required assumptions on the data of the problem.

It is well known that necessary conditions are guaranteed to provide meaningful information
if the solution to the problem exists and if the conditions do not degenerate. In this thesis,
we are not concerned with either type of results since they would extend the volume of

work of this thesis.

However, in (Baleanu et al. [28]) mild sufficient conditions for the existence of solution to

fractional boundary value problem are given in Theorem 3.1 which corresponds to "fixing"
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the control function in the dynamics of the system which, in this chapter, are given in
the form of a differential inclusion. As mentioned earlier, in this chapter we extend the
maximum principle in Chapter 3 of Clarke’s [43] to the fractional context having in mind

the derivation of the main result of Chapter 7.

Theorem 6.3. Lel x be admissible fractional trajectory that solves the problem (P), and
the assumptions (H1)-(H5) be satisfied. Then, there exists a multiplier [p, \, €, iu,y], such
that X+ |||l > 0, where ||u|| = ﬁ fab |u(dt)| denotes the Radon measure norm, A > 0
is a scalar, p: [a,b] — R™ is a fractional adjoint function, & is a point in R™, u(-) is a

non-negative Radon measure supported on the set

S :={t € la,b]: 7 h(t,z(t)) # ¢},

and 7y: [a,b] — R™ is a measurable function. Then,

(1) & € dg(x(b));

(11) for almost all t € [a,b],

1
@) (g, () L H (). p(t / dpu(r))°
(@), 21) ) € 0y ( AP0+ oy [ @) ) ,
where OH refers to the generalized gradient (see Appendiz C) of the Hamiltonian with
respect to (x,p), for a fized t;

(iii) for some r > 0, we have
p(a) € rddc(x(a)),

and
1

R vry

|, e € xe
where do(+) is Euclidean distance function for C.
(i) (1) € h(tx(t) - ac.

07 h(t,x(t)) is a certain subset of the usual Clarke’s generalized gradient of h(t,z(t)) with
respect to x, for a fixred t (see Appendiz C), defined by

95 h(t, (1)) = cofy = lim ;2 v € Oph(ti, xi), (ti, xi) — (t,2), h(t;, 2;) > 0}.
1—00

Proof. The proof is organized in several steps. First, the original problem is modified by
enlarging the velocity set in order to ensure the feasibility of perturbed trajectories. Second,
we construct a sequence of auxiliary problems in which the various types of constraints
are removed, and additional nonsmooth terms designed to properly penalize the violation

of the removed constraints are added to the cost function. The optimization problems
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of the obtained sequence are simpler but require the application of Ekeland’s variational
principle. Third, we compute the generalized gradients for the perturbed problem and
application of Fermat principle. Finally, we will express the results in terms of the original

data in the Hamiltonian form.

Step 1. Let a multifunction F(¢,x) be defined in 2, and for some arbitrary 6 > 0,
consider the § tube about x as defined as before and denoted by T'(z;4). Now, for any £,
we define a new multifunction Fj(t,Z) in the closure tube T'(x;/2) contained in §25 such
that Fg(t,z) = F(t,z) + B. Therefore, when 5 goes to zero then the new multifunction
Fg(t,z) goes to the original multifunction F(t,Zz). Furthermore, we define a fractional

trajectory y(-) satisfying

y(t) € Falt,y(t)),
y(a) € C,

(t,y(t)) € Qs tE]a,b)].

Denote the set that contains all such fractional trajectories y(¢) by Ag. Then, for any small
e > 0 the function . (y) defined by

Pe(y) = max {g(y(b)) — g(z(b)) +£°,0(y)} ,

where the function 6(y) is given by

0(y) = max {h*(t,y(t))},

a<t<b

with At (¢, y(t)) = max{0, h(t,y(t))}. We consider a metric function A,(-,-) defined by

b
Bal2) = ey [ 10 = 201 (@0 + ly(a) = ().

Step 2. Here, we apply penalization technique to incorporate the dynamic inclusion, and
state constraint as penalty terms in the cost function. Since the solution to the penalized
problem is not known, we need to apply a variational principle, and we choose the one due
to Ivar Ekeland ([55]). Since for any positive 8 < e, we have 1. (z) = 2, it follows that

Ye(x) < inf . + &2,
Ag
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Thus, Ekeland’s Theorem asserts that there exists an element z € Ag that minimizes
Ve(y) +eQa(y, z) over y € Ag such that

Aolw,2) <, te(z) <

To conclude this step, we need to show the following lemma.

Lemma 6.1. For some 6 > 0, among ally € Ag satisfying ||y — z|| < 0, there is a fractional

trajectory z that minimizes

VYe(y) + elaly, 2) + Ridc(y(a)) + Rad™(y, Fp),

where d(-,-) is defined as before, Ry = (L1 + €Lsy), R = (L3 4+ €Ly), and Ly, Lo, L3, Ly

are given by

Ly = max{Kgy Ky} [KIn,(K)+1],
(b—a)*
I (F(a—i—l) + 1) I
2 max {K,, Kp}

Ly = Kmax{K,, K},

Ly = (MH)K

where K, K, and K}, are defined before in the hypotheses (H4), (H1) and (H5), respectively.

Remark that this lemma states that there is an optimization problem without constraints

that can be regarded as a perturbation of (P) and for which we have a solution z € Ag.

Proof Lemma 6.1. Suppose that this lemma is false, then there is a sequence of fractional
trajectories {y;} converging to z for which the expression in the lemma is less than its
value at z which is ¢.(z). Let ¢; € C such that

dc(yj(a)) = lyj(a) — ¢, (6.17)

and let ; be the fractional trajectory defined by

ﬂj(t) = yj(t) +c5 — yj(a). (6.18)

From the Lipschitz condition for associated function dp .)(-) (see Proposition 6.1). Then,

we have

diy 6,00 (T (8) = diy s 0y (05 ()| < R 175(8) — 5D + |77 (1) — i ()] (6.19)
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By using (6.18) and the fact that 7(®)(t) = y(®)(¢), we conclude that
dr, 1) Ty (0) < iy (1 (™ (O) + kO 1550) = 93 (1)
By applying the fractional Jumarie integral operator for all terms of this inequality

b —(& o b o o
F(a1+1) fa dFﬁ(t,@j(t))(yj(' )(t))(dt) =< I‘(a1+1) fa dFﬁ(tvyj(t))(y]( )(t))(dt)

i S k() [35(8) — wi(8)] (de)e.

From (6.18), (6.17) and Definition 6.2, we have

b
(3 F3) < d*(uy. Fs) + deluy(o) gy [ RO
Let K = Ea(ﬁ fab k(t)(dt)*), then, In, (K) = m fab k(t)(dt)*, (here, In,(-) denotes

the inverse function of the Mittag-Leffler function E,/(+), for more information about the
relations between Mittag-Leffler function E,(-) and the inverse In,(-), see Appendix A).
Then, we have

d*(y;, Fp) < d*(yj, F) + do(yj(a)) na (K). (6.20)

For j is sufficiently large, then, according to Theorem 6.1, there exists a fractional trajectory
z; € Fg such that z;(a) = y;(a) = ¢; € C, and

) _ =)

J

(a
%

_ 1 b N o
sz _yjH < F(O‘"’l)/ (dt)* < Kd (yj:F,B)- (6.21)

Furthermore, we can write
1z = yill < llz — g3l + 175 — sl -
Now, from (6.18) and (6.21), we have
1z —yill < Kd*(g;, F) + dc(y;(a)),
and by (6.20), we conclude that
27 =yl < [1 + K'Ina (K)] de(yj(a)) + Kd*(y;, Fp). (6.22)

Since, from the triangle inequality and by adding and subtracting the quantities 9. (y;),

we obtain

Ve(zj) +eDalzj,2) < e(yy) +eDalyy, 2) + eDaly;, z5) + Ye(zj) — Yely;),  (6.23)
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Then, by using the definition of A,(-,-), the characterization of the function v.(-), and
Lipschitz property for the functions g(-), 6(.) we conclude that

Ve(zj) — Ye(y;) < max {Ky, Kp} ||lz; — y;ll,

b
Do) = Ty ) 0~ 501 (@7 + el - 2(a)

e(b—a)”
- T(a+1)

< e(fay +1) s - ul.

By substituting in (6.23), we have

lzj —ysll +ellzj — yjll

Ye(25)+eAa(z), 2) < Ye(yy)+elaly, 2)+ |:€ ( + 1> +max {Ky, Kp}| |z —y;l - (6.24)

By using (6.22), we conclude that

Ve(25) +e8alz),2) < Ye(y;) +eDaly;, 2) + Rude(y;(a)) + Red®(y;, Fp)

< Ye(2),

where Ry = (L1 + €L2), Ry = (L3 +¢Ly), and Ly, Lo, L3, Ly are defined above. Then,
this is a contradiction of that z is the optimal solution of ¢.(-) + A4 (+, 2).

Lemma 6.1 is proved. O

We now compute the generalized gradient for the functions in the Lemma 6.1.

Step 3. In this step, we calculate generalized gradients for the perturbed problem. The
functions in Lemma 6.1 have y = 0 as a local minimizer of ¥.(z + y) + eAn(z + y, 2) +
Ridc(y(a) + z(a)) + Rad*(y + 2, F). Thus, by Fermat’s principle, we have that

0 € 9y{v:(2) + eAalz, 2) + Rido(z(a)) + Rod®(z, Fp)}
and, from the sum generalized calculus rule, that
0 € Oyte(2) + €0yAn(z, z) + R10ydc(2(a)) + R20,d*(z, Fp). (6.25)

If f(-) is any Lipschitz function on R", any element ¢ of the generalized gradient of
the mapping y — f(y(a)) at yo is represented by an element § € Jf(yo(a)), so that
E(y) = (£o,y(a)) for all y (Clarke [43]). It follows that, if the state constraint is inactive,
that is, 0(2) < 1.(2), the function 1. (y) becomes 1. (y) = g(y(b)) — g(x(b)) + 2, and the
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generalized gradient the map y — g(z(b) + y(b)) at 0 is some element &; of dg(z(b)) and,

thus, we have

£(y) = (&1, y(b)) - (6.26)
If 6(z) > 0, then & is an element of 90(z) defined by
€)= pyy /|, 0O @) (0.27

where p(+) is a Radon measure on [a, b] support on the points in time at which the constraint
becomes active and v(t) € 97 h(t, z(t)), p a.e.. By putting together all possibilities, we
have that the generalized gradient & of the function 0yt (z) satisfies

(1-X)

§(y) = A&, y(b) + Tat1)

/[ ) (v(#), y(®)) (du(t))™. (6.28)

Similarly, any element & of R10,dc(%(a)) is represented by an element &y € R10dc(2(a)),
so that

£(y) = (S0, y(a)). (6.29)

Any element £ of R20,d®(z, Fj3) is represented by an element (g, s) € Ro0d*(z, Fp), as it

follows from the generalized calculus rule (Clarke [43]), we have

1

b b
€W = gy | @00 @)+ 5 [ (s o) @ 630)

Similarly, any element & of €0y A, (-, -) corresponds to the function r(t) with r(¢) € eB and

a point ro € €B such that

b
€)= (roy(@) + gy [ ) (@0 (6:31)

I'a+

Lemma 6.2. From (6.25), there is a generalized subgradient satisfying

(€0, y(a)) + A (&, y(b) + (ro, y(a))

i Jo (@) (@ + 25 fy V0, y®) (dp(t)®

1y o (5:9@) (@0)° + ri ) () () =0,
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Now, we are going to right this equality in terms of the data of the problem.

(€0 + 70, y(a)) + (A1, y (b))
e o+ (L= Ny, y) (de)

—I—ﬁ f: (5,9 @) (dt)* = 0.

By using the Jumarie fractional integration by parts (see Chapter 2), we have

(€0 +70,9(@)) + (At y(0) + mragpy Jo (@ + 7+ (1= Ny, y) ()

+Hy(b)s(b) — y(@)s(a)} = prepy fy (), y) (dt)* =0,

Consequently,
(€0 + 1o — s(a),y(a)) + (&1 + s(b), y(b))

b
g Jo (a7 + (L= — s, y) (d)™ = 0.
By applying the fractional Dubois-Reymond Lemma (see Appendix B), we conclude that

g+r+ (1= MNy(t)p— s =0,

g+7r+ (1 =2yt =s.
By integrating, we obtain

1 t N o 1 t . (1= )
IW/a s (dr)™ = F(oz+1)/a (g +7)(dr) +F(0‘+1)/[a,t) A () p(dr)e,

and
(1-X)

T / (a4 7)) + 1 /H A(E)(dr)®,
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where,

S(G) = 60 + 7o,

Therefore,

(1=

1 t N
S(t):é.O‘F’I“o—i-F(a_i_l)/G(q—l-?“)(dT) +m

/[ RECIOIS

Now, if we define a function p(-) as

) = S0+ o+ oy | (a+ )@,

then p(t) satisfies

pa) = sla) =& +ro,

PO = )~ gt L )

= 6 fary )
Consequently, we will conclude that

o (1 — )‘) o o
POt iy [ O € Radd e Fy), (632
p(a) € R10dc(2(a)) + B, (6.33)

- .

PO~ a1y [, O = (639

Step 4. In this last step of the proof, we express the obtained conditions in terms of

the Hamiltonian function. To this end, we simply apply the following lemma.

Lemma 6.3. Let (¢,p) € 0Kd“(y, Fg) and d*(y, Fg) = 0. Then, we have

(—¢,v) € 9H(t,y,p) + 5B
Its proof can be found in Clarke [43], Lemma 4, P. 127, and it yields the following condition

(1-2)

(7p(a) (t), ,(@) (t)) € 0H (t, z(t), p(t) + m

/[ t)’y(T)(du(T))“) +2eB. (6.35)

79



Here, we used the bounds |r| < e, f < ¢, and ¢ is any positive parameter (sufficiently
small). Obviously that (6.33), (6.34) and (6.35) are the necessary conditions of optimality
of the perturbed problem approximating the original one. Now, the final effort of the proof
consists in showing that these equations converges to the necessary conditions of optimality
of the original problem as the perturbation goes to zero. We know from the step 2 that
Ay (z,x) < e, so z converges to x as € — 0. We may select a sequence of the perturbations

e converging to zero such that \ converges to A\g € [0, 1].

By using Radon-Nikodym Theorem (Clarke [43]), it can be shown that for a further
subsequence, the measures n defined by dn = (1 — A)ydu converge weak™ to a measure
no of the form dny = ~pdug, where pg is the weak™ limit of (1 — \)~, and -y is a measurable
selection of 97 h(t,z(t)). In consequence, \g + |[uo|| > 0.

Let we define a multifunction F' and a measurable function y. as follows

F(t,z,p) = {(—v,u) : (u,v) € OH (t,x,p—i— F(al—i—l)/[ ) ’Y()(d/J,())a> },

_ (1 — )‘8) o 1 a
Ye = W/[GJ)V(CZM) _W/[a,t) Yo(dpo)®.

Thus, for each €, we have
(Z§Q)7p§a)) e F(tvzé"pé + y&‘) + 2837

and that y. converges to zero as € — 0. By using Theorem 6.2, to deduce the convergence
of (z¢,pe) to (z,p).
Consequently, we obtain the necessary conditions of optimality for the original problem

and thus the proof of the Theorem 6.3 is complete. O
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Chapter 7

Maximum Principle for Fractional
Optimal Control Problems with

State Constraints

7.1 Introduction

In this chapter, we state, discuss and prove a Pontryagin maximum principle for fractional
optimal-control problems (FOCPs) with state constraints and under weak assumptions
imposed on the data of the problem. We consider FOCP with the dynamics involving

Jumarie fractional derivatives with respect to time.

The technique we used in the proof of this chapter is based in the construction of a fractional
dynamical control system (FDCS) in such a way that, for each extremal of the FOCP there
corresponds a process of the FDCS such that the endpoint of its fractional trajectory is
on the boundary of the image of the attainable set by a certain Lipschitzian function of
the state variable of the original system. The development of the FOCP must also be such
that it enables the derivation of the necessary conditions for optimality in the form of a
Pontryagin maximum principle for the FOCP from the characterization of boundary of the
considered function of the attainable set of FDCS.

Definition 7.1. Let the set C be a subset of R"™, and x(-) is an admissible fractional
trajectory associated to a control u(-). Assume that [a,b] a given interval where x(-) satisfies
the initial condition x(a) € C. The set of all points x(b) obtained by considering any

admissible control function is called altainable set from C, and is denoted by A[C].

The aims of this chapter is to study the FOCP in which the state constraints are present

and give the necessary conditions for this problem.
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7.2 The Problem Statement and Assumptions

In this section, we state the optimal-control problem for which the dynamics takes the

form of a controlled Jumarie fractional differential equation with state constraints.

We consider the fractional optimal-control problem (Pr) as the following

(Pc) Minimize  g(x(b))

subject to 2 (t) = f(t,z(t),u(t)), t€ la,b]L—ae., (7.1)
z(a) € Cy, x(b) € Cy, (7.2)
uel, (7.3)
h(t,z(t)) <0, vt € [a, b], (7.4)

where f: [a,b] x R x R™ — R" is a fractional dynamics, g : R" — R is a cost function,
h :[a,b] x R™ — R is a state constraint, u : [a,b] — R™ is a measurable control satisfies
the control constraints u € U, being U the set of measurable functions taking values on a
set Q(t) for each t € [a,b], and Q is a set valued map taking on values on subsets of R™,
Co and C are a closed sets, x(a) and z(b) are initial and terminal point, respectively, and
the operator («) is Jumarie fractional derivative of order o € (0, 1] of the state variable

with respect to time.

A maximum principle to be satisfied by the solutions to problem (P¢) are obtained under

the following hypotheses:

(H1) The mapping (t,u) — f(t,z,u) is L x B—measurable, where £ and B denote
the Lebesgue subset of [a,b] and the Borel subset of R™, respectively. More
t — f(t,z(t),u(t)) is a—integrable along any feasible control process.

(H2) For each (t,u) € Gr(Q), there exists £ x B—measurable k(t,u) : [a,b] x R™ — R
defined in the Gr(€2) such that a function f(¢,-,u) is Lipschitz of rank k(¢,u) and

[f(t, 1, u) = f(E w9, u)| <Kt w) [er — 22

(H3) Gr(Q) is £ x B—measurable, where Gr(2) is a graph of the multifunction €2 : [a, b] —
P(R™) defined by

Gr(Q) :={(t,u) € [a,b] x R™: w € Q(t)}.

(H4) The function g(-) is Lipschitz of rank K, such that

9(z) = g(2)| < Ky o — 2.
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(H5) The function A(-,-) is upper semicontinuous, and h(t,-) is Lipschitz of rank Kj, for
each t € [a,b] such that

The Pontryagin function H: [a,b] x R" x R™ x R™ — R defined by
H(t,z,p,u) = (p, f(t,z,u)).

A pair (x,u) comprising an a—absolutely continuous function = (the state fractional
trajectory) and a measurable function u (the control), is called a feasible process of the

problem (P¢), if satisfies all the constraints of the problem (P¢).

For FOCPs one may talk of local or global minimum, we say that z* be a global minimum
of (P¢), if it minimizes the objective function over all other feasible states z € R"™, and we
say that 2* be a local minimum of (P¢), if it minimizes the objective function over all other
feasible states x € R™, in some neighborhood such that |z — 2*| < e. Here, we restrict our
discussion to minimizers in the context of Pontryagin type of minimum (Pontryagin et al.
[127]). The conditions of the maximum principle selects only the control processes that

are candidates to local maximum.

7.3 Maximum Principle of Optimality

Theorem 7.1. Let the control process (x,u) be a solution to the problem (Pc), and assume
that the assumptions (H1)-(H5) are satisfied. Then, there exists a fractional adjoint
function p: [a,b] — R™ a scalar X > 0, a measurable function v(-), a positive Radon

measure ju(-) supported on the set
{t € la,b]: h(t, z(t)) = 0},
and a function q(-) defined by

P(t) + rarsy Jian Y(O(AR(T))®, t € [ab),
q(t) =
P(t) + oty Jiay V(DAu()*, t=b,

satisfying
(1) The adjoint equation

—p(t) € D H (t, (), q(t), u(t));
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(2) The transversality condition

pla) € Ney(z(a)),
—q(b) € Adg(z(b)) + Ney (x(b));

(3) The control strategy w: [a,b] — R™ mazimizes in Q(t) the mapping

v— H(t,x(t),q(t),v);

(4) ~(t) € 07 h(t,x(t)) p— a.e.; and

(5) Ipl + llpl + A > 0.

Here, 0,(+) refers to the generalized gradient in the sense of Clarke with respect to x for
fixed ¢, N¢, (+) is the limiting normal cone in the sense of Mordukhovich [110], 97 h(t, x(t))
is a generalized gradient for the state constraint function defined in Theorem 6.3 Chapter
6, and p(a)(~) is Jumarie fractional derivative of the adjoint variable with respect to ¢ of
order 0 < a < 1.

The main idea of the proof is to construct an auxiliary dynamic control system in such
a way that to each optimal-control process to (P¢) there corresponds a boundary control
process to the auxiliary system. This ensures the non-triviality of the multiplier. Therefore,
we are able to derive the necessary condition for optimal-control problem (P¢) from the
characterization of a certain function of the attainable set of the auxiliary dynamical

system. To achieve this, let § = [s, s1, so] denote points in R™ x R™ x R,

é = C() X Cl X [0,00),
f(t>§(t)au(t)) = (f(tvs(t)vu(t))70>o) )
0(5) = (g(s),s1—5),

h(t,5) = h(t,s).

Furthermore, suppose that &(t) = [z, 1, xo] be admissible fractional trajectory satisfying

FO) = ft, @), ult)),
#a) € C,
h(t,Z(t)) < 0,

where 6(i(b)) is Lipschitz function lies in the boundary of A(A[C]), in which A[C] is
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attainable set from C at t = b (see Definition 7.1). Now, we consider the following auxiliary

results.

Lemma 7.1. Let Z(t) be admissible fractional trajectory satisfies

PO = f(t, 34, ult)),
i) € C,

h(t,Z(t)) < 0,

0(z(b)) € bdyG(A[é])7

where bdy denotes the boundary. Then, there exists a vector (, a fractional adjoint function
p: [a,b] = R™, a measurable function v(-), a positive Radon measure u(-) supported on the

set

{t € [a,b]: h(t,Zz(t)) = 0},

and ¢(-) defined by

PO+ ey Sy 1) [A()?, € [a,b),

PO+ ey Sy 7 AP, = b,
satisfying
(a) The adjoint equation

—p\ () € Oz H (8, &(t),d(t), u(t)),

(b) the transversality condition

(c) mazimum condition

UI&%‘(};) H(t,2(t),q(t),v) = H (t,2(t),q(t),u),

(d) v(t) € OZh(t,i(t) p—ae.,
(e) llpll+1[¢l > 0.

Now, we show that the necessary conditions (1)-(5) for (Pg) are a consequence of the

necessary conditions (a)-(e) of Lemma 7.1.
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Let p = (p,p1,p0), and, thus, ¢§ = (q,q1,qo), where the relation between p and § are as

mentioned earlier. Then, the Pontryagin function satisfies
H(t,5(), d(), u(t) = (a®), f(t,3(2), u(t)))

From condition (a) of the Lemma 7.1, and the definitions of p(t), §(t), f(t, Z(t), u(t)), and
H (1, (1), 4(#), u(t)), we have

O f (2, (t), u(t))

(=P ). =pi” (1), =p7 ) € (a(t), a1 () 00(2) 0
0

Consequently, we obtain that

() € () ft,x(t), ult)),

—p(la) (t) = 0, and —p(()a) (t) =0.
By using the definition of Pontryagin function we have
—p (1) € D H (t,x(1), q(t), u(t)).

Then, condition (1) of Theorem 7.1 achieved. From the corollary C.1 of Appendix C and

condition (b) of Lemma 7.1 we conclude that
p(a) € Ney(x(a)), p1 € Noy(x(b), and py < 0.
Also, from condition (b) of the Lemma 7.1, we have that
q(b) € COz0(%(b)),

and, therefore, from the definitions of ¢(-), (-), and 6(-), by considering ¢ = ({1, (2), we

have

(2,q1,90)(0) € (C1:2)I(z,21,0) ( $g(x) )(b)

C G <axg<x<b>> 0 o)

{=1y {1} 0

€ (C10x9(x(b)) — ¢2,{¢2},{0}),

87



this means that

q(d) € (10.9(x(b)) — (o,
a = .

Then, by A = —(1, we have condition (2) of the Theorem 7.1. We obtain the conditions
(3), (4) and (5) by direct substitution of ¢(-), Z(-) and ¢ in the conditions (c), (d) and (e).

Since the necessary conditions of the Theorem 7.1 are a consequence of the necessary
conditions in Lemma 7.1, now we only need to prove the Lemma 7.1. It is not difficult
to see that the hypotheses of (Pg) in Theorem 7.1 migrate to the FDCS considered in
Lemma 7.1. So, from now on, we assume that hypotheses (H1)-(H5) remain in force for
the data of FDCS. The remaining of the proof consists in formulating an auxiliary family
of optimal-control problems with dynamics given by fractional differential inclusions whose
corresponding sequence of solutions converge to a boundary control process for the FDCS.
This allows us to use the maximum principle proved in Chapter 6. In order to facilitate

the proof two additional hypothesis will be temporarily considered:
Extra hypotheses
(IH1) For each t € [a,b], the set £(t) has a finite number of points.

(IH2) The function f(t,%(t),v) is bounded by a—integrable function o(-) for all v € Q(t),
t € [a,b] a.e., such that

ft.30),0)| <ot),  k(tv) <o),

where k(-,-) is the function whose mentioned before in the hypothesis (H2).

In the last step of the proof we will show that the results remain valid in the absence of

these extra hypotheses.

Proof Lemma 7.1. The following steps are required to prove this lemma.

Step 1. Construction of an auxiliary family of fractional optimal-control problems
associated with the original FDCS.

For this purpose, we start by constructing a set-up in which Ekeland’s variational
principle can be applied in order to characterize the sequence of auxiliary control processes

approximating the boundary control process.

To achieve this goal, let € > 0, such that the e—tube T(x;2¢) is contained in 2, where
Q C [a,b] x R™, and V be the space of the feasible controls and initial condition, i.e., the

set of all pairs (v, z) where z is a point in C' and v : [a,b] — R™ is a measurable control
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satisfying v € U for which there is an admissible fractional trajectory g(-) satisfying the

fractional differential equation

7O = (651, 0(1),  Gla) =z

where («) is Jumarie fractional derivative operator, 0 < o < 1, ¢ € [a, b], and satisfies the

state constraint

At 5(1) <0 ae..

Also, we need a complete metric space to achieve this step. For this, let any controls
v1,v9 € V defined by

d(v1,v2) = L — meas{t € [a,b] : v1(t) # va(t)},

for the points (vi,21) and (v2,22) in the set V, we provide the set V' with the metric
function A such that

A((v1, 21), (v2, 22)) = 0(v1,v2) + [21 — 22|

It is easy to verified that A is metric space on V, since A((v1,21),(ve,22)) > 0,
A((v1,21), (v2, 22)) = A((v2, 22), (v1,21)), and to show that

A((v1, 21), (va, 22)) < A((v1,21), (v3, 23)) + A((vs, 23), (v2, 22)),

let v1,v9,v3 € V such that

{t:v1 #va} C{t:v1 #v3} U{t: v3 # va},

meas{t: v] # va} < meas{t: v; # v3} + meas{t: v # va}.

Therefore,
d(v1,v2) < d(v1,v3) + 0(vs, v2).

Now, we show that the space (V,A) is a complete metric space.

Lemma 7.2. Let the sequence {(vi,z;)} € V be a Cauchy sequence. Then, there is an

element (vo, 20) € V' such that {(vi, z;)} converges to an admissible pair (vo, 20).

Proof. Since the sequence is Cauchy, it suffices to show that subsequence converges to
(vo,20) in V. It follows from [Ekeland [55], Lemma 7.2|, we can extract a subsequence
satisfying

A ({(viy 20)} s {(vig1, zi1)}) <270

Since
gk{t: vi(t) # vipr ()} < 217F,
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we have that {vi(t)} converges in measure to vo(t) such that
w(t) = vs(t) Vi g U {t: ult) # via ().

Then, a control vy exists such that d(v;,v9) — 0 for almost every t. Since R™ is complete,
and C is closed then, z converges to an element zy € C such that lzi — zip1| < 270 It
remains to show that (v, zg) lies in V. To do this, let g;(-) be the fractional trajectory
associated with {(v;, 2;)}, ['(t,9) be a set valued map defined by

F(tv g) = {f(ta g? Uo(t))}.
From the above, it is clear that the set A;, defined by
A; = {t € [a,b] : vi(t) = vo(t)},

is such that £ — meas(A;) — (b — a), since

Therefore, we have
38 e T(,§i(t), Vit e A

Then, by applying Theorem 6.2, we conclude that there exists an a—absolutely continuous

function go(t) such that 79(0) = 2o, and ﬂ(()a)(t) = f(t,g0(t),vo(t)). Thus, go(t) is an

admissible trajectory corresponding to (v, 2p).

Lemma 7.2 is proved. O

Now, we prove that there is a fractional trajectory 7;(t) associated with a sequence {(v;, ;) }

converges to Jo(t) associated with (vg, 29).

Lemma 7.3. If {(v;,2;)} € V converges to (vg,29) € V, then |5;(t) — 3o(t)| converges to

ZETO.

Proof. We have 5™ (£)— f(t, §io(t), vo(£)) = 0 on the set A;. Since [§5% (£) — f(t,gjo(t),vo(t))‘
is bounded, and £ —meas(A;) — (b—a). Moreover, we know from the results of Chapter 6
that dpg,.)(-) is associated function to a multifunction I'(t,-), and dr(t’gi)(gl(a)) = 0,
when t € A;, it follows from the mentioned results of the Theorem 6.1 in Chapter 6,
for any positive §;, for all i sufficiently large, d*(¢;,I') < ;. Then, there exists a
fractional trajectory y;(t) for a multifunction T'(¢,y;(t)) satisfying y;(a) = gi(a) = z;,
lyi(t) — 9:(t)] < K§; for each t where K defined in Theorem 6.1 in Chapter 6, and
yi(a) (t) = f(t,yi(t),vo(t)) then, we have

i =0 = |7 00, 00() = Ftui(0), (1)
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< o(t)[90(t) — v )],
where o(t) is defined before in the extra hypotheses, and also we have
50(a) — yi(a)| = |20 — zil .
By applying fractional Gronwall inequality (see Appendix B), we conclude that
[90(t) = yi(t)] < l20 — 2| Ea (o)L () (t — a)®),

where FE,(-) is generalization Mittag-Leffler function (see Chapter 2). Therefore, we

conclude that

[90(t) =5 (D) < 190(t) = ()] + |3i(t) — 4(?)]

< 20— 2] Ba(o(O)T(a)(t — a)®) + K6;.

Then, for ¢ large, we have |g;(t) — go(t)| — 0.

Lemma 7.3 is proved. O

Now, for a positive integer i we choose a point & in 8(Z(b)) + i~2B where B is open ball

centered at zero, such that & ¢ 0(A[C]), let

G(z(b)) = 1€ = 0((2(b)))],

where 6(-) lie in the boundary of 8(A[C]). Since the function §(t) — f(t,5(t),v(t)) is
Lipschitz with constant o(t), and g(b) is a fractional trajectory associated with (v, z) lie
in the boundary of the attainable set A[C]. Then,

G(y(b)) = € = 0(y(b))| -

By applying Ekeland Theorem (see Appendix B), then for G(g(b)) is non-negative and
(u(t),z(a)) € V satisfies
Gb) < ) +i7

where Z(b) is a fractional trajectory associated with (u(t),Z(a)) lie in the boundary of the
attainable set A[C], for some i~2 > 0, there exists a point (2, 2) € V such that

| =

A((u, Z(a)), (9,2)) < -, (7.5)

~

and

G(y(b)) < G(&(b)),
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where () is a fractional trajectory corresponding to (0, %) lie in the boundary of the
attainable set A[C], for all (9, 2) # (v, z) in the set V then,

G@H(0) + i A((v, 2), (0, 2)) = G(5(b)).

So, we can simplify the results of this step in the following Lemma.

Lemma 7.4. Let (y(t),v(t)) be admissible process on the interval [a,b] satisfying

jla) € C,
h(t,g(t) < 0,
g(t) —&(t)| < e

Then,
G(G(0) + i A((v, 2), (8, 2)) > G(§(b)),

for all (0,2) # (v, z) € V. Therefore, we have
1€ = 0(g(b))] + i 1o(v,0) + i7" [g(a) — 2 = € — O(3(b))].
Now, let us use the results obtained in Section 2 of Chapter 6 in the current context.

Step 2. In this step, we construct a fractional differential inclusion in order to take
advantage of the maximum principle proved in the previous section. To do that, let the
fractional states Y'(¢) having three components as follows Y (t) = [91(t), J2(t), y3(¢t)], and
the multifunction F(¢,Y(t)) defined by

v

F(LY (1) = {1777

aXt(U)vf(tag?nU)] ‘v E V}a

where the first component of the multifunction F(¢,Y (¢)) is a term responsible by the
compactification, i.e., it ensures the convergence of limiting sequences even when the
control constraint set can become unbounded, the second component is a term to penalize

the deviation of the control with respect to the optimizing one as x+(v) is indicator function
defined by

1, if v # 0,
xt(v) =
0, otherwise,

and the last component of the multifunction is the usual dynamics. Suppose that the set
C defined by

C:= {[gth,gS] : g3 € é}
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Thus, any fractional trajectory Y (¢) = [g1(t),2(t),y3(t)] for a multifunction F(¢,Y(¢))
from the set C' defined by

Y=+ i | T P T [, v @i ()

where (§(t), v(t)) is an admissible control process such that §(0) € C, 81, 32 are constant,
and fi()(dT)a is a fractional Jumarie integral operator with o € (0,1]. Now, we define
two functions Mj(-), Ma(-) such that the sum of these functions is equivalent to the cost
functional that is minimized by the boundary control process. Let M;(Y) and Ms(Y)
defined by

Mi(Y) = i gz — 2] —i g,

My(Y) = |€—0(gs)| +i 'Go

Therefore, from the Lemma 7.4, the fractional trajectory Y (t) = [§1(t), 92(t), 43(t)] given
by (7.6) with v =0, § = ¢, $1 = 0, B2 = 0 minimizes

Ma(Y (b)) + Mi(Y (a)),
over the fractional trajectories for the multifunction F'(¢,Y (t)) in the set C, and satisfy
|93(t) — Z(t)] <&, (7.7)

Rt (1)) < 0. (7.8)

Let,

M(Y(a),Y (b)) = MY (b))+ Mi(Y(a))

= |6 = 0O +i" g5 — 2.
Obviously, we have that
M(Y(a),Y (b)) = [€ = 0((1))] -
Let the function &(Y') defined by
O(Y) = max{h* (¢, §3(1))},

where At = max{h, 0}.
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Then, we conclude that the fractional trajectory }A/(t) minimizes
max { M(Y (), Y (b)) = M(Y(a), Y (), 2(V) }, (7.9)
over the fractional trajectories Y (¢) for the multifunction F'(¢,Y (¢)) such that
Y(a) € C, (7.10)

with the constraints in (7.7), and (7.8) in force. When i is sufficiently large, (7.5) implies
that any §(t) near §(t) will automatically satisfy (7.7). So, Y (t) provides a strong local
minimum (see Appendix D) for the function in (7.9) subject to the constraint (7.10).

Step 3. Now, we define the Hamiltonian H(-,-,-). For this purpose, let the adjoint
fractional function P(-) that also has three components [pi(:),p2(-),ps(-)], therefore,
Q() =[q1(+),q2(+), @3(+)] where the relation between ¢(-) and p(-) as defined before. Then,
the Hamiltonian defined by

H(t)Y. =
(t,Y,Q) X (Q,W),

where Y, F(t,Y) defined before. Therefore, H(-,-,-) is as follows

(0 ¥,Q) = ma [0+ ( F )

By applying the results obtained in Section 2 of Chapter 6, and by using the generalized
gradient (see Appendix C) for the Hamiltonian H(¢,Y,Q), we have
[—ﬁga) (),0] € co{[Dgs(t),r] : D,qs(t), and r are all the elements that can be defined as

follows:

1

B0 = Folt) + gy [ IONRE)" D= B 05 o), 7= Jm xefoo)

From the definition of the indicator function, there are several values of r it that will be
zero. Thus, for large i, we have only relevant sequences {v;} that satisfy {v;} = 0, and as
a consequence, §;(t) converges to g(t). Then, by setting p3(t) = p(t), and §3(t) = ¢(t) we
conclude that

= () € a1)0F (1. 5(1), 3(t)),

by using the definition of Pontryagin function we have

= p(t) € GH (1, §(1),4(t), (1)) (7.11)

Note that in Theorem 6.3 of Chapter 6 the transversality conditions and other component
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of the differential inclusion imply that p; = 0, and p9 is constant, and the same happens

to ¢1, and @2, respectively.

Likewise, as the Theorem 6.3 in Chapter 6 there is a non-negative A > 0 such as

p3(a) € rdgdo(Y(a)) + Mg, Mi(Y (a)),

p3(a) € rgds(jla)) +i™'B.

As i — oo, then from (7.5) and the definition of the metric A(-,-), we have that the measure
of the set {t: 0(t) # u(t)} goes to zero and |g(a) — Z(a)| — 0. It follows from Lemma 7.3,
that g(-) converges to Z(-). Then, the last equation (with g(-) = Z(-), 0(-) = u(-), and
p3(-) = p(-)) becomes

pla) € rdds(T(a)).

From Proposition C.2 in Appendix C, we have

pla) € Na(Z(a)). (7.12)

Similarly,
1

B0~ ) [, )" €A 0),

since q3(b) = p3(b) + m f[a,b] (1) (du(T))®, therefore,

—G3(b) € Mg Ma(Y (b)),

—G3(b) € A0y G(4(b)),

where G(-) is defined before. We know from above & ¢ 0(A[C]), therefore, £ # 6(y(b)),
then the distance G(9(b)) # 0. So, by using Theorem C.2 in Appendix C, we have

—q3(b) € Ay, G(§(D)) 0y, 0(4 (D))
From Proposition C.3 in Appendix C, we have

(L M6 9
60(0) ¢

Since [|pu]] + A > 0, then we have
[l + 1< > 0.

Therefore, we conclude that

G(b) € C950(y(b))-
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By using the same notation when i — oo which stated before for p(a), we have
a(b) € CORB(E (D). (7.13)

Finally, since the components of the Hamiltonian inclusion satisfy ¢(-) = 0, and G2(-) is

constant, then the maximization defined by

(@s(6), F(t,5(0),0)) = max (@(t), F(t,9(0),v) ).

veQ(t)

By using the notation when i — oo, and y(-) = Z(+), v(-) = u(+), and ¢3(-) = ¢(+), we have

(a). F(&(0),w)) = max (a(t). f(t,3(),v))

veQ(t)

So, by applying the Pontryagin form we conclude that

H(t,z(t),q(t),u) = vrélg()g) H(t,z(t),q(t),v). (7.14)

Step 4. Finally, in order to complete the proof we will remove the extra hypotheses
(IH1), (IH2) by showing that the results obtained above are valid without them. Let the
hypothesis (IH2) be in force but the hypothesis (IH1) be absent. For this, let

n(t) = p(t) Balaf f2), (7.15)

where ,J7(+) is Jumarie fractional integral operator (see Chapter 2), and E,(-) is Mittag-
Leffler function (see Chapter 2). By differentiating both sides by fractional Jumarie

derivative, we have
n(t) = 5 () Ba(a f2) + 5(0) frEala i f2)-
From the adjoint equation of the Lemma 7.1 (condition (a)) we have
) = (B + oJi,hz) f,

therefore,

W(a)(t) = _ﬁ(t)ffﬁEa(aJ?f}?) - (ajguﬁi)fcha(aJ?f}?) +ﬁ(t)f§?Ecx(aJtaff)

= —(ajguﬁj)ija(aJ?fi)'

By integrating both sides, we obtain
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from the Lipschitz condition for the function f, h we have

fz] < k(tu),
iLj < Kﬁ’ and
1 t
= — dr)| < 1.
Il = o [ el <

Here, Kj is Lipschitz constant for the function h(t,-). Additionally, |p(a)| = |n(a)] < 1.

).

Then, we conclude that

ha) | fz

)

p(t)] fz

IN

n(a)] EalaJi"

) ot (i

< EalaJ{k(t,u)) + K o Jk(E, u).

The right-hand side from this inequality defined by

i Ba ([ wan) + 5 ([ )
T(a+1) )/, Ma+1) J,

Consequently,
()] < M.

Let {S;} be an increasing family of finite subset of M B such that M B C S; 4 j~'B for all

J. For each s € Sj, we select a measurable function v,(-) such that vs(t) € Q(t) a.e., and

H(t,3(t), ) < (s F (6, 3(0),0) ) + 57, (7.16)
where
H(t,-s):= sup{<s,f(t, -,v)> cv € Qt)}. (7.17)
Let
Q;(t) = {vs(t): s € S5} U{u(t)}.

Now, consider a new problem in which the multifunction Q(t) is replaced by €;(t). By
assuming that the hypotheses are satisfied by the data for the new problem, our result
yields multipliers p, u, v, and ¢ with properties listed in Lemma 7.1, except that, now, the

maximization of the Hamiltonian condition takes the form

<q, z(a>> = H,(t,7,q), (7.18)
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where H; defined by

Hj(t,x,s) = max{<s, f(t,x,v)> v e Q).
For each t at which condition (c) of the Lemma 7.1 is valid, choose s € S; which that

1

q:ﬁ+/ u(dr)® € s+ j71B. 7.19
Tat1) W)v( )u(dr) j (7.19)

Since we continue to assume condition (IH2) of extra hypotheses, o(t) is Lipschitz constant
for H(t,2(t),-) and Hj(t,Z(t),-) such that

[Hj(t,2(t),8) — Hj(t, &(t), )| = o(t) |s — gl -
From (7.19), we have

|[H;(t,2(t),8)| = [H;(t,2(t),9)| < o(t)[i~],

[Hj(t,8(0)8)l —o@ |57 < |H;(t,2(0),9).
By using the definition of H;(t, Z(t),-), we have
(s, ft.2(0),0)) = o(t) [i~"| < |H;(t 50, 9)].
By using (7.16), we have
[H;(t,2(1), )| > |[H(t,2(t),s)| — 5" —at) ;']
and by applying Lipschitz condition for H(t,Z(t),) we obtain
|Hj(t,2(1), )| > |H(t,2(t),q)| — 5" = 20(t) [

From (7.18), we conclude that

(2.8®) = |HE30).@)] - =200 [i7].

Then, we have
(2.3 - H(t.3(2).q)

As j — oo in (7.20) yields condition (¢) of Lemma 7.1. Since the condition (b) of the

< i (2o(t) + 1). (7.20)

Lemma 7.1 implies ¢(b) is bounded, by applying Theorem 6.2 of Chapter 6 of this thesis
leads to p(-), v(+), p(+), and ¢ satisfying the required condition in the limit as j — co.
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Finally, we will show the extra hypothesis (IH2) can be deleted. For each j we defined

(1) = {v € Q)+ kL, v) < k(t,u(®)) + 5,

fit.z0).0)] < [#90)] + 5}

Note that: €;(¢) is an increasing sequence of multifunctions, and that any element of
Q(t) belongs to Q;(t) for j sufficiently large. Now, we consider the problem obtained by
replacing Q(t) by Q;(t), and the hypotheses are satisfied. Then, we assume the existent of
multipliers p(-), u(-), v(+), and ¢ all depending on j with the properties listed in Lemma 7.1

except that the maximization of the Hamiltonian condition now takes the form
<q,:z<a>> > <q, f(t,az(t),v)> . forallve Q(t) ae., t € [a,b]. (7.21)

By applying Theorem 6.2 Chapter 6 yields p(+), u(+), (-), and ¢ which continue to satisfy
the conditions (a), (b) and (d) of the Lemma 7.1. By using the fact, for any ¢ € [a, b],
v(t) € Q(t) implies v(t) € Q;(¢t) for j large enough. This fact with (7.21) satisfy the

condition (c) of the Lemma 7.1 for the limiting data.

Then, we justifies all the assertions of Lemma 7.1. O

7.4 Illustrative Example

The FOCP with state constraints considered in this example to illustrate the application

of the proved Maximum Principle of Pontryagin can be stated as follows.

Minimize — —y(T)

subject to 2™ = w(t)z(t), z(0) = o, (7.22)
Y@ = (1 —u(®)a(t), y(0)=0, (7.23)
u(t) € [0,1], (7.24)
x(t) < a+ bt (7.25)

where all the relations hold Lebesgue a.e. in [0, 7] and the constants zg, a, b and T" satisfy
a>z0>0,T>1,b>0, and, there are constants c; and ce such that

co > c1, Eqo(cf) > g, co=T—-T(a+ 1))é
0

Notice that we are considering smooth data in order to facilitate the understanding of the

issues involved when state constraints are present.
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Let us denote optimal control process (z,y,u) (we omit asterisks) given by

1 iftE[O,tl)
bI'(a+1) :
t) = _ ftelt,t
u(t) P ift € [t1,t2)
0 iftE[tQ,T],
Ea(ta)l‘g ift € [O,tl)
l’(t) = a+ bt® ift e [tl,tg)
a -+ btg if t € [ta, T],
0 iftG[O,tl)
a bl (a+ 1) 9 ,
—— bt —t)F =—SL(t—t1)" ftelt,t
y(t) = <F(a+1) >( V¥ Fgar 0 it € [h,t2)
a + bty .
t t—1t9)” fte(t, T
3/(2)+F(a+1)( 2) if t € [ta, T,

where t1 and ty - respectively, the first and the last times ¢ for which x(t) = a + bt* - exist
due to the considered assumptions (for example, by considering t; = ¢; and t3 = ¢2) and

are chosen in order to maximize the value of y(T).

Next we show that the this control process satisfies the necessary conditions of optimality

derived in this chapter, that is, u(t) € [0, 1] maximizes, Lebesgue a.e. on [0, 7], the map

v— H(z(t),y(y),v,p(t),q(t)),

where the Pontryagin function H is defined by

H(z,y,u,p,q) = [(p+ 7)u+q(1 —u)]z,

1 / 1 )
- dp)® - and, by the way, y(t7) = / dp)® - is the
[(a+1) [O,t)( ) ) Fla+1) [O,t]( )

fractional Stieltjes integral on the interval [0,¢) of the positive Radon Borel measure pu

being v(t) =

supported the set of points in [0,7] on which the state constraint is active (i.e., z(t) =
a+ bt*), and (p, q) are the adjoint variables satisfying the following differential equations
Lebesgue a.e. in [0, 7]

—@(t)=0, qT)=1
—p (1) = (p(t) +v(®)u(t) + ¢(t)(1 —u(t)),  p(T)+~y(TT) =1

First, it is immediate to conclude that ¢(t) = 1, for all ¢ € [0, T1.

Now, for all ¢ € [0,¢1), u(t) = 1 and, since z(t) < a + bt®, v(t) = 0, and, from the fact
that —p(®(t) = p(t), we have p(t) = p(t1)Ea((t1 — t)%). From the maximization of the
Pontryagin function, it results that p(¢) > 1, for ¢ € [0,¢;), and, thus, p(t;) > 1.
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bl'(a+1)

o«

For all ¢ € [t1,t2], we have u(t) = It is not difficult to verify, that, under
the above assumptions, u(t) € (0,1). Moreover, from the maximization of the Pontryagin
function, we conclude immediately that p(t)+~(t) = 1. The fact that —p(®)(¢) = 1 implies

that p(t) = p(t1) — m(t —t1)®. Since

1
= (t+t—= a >
T(a+1) (t=t)" 20,

V(1) = p(t) = p(t1) +
for all t € [t1, 2] implies not only that p(¢1) = 1, but also that du = dt.

In the last time subinterval, (t,T], we have that u(t) = 0, and from —p(®)(t) = 1, it
follows that

p(t) = p(t2) — m(t —t2)%.
Since .
p(ta) =1— m(tz —t1)%,
we conclude that .
p(t)y=1-— m ((t—t2)* + (t2 — t1)7).

we have that
1
T—(T(a+1))=.

~
no
I

From the continuity in time of the maximized Pontryagin function at ¢t = ¢, i.e.,
E,(t¥)zo = a + btT, and the fact that

we conclude that E, (t{) > x%.

With some standard effort, it is not difficult to see that the values of 1 and to with o > t;
that maximize the value of y(T), i.e., the ones that yield the minimum cost, are compatible
with assumptions with ¢; = ¢; and ¢y = t2 imposed on the data of the problem. Thus,
we have shown that the optimal control process considered on an intuitive basis satisfies
the maximum principle of Pontryagin proved in this chapter. Thus, it is not difficult to
reconstruct the solution to the problem by choosing the controls that enforce the validity

of the optimality conditions moving backwards from the final time.
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Chapter 8

Conclusions and Prospective

Research

8.1 Conclusions

The main contribution of this thesis has been introduced in Chapters 4, 5, 6 and 7. The
other chapters in this dissertation deal with that, albeit the relevance in their own, they

also played a subsidiary role in the formulation and derivation of the main results.

Our objective concerns the formulation of necessary conditions of optimality for fractional
problems, where the characterization of the optimal-control problem in the fractional
context is more accurate than for the integer counterpart. The fractional optimal-control
problem can be viewed as a generalization for fractional calculus of the optimal-control

problem in the integer sense.

We began by formulating the fractional optimal-control problem with data satisfying
relatively strong assumptions. Subsequently, we increase the complexity by studying the
problem in the absence of smoothness on its data. Also, the state constraints were imposed

on the data of the problem.

In Chapter 4, under some smoothness assumptions, we derived a Pontryagin maximum
principle for a general formulation of fractional optimal-control problems, whose cost
function is in the fractional integral form and whose dynamics is characterized by the
Caputo fractional derivative. Also, we presented a new technique to obtain a fractional-
problem maximum principle, where the necessary conditions of optimality are derived
with variations on the original problem, and not by converting the fractional problem to
the classical one (with integer order) as done in the earlier literature. Furthermore, an
illustrative example is solved by using the conditions of the maximum principle together

with the Mittag-Leffler function, to show the effectiveness of the proposed approach.

In Chapter 5, we define the fractional integral with respect to a general Radon measure in

the Jumarie sense, and we formulate this fractional integral in two cases: with and without
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atomic measure component. Besides, being new results in measure and integration theory

for the fractional context, these results are especially relevant for Chapters 6 and 7.

In Chapter 6, we formulate and prove necessary conditions of optimality for fractional
optimal-control problems with state constraints, being the dynamic system is modeled by
a fractional differential inclusion in the Jumarie sense. Besides of the interest in their
own, the results of this chapter are particularly helpful to obtain the maximum principle
of Chapter 7.

In Chapter 7, a maximum principle for fractional optimal-control problem with state
constraints, and with weak assumptions are presented and proved. The adopted approach
follows the one in Clarke [43] is used in this chapter, to take advantage of the results

obtained in Chapter 6. Moreover, the proposed approach is illustrated by an example.

To sum up: the main conclusion of this thesis consists in the fact that we extended in a
number of very significant ways the current theory on necessary conditions of optimality
so far developed for optimal fractional differential control problems as characterized in
the contents of the various chapters of the thesis. In this way, this thesis constitutes a

contribution to lessen the current existing gap between both bodies of theories.

8.2 Future Works

As it is clear from the wealth of issues that arise in optimal-control theory, there are a
large number of issues that were left untouched due to the short period of time (3 years,
including the scholar part) that were made available to devote my efforts to the proposed

challenges. In this way, some subjects have not been explored, but are left for future works.

There are many points worth of future investigation, among which I would like to single

out the following:

(1) In Chapters 6 and 7, only state constraints have been considered in the problem.
In future works we can derive a maximum principle with mixed constraints under

appropriate assumptions.

(2) It is not difficult to construct an example for which the proved maximum principles
degenerate. An important issue that is of interest concerns the additional assump-
tions under which the maximum principle does not degenerate, that is the conditions

remain informative.

(3) The results obtained in Chapter 5 open the door for the consideration of fractional
impulsive dynamic control systems. We anticipate that the underlying inherent tech-
nical issues will be extremely challenging. However, given the range of applications,
this is another direction along which the gap between integer and fractional optimal-

control theories could become smaller.
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(4) We recall that in this thesis we have only discussed the fractional derivative with
respect to time t. However, there a large number of problems whose dynamics involve
partial differential equations for which the fractional derivative with respect to the

state constraints should be considered.
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Appendix A

Fractional Calculus

In this Appendix, we provide a brief review of some key concepts of fractional derivative
and calculus. The fractional operators in Appendix A.2 are out of the scope of this thesis.

Here, we just offer to the reader other types of fractional operators.

A.1 A Historical Review

The story of fractional calculus started when L’Hospital wrote to Leibniz a letter dated

September 30th 1695, asking him what is the meaning of %—f, if n = % (fractional), and
Leibniz’s response was: “An apparent paradox, from which one day useful consequences

will be drawn ”.

The question raised by Leibniz for a fractional derivative has been an ongoing topic in
the last 300 years. Since then fractional calculus has attracted the attention of many
famous mathematicians, such as Euler (1730), Lagrange (1772), Laplace (1812), Fourier
(1822), Abel (1823-1826), Liouville (1832-1837), Riemann (1847), Grinwald (1867-1872),
Letnikov (1868-1872), Heaviside (1892-1912), Weyl (1917), Erdélyi (1939-1965) and many
others (see e.g., Dalir and Bashour [47], and Gorenflo and Mainardi [62]). However, only
since the Seventies fractional calculus has been the object of specialized conferences and
treatises. The credit for the first open scientific event is due to B. Ross, who organized
the first conference on fractional calculus and its applications at the university of New
Haven in June 1974, and edited its proceedings. The first monograph devoted to fractional
calculus was published in 1974 by K.B. Oldham and J. Spanier. It addresses their joint
collaboration that began in 1968. This collaboration between a chemist (Oldham) and
a mathematician (Spanier) in treating problems of mass and heat transfer in terms of
the so-called semi-derivatives and semi-integrals clearly manifests the origin of a new era
for fractional calculus, based on both physical intuition and mathematical versatility. In
1987, the large book by Samko, Kilbas and Marichev, referred to now as “encyclopedia”
of fractional calculus, appeared first in Russian, and later (1993) translated into English.

Nowadays, some series of books, journals and texts have been devoted to fractional calculus
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and its applications (Machado et al. [103]). This number is expected to grow in the

forthcoming years.

A.2 Fractional Operators

A.2.1 Definitions of fractional integrals

Let o > 0.

Definition A.1. Hadamard fractional integral

o The left Hadamard fractional integral of order « is

11110 = gy [ eI,

o) . = t € [a,bl.

o The right Hadamard fractional integral of order o is

b T T
s = o [ M v

Definition A.2. Chen fractional integral

o The left Chen fractional integral of order « is

°f(t) = F(la) / (t— ) f(rydr,  t>e

o The right Chen fractional integral of order o is

°F(t) = F(la) /tC(T 0oy, t<e

Definition A.3. Kober fractional integral

o The left Kober fractional integral of order « is

O

10l = Ty /0 (t — 1) f(r)dr.

o The right Kober fractional integral of order « is

19, f(t) = - | / = 0 ()

I'(a)
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Definition A.4. Erdélyi fractional integral

o The left Erdélyi fractional integral of order o is

Ut—U(O“HI)

F(a) /0 (ta o Ta)ozflTanJroflf(T)dT.

e The right Erdélyi fractional integral of order o is

O.taa

17, f(t) = T(a)

0o
/ (7_0' - tU)a_lTU(l_a_n)_lf(T)dT.
t

A.2.2 Definitions of fractional derivatives

Leta>0andn—1<a<n,neN.

Definition A.5. Liouville fractional derivative

o The left Liouville fractional derivative of order o is

dr t
DY f(t) = F(nl—a)dt” /_Oo(t — T)n_o‘_lf(T)dT, t>0.

e The right Liouville fractional derivative of order « is

(=D" d*

bz = I'(n— «)dt®

/Jroo(t — )" (), t < +o0.
t

Definition A.6. Griinwald-Letnikov fractional derivative

o The left Grinwald-Letnikov fractional derivative of order o is
GLpg f(t) = lim — 3 (~1)F () (¢ — kh).
a & k

o The right Grimwald-Letnikov fractional derivative of order « is

ED1(0) = fim e > (0" () e+ k)
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Here, (z‘) s the generalization of binomial coefficients to real numbers, defined by
a\ INa+1)
k) T(k+DIl(a—k+1)

Definition A.7. Hadamard fractional derivative

o The left Hadamard fractional deriwvative of order o is

Hpa _ 1 i e Ilz nfaflm . a
“th(t)_I’(n—a) (tdt> /a(l 7_) . dr, t € la,b].

o The right Hadamard fractional derivative of order o is

o B 1 d\" [° Ton—a_1f(T)
{IDbf(t)_m_a)<—tdt> /t(lnt) 1Td7, t € [a, b).

Definition A.8. Chen fractional derivative

o The left Chen fractional derivative of order o is
D0 = ey [ @an >
JW=ra—ayar J, T I '
e The right Chen fractional derivative of order « is

DEf(t) = r(11—a)5t /tc(f _0f(ndrn, t<e

Definition A.9. Marchaud fractional derivative

o The left Marchaud fractional derivative of order o is

t_
DEf(t) l—a/ i 7—a+1 T)T

o The right Marchaud fractional derivative of order o is
fi)— f(t+ 7')
@ —
D_f( 1 - Oé / Ta+1 dr

Definition A.10. Riesz fractional derivative

DEF() = 5 — e cosl(a;) F(le; {/;(t el (r)dr + /too(T - t)”alf(T)dT} |
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A.3 Relation Between the Fractional Derivatives

Here, we just recall some relations useful for our purposes (for their proofs see e.g., Kilbas
et al. |87], and Podlubny [125]).

The Riemann-Liouville and Caputo derivatives are related in the following way. Let ¢t > 0,
ac€Randn—-1<a<neN. Then,

DRf(t) = EDRS(E)+

ZiT(k+1-a)
n—1 (k) b

DS = DR+ 3 i Ly -0
k=0

and
Cpatp) — Do Nt g
aDt f(t) aDt f(t) ZF(!{:—I—I)f (CL) )
k=0

k
tCDl?éf(t) = thé (f(t) - F(k—i-l)f(k)(b)> .

A.4 Basic Properties of Fractional Calculus

Among the several properties of the operators of differentiation and integration of arbitrary
order, here we express some of the most useful for our purposes, notably for the Riemann—

Liouville and Caputo derivatives.

Proposition A.1. (The constant function).

For the Riemann-Liouville fractional derivative, for any constant k, we have

k
D% = — ¢
I'l—a)

On the contrary, for the Caputo fractional derivative, for any constant k, we have
“Dk = 0.

Proposition A.2. (Linearity).
Let n —1 < a<néeN, f(t) and g(t) two continuous functions defined on [a, b] such that
oDy f and ,Dy'g exist almost everywhere. Moreover, let Aj, A2 € R. Then, DS (A1 f £+ A\ag)

exists almost everywhere, and the Riemann—Liouville derivative obeys

oD M f(t) £ X2g(t)] = Mo DY f(t) £ A2a Dig(2).
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Similarly, the Caputo derivative satisfies

EDPIALL() £ Xag(t)] = MEDE (1) £ XaSDig(1).

a

Proposition A.3. (The semigroup property of the Riemann-Liouville integral operator).
Let o, B> 0,¢t >0, and f(t) € LP(a,b), 1 < p < oo. Then,

I°IP f(t) = IPTIOf(t) = I°MPf(t), t € [a,b] ae..

Proposition A4. Letn —1 < a <n € N, t € [a,b] and f(t) € LP(a,b), 1 < p < 0.
Then,

CDYIPf(t) = f(t),

n—1 (k) a
JEDRf() = f) -3 L9y

The same result holds when using the Riemann—Liouville derivative.

Proposition A.5. (Interpolation).
Let n—1<a<neN,te€lab], and f(t) be a function such that D®f(t) exists. Then,

the Riemann-Liouville derivative obeys

Olli_rf?llaDtaf(t) = f(n)(t)a
lim (DPf(t) = fO0 ().

For the Caputo derivative, the corresponding interpolation property reads:

lim CDPF() = (),
lim {DRf(H) = [0~ £V ().

Proposition A.6. (Leibniz Rule).
Let aeR, t>0,n—1<a<necNand f(t),g(t) be continuous functions on [a, b]; then

the generalized Leibniz formula for the Riemann—Liouville derivative is defined as

PAICIOEDS (‘,jj) (Dk1)) DHg(o),

k=0

where we use the binomial coefficient
a) I'(a+1)
k) T+ (a—k+1)
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The Leibniz formula for the Caputo derivative satisfies:

n—1 tkfa

optal = X (1) (07470) Do) - 3 et o P00l

k=0 k=0

A.5 Generalized Taylor’s Formula

Taylor’s formula has been generalized by many authors (Odibat and Shawagfeh [116]).

Here, we just recall only two formulas, Caputo and Riemann-Liouville.

e Generalization of Taylor’s formula involving Caputo fractional derivatives.

Let 0 < @ < 1, n € N, and f(z) a continuous function in [a,b] (Odibat and
Shawagfeh [116]). Then, for all x € [a, b], we have

" (z — a)k
10 =3 e sy 05 T0) + Ratra)

where R, (x,a) is the remainder of the generalized Taylor’s series defined by

(1. _ a)(nJrl)a

R, (x,a) = aODg(E"“)O‘f(OI‘((n Fat1)

Here, a < ¢ < x and aCDg is the left Caputo fractional derivative of order c.

e Generalization of Taylor’s formula in the Riemann—Liouville sense.

Let a > 0,n € Z*, and f(z) € CloH"H1([a,d]) (Munkhammar [113]). Then,

QZ—CL’O to k+a
Dk
(T(k+a+1) f(z0) + Bn(@),

for all a <z <b, where R, (x) is the remainder defined by
Ro(x) = 104" DSt f(x).

Here, Dg, is the left Riemann-Liouville fractional derivative of order o, I, is the

left Riemann—Liouville fractional integral of order «, and [a] is the integer part of a.

A.6 Some Properties for Jumarie Fractional Derivative and

Integral

Definition A.11. Jumarie fractional derivative via fractional difference.
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Let f :R —> R, z — f(x) be a continuous function (but not necessarily differentiable), and

h > 0 denote a constant discretization span. The forward operator FW (h) is defined as:
FW(h).f(x) := f(x + h).
For o € R and 0 < a < 1, the fractional difference A“f(x) is defined by

A% (a) = (FW = )% fa) = (1P () o+ (o= )

k=0

and the Jumarie fractional derivative of order « is

oy o A% () — f(0)]
() = lim Ta :

The Jumarie fractional derivative has the following properties:

e The ot" derivatives of a constant is zero.

e Fractional Barrow’s formula
t
| 10 =Pla+ 10 - fa).
e Fractional derivative of compounded functions
d*f = T(1+ a)df,

or, in term of fractional difference, A*f 2 T'(1 + a)Af.

e Fractional Leibniz rule

o Inverse of Mittag-Leffler function in Jumarie form

T dt

0

=Ingz, x=FEy(ln,x).

e The fractional derivative via difference:
Af(t)

where A®f =2 T'(1 + a)Af, and for the generalization form defined by

FO) =71 + (a —n)) lim AF(E)

hjo  ho—m

n<a<n-+l.
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e The fractional derivative of a composition function (fractional Chain rule)

@) = DD,

= 9@ E D) = r@ - @) 1@ 0.

Note that: In the formula of the fractional derivative of a composition function,
x(t) is non-differentiable in the first equation and differentiable in the second one,
but f(x) is differentiable in the first equation and non-differentiable in the second

one.

e A generalization of Taylor’s expansion

Proposition A.7. Let f : R — R be a continuous function, x — f(x) have fractional
derwative of order ko, for any positive integer k, and 0 < o < 1. Then, the fractional

Taylor series is given by:

h) LY 0 <1.
Jlo+ ;Orurakf (), O<as

(For the proof and further details, see Jumarie [76].) Moreover, this series can be

written as

f(z+h) = Ea(h* D7) f (),
where E,(-) denotes the Mittag-Leffler function defined in Chapter 2.

Note that: This fractional Taylor series only applies on the non-differentiable
functions. So, it does not work with the standard Riemann—Liouville derivative
(Jumarie |77]).

Corollary A.1. Assume that n < o« < n+ 1, n € N — {0}, and that f(x) has
derivatives of order k (integer), 1 < k < n, and assume that f"™(z) has a fractional
Taylor’s series of order  —n =: 8, provided by the expression

o0 hk:(ozfn)
M+ =3 DFa=n) £(n) <n+1.
S +h) 2 T(1 + k(o —n)) fre), n<asnt

Then, integrating this series with respect to h, we have

p(kB+n)

(k (kB+n) —
flx+h)= Zk‘f —i—ZP kﬂ—l—n—i—l))f ™(x), B:=a—n.

Theorem A.1. (Golbabai and Sayevand [61]). Assume that f(z) is a continuous function

and has fractional derivative of order «, then for 0 < a < 1, we have

a« B
@) = (@)
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7f() = f(z) - f(0).

dzr®

Proof. Form the definition of the fractional integration, we have
@) = (g [ @)
- <<a/ rioary)
- a+1 da® (/f )(d) ): +1) P+ 1)f (@)

= flx).

Similarly,

Ja;i—aaf(:c) = F(a1+ 1 (/D (dciaaf(ﬂ) (dT)a)
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Appendix B

Variational Results

B.1 Exact Penalization

The idea is to transform constrained problems into unconstrained ones by adding to the

original objective function a term that penalizes any violation of the constraint.

The next theorem gives the conditions under which a minimizer for a constrained
optimization problem is also a minimizer for an unconstrained problem when the data

are Lipschitz conditions.

Theorem B.1. (Exact Penalization Theorem (Vinter [150])).
Let (X, M) be a metric space, C C X be a set, and f: X — R be a function Lipschitz
continuous on X with Lipschitz constant K. Suppose that the point & is a minimizer for

the constrained minimization problem

Minimize f(xz) over x € R,

satisfying x € C.
Then, for any K > K, the point Z is a minimizer also for the unconstrained problem

Minimize f(z) + Kdo (),

overpoints z € R,
where d¢ () is a distance function on X defined as

de(x) = infCM(x,x'), for each z € X.
z'e

Note that, if K > K and C is a closed set, then the converse assertion is also true, i.e.,
any minimizer Z for the unconstrained problem is also a minimizer for the constrained

problem, in particular Z € C.
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B.2 Ekeland Theorem

The idea of this theorem is that, if a point u approximately minimizes a function f(-), then
some neighboring point % close to u is a minimizer for some new perturbed function f(-),

obtained by adding a small perturbation term to the original function f(-).

Theorem B.2. (Ekeland’s Theorem (Ekeland [55])).
Let (V,A) be a complete metric space, F': V. — R U {400} be a lower semi-continuous
function bounded from below, and v € V a point. If u is almost a minimizer for V,
satisfying

F(u) <inf F + ¢,

for some € >~ 0, then for every A > 0 there exists a nearby point v € V' which is an actual

minimizer for a slightly perturbed function, such that
1. F(v) < F(u),
2. A(u,v) < A,
3. F(v) < F(w) + $A(w,v), Yw #wv.

Proof. Before we prove this theorem, we present the next lemma.

Lemma B.1. Let S be a closed subset of V x R, such that, for some scalar m, every
element (v,r) € S satisfies r > m. Then, for every (v1,r1) € S, there exists an element

(v,7) € S satisfying (vi,71) <4 (v,7) which is mazimal in S for the partial order <, .

Definition B.1. Here, we will define partial ordering (Bishop and Phelps |32]|). For any
a > 0, the partial ordering <, on V X R is defined by:

(v1,71) <q (v2,72) & 19 — 11 + @A(V1,02) < 0.
This relation is reflexive, antisymmetric and transitive.

Now, we will prove that partial ordering satisfies all these relations.

First, <, is reflexive. Let (v1,71) € V X R, such that (vi,71) <4 (v1,71). Then,
r1 — 11+ aA(vy,v1) = alA(vy,vy) <0,

where A(v1,v1) = 0 because A is a distance. Then, (v,7r1) <4 (v1,71). The first relation

is proven.

Second, <, is antisymmetric. Let (v1,71), (v2,72) € V X R, we know that

(v1,71) <a (v2,72) © 19 — 11 + @A(v1,02) <0,
0.

(v2,72) <o (vi,71) & 11 —712+ al(vg,v1) <
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Then,
(ro —r1 + aA(v1,v2)) + (11 — ro + aA(vg,v1)) < 0.

This means that 2aA(vy,v2) < 0 and, from the definition o > 0, then A(v,v2) < 0. So,
A('Ul,'UQ) =0< v = vs.
After substituting A(vy,vs) = 0, we have

ro—1m1 <0 & 792 <1y,

ri—1r0<0 & r;i<nrg.

This means that ry = ro, then (v1,r1) = (v2,7r2). The second relation is proven.

Third, <, is transitive. Let (v1,71), (ve,72), (vs3,r3) € V X R, such that

(v1,71) <a (v2,72) & 19 — 711+ @A(v1,v2) <0,
0.

(v2,72) <4 (v3,73) © 13 —12+ al(vg,v3) <

So, we need to prove that (v1,71) <, (vs,r3). Computing r3 — 11 + aA(v1,v3) by adding

and removing r2, and using the triangle inequality, we have

rg —r1 + aA(vi,v3) = r3—1r9+1r9 —11 + aA(ve,v3)

< rg—rog+ro—7r1 + al(A(vy,v2) + A(ve, v3)),

therefore,
(r3 — 72 + aA(ve,v3)) + (12 — 71 + @A(v1,v2)) < 0.
Then, (v1,71) <4 (v3,73). The third relation is proven.

Now, we come back to the proof of the lemma. Let S be a closed subset of V x R, such

that, for some scalar m, every element (v,r) € S satisfies r > m.

Let (vy,r,) be a sequence in S, (v1,71) be the first element in this sequence, and (v, )

be known. Then,

Sn = {(v,r) €S (v, ) <4 (v,7)}, (B.1)
my = inf{r:(v,r) €S, forsomewveV}. (B.2)

By the lemma, for all element of S, we have r > m, so S, < S and m,, > m.

Let (vn+1,7n+1) be any point in Sy, such that

1
Ty — Tpal > i(r” —my). (B.3)
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Sy, are closed and nested:

sp, = {(v,r)€eS:r—r,+ alA(v,,v) <0},
= {(,r)eS: Alvp,v) < "

Similarly, we can define S, 11 as the following

Sptr1 = {(v,r) €S :r—rpp1 + alA(vpy1,v) <0}
= {(,7) €S Alvpy,0) < %},

but (vpn,7n) <a (Un41,7Tn+1), because (vp41,7m41) € Sp. Since <, is transitive as proven
before, then (v, 1) <4 (v,7) = (v,7) € Sy, and (v,7) € Sp41, then S, 41 C S,,.

From the definition of S,,, for which (vy41,7n41) € Sn, Tht1 < ry, and from (B.3) we have:

|Tnt1 — Mpg1| = |rog1 — o+ T — My + My — My
1
< i(mn_rn)‘i‘rn_mn :i‘rn—mﬂ
11 1
< 2(2|Tn 1 — Mp— 1)|§ 22 |7"n 1 — Mp— 1)| <.
1
< o lr1 —mq)| < on |11 —m)|.

Hence, for every (v,r) € Sp41, we have
(Un—‘rla rn—l—l) <a (var) T —Tpy1+ aA(Un+17v) < O, Mp+1 <r.
From ((B.1),(B.2)), we get
1
71 — 7] < rpp1 — mpga] < o |r1 —m].
Here, r — rpi1 + aA(vp41,v) < 0= A(vgy1,v) < é |Pp+1 — 7|, then

1
’Tn+1—7“’§%|7“1—m|-

QIm

|A(Unt1,0)] = Avpt,0) <

Thus,

lim — |y —m| =
Jim oo —m] =

e ‘Tl - m| =0.

So, 0 < A(vpy1,v) < % |r1 — m| — 0. This shows that the diameter of S,, goes to zero as

n — 00. Since V' x R has a complete metric, the sets S, have one point (v, 7) in common:

v,7) = (") Sn-

n>1

By the definition of partial order, (vy,r,) <, (7,7) for every n. Suppose that (0,7) € S,
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such that (v,7) <, (0,7), Vn € N, then, by the transitivity of partial ordering, we have
(Uns70) <a (0,7), Vn €N, whence (9,7), € (,,>; Sn, and therefore (v,7) = (,7). This

means that the element (v,7) is the maximal in S.

To prove the theorem, let

S=epi(V)={(v,F(v)):v €V, F(v) € R},

and apply in the previous lemma a = $ and (vi,71) = (u, F(u)). Then, for the maximal

element (v,7) € S satisfying
(u, F(u)) <4 (v,71), (B.4)

since (v,r) lies in S, we have (v,r) <, (v, F(v)) = r = f(v). By the maximality of (v,r),
expression (B.4) becomes

(u, F(u)) <4 (v, F(v)) & F(v) — F(u) + aA(u,v) <0, (B.5)

since aA(u,v) > 0, then F(v) — F(u) <0< F(v) < F(u), which gives the first condition
of the theorem. The maximality of (v, F'(v)) € S implies that, for any w € V such that
w # v, F(w) is finite, then the relation (v, F(v)) <, (w, F(w)) does not hold. So

F(w) — F(v) + (%)A(v,w) >0 Flw) + (%)A(v,w) > F(v),

which means the third condition of the theorem is proven.

Finally, because F'(u) < inf(F') + ¢, then there exists F'(v) > F(u) — ¢, and by combining
this relation with (B.5) we have:

Fw)—F(u) 4+ aA(u,v) <0 < F(u)—e— F(u) + aA(u,v) <0

& alA(u,v) <e= Au,v) <

Then, the second condition of the theorem is proven. O

B.3 Generalized Gronwall Inequality

The Gronwall inequality has an important role in numerous differential and integral
equations. The classical form of this inequality is described by the following theorem
(Corduneanu [46]).

Theorem B.3. For any t € [to,T], let a(t), b(t) and w(t) be continuous functions, with
b(t) > 0. If w(t) satisfies

w(t) < af(t) —l—/ b(T)w(r)dr,

to
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where b(t) > 0, then

w(t) < alt) + / " a(P)b(r) exp ( / t b(s)ds) dr.

to

In particular, if a(t) is non-decreasing, then
t
w(t) < a(t)exp </ b(T)dT> .
to

Now, we present a generalization of the Gronwall inequality which can be used in a
fractional differential equation. There are several generalizations of the Gronwall-Bellman
inequalities (see e.g., Lin [95], Ye et al. [153], and Zheng [157]), let us recall the following

one.

Theorem B.4. Let a > 0, a(t) be a non-negative function locally integrable on t € [0,T]
(where T' < +00), and b(t) be a non-negative, non-decreasing continuous function defined
on 0 <t < T, where b(t) is bounded by a positive constant K (i.e., b(t) < K). If w(t) is

non-negative and locally integrable on t € [0,T)], and satisfies

w(t) < a(t) + b(t) /0 (t — 1) Tw(r)dr, (B.6)

then,

w(t) < alt) + /0 3 <b(;>(1;(aa>)>”

n—

(t — )" La(r)]| dr. (B.7)

Proof. Let 6(t) be a locally integrable function, and let us define an operator B on 6 as
follows: .
BO(t) := b(t)/ (t — 7)Y 9(r)dr, t>0.
0

From inequality (B.6), we have
w(t) < a(t) + Bw(t),

this implies
n—1

w(t) <Y BFa(t) + B w(t). (B.8)
k=0

In order to get the desired inequality, using (B.7) and (B.8), we prove that

Brw(t) < /0 (b(;)(l;l%))n(t—r)m1w(7-)d7', (B.9)

and B™w(t) vanishes as n increases (i.e., B"w(t) — 0 as n — +o00) for each t € [0,T).

We will use the mathematical induction method to verify the inequality in (B.9). First, we
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know that the inequality in (B.9) is true for n = 1. Second, we assume that the inequality

in (B.9) is true for n = k, then we prove that it is also true for n = k + 1:
t T (b(s)T k
B*lw(t) = B(B*w(t)) < b(t)/ (t—7)! [/ M(f — s)*Lw(s)ds| dr.
0 0
Since b(t) is a non-negative and non-decreasing function, it follows that

k+1 k+1 ! _ et T(F(a))k — ok Ly\ds| dr
B lutt) <110 [ 4-7) [/Or(ka)@ ) ()d]d,

by interchanging the order of integration, we have:

' / C@)* i S)kaldT] w(s)ds.

Bk+lw(t) < bk+l(t>/

0 I'(ka)

Making the substitution 7 = s+ z(¢t — s) in the previous integral, and using the definition

of Beta function (see e.g, Podlubny [125]), we obtain:

t 1
/ (t _ T)a—l(,]_ _ S)ka_ld’l' _ (t _ S)ka-i-a—l / (1 _ Z)a—lzka—ldz
s 0

= (t—s) "D 1B(ka, )
I(a)(ka)

B+ oy ¢

Then, we have

t a k+1

and the inequality (B.9) is proved.

Since B"w(T) < fot (Krlgfz)))n (t — 7y lw(r)dr — 0, as n — +oo, for all t € [0,T), the

proof is completed. O

Corollary B.1. Suppose the hypotheses presented in Theorem (B.4) are satisfied, and let
a(t) be a non-decreasing on t € [0,T]. Then,

= (b(t)r(a))n no—1
1+/0 ;F(’n&)(t_’]—) dr

< a(t)Eo(b(H)T(a)t®),

w(t)

IA

a(t)

where Eo(-) is the generalized Mittag-Leffler function and T'(-) is the gamma function.
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Proof. From the Proof of Theorem (B.4), we have

> amt>r<oo>”(t__7)na1a(7)] "

w(t) < a(t) —i—/o T'(na)

n=1

Since a(t) is non-decreasing, we can write

Y COIN )
w(t) < 1+/O; Fno) (t—1) d]
— (0O (@)" o
- a(t)zg) F(na+1) t
< a(t)Eq(b(t)T(a)t?).
The Corollary (B.1) is proved. O

B.4 Fractional DuBois-Reymond Fundamental Lemma

There are several forms of the fractional DuBois-Reymond Lemma (see e.g., Almeida and
Torres [9], Bourdin and Idczak [33|, Kamocki [82], and Lazo and Torres [93]), here we will

introduce the ones most important for our work.

Lemma B.2. (Lazo and Torres [93]). Let h be a differentiable function in the interval
[a, b] with h(a) =0, h(b) = 0, and let f € Li([a,b]) be such that there is a number § € [a, b]
with |f(t)] < k(x — )5 for all t € [a,d], where k > 0 and 8 > —a« are constants. Then,

o1y (f (t)aDi"h(t)) = 0,

and
ft) =c,

where ¢ is a constant, D(-) is the Riemann-Liouville fractional derivative operator, and

I1¢ is the fractional integral operator.

Lemma B.3. (Almeida and Torres [9]). Let f be a continuous function satisfying

b
L/f@mmmwza

for every continuous function g satisfying g(a) = g(b) = 0. Then, f = 0. Here, the integral

ff(-)(dt)o‘ is the Jumarie fractional integral operator.
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Appendix C

Nonsmooth Analysis

Nonsmooth analysis is an important tool in optimal-control theory. It first appeared when
the classical analysis failed to give estimated approximations to non-differentiable functions
and to the sets with non-differentiable boundaries, where there are many functions which

are continuous everywhere but not differentiable at some points.

The first idea to develop nonsmooth analysis was taken from the geometric relationship
between the derivative of smooth functions (differentiable functions) and the graph of these

functions as follows.

In classical smooth analysis, the derivatives of a function g are related to vectors normal to
tangent hyperplanes; for any differentiable function g the vector (¢'(z), —1) is a downward

normal to the graph of g at (x, g(z)). Here, the graph of ¢ is defined by
Grg={(z,r) e R" xR: r = g(x)}.

Instead of considering derivatives as elements of normal subspaces to smooth sets,
generalized derivatives are defined to be elements of normal cones to possibly nonsmooth

sets.
To tackle optimal-control issues, we use the following results.

Definition C.1. Let X be a subset of a Banach space 1. A function g: X — R is said to
satisfy a Lipschitz condition on X if

l9(21) = g(@2)| < kllzy — 2o,

for all points x1,x9 € X, where k is a positive constant, also referred to as Lipschitz
condition of rank k. We say that g is Lipschitz of rank k near x if, for some § > 0, g
satisfies a Lipschitz condition of rank k on the set x + 0B, where B is the open unit ball.

Proposition C.1. Let C be a nonempty subset of X, and do(-): X — R be a distance
function defined by
do(x) =inf{|lx —¢|| : c € C}.
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Then, the distance function dco(-) satisfies the Lipschitz condition on X as follows:

lde () — do(y)| < [l —yll.-

Theorem C.1. (Clarke [43]). Let h(-) be Lipschitz near x, suppose S is any set of Lebesgue
measure 0 in R™, and let Q be the set of points where a given function h(-) fails to be

differentiable. Then, the generalized gradient is defined as:
Ozh(x) := co{lim Vh(x;) : x; — x,7; ¢ S,2; & Qp}.

Definition C.2. Let x be a point in the set C C X, and X\ € X be a tangent vector to C at
x satisfying do(x; A) = 0. Then, the set of all the tangents to C' at x is called the tangent
cone To(z) and is defined by

To(z) :={A € R": dx(x;\) = 0},

where d(x; \) is the directional derivative of the distance function.

Definition C.3. Let x be a point in C C X, and A € X be a tangent vector to C' at x.
Then, the normal cone to C' at x, No(z), is defined as:

Ne(z) ={{e X": ({,A<0) VAeTp(x)}.

The limiting normal cone was introduced by Mordukhovich in [110,111], as follows:

Let C' be a nonempty subset of R”, and let

P(z,C):={z€clC: |z —z|| =d(z,C)}
be the set of best approximations of x in ¢l C' with respect the Euclidean distance function
d(z,C).

Definition C.4. Given x € clC the following closed cone

N(z,C) = limsup{cone (z — P(z,C))}

T—T

is called the normal cone to the set C a the point T. If T ¢ c1C, we put N(z,C) = .

Proposition C.2. The normal cone Nc(x) is the closed conver cone generated by Odc(x)

and satisfies

Ne(z) = cl{ | Ade ()},

A>0

where cl 1s weak™ closure.
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Corollary C.1. Let X = X1 x X9, where X1, Xo are Banach spaces, C = C1 x Cy, where
Cy and Cy are subsets of X1 and Xa, respectively. Suppose that © = (x1,x2) € C. Then,

To(z) = T, (21) % T, (72),

N(j(w) = NCl (xl) X NC2(I'2).

Proposition C.3. (Clarke [43], Loewen [97]). Let C' C R™ be a closed set, and Vd¢(x)
exist and be different from zero. Then, if x lies outside C, the set C exactly contains a

unique closest point ¢ at which the minimum distance to x is attained, such that

r —cC

Vdc(z)

T r—d

Theorem C.2. (Clarke [43]). Let f = go F', where F' : R® — R™ is Lipschitz near z, and
g : R™ — R is Lipschitz near F'(z). Then, f is Lipschitz near = and satisfies:

0f () C co{dg(F(x))OF (x)}.

If g is strictly differentiable at F'(x), then equality holds and co is needless.
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Appendix D

Measure Theory and Integration

D.1 Algebra and c—algebra of Sets

Definition D.1. (Algebra). Let X be an arbitrary non-empty set, and Q(X) be a collection
of subsets of X. Then, Q(X) is called an algebra if satisfies

(i) 0, X € Q(X), where 0 is the empty set.

(i) Ae QX)= A° € Q(X), where A® is the complement of A defined by

A°={ae X |a¢ A}.

(iii) A,B € Q(X) = AUB € Q(X).

Definition D.2. (c—algebra). An algebra Q(X) is said to be a c—algebra (sigma-algebra)

if satisfies the additional condition:

For any sequence {A,} C QUX) = U,—, An € Q(X).

Note that, the intersections of this sequence will also belong to Q(X) i.e.,
{An} CQUX) = [ 4n € QX).
n=1

Definition D.3. (Borel o—algebra). Let X be a metric space. The Borel o—algebra of
X s defined to be o—algebra generated by all open subsets of X, and is denoted by B(X).

Elements of B(X) are said to be Borel measurable set.
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D.2 Measures

We say that the measure p(-) is finite additive if, for any family S,...,.S, € Q of disjoint

sets, we have
plUSs| =D uls)).
j=1 j=1

We say that u(-) is finite subadditive if, for any family S,...,.S, € Q of disjoint sets, we

have
n

pl UsSi| <D n(s)).
j=1

j=1

The measure u(-) is monotone if, for any Si, Se € Q, with S; C Sy, we have

p(S1) < p(S2),

and is countable subadditivity if, for any sequence {S,} C Q, we have

p (U Sn> <Y (Sh)-

neN neN

Lemma D.1. A measure u(-) on a o—algebra Q of subset of a set X is finite additive,

finite subadditive, monotone, countable subadditive, and

p(S2 \ S1) = p(S2) — p(S1),
for all 51,55 € Q, S1 C Sy, with u(S1) < oc.

The proof this Lemma can be found, for instance, in Yeh [154].

Definition D.4. Consider the measure p: B(X) — [0,00] and let S € B(X). The measure

w(+) is called an outer reqular measure if
w(S) =inf{u(U) | S CU and U is open},
and is called an inner reqular measure if
p(S) =sup{u(K) | K C S and K is compact}.

A measure is called a regular if it is both outer and inner regular. A Radon measure is an

wner regular Borel measure.

Definition D.5. Let (X,Q) and (Y,¥) be two measurable spaces. A map f: X — Y is
said to be measurable if, for all A € W, the set f~Y(A) € Q. If Y is a metric space and
U =B(Y), f is called a Borel functional. If Y =R, we call f a Borel function.
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D.3 Integration

Definition D.6. (Riemann integral) Let f: [a,b] — R be a bounded function defined on
a closed interval [a,b], consider any partition P:a = xyg < 21 < -+ < x, = b, let
ox; = m; — xi—1, and we define the upper and lower sum, respectively, associated with

partition P as follows
Up = ZMZ&%Z,
i=1

n
LP = Zmzcsxz,
i=1
where

M; = sup{f(z): zi1 <z <z},

m; = inf{f(z): zio1 <z < z;}.

Then, we define the upper and lower Riemann integral of f over [a,b], respectively, as

following

b
/f(x)d:c = i]%fUp,

b
/ f(x)dx = supLp.
a P

We say that f is Riemann integrable on [a,b], denoted by f: f(z)dx, if the infimum of upper

sums through all partitions of [a, b] is equal to the supremum of all lower sums through all

/abf(:c)dx:/abf(x)dx:/abf(x)dx.

Definition D.7. (Simple function) A function is simple if its range is a finite set. Let ¢

partitions of [a, b], i.e.,

15 a simple function represented by

n
Y= aixg,
=1

where a; are distinct values of ¢ and xg, 15 a measurable function called the indicator

function of the set E; given by

1, ifzxek;,
07 Zf.fU ¢ Eiv
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such that E; = ¢ ~1(a;). Conversely, any expression of this form, where a; need not be

distinct and E; not necessarily v ~1(a;) also defines a simple function.

Definition D.8. Let (X,u) be a measure space, u(-) is Lebesque measure. Then, The
Lebesgue integral over D C X of a measurable valued simple function ¢ is defined by
n n
/ Ydp = / ZaiXEidlu = Z aipt(E;).
D D=1 i=1

The quantity on the right represents the sum of the areas below the graph of ¥(-).

Definition D.9. Let f(-) be a bounded measurable function, defined on a set D of finite

measure such that the upper and lower Lebesque integral, respectively, defined by

U = sup {/ wdp | Y is a simple function, and ¢ < f} ,
D

L = inf {/ wdp | Y is a simple function, and ¥ > f} .
D

If U = L, we call that f is Lebesgque integrable, and

L:/Dfdu:U

where [, 1hdp is stated before.

Definition D.10. Let (X,Q,u) be a measure space. A measurable function f: X — R

15 called Lebesgque integrable on' Y € Q with respect to p, if the non-negative function

|f| = ft + f~ satisfies
[ 11dn < .
Y

and its integral on Y 1is defined as

/Y fp = /Y frdu - /Y fdp

where fT, f~ are said to be the positive and negative parts of the function f, defined by

fr(a) = max(f(2),0),
fo(2) = max(—f(),0).

For more details and properties on Lebesgue integral (see, e.g., Carter and Van Brunt [38],
Thomson [143], and Yeh et al. [154]).
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D.4 Useful Concepts
A function f(t), defined on the closed interval [a, ] is said to be (i) increasing if

f(tl) < f(tg), for 1 < t2,

(ii) strictly increasing if
f(tl) < f(tz), for t1 < to,

(iii) decreasing if
f(tl) > f(tg), for t1 < to,

(iv) strictly decreasing if
f(tl) > f(tg), for t1 < ts,

(v) monotonic or monotone (strictly monotonic) if increasing and decreasing (strictly

increasing and strictly decreasing) functions.

Definition D.11. (Strong local minimum) An admissible process (z*,u*) is a strong local
minimizer for an optimal-control problem if, for € > 0, it minimizes the cost over all other

admissible processes (x,u) such that
lz(t) —x*(t)| <e, Vte]la,b].

Definition D.12. (Weak convergence) Let X be a normed linear vector space and X* be
the dual space of X. A sequence {z,} is called converge weakly to x € X if for all 2* € X*,

we have (z,,z*) — (x,z*), we can write, z,, — = weakly.

Definition D.13. (Weak™ convergence) Let X be a normed linear vector space and X*
be the dual space of X. A sequence {x}} in X* is called converge Weak™ (weak-star) to
¥ e X*if (x,z)) = (x,2") for all x € X, we can write, x}, — x* Weak™.
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