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Abstract

An efficient supply chain is essential for the success of any retailer and distribution plan-
ning, in particular, plays a central role to that end. The retail industry has suffered changes
throughout the years, along with those in the market dynamics. These dynamics are turning
the distribution process more and more challenging. In such a context, with multiple pos-
sible strategies and resources available to perform distribution, defining the most efficient
way to supply each store is a critical task.

This research intends to give new insights and contribute to the current literature re-
garding the distribution process of retailers, specifically for the pharmaceutical and grocery
retail sectors. The objective of this applied research is threefold: (1) frame the multiple
ways of efficiently supplying retail stores; (2) formulate mathematical models for different
challenges that retailers face in the distribution process; and (3) develop suitable solution
approaches to solve the problems efficiently.

Firstly, the planning decision that selects the different distribution strategies of supply-
ing the stores is explored. The definition of this problem, named delivery mode planning, is
not clear in the literature, and a novel definition for the problem is proposed. The features
and (dis)advantages of the different product flows are described, together with the practical
implications between different distribution decisions.

Secondly, the network redesign of pharmaceutical wholesalers is analyzed. The goal is
to respond to more frequent and smaller orders, while staying competitive and not jeopar-
dizing the current customer service level. While the network design has been extensively
studied in the literature, few works consider the redesign variant, i.e. changing facilities
location, and take into consideration the response time indicator, besides costs. Neverthe-
less, the response time is a key driver for wholesalers. To tackle the problem a two-phase
optimization-simulation approach that incorporates the trade-off between facility and trans-
portation costs and customer service level is developed.

Finally, the incorporation of multi-compartment vehicles in the grocery distribution
planning is studied. In the last years, multi-compartment vehicles, which enable the physi-
cal separation of products/segments during transportation have been deployed, and increas-
ingly used by grocery retailers to perform mixed-product distributions. In the literature,
there are already different works analyzing the impact of performing routing plans with
multi-compartment vehicles instead of single-compartment vehicles. However, most of
the research is focused on fuel and waste applications, which impose different business re-
quirements from those of the grocery distribution. The complexity of the loading/unloading
process with these vehicles has never been studied. Therefore, an extension of the routing
problem considering the impact of loading constraints is proposed. Furthermore, as gro-
cery stores usually define preferable time-windows to indicate when deliveries should oc-
cur, and this decision impacts the possible mixed distributions, the routing problem is also
extended to incorporate time-window assignment decisions. For both problems, extensions
of metaheuristics proposed for the routing problem are developed.






Resumo

Uma cadeia de abastecimento eficiente € essencial para o sucesso de qualquer retalhista e
o planeamento da distribui¢do desempenha um papel importante nesse sentido. Ao longo
do tempo, o retalho tem sofrido mudancas e presenciado novas dindmicas de mercado que
aumentam os desafios do processo de distribui¢do. Neste contexto, onde existem multiplas
estratégias e recursos que podem ser usados na distribui¢c@o, a decisdo de como abastecer
cada loja de forma mais eficiente torna-se uma tarefa critica.

Esta dissertag@o pretende explorar e contribuir para a literatura relacionada com o pro-
cesso de distribui¢do dos retalhistas, em particular nos sectores farmacéutico e alimentar.
Esta investigacao aplicada tem trés principais objectivos: (1) enquadrar as multiplas formas
de abastecer as lojas eficientemente; (2) formular modelos matemadticos para diferentes de-
safios que os retalhistas enfrentam no processo de distribuicio e (3) desenvolver métodos
de solugdo capazes de resolver os modelos eficientemente.

Primeiro, exploram-se as estratégias de distribui¢do a usar no abastecimento as lojas.
A defini¢do deste problema, designado de planeamento do modo de entrega, ndo € clara
na literatura e, consequentemente, é proposta uma definicao formal. As caracteristicas e
(des)vantagens dos diferentes fluxos de distribui¢do s@o descritas, assim como as implica-
¢Oes praticas relacionadas com outras decisdes de distribuicao.

Segundo, o redesenho da cadeia de abastecimento de um grossista farmac€utico é ana-
lisado. O objectivo é adaptar a distribui¢do para responder a pedidos mais frequentes e de
menor dimensdo que as farmécias fazem, sem prejudicar o nivel de servico e mantendo a
competitividade. Enquanto o desenho da rede tem sido muito estudado na literatura, pou-
cos trabalhos consideram a variante do problema relativa ao redesenho, isto é, a alteracdo
da localizacdo das instalacdes. Adicionalmente, € rara a consideracdo do tempo de resposta
como indicador. Para os grossistas, para além dos custos, este é um factor-chave. Uma me-
todologia de optimizagdo-simulagdo é proposta para resolver este problema, incorporando
o trade-off entre os custos relacionados com as instala¢des e transporte e o nivel de servigo
ao cliente.

Finalmente, o uso de veiculos multi-compartimento na distribui¢do alimentar é estu-
dado. Nos ultimos anos, este tipo de veiculos, que permite a separacgdo fisica dos produ-
tos/segmentos durante o transporte, t€ém vindo a ser desenvolvidos e usados por retalhistas
para distribuirem multiplos produtos. Ja existem na literatura alguns trabalhos que ana-
lisam o impacto de utilizar estes veiculos no planeamento das rotas, em deterimento dos
veiculos simples. No entanto, a maioria da investigacdo é focada nos sectores do petréleo
e residuos urbanos, cujos requisitos de negdcio sio diferentes da distribui¢do alimentar.
A complexidade dos processos de (des)carregamento com veiculos multi-compartimento
nunca foi estudada. Assim, é proposta uma extensao do problema de roteamento para in-
corporar restricdes de carregamento. Adicionalmente, as lojas alimentares normalmente
definem as horas do dia em que preferem receber cada tipo de produto. Como estas deci-
soes afectam as possiveis combinagdes de distribuicdo mista de produtos, o problema de
roteamento ¢ também extendido para incorporar decisdes sobre a defini¢do das horas de en-
trega. Para ambos os problemas sdo desenvolvidas extensdes de meta-heuristicas propostas
para o roteamento.
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Introduction






CHAPTER 1

Motivation and Framework

Supply chains (SCs) are networks of organizations linked to provide value to final cus-
tomers. Depending on the industry, a SC can be characterized by distinct suppliers, man-
ufacturers, distributors and retailers, as shown in Figure 1.1. Due to their downstream
position in the SCs, retailers connect with final customers, providing them the products
and services they need and desire (Sullivan and Adcock, 2002).

€ mm e e e e e e
Reverse logistics
 m—|
- (- — AN =
Material flow Raw materials Manufacturing Distribution Retailers/
supplier plan center customers

Figure 1.1: Illustrative supply chain

In the past, retailers were only simple stores receiving passively products from manu-
facturers according to their demand forecast. However, since the late 1990s the retail sector
has been evolving in order to control, organize and manage the flow of products. Fernie
et al. (2010) describe six trends that led to these transformations: (i) the first is the expan-
sion to have their own distribution centers (DCs) in order to better control the distribution
to the stores. (ii) the second is the use of different distribution strategies such as the joint
distribution of different products and the centralization of slow movers. (iii) another grow-
ing trend is the adoption of cross-docking strategies with the aim of reducing inventory
levels and response times. Moreover, to achieve new competitive edges some retailers are
(iv) integrating their distribution process with the production phase, as well as (v) foster-
ing reverse logistics activities. (vi) More efficient SCs have also been developed due to
the growing collaboration between retailers and suppliers. Rushton et al. (2014) recognize
that the retail sector has made some of the most advanced and innovative developments in
distribution and SC thinking.

Due to its competitive nature, retailers have always to be aware of the customers needs
and rethink their strategies in order to respond efficiently. In fact, retailers are turning their
attention to customer experience (Béckstrom and Johansson, 2006; Grewal et al., 2009).
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For instance, nowadays they offer them service through different channels (e.g., traditional
stores, catalogue, online shopping, click and collect) to respond to customers needs and
desires (Sullivan and Adcock, 2002). This access to different channels is altering the cus-
tomer behavior, but as mentioned by Mou et al. (2018) the brick-and-mortar (B&M) stores
remain the main channel for shoppers. For this reason, the operational activities at B&M
stores must be as efficient and effective as possible. In this traditional channel, retailers
manage B&M stores with different formats, sizes, assortments and sales volume. The in-
store planning decisions, such as assortment planning, space management and inventory
management, are heavily influenced by the customer buying behavior. These decisions are
directly perceived by the customer, as they define the type and amount of products available
at the retail stores and how they are displayed for shopping. Nevertheless, the distribution
management also plays an important role in the retailers SC efficiency and efficacy as it is
responsible for supply and support the stores. The stores cannot operate efficiently if the
products are not delivered on the right time, on the right amount and on the right conditions.

Distribution management deals with the physical flow and storage of products through-
out the retail network until the customer (Rushton et al., 2014). It can be divided in three
levels regarding the planning horizon: strategic, tactical and operational. The strategic
level concerns long-term decisions regarding the SC network design (SCND), which de-
fines the physical distribution structure. The works on network design are mostly focused
on storage facilities, defining the number, size and function of the DCs. Higher number
of facilities allows the reduction of the transportation costs of the network, but at the same
time it increases inventory costs. However, the increase in the usage of cross-docking
strategies called the attention of researchers (Van Belle et al., 2012). Therefore, SCND
should integrate network configuration decisions with inventory and routing problems, as
neglecting these tactical decisions leads to sub-optimality. Mid-term decisions are tackled
at the tactical level and determine the main rules for order fulfillment, such as the deliv-
ery mode, the delivery pattern and the selection of transportation means (Hiibner et al.,
2013). The delivery mode planning determines how the products should flow from the
DCs to stores. Besides direct-shipment distribution, cross-docking and milk-run modes
can be used to achieve economies of scale in transportation. The frequency and the spe-
cific days of delivery to a store are defined by the delivery pattern, which is related to an
inventory-routing problem, as more frequent deliveries allow to reduce the inventory level
at the stores. The transport between the retailers DCs and the stores is mainly performed by
trucks with different characteristics and technologies. Finally, the operational level tackles
short-term decisions related to the transportation planning, such as the loading and routing
of vehicles. Distinct variants have been proposed in the literature for these problems (Toth
and Vigo, 2014; Pollaris et al., 2015).

This research is focused on some of the new challenges the pharmaceutical and gro-
cery retail sectors face and aims to understand how retailers can adapt their distribution
activities to remain competitive. These sectors have the peculiarity of managing a cold
supply chain, which entails additional refrigerated costs, and having to adhere to tight le-
gal regulations. However, each sector has different characteristics and markets that impose
different challenges. Therefore, this research aims at addressing few of the new problems
that are emerging in each sector, for which very few works have been proposed. These



problems include the redesign of the supply chain network and the distribution planning
with multi-compartment vehicles.

Regarding the pharmaceutical sector, due to the economic crisis many pharmacies are
struggling to survive and are changing their purchasing behavior towards smaller and more
frequent orders, increasing the burden of the distribution system. To adapt to this new shift
of demand, the wholesalers, who are responsible for the distribution to the retail stores,
need to rethink their distribution strategy in order to stay competitive while securing their
service level. The service level can be measured not only in terms of the products avail-
ability, but also regarding the response time. The problem of ensuring a certain level of
product availability has been extensively studied in the inventory management literature
stream, and the level of response time is related to the network design problems. However,
although different works have been proposed for the network design problem, few of them
consider the redesign variant, i.e. changing the location and function of the DCs, and the
impact it yields on the response times. This is relevant in the pharmaceutical industry as
different wholesalers can respond to the pharmacies demand due to the null changeover cost
for switching wholesaler, being the response time one important key driver for selection.

Concerning the grocery sector, retailers have to manage simultaneously products with
different temperature requirements (e.g., frozen, chilled and ambient). In the last years,
vehicles with new technologies that enable the physical separation of products during
transportation have been deployed. Such vehicles are called multi-compartment vehicles
(MCVs) and are being increasingly used by grocery retailers to perform mixed distribu-
tions. The use of MCVs poses new challenges on distribution planning. Most of the liter-
ature regarding distribution with MCVs focuses on its applications to the fuel distribution
and waste collection. Few works address the food distribution and are mainly targeting
the routing problem, with few extensions developed up to date. Due to the complexity of
a grocery retailer SC, with products requiring specific temperature conditions, the loading
and unloading of the products in an MCV is not as simple as in the fuel and waste appli-
cation. The rear-loading of the vehicles poses great difficulty to access each compartment
of the vehicle. Moreover, while previously the flow of products with distinct transporta-
tion requirements had to be distributed independently, now with the use of MCV's mixed
distributions can be planned. This means that the full range of products can jointly be de-
livered to a store in a single visit. This is an advantage that should be taken into account
when planning the distribution flow. Additionally, the definition of delivery patterns and
time-windows can be heavily influenced by the products flow. If products are not assigned
to the same day and time of delivery, they cannot benefit from a joint distribution. While
the definition of delivery patterns for food distribution is tackled by some works, no work
on time-window assignment with MCVs has been developed.

Summarizing, this research intends to give new insights into the planning decisions
of the distribution process to retail B&M stores, focusing on the challenges previously
described for the pharmaceutical and grocery sectors. However, before tackling those spe-
cific problems, the different ways of supplying retailers B&M stores need to be identified
and understood. Regarding the pharmaceutical sector we focus on the tactical-strategic
planning problem of wholesalers network redesign. Finally, regarding the grocery retail-
ing, we study the use of MCVs, focusing on the operational routing problem with loading
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constraints and the operational-tactical problem of routing and time-window assignment.
Figure 1.2 summarizes the scope of this thesis.

Network Redesign Pharmaceutical Wholesaler

Routing and Time-window Assignment
Grocery Retailer

Routing with Loading Constraints

Figure 1.2: Scope of the thesis by sector perspective

The remainder of this chapter is divided in three sections. Section 1.1 presents the
research questions and objectives of this thesis. Then, Section 1.2 gives guidance to the
reader on the organization and subjects of the following chapters. The main contributions
of this work and future research directions are discussed in Section 1.3.

From hereafter B&M stores are described just by the term stores, since online stores
are not within the scope of this research.

1.1. Research Objectives

This research intends to give new insights and contribute to the current literature regarding
the distribution process of retailers, specifically for the pharmaceutical and grocery retail
sectors. The objective of this applied research is therefore threefold: (1) frame the multi-
ple ways of efficiently supply retail stores and understand the interdependencies between
different planning decisions related to the distribution process (namely, network design,
means of transportation and delivery pattern); (2) formulate mathematical models for few
challenges retailers face regarding the distribution process and (3) develop suitable solution
approaches to solve the models efficiently. These objectives are linked with the following
research questions.

Research question 1:

How can products flow through the supply chain network of a retailer?

The distribution between DCs and stores can be planned according to different strate-
gies. The planning decision that tackles this problem is not clearly defined in the literature,
with different terms used with the same purpose and different works tackling the same prob-
lem with different definitions. To answer this research question a comprehensive review
needs to be conducted to frame the multiple ways retail stores can be supplied. However,
besides reviewing the works on the problem, it is imperative to identify and compare the
characteristics and (dis)advantages of the different product flows, together with the practi-
cal implications between different distribution decisions.
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After understanding the multiple ways retail stores can be supplied through the SC
network, this research focuses on two main topics motivated by the six trends identified
before: (1) the redesign of a SC network in order to respond to the pressure of more fre-
quent and smaller deliveries and (2) the extension of the distribution planning decisions to
incorporate the use of MCVs.

Research question 2:

How can pharmaceutical wholesalers analyze the redesign of their network in order to
respond to more frequent and smaller deliveries, while staying competitive and not jeopar-
dizing the current customer service level?

The SCND is a strategic decision that usually lasts for a long term. However, when the
market needs change, the network design might become disadjusted and may not be able
to respond efficiently to the business needs. Hence, in some occasions, redesigning the SC
sooner than predicted is the most cost-effective solution.

When designing a network, the location of the facilities and how the products and cus-
tomers are assigned to them have to be defined in order to secure a certain customer level
at the minimum cost. However, when a network redesign is required, the company already
has facilities operating and serving customers. In this case, the decisions fall on which
facilities should be closed and were to position new ones, without jeopardizing the current
service of the customers. Although the SCND problem is extensively studied in the liter-
ature, few works consider the redesign variant, specially from a wholesaler point of view
for which the response time is important. Different works refer the importance of integrat-
ing the inventory and routing problems in the SCND, but few take into consideration the
response time indicator. In the pharmaceutical sector, pharmacies place multiple orders
along the day and place them to the wholesaler they know will deliver them in the shortest
time.

In order to be able to answer this research question we first need to understand the dis-
tribution process of a pharmaceutical wholesaler. Afterwards, a mathematical model that
frames the process has to be formulated and a solution approach developed. The approach
has to consider different distribution strategies, the trade-off between inventory and trans-
portation costs and the impact on the response time.

Research question 3:

MCVs are new technological vehicles that are able to split flexibly their loading area
into different compartments. Grocery retailers are starting to use this type of vehicles,
which allow them to fully supply a store in a single visit instead of using separate single-
compartment vehicles to transport products at different temperatures.

In the literature, there are already different works analyzing the impact of performing
routing plans with MCVs instead of single-compartment vehicles. However, most of the
research is focused on the fuel and waste applications, which impose different challenges
from those of the grocery distribution. There are some works on grocery distribution with
MCVs, but they only target the routing decisions and analyze the operational impact of
their use on DCs and stores. The complexity of the loading/unloading process with these
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vehicles has never been studied. Furthermore, few extensions of the correspondent routing
problem, the multi-compartment vehicle routing problem (MCVRP), have been proposed.
Therefore, this third research question concentrates on these two gaps and is thus divided
in the following research questions.

Research question 3.1:

What is the impact of considering loading constraints in the multi-compartment vehicle
routing problem of grocery retailers?

Due to legal regulations, the grocery retail sector has to comply with a careful control of
the products temperature throughout the whole SC. Therefore, it is important to understand
the distribution challenges that arise when switching from single-compartment to MCVs.
Because compartments can be flexibly built in front of each other and multiple compart-
ments might need to be accessed in one stop, loading constraints have to be identified and
analyzed. The routing problem must secure an efficient loading and unloading process,
respecting the regulations and not jeopardizing the products quality. Distinct routing prob-
lems with loading constraints have been proposed in the literature, but none of them was
applied to MCVs in the grocery distribution. By answering this research question, we ex-
pect to identify the situations where the distribution planning is more critical, developing a
model and solution approach that helps defining how the vehicles can be loaded efficiently
when defining the routing plan with MCVs.

Research question 3.2:

What is the impact of planning consistent deliveries to grocery stores, using multi-
compartment vehicles?

When products are delivered in a store they can be either immediately dispatched to
the sales area for replenishment of the shelves or they can be moved to the backroom to
be stored according to the required temperature. As the stores personal perform different
in-store operations, the receiving process should be scheduled in advance. Grocery stores
usually define preferable time-windows to indicate when deliveries should happen. The
stores have to know when the products will be delivered in order to coordinate and smooth
their in-store operations. The days in which the store receives goods are defined by the de-
livery pattern problem, which is an inventory-routing problem variant that has been studied
in the literature. However, and to the best of our knowledge, few works have been proposed
regarding the time-window assignment, and none with an assignment oriented to products
instead of just to the store. To answer this research question, a new model and solution
approach able to assign product-oriented time-windows to stores, incorporating the use of
MCVs that leverages the joint deliveries of products, needs to be developed.

1.2. Thesis Structure and Synopsis
The main chapters of this thesis consist of a collection of papers aligned with the research

objectives previously described. Each chapter is focused on one research question. In the
remainder of this section we overview the main subjects covered in the following chapters
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and their main conclusions.

Chapter 2 frames the multiple ways to supply retail stores, targeting at research ques-
tion 1. It also identifies the delivery mode planning as the decision that defines how prod-
ucts should flow throughout the SC and provides a discussion and literature review on the
topic. As this planning decision is not well defined in the literature, a formal definition
is proposed and the distinct delivery mode types are described (direct-shipment, cross-
docking and milk-run). The main interdependencies between the delivery mode planning
and the SCND, the selection of the means of transportation and the definition of delivery
patterns are identified and analyzed. These problems have great impact on the selection
of delivery mode. In this chapter, we conclude that most of the works on delivery mode
planning considering hybrid networks, i.e. the execution of more than one type of delivery
mode, are mainly focused on direct-shipments and cross-docking deliveries. In addition,
the majority of the literature does not incorporate the routing problem, as well as the opera-
tional costs and constraints related with facilities. However, this is still a growing research
area, which has recently received more attention with the development of cross-docking
strategies and the deployment of new technologies.

Chapter 3 focuses on the network redesign problem of pharmaceutical wholesalers.
To tackle the problem a two-phase optimization-simulation approach that incorporates the
trade-off between facility and transportation costs and customer service level is developed.
In the first-phase, at a strategic-tactical level, the network redesign is optimized by means
of a mixed integer programming model. In this model, the number, location, function
and capacity of the warehouses, as well as customer allocation, are optimized in order to
minimize the total costs. In the second-phase, the operation of the SC is simulated using
a discrete event simulation model to analyze the impact of the new network design from
an operational perspective, specifically the service level. The analysis is performed based
on a case-study with an European pharmaceutical wholesaler. The computational exper-
iments expose the benefits of the hybrid approach, demonstrating that the optimization
model provides insights on the best network redesign. The practicability of the selective
implementation is grasped by the simulation model. This Chapter helps to answer research
question 2.

In Chapters 4 and 5 the distribution planning of grocery retailers that use MCVs is an-
alyzed, attempting to answer research question 3.1 and 3.2, respectively. In both chapters,
a description of the distribution process of grocery retailing is provided. In order to eval-
uate individually the impact of the loading constraints and the consistent deliveries in the
grocery distribution, two extensions of the MCVRP are tackled independently.

Chapter 4 studies the impact of the loading constraints when using MCVs. First, a
description of the loading and unloading processes in grocery retailing is provided, iden-
tifying the complexity of the processes and the reason why the loading constraints should
be analyzed. A mathematical model formulation for this new problem is proposed. After-
wards, a specialized packing problem is developed to define how the compartments should
be built inside the vehicles in order to perform efficient loading and unloading processes,
with no deterioration of product quality. With the purpose of evaluating the impact of
loading constraints, both a Branch-and-Cut algorithm (B&C) and a Large Neighborhood
Search (LNS) solution approach are developed, considering the packing problem within
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the routing problem to check and repair its loading feasibility. It is shown that loading con-
straints matter even for small instances problems and the number of unfeasible solutions
increases as the problem sizes increase, being highly dependent on the available tempera-
ture setups and the corresponding order structure. However, a feasible loading can often
be achieved by only minor changes on the routing solution and therefore with limited ad-
ditional costs. Results shown that an ex-post repair of the MCVRP solution could already
provide a good feasible solution in short-time. Nevertheless, performing feasibility checks
during the search can in some cases lead to improved solutions, at the cost of higher com-
putational effort. Computational experiments with an European grocery retailer case-study
are also analyzed, showing that this is a relevant problem in practice and confirming the
previous conclusions.

In Chapter 5, the characteristics of a consistent distribution planning to grocery retail
stores (including practical considerations) are investigated. A new problem is proposed,
extending the MCVRP by considering a multi-period setting with a product-oriented time-
window assignment. Here, time-windows are defined for each product segment/store, tak-
ing into account the possibility given by MCVs of delivering the full product range jointly
or separated. An Adaptive Large Neighborhood Search (ALNS) is proposed to solve the
problem with daily operators, focusing on the improvement of routing aspects of the prob-
lem on each day, and weekly operators developed to align the time-window assignment
consistently throughout the planning horizon. The effectiveness of the approach is tested on
benchmark instances from literature. Numerical experiments demonstrated that planning
a consistent distribution leads to better solutions than an ex-post time-window assignment
of daily plans. Although the overall cost improvement can be small, a consistent planning
provides more on-time deliveries. The impact analysis of performing deliveries outside
the time-windows bounds is important in this context, because it can result in higher cost
related to spoilage or stock-out, among others. Furthermore, if products are not assigned
to the same time-window, they cannot be assigned to a joint distribution. Therefore, in this
case, either the routing costs or the penalty costs increase.

1.3. Contributions and Future Research

In this section, the literature contribution and the references where the research of each
chapter was originally published or submitted are identified, along with the main contribu-
tion of the PhD candidate to each of the works. Further research directions on each problem
are also pinpointed.

Chapter 2 contributes to the literature by providing a formal definition for the delivery
mode planning decision and a framework of the distinct delivery mode types that can be
used to distribute products from retailers DCs to the stores. The main interdependencies
between the delivery mode planning and other SC planning decisions, such as the network
design, the delivery pattern and the selection of means of transportation are described. A
comprehensive review of the works related with the delivery mode planning problem is pro-
vided, highlighting the different terms used in literature. The PhD candidate was the main
author of the chapter, being responsible for the reviewing process and the development of
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the research paper:

e Sara Martins, Pedro Amorim and Bernardo Almada-Lobo. Delivery mode plan-
ning for distribution to brick-and-mortar retail stores: discussion and literature re-
view. Flexible Services and Manufacturing Journal, 2017. DOI 10.1007/s10696-
017-9290-x

This review shows that most of the works that study the delivery mode planning de-
rive from a manufacturer context and are mainly focused on the decision between direct-
shipment or cross-docking deliveries, considering simple cost structures for point-to-point
deliveries. Few works explore the synergies between routing decisions and the delivery
mode planning, which define different consolidations strategies. Therefore, further re-
search can be performed by including these two planning decisions and incorporating the
different types of delivery mode (direct-shipment, cross-docking and milk-run). Further-
more, the characteristics of the facilities, either origins, destinations or intermediate facil-
ities of deliveries, are often overlooked. Although this is a tactical problem, the delivery
mode planning should still analyze the constraints and costs involved with the facilities,
at least at an aggregated level. Moreover, it is important to define consistent distributions
plans in order to smooth the operations management and allow for more efficient proce-
dures. In addition, the delivery mode planning has several interdependencies with other
planning decisions. The facilities location and the means of transportation used can lever-
age different types of delivery modes, enabling distinct consolidation strategies, which are
restricted by the delivery patterns. Studies on the impact of these interdependencies and on
how to incorporate them in the overall distribution planning are further research opportu-
nities.

The main contributions of Chapter 3 are two-fold. Firstly, the proposal of a mathemat-
ical model for the network redesign problem of pharmaceutical wholesalers. The model
considers intermediate cross-docking facilities, besides the traditional storage DCs, incor-
porating the trade-off between facilities and transportation costs. This problem tackles
the interdependency between the network design and the delivery planning, deciding be-
tween direct-shipments and cross-docking. Secondly, the development of a hybrid solution
approach that combines optimization and simulation in order to evaluate the operational
impact of the solutions. This solution approach allows to incorporate and analyze the con-
straints and costs involved in the facilities, heading one of the gaps raised in Chapter 2.
This work originated the following paper, in which the PhD candidate was the main author,
developing the mathematical formulation and the simulation model, the computational ex-
periments and the analysis of the results.

e Sara Martins, Pedro Amorim, Gongalo Figueira and Bernardo Almada-Lobo. An
optimization-simulation approach to the network redesign problem of pharmaceuti-
cal wholesalers. Computers & Industrial Engineering, 106, pages 315-328, 2017.
DOI 10.1016/j.cie.2017.01.026

This research paper has filled one of the gaps identified in the review of Chapter 2. Al-
though it is focused on the wholesalers activity, the solution approach could still be used to
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analyze operational constraints and costs of a retailer that performs its own distribution to
stores. Additionally, the solution approach may be extended to include the routing problem
in order to use more realistic distribution costs, instead of an approximation, and evalu-
ate in more detail the customer’s reallocation decisions. Furthermore, a deeper interaction
between the simulation and the optimization model, which would refine the optimization
parameters according to the simulator solution and guide the search, may improve the final
results. Finally, an extension of the problem to incorporate product allocation as a decision
variable, differentiating product characteristics, would make it suitable for different con-
texts, where not all DCs are full-liners and some products can be centralized.Chapters 4
and 5 contribute to the growing research efforts on MCVRPs, specifically on the grocery
distribution application. Chapter 4 recognizes for the first time the loading constraints in-
herent to the use of MCVs in grocery retailing and proposes a specialized packing problem
that defines the arrangement of vehicles compartments and correspondent orders, avoiding
loading issues. Besides the development of the packing problem, the main contribution of
this work is the analysis of the impact of loading constraints in the routing and how they
should be considered in the planning. The numerical experiments made it possible to de-
rive general rules for the influence of loading constraints. This work resulted in the paper
presented below. The first two (main) authors contributed equally to the work. The PhD
candidate tackled the description of the overall problem, the development of the special-
ized packing problem and the B&C algorithm, the incorporation of the packing problem as
a repair mechanism within the LNS algorithm and the execution of the numerical experi-
ments.

e Manuel Ostermeier, Sara Martins, Pedro Amorim and Alexander Hiibner. Loading
Constraints for a Multi-Compartment Vehicle Routing Problem. Submitted to OR
Spectrum, 2017.

Chapter 5 is the first research work to consider the time-window assignment prob-
lem in an MCVRP environment and propose a product-oriented assignment, instead of a
customer-oriented one. The definition and formulation of this new problem, which despite
its practical relevance has never been studied before, is one of the main contributions of this
chapter, along with the ALNS algorithm to generate good quality solutions for the prob-
lem. Although the proposed solution approach considers different operators often used in
the ALNS literature for different vehicle routing problems variants, new operators capable
of coping with time-window assignment and soft constraints needed to be deployed. We
called daily operators to the first group of operators from the literature, which focus on
the routing aspects of the problem, and weekly operators to the new operators developed to
align the time-windows consistently throughout the planning horizon. This work highlights
the operational impact that the delivery plans have on the stores operation and reiterates the
importance of a consistent planning. The PhD candidate was the main author of the corre-
spondent research article, mainly contributing to the problem definition, the development
of the ALNS algorithm, the computational tests and respective results analysis.
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e Sara Martins, Manuel Ostermeier, Pedro Amorim and Alexander Hiibner, Bernardo
Almada-Lobo. Product-Oriented Time-Window Assignment for MCVRP. 7o be sub-
mitted to European Journal of Operational Research, 2017.

These last two works also helped filling some of the gaps identified in Chapter 2. In
the grocery distribution the retailers DCs are segregated in different temperature zones,
which are considered in the distribution planning as separate facilities that need to be vis-
ited although they are often within the same location. This is one of the cases where more
consolidation effects can be achieved by performing milk-run deliveries, i.e. performing
multiple pick-ups before the deliveries. The application of MCVRP to the grocery distri-
bution allows to decide in which cases is advantageous to perform direct-shipments with
products from only one temperature range or in which cases is better to perform milk-run
deliveries with products from multiple temperature ranges. Furthermore, different types of
MCVs can be used for transportation. These works considered MCVs with flexible com-
partmentalization, but others can be used with more strict sets of compartments. This last
type of vehicles, as the single-compartment ones, are less flexible but also less expensive
than the flexible MCVs. Therefore, further extensions to the MCVRP would integrate the
selection of the optimal fleet mix. Moreover, the packing problem proposed in Chapter
4 could be adopted for less flexible MCVs, but a higher number of infeasible solutions
could be reached, impacting more the routing cost. Additionally, the integration of routes
from farther cross-docking facilities would help closing other gaps described in Chapter 2,
as few works tackle the three types of delivery modes jointly, namely the direct-shipment,
cross-docking and milk-run. Furthermore, there is a lack of literature concerning MCVRPs
across multiple periods. Chapter 5 goes in this direction, tackling a MCVRP with a multi-
period setting and including consistent delivery plans in terms of time-window assignment.
Regarding consistent deliveries, further studies could be conducted to better understand
whether a consistent delivery mode type influences the DCs and store operations. For the
stores a consistent time delivery might suffice, regardless of the delivery mode performed.
However, for the DCs a daily change of the delivery modes performed (e.g. one day it has
to consolidate products from other DC and on the other day it does not) might trigger inef-
ficiencies in the operation. Other researches on MCVRP with multi-period settings could
also be fostered, such as the definition of the delivery patterns. With MCVs, more frequent
deliveries of smaller size from different temperature ranges can be performed, thus en-
abling a reduction of inventory at the stores. Besides extending the MCVRP, another field
for future research is the development and comparison of alternative solution approaches
for MCVRPs, such as branch-and-price or genetic algorithms.

Overall, this thesis contributes to the current literature on retail distribution planning. It
covers some of the opportunities found in the literature, bridging gaps between research
and practice. The four research papers developed during the PhD are presented in the
following chapters.
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Abstract In the retail industry, there are multiple products flowing from different dis-
tribution centers to brick-and-mortar stores with distinct characteristics. This industry has
been suffering radical changes along the years and new market dynamics are making dis-
tribution more and more challenging. Consequently, there is a pressure to reduce shipment
sizes and increase the delivery frequency. In such a context, defining the most efficient way
to supply each store is a critical task. However, the supply chain planning decision that
tackles this type of problem, delivery mode planning, is not well defined in the literature.
This paper proposes a definition for delivery mode planning and analyzes multiple ways
retailers can efficiently supply their brick-and-mortar stores from their distribution centers.
The literature addressing this planning problem is reviewed and the main interdependen-
cies with other supply chain planning decisions are discussed.

Keywords Retail - Delivery Mode Planning - Distribution - Consolidation

2.1. Introduction

This research focuses on retailers’ supply chains (SCs). These SCs have processes that are
more controlled by the manufacturers, related to the production phase, and other processes
more controlled by the retailers concerning the positioning of the products close to the final
customers (de Jong and Ben-Akiva, 2007).

In the past, retailers were merely simple stores that passively received products from
manufacturers according to their demand forecast. Nowadays, larger retailers have their
own distribution centers (DCs) (Kuhn and Sternbeck, 2013) and control, organize and

*INESC TEC and Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
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manage the flow of products through the SC (Fernie et al., 2010). In addition, retail-
ers are adopting multi-channel strategies that present diverse alternatives to buy and take
their products to final customers. These strategies make the product mix to be distributed
through the traditional channel (brick-and-mortar stores) more and more heterogeneous and
dynamic. Despite the increasing online shopping trend, brick-and-mortar (B&M) stores
still account for the majority of the retailers sales. Moreover, to be closer to their cus-
tomers, every year retailers open new stores with distinct characteristics (such as store
size, product assortment and net sales) in new locations that need to be incorporated into
their overall distribution planning. For these reasons, since the distribution in the different
channels is very distinct, this paper focuses on the retail distribution to B&M stores.

In many companies, the transportation of products accounts for one to two thirds of
the global logistics cost (Hosseini et al., 2014b). Although most of the retailers contract
common carriers to perform their transportation activity, they still want to manage how
distribution is planned and executed. The supply of B&M retail stores greatly impacts the
final customer service level. For instance, if a vehicle delays its arrival at the store, there
may be a stock-out due to insufficient time to refill the shelves (Corsten and Gruen, 2003).
Moreover, in grocery retail, it is also very important to manage the distribution to ensure the
quality of the product, which may be perishable (Akkerman et al., 2010; Rong et al., 2011;
Amorim and Almada-Lobo, 2014). Therefore, retailers might have their own fleet or, most
commonly, contract transportation services from a common carrier that will transport the
products, similarly to a full-truckload (FTL) contract. Less-than-truckload (LTL) contracts
are more commonly used by retailers for online distribution of small deliveries.

In such context, how should retailers use their resources to plan the flow of products
from different DCs to B&M stores with distinct needs? This is the research question that
this paper wants to analyze. Delivery mode planning (DMP) is the planning decision used
in this study to address this problem. The DMP defines how the products should flow
throughout the SC, specifying which delivery modes should be used (for instance, direct-
shipment, cross-docking or milk-runs). In other words, it prescribes through which facili-
ties products should follow to reach a certain store.

The literature is inconsistent in defining the DMP and the different types of delivery
modes. Besides the distinct terminologies associated with this decision, the different terms
used can also be related to other types of problems. Therefore, the aim of this paper is
threefold: (i) discussing and defining DMP, (ii) analyzing the multiple ways retailers can
efficiently plan the supply of their B&M stores from their DCs, and (iii) identifying the
main SC planning decisions that impact or are impacted by the DMP.

The remainder of this paper is organized as follows: Section 2.2 exposes the inconsis-
tency found in the literature regarding the DMP and proposes a formal definition for this
planning decision. The delivery modes available are also described. Section 2.3 addresses
the main interdependencies between the DMP and other supply chain planning (SCP) de-
cisions, while section 2.4 organizes the papers that address the DMP problem. Finally, the
last section concludes the discussion and identifies some research opportunities.
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2.2. Defining Delivery Mode Planning

The expression “delivery mode" is not consistent in the literature to describe the distinct
ways products flow from their origin to their destination. Analyzing only a direct delivery
from a origin to a destination, which is the simplest type of delivery mode to be performed
and the most frequently mentioned in the literature, delivery mode can be referred to in
different ways:

e delivery mode (Liu et al., 2003; Kuhn and Sternbeck, 2013; Holzapfel et al., 2016);

transport mode (Eskigun et al., 2005);

shipment mode (Wang et al., 2016; Bortolini et al., 2016);

transportation network (Chopra and Meindl, 2001; Du et al., 2007; Hosseini et al.,
2014b);

distribution path (Fleischmann, 2008).

However, different authors also refer and relate some of these terms to other types of
decisions. For example, the expressions “transportation and shipment mode" are very often
used in transportation problems to describe the decision of using a private fleet, FTL, LTL
or a parcel carrier (Chu, 2005; Caputo et al., 2006; Nguyen et al., 2014) or if the transport
should be done by road, rail, air or water (de Jong and Ben-Akiva, 2007; Waller et al.,
2008; Ahumada and Villalobos, 2011; Manzini et al., 2014). Nevertheless, the designation
“delivery mode” seems to be the most consistent in the literature and only a few times
associated with other types of decisions.

2.2.1 Decision levels of Delivery Mode Planning

The DMP is mainly related to Master Planning (cf. Figure 1 in which the DMP scope is
highlighted by a red dashed box). Nevertheless, depending on the level of analysis, the
delivery modes available are different and in different scale.

Configuration Strategic procurement Strategic warehouse Strategic distribution . .
(Long-term) logistics design planning Strategic outlet planning
I
! Product segmentation and allocation Master category planning
Master planning
(Mid-term) Inbound planning . . R ) .
Production planning Distribution planning Instore planning
Execution planning Order planning Production scheduling Transport planning Instore fulfillment

(Short-term)

Figure 2.1: Retail Supply Chain Planning matrix adapted from Hiibner et al. (2013)

If the DMP analysis goes end-to-end from suppliers to customers, considering the links
between distinct echelons of the SC, then the DMP should be positioned at the top of master
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planning as proposed by Hiibner et al. (2013). This planning problem decides whether the
products should flow directly from suppliers to customers or delivered to a facility of the
company (for instance, storage or cross-docking DC) for further delivery to the customers,
as illustrated in the Figure 2.2 (higher tactical level). Therefore, in order to solve the
resulting planning problem, it is necessary to analyze the trade-offs between procurement,
storage, inventory handling and transportation costs.

. ) ~ Suppliers Company facilities Customers
Higher Tactical (i.e., Manufacturers) (i.e., DCs as IFs) (i.e., B&M stores)

- A — —

Direct flow
from origins
to destinations

Indirect flow
=> from origins
—_ \ to destinations,
- passing an IFs
Lower Company facilities Company IFs Customers
Tactical Level (i-e., DCs) (i.e., DCs) (i.e., B&M stores)

(example for
distribution) => =>

Figure 2.2: Flow analyzed in the DMP at different levels of master planning

When the focus of the analysis is the flow of products between suppliers and the com-
pany facilities (procurement) or between those facilities and the B&M stores (distribution),
the DMP is positioned at the lower level of the master planning. In this case, the analysis to
be conducted requires more detail and is more associated with operational activities. At this
level, focusing in the distribution process, the DMP is tackled in the distribution planning
module (Hiibner et al., 2013). As illustrated in Figure 2.2 - lower tactical level, products
can flow directly from an origin (here already a company facility) towards the customers
or pass by an intermediate facility (IF). In this context, the origins are the retailers’ DCs,
the customers are the B&M stores and the intermediate facilities are additional DCs that
can be used for (de)consolidation. Both origins and IFs are controlled by the retailer. For
this DMP decision level, the products that should be delivered to the DCs, for storage or
cross-docking, and afterwards sent to the customers, are already defined.

2.2.2 Types of Delivery Modes

The demand of a B&M store can be satisfied through different delivery modes. When a
network uses more than one type of delivery mode it is called a hybrid or tailored net-
work (Chopra and Meindl, 2001; Guastaroba et al., 2016). In the literature, delivery modes
can be categorized as: direct-shipment, warehousing, cross-docking and milk-runs. Once
again, the definition of the delivery modes is not coherent in the literature. The distinct
characterizations used are presented next, and the advantages and disadvantages are out-
lined. This is summarized in Table 2.1.



Table 2.1: Characteristics of the delivery modes

Delivery mode type Scheme Description Advantages Disadvantages
Shorter response lead time that allows
The suppliers send the shorter inventory levels at the stores Total delivery lead time increases
Warehousing products to a storage (Tompkins et al., 1996; Waller et al., 2006)  (van Belle et al., 2012)
(Flow fr?m supplier DC, from where they Works like a buffer between supply and Higher inventory and handling costs
sites) are a.fterwards demand (Tompkins et al., 1996) (Van Belle et al., 2012)
distributed.
Allows the consolidation of products
(Tompkins et al., 1996)
Beneficial for high value or high demand

Direct-shipment
(Flow from retailer DC
sites)

Stores are supplied by
each zone/location
independently

products (Mokhtarinejad et al., 2015)

Economic when an FTL is achieved
(Hosseini et al., 2014b)

Shorter transit time (Min, 1998)

Reduces the risk of delays (Min, 1998;
Mokhtarinejad et al., 2015)

Stores receive different product categories
separated (Sternbeck and Kuhn, 2014)

FTL might not be achieved for a single
store (Buijs et al., 2014)

Longer routes might be performed to
achieve FTL (Fleischmann, 2008)

Cross-docking
(Flow from retailer DC

Products are received in
an intermediate facility
and sent as early as
possible to the

Improves truck utilization (Liu et al., 2003;
Van der Vlist and Broekmeulen, 2006;
Van Belle et al., 2012)

Allows for the consolidation of shipments
(Ma et al., 2011; Van Belle et al., 2012;
Sternbeck and Kuhn, 2014)

Involves additional material handling
(Van Belle et al., 2012; Hosseini et al.,
2014b; Ladier and Alpan, 2016)

Requires coordination between the inbound
and outbound shipments (Van Belle et al.,
2012; Ladier and Alpan, 2016; Guastaroba

sites) fore fofhe etal., 2016)
ko) destination, with no or )
7 . Reduces transportation costs (Van Belle _ . .
o] low storage time. et al., 2012; Hosseini et al., 2014b) Requires investments in information
" ’ " systems (Guastaroba et al., 2016)
Iieduce;tthe Eur{l{berdolitrﬁckzag?zals to the Higher transit time and distance for each
stores (Sternbeck and Kuhn, ) shipment (Lapierre et al., 2004)
No need to send multiple independent LTL
Milk A vehicle picks up to stores (Hosseini et al., 2014b)
ilk-run .
(Flow from retailer DC pro.d.u.cts from different A jjows for more frequently deliveries Is only beneficial for closer facilities
sites) facilities and then (Hosseini et al., 2014b) (Hosseini et al., 2014b)

delivers them to stores.

Reduces the number of truck arrivals to
stores (Sternbeck and Kuhn, 2014)

Legend:

/A Supplier

] Origin (DC)

O Destination (B&M Store)

m Intermediate Facility (DC)
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2.2.2.1 Warehousing

Warehousing delivery indicates that instead of the products being sent from the suppliers
to the stores, they are delivered from the retailer DCs from their stock. The DCs are re-
sponsible for receiving products from suppliers, storing them and afterwards picking them
up according to the customers’ orders, building up a shipment to be delivered (Van Belle
et al., 2012; Buijs et al., 2014).

By resorting to warehousing, the retailer has the products stored closer to the stores
and therefore, the response lead time to an order is shortened (Tompkins et al., 1996).
This allows the stores to reduce their inventory levels (Waller et al., 2006), but it increases
the inventory and handling costs at the DCs (Van Belle et al., 2012). Additionally, since
products from different suppliers are stored in the same place, distinct order consolidations
can be performed (Tompkins et al., 1996). With this delivery mode, the in-transit time of
a product (from suppliers to stores) is increased (Van Belle et al., 2012) and therefore, it is
only beneficial for products with a long shelf life.

2.2.2.2 Direct-Shipment

Direct-shipment deliveries are the simplest delivery mode. Each origin independently dis-
tributes the products to their destinations. According to Liu et al. (2003), the vehicles can
visit one or more destinations in the same route. However, some authors consider that the
vehicles can only visit one destination directly and then return (Gaur and Fisher, 2004;
Eskigun et al., 2005; Galbreth et al., 2008; Hosseini et al., 2014b). This paper considers
the definition used by Liu et al. (2003), being the main point of this delivery mode that no
intermediate facilities are visited.

This is the delivery mode with less risk of delays because it is not necessary to wait
for the arrival of other orders to be aggregated. Therefore, it is more beneficial for high
value products (Mokhtarinejad et al., 2015). The disadvantage is that products allocated to
distinct facilities are delivered at the destination at different points in time, which increases
the number of vehicle arrivals (Sternbeck and Kuhn, 2014). Additionally, in case the ship-
ment size to each destination is small, it might be difficult to achieve full-truckloads (FTL).
This leads to the consolidation of different destinations in the same vehicle and results in
longer routes (Lapierre et al., 2004).

2.2.2.3 Cross-docking

In a delivery via cross-docking, shipments from different origins are consolidated with
others for the same destination, similar to warehousing, but with no or low storage time
(Van Belle et al., 2012; Ma et al., 2011). Other terminologies are found in the literature,
such as hub-and-spoke (Liu et al., 2003) and transshipment (Langevin and Riopel, 2005).
According to Van Belle et al. (2012), there are different types of cross-docking based on
how the process is performed, namely: (i) the number of touches made to the shipment, (ii)
the number of stages and (iii) the interchangeability of orders.

A cross-docking delivery can also be used for deconsolidating shipments. In this case,
one origin sends large shipments to an intermediate facility where they are broken into
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smaller ones and sent separately to their destinations. This procedure is performed when
the origins are far from the destinations and the order size of the shipments for each des-
tination is small. In this case, the intermediate facility is located in the last miles of the
distribution.

This delivery mode makes it possible to improve vehicle utilization and to reduce trans-
portation costs (Van der Vlist and Broekmeulen, 2006; Van Belle et al., 2012; Hosseini
et al., 2014b). To accomplish that and to enable a successful implementation, the inbound
and outbound vehicles need to be coordinated. This requires significant investments in
an information system (Guastaroba et al., 2016). Compared to direct-shipment delivery,
it requires additional material handling because the shipment needs to be moved from the
inbound to the outbound vehicles, with a possible short storage in between. The prod-
uct in-transit time increases in comparison with direct-shipments (Hosseini et al., 2014b).
However, because economies of scale are allowed both in the inbound and outbound vehi-
cles, it is possible to make deliveries more frequently (Liu et al., 2003).

2.2.2.4 Milk-Run

The milk-run delivery mode got its name from the traditional system of milk distribution
and sales in Western culture, in which the milkman delivered bottles of milk to each cus-
tomer and collected the empty bottles. This method became very popular in the manufac-
turing industry and the manufacturers started creating a collection of routes to the suppliers
(Hosseini et al., 2014b; Lin et al., 2015). A vehicle is sent from the manufacturer’s facility
to visit different suppliers, collect the products and return to the origin location (Brar and
Saini, 2011). Therefore, the milk-run term often refers to pickup routes (Brar and Saini,
2011; Hosseini et al., 2014b; Lin et al., 2015).

de Jong and Ben-Akiva (2007) and Giinther and Seiler (2009) distinguish inbound and
outbound milk-runs. The inbound milk-run consolidates shipments from different origins,
which are collected in sequence, to be delivered to the same destination. On the other hand,
the outbound milk-run consolidates shipments at one origin to be delivered to different
destinations. Basically, they define the milk-run as a route that can be used for pickups
(inbound) or deliveries (outbound). However, in some studies the milk-run term is simply
referred to as a route (Liu et al., 2003; Galbreth et al., 2008; Agustina et al., 2014) and in
others as routes that visit multiple origins and destinations (Berman and Wang, 2006; Buijs
et al., 2014). In this paper, milk-run is defined as a special variant of a pickup and delivery
routing problem where all collections have to be performed before starting the deliveries,
making it possible to smooth the operations management. Pickup and delivery routes may
also be used by some retailers, but normally as a way to collect products to be returned
to the distribution center and not to be delivered on that route. This type of problem is
addressed more at the operational level and is not in the scope of this work.

The milk-run is normally used when the origins are close to each other, otherwise the
transportation costs would increase (Hosseini et al., 2014b). Moreover, it can be beneficial
for destinations far away from the origins (Giinther and Seiler, 2009). This indicates that
the design of the SC network has a great impact on the benefit of the delivery mode types
(later discussed in Section 2.3.1). With a milk-run delivery, the origins do not need to wait
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until an FTL is achieved to perform the delivery or send an LTL separately when the ship-
ments are small. Therefore, it makes it possible more frequent deliveries (Hosseini et al.,
2014b). As in the cross-docking delivery, it allows to consolidate shipments from different
deliveries. However, while in the cross-docking process the shipments from distinct ori-
gins are sent to an IF and can be rearranged and loaded into the vehicle according to the
sequence of deliveries. This is not possible in the milk-run process. The execution of the
milk-run does not make it possible to rearrange shipments. For this reason, the sequence
of the pickups and how the shipments are loaded into the vehicle need to take into consid-
eration how the deliveries will be performed (later discussed in Section 2.3.2).

For both the cross-docking and milk-run delivery modes, if the products have distinct
transportation requirements, the vehicles used must ensure them. For instance, in the gro-
cery retailing, it is necessary to take into account different temperatures. This suggests that
the type of vehicles used might restrict the type of consolidation performed and, conse-
quently, the delivery mode. This interdependency will be discussed in Section 2.3.

Note that the delivery modes presented are not mutually exclusive. A retailer can, for
example, resort to warehousing in the connection with the suppliers and perform direct-
shipments from their DCs to their stores. Warehousing is the only delivery mode that is
only analyzed at the higher tactical level of DMP, since it is related to the flow between
suppliers and stores. The remaining delivery modes can be analyzed from both levels,
depending on the flow/connection under analysis (see Figure 2.2).

2.2.3 Impact of consolidation rules on Delivery Mode Planning definition

Based on the previous discussion about the types of delivery modes and the decision levels
of DMP, the following definition is proposed for this planning problem:

“Delivery mode planning (DMP) is a decision that outlines the rules for (de)consolidation
and transportation between origins and destinations, taking into consideration the bundling
effects of the distinct destinations and products supplied, the facilities locations established
and the resources available.”

Distinct rules for (de)consolidation can be applied in DMP and they will dictate which
delivery mode types are more advantageous to use. The replenishment and shipment con-
solidation are some of the most important issues in today’s SCP (Giirbiiz et al., 2007; Waller
et al., 2008).

Shipment consolidation is a procedure that combines different orders in a single ship-
ment. It promotes FTLs, but the vehicles can only depart when all orders associated are
prepared and loaded. Giimiis and Bookbinder (2004) describe different types of consoli-
dation. A time-based approach is when all the orders processed in a given period are ag-
gregated in a shipment. This is the case of pharmaceutical distribution, for instance, where
the pharmacies place many orders to the distributors throughout the day. Afterwards, these
orders are aggregated and released for picking before the vehicles leave (Martins et al.,
2017). Another approach is defining the shipment quantity that triggers the dispatch of
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the order preparation. Higginson and Bookbinder (1994) and Higginson and Bookbinder
(1995) analyze these two types of consolidation in more detail.

Each of the previous consolidation types can additionally be associated with a spatial
consolidation and/or a product consolidation (Giimiis and Bookbinder, 2004). The spatial
consolidation aggregates orders from customers located close to each other and, subse-
quently, requires the definition of a cost-minimizing routing (Fleischmann, 2008). When
customer order sizes do not make it possible to achieve FTL, economies of scale can be
reached by combining orders from different customers in the same vehicle. Spatial consol-
idation can be executed in all the delivery mode types, especially for the direct-shipment
case where achieving FTL for a single destination is more difficult. Additionally, different
products can also be aggregated in the same shipment, which is designed as product consol-
idation. If the products are assigned to the same facility, it is already common to aggregate
them in a single order for a customer. However, the challenge is deciding if they should be
aggregated when they are not in the same location. For this reason, this consolidation type
needs to be analyzed more carefully when cross-docking and milk-run delivery modes are
in question. In these cases, consolidation costs regarding additional material handling and
transportation need to be considered.

After a consolidation, a deconsolidation process might occur. The deconsolidation
breaks down large shipments into smaller ones to be sent to separate destinations. While
consolidation can be performed both in the origins and in the IFs to combine shipments,
the deconsolidation process is only performed in the IFs. Therefore, it is associated with
a cross-docking delivery mode and the deconsolidation process is normally performed in
the last miles of the distribution. Note that a deconsolidation is not mandatory every time
a consolidation process occurs.

The consolidation possibilities, and consequently the delivery mode possibilities, are
limited by the delivery patterns defined. The delivery pattern decision is defined in the dis-
tribution planning (see Figure 2.1) and determines the frequency of supplies and the days
of replenishment to the B&M stores. Additionally, the location of the retailer’s facilities in
the network can leverage distinct delivery modes. As previously discussed (Section 2.2.2),
some delivery modes are more suitable for closer DCs and others for distant stores. More-
over, depending on the products’ transportation requirements, distinct resources might be
needed to process them. These conditions lead to the main interdependencies the DMP has
with other SCP decisions, which will be discussed in the next Section.

2.3. Delivery Mode Planning main interdependencies

The definition proposed for DMP states that this planning decision has to be defined taking
into consideration the bundling effects of the distinct destinations and products supplied,
the facilities locations and the resources available (see Section 2.2.3). The bundling ef-
fects of the distinct destinations and products supplied are affected by the allocation of the
products and stores to the DCs and the delivery patterns defined. Additionally, the loca-
tions of the DCs can leverage different delivery mode types, which can also be restricted
by the type of vehicles available to perform the transportation (see Section 2.2). These
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interdependencies link the DMP mainly to three other decisions of SCP that restrict or are
restricted directly by it: (i) the SC network design and product-DC-store assignment, (ii)
the selection of transportation means and (iii) the definition of delivery patterns.

Configuration Strategic procurement Strategic warehouse design ~ Strategic distribution planning
(Long-term) logistics

Strategic outlet planning

* SC network design (3.1)

o

roduct segmentation and allocation

. ) ) Master category planning
« Assignment product-DC-store (3.1) « Selection of transportation means (3.2)

Master planning

(Mid-term) 1nbound plannin i Distribution planning
P 9 Production planning ! + Delivery mode planning Instore planning
| + Delivery pattern definition (3.3)
Execution planning Order planning Production scheduling H Transport planning Instore fulfillment

(Short-term)

Figure 2.3: Supply Chain Planning matrix adapted from Hiibner et al. (2013). DMP main
interdependencies are highlighted with a red dashed box.

2.3.1 SC Network Design and product-DC-store assignment

The SC network design can leverage distinct types of delivery modes depending on how
it is defined and, therefore, impact the DMP. The location of the retailer facilities is a
long-term decision that it is planned at strategic level and is connected to the allocation
of stores to the DCs defined in the master planning (see Figure 2.3). If all the products
are allocated in each DC, only direct-shipments or delivery via cross-docking can be used,
with the latter being used for deconsolidation in the last miles. On the other hand, if the
products are allocated to distinct DCs but they are close to each other, a milk-run delivery
mode can also be an option, as well as a cross-docking for consolidation.

There are various research areas that address location and distribution decisions to-
gether. One example is the location-routing problems that combine the location and rout-
ing decisions (Aykin, 1995; Nagy and Salhi, 2007; Drexl and Schneider, 2015). However,
this type of problem does not consider IFs. The aim is to locate the origin facilities taking
into consideration the routing requirements to cover all destinations. Another example is
the location and routing scheduling problems with cross-docking (Mousavi and Tavakkoli-
Moghaddam, 2013; Mousavi et al., 2014). In this case, the location decisions focus on
cross-docking facilities. However, the flow must pass through all these facilities, resulting
in a pure network.

Gilimiis and Bookbinder (2004) were the first to incorporate consolidation effects into
a location-distribution model with cross-docking facilities. They analyze a hybrid network
with distinct structures, considering one to multiple suppliers and products and multiple
seed customers. Each seed customer is a group of customers that the authors route outside
the model. Their goal is to decide how to supply each product to each seed customer
and the number and location of the cross-docking facilities to be used. The products have
distinct costs and can be supplied by different delivery modes. The problem is solved with
an exact method.
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More recently, Mokhtarinejad et al. (2015) tackled the location decisions jointly with
the DMP for a hybrid network with a one-to-one structure. A scheduling sub-problem is
included and the cross-docking facilities only have an inbound door. This condition makes
the vehicles stay in queue until the door is free for unloading. Mokhtarinejad et al. (2015)
propose a three-stage method to solve the problem. Their goal is to minimize the trans-
portation costs, which differ from direct-shipment to cross-docking, and traveling time.

2.3.2 Selection of transportation means

The selection of transportation means is a tactical decision, from master planning (see
Figure 2.3), and is most commonly referred to as the decision of selecting a transportation
mode amongst truck, rail, air and water. It is associated with global supply chains that
have to flow products worldwide (Vidal and Goetschalckx, 2001; Ahumada and Villalobos,
2011). In the retail industry the transportation of products between DCs and stores is
normally ensured by truck, since the DCs are positioned strategically close to the B&M
stores.

Considering the truck transportation as a given, the selection of transportation means
chooses the type of truck to be used. Distinct types of vehicles impose different limitations
to the way the distribution is performed. Naturally, the type of vehicle can restrict the types
of delivery modes that can be chosen. For instance, if multi-compartment vehicles are not
used, products that need to be physically separated cannot be consolidated in the same
delivery, whether it is by cross-docking or milk-run. Therefore, the decision regarding the
means of transportation used impacts the range of possible delivery modes.

The truck attribute that is most commonly used as a distinctive factor in the litera-
ture is the loading capacity, particularly in vehicle routing problems with heterogeneous
fleets. Another distinction is multi-compartment versus single compartment vehicles. This
characteristic often appears in problems regarding waste or glass collection, where the ma-
terial has to be separated according to its characteristics (Henke et al., 2015; Oliveira et al.,
2015). In these problems, the truck can load different materials at each pickup point. Be-
cause loading is made from the top of the truck, the sequence by which it is made is not
important. However, there are cases in which it is. In grocery retailing, to transport prod-
ucts with distinct temperature requirements, it is necessary to use a multi-compartment
vehicle that secures those temperatures in the different compartments. However, in this
case the vehicles are often loaded and unloaded by the rear of the truck. Therefore, the
sequencing of the loading will restrict the sequencing of the unloading, depending on the
compartments’ division. There are distinct types of trucks that allow for more flexibility in
the arrangement of compartments than others. In trucks with longitudinal divisions (Figure
2.4a), the products cannot be unloaded from inside compartment A unless the others are
emptied first. On the other hand, the trucks with transversal divisions (Figure 2.4b) are
more flexible, as products from different compartments can be unloaded simultaneously.
Note that more flexibility can be added if the truck can be divided into more compartments
of distinct sizes and shapes.

Pollaris et al. (2015) review vehicle routing problems with loading constraints. The
authors describe the various types of loading constraints that can be found and underline
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a) b)

Figure 2.4: Example of multi-compartment vehicle types. a Longitudinal divisions and b
transversal divisions

the importance of considering them in routing problems. Sequence-based loading is one
of the loading constraints associated with the location of the items inside the vehicle. The
authors state that it is commonly used in vehicle routing problems. However, all the papers
that consider it rely on single-compartment vehicles. Moreover, whether it is a single or
multi-compartment vehicle, if the products to be loaded are in different locations, it is
necessary to analyze both the sequence-based loading and unloading (Ostermeier et al.,
2016).

2.3.3 Definition of delivery patterns

The bundling effects that can be achieved in distribution planning, whether related to the
consolidation of stores or products, is limited by the delivery patterns defined. The de-
livery pattern is a decision of distribution planning (see Figure 2.3) and determines the
replenishment frequency of the stores, for instance once or twice a week, and the days of
replenishment, such as every Monday and Thursday (Kuhn and Sternbeck, 2013). It is
defined for each store and can be different for distinct product segments.

The selection of a delivery pattern allows the retailers to organize their operational
activities more smoothly, since it defines exactly the days when the deliveries will be made.
Therefore, the coordination between flows and operational planning, such as workforce
scheduling at the DCs and stores, is simplified (Gaur and Fisher, 2004; Schoneberg et al.,
2010).

The more frequent the deliveries, the more fractionated the shipments to distribute
will be. As a result, it is more difficult to achieve an FTL for a given store and spatial
consolidation counteracts that. However, only stores with deliveries scheduled for the same
day can be consolidated. A similar reasoning is applied for product consolidation. Note
that the patterns might not be exactly equal but can match in some days. Hence, the delivery
patterns defined for each store-product limit the consolidation possibilities in a given day
and consequently the DMP (Schoneberg et al., 2010).

Kuhn and Sternbeck (2013) conducts an exploratory study on the delivery pattern
strategies used by the retailers. Most retailers interviewed by the authors implement a
strategy in which each store and product segment has a specific delivery pattern. In such
case, different characteristics have to be taken into consideration regarding the products,
such as perishability. In the case of stores, it is necessary to take into consideration other
aspects such as sales volume and backroom size (Kuhn and Sternbeck, 2013). Most retail-
ers recognize that this planning decision is based on rules of thumb or only focuses on the
transportation aspect.
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The delivery pattern decision can be seen as an inventory routing problem (IRP). Re-
search on IRPs has been growing since the 1980s, especially because of the increasing
trend of the vendor management inventories (VMI) model. In the VMI, the suppliers have
the power to decide when and by how much to supply their customers, ensuring that they
have the agreed stock-outs.

Bertazzi and Speranza (2012) present an introduction to the IRP and describe its main
characteristics in terms of: (i) shipping time and planning horizon, (ii) structure and objec-
tive of the distribution policy and (iii) decision space. They classify the decisions of an IRP
in two ways. Decisions over time concern only the problems where the routes are fixed and
the aim is to decide when and by how much to supply the customer. In case the routing
is also included, the problem incorporates decisions over time and space. In their review,
Bertazzi and Speranza (2012) focus on the first case. The previous papers by Bertazzi et al.
(2000) and Bertazzi and Speranza (2002) tackle the problem of the IRP with decisions over
time considering delivery frequencies only.

Gaur and Fisher (2004) classify the IRP into strategic, tactical and infinite horizon. The
purpose of the strategic IRP to define the fleet required to perform the supplies at the min-
imum cost and the tactical IRP considers the use of a fixed fleet over a finite time horizon.
The tactical IRP decides at which period the customers should be supplied considering
transportation costs, target service levels, inventory levels, randomness of demand and re-
source constraints. The infinite time horizon IRP aims at minimizing the transportation,
ordering and inventory holding costs, taking into consideration constant demand rates and
unrestricted fleet. In their work, Gaur and Fisher (2004) address the vehicle routing and
delivery scheduling problem of a retailer operating in the Netherlands. Their goal is to
define of a weekly delivery schedule for each store and to determine routes at a minimum
cost.

There are few papers on IRP that explicitly consider delivery frequency as a decision
variable. Moreover, the ones that do consider it focus on inventory and transportation
costs without taking into account other interdependencies in the SC. The study by Kuhn
and Sternbeck (2013) identifies the main interdependencies between the delivery patterns,
transportation, DC operation and instore logistics planning.

Sternbeck and Kuhn (2014) address the delivery pattern problem for grocery retailers,
incorporating the interdependencies previously discussed. Their model considers a pallet
as unit of analysis and that each store can only be supplied once a day. It is assumed that
distinct product segments delivered on the same day are delivered together. The authors
propose a decision model that selects the stores’ delivery patterns from a set of pre-defined
patterns. It is assumed that the transportation is made by a 3PL and, therefore, the related
costs are only dependent on the distance between the DCs and the stores and the volume
transported.

Holzapfel et al. (2016) extend the work by Sternbeck and Kuhn (2014) to include spa-
tial consolidation effects in their model. They consider the bundling effects of supplying
distinct stores in the same route if they have the same day of delivery. The aim is to mini-
mize the total costs of the entire retail distribution chain. It is considered that the retailer is
responsible for the entire distribution process and, therefore, optimizing routes is relevant.
The authors propose a sequential solution procedure.
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2.4. Delivery Mode Planning Problems

2.4.1 Characterization of the problems reviewed

As mentioned before, this work focuses on the distribution of products from the retailers’
DCs, whether they are used as warehousing or cross-docking, to the B&M stores. There-
fore, the literature review presented below focuses on the DMP problems that address the
distribution process in particular, disregarding those that address the integration with pro-
curement and warehousing processes. Moreover, only problems that make it possible to
choose more than one delivery mode (hybrid networks) are analyzed, contrary to pure net-
works where only one delivery mode can be chosen.

The DMP can be analyzed for different SCs. Buijs et al. (2014) distinguish three SC
configurations: (i) few-to-many, (ii) many-to-few and (iii) many-to-many. The first focus
on the retail industry where a reduced number of DCs supply a high number of stores.
In the second configuration, the emphasis is on the manufacturer context where multiple
suppliers satisfy a smaller number of manufacturing facilities. Most research on DMP
deals with this context. The last is related to the parcel delivery industry where orders are
sent from multiple origins to multiple destinations. This section reviews all the literature
concerning the DMP problem regardless of the industry, since inferences can be made to
the retail context.

The way the retail B&M stores are supplied has a great impact on their service level.
Due to the control retailers want to have over their SC, a private fleet of vehicles or a
common carrier under the contract of dedicated FTL is chosen often to execute their trans-
portation. Min (1998) discusses some of the advantages and disadvantages of using a
private fleet or a normal contract with a carrier. A private fleet allows more control over
transport operations and the vehicles can be used for temporary storage and advertisement.
Additionally, using a private fleet makes the operation more responsive and flexible (Min,
1998). Hiring a dedicated service from a carrier to perform the transportation also entails
the advantages of a private fleet.

Caputo et al. (2006) describe the difference between an FTL and an LTL service and
identify the cost structures normally used for each case. While the cost of an LTL service
is only dependent on the quantity sent and the carrier fees, the cost of an FTL depends on
the consolidations (spatial) made in each vehicle. The cost functions used in a problem
analysis should give an accurate representation of the real life costs (Giinther and Seiler,
2009). However, the real carrier rates can be very complex and difficult to analyze (Crainic
and Laporte, 1997). The rates represent a contract between two parties taking into consid-
eration a given set of specifications that try to cover possible deviations from the agreement
(Giinther and Seiler, 2009). For this reason, most papers reviewed simplify the calculation
of transportation costs. Most cost structures used are very simple, with fixed costs per
connection origin-destination or variable costs related either to the quantity transported or
kilometers made. The last case is only present in the papers that include the routing prob-
lem (see Section 2.4.2). Most of the models reviewed assume that the transportation is
made by a carrier or third party logistics provider (3PL) and, therefore, do not consider the
routing problem (see Section 2.4.3).
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Guastaroba et al. (2016) review papers concerning transportation planning with inter-
mediate facilities (IFs). Without doing it explicitly, the authors’ review addressed the DMP
for pure and hybrid networks. Therefore, the literature presented in this section extends
their work, putting more emphasis on this planning problem. As in their work, the SC
network structure analyzed in the papers reviewed is characterized as one-to-one (1-1),
when the demand is defined for each pair origin-destination, one-to-many (1-M), which
is similar to the previous but the distribution network considered has many destinations,
and many-to-many (M-M), when distinct origins can supply the same destination with the
same product. Table 2.2 compiles the abbreviations used in this review to characterize the
problems.

Table 2.2: Summary of the abbreviations used in the review

Delivery mode Fleet Costs

FTC: Fixed transportation cost
DS: Direct-shipment VTC: Variable transportation cost
. HM: Homogeneous .

CD: Cross-docking .. HC: Holding cost

. L: Limited S
MR: Milk-run UL: Unlimited C: Consolidation cost

' PCTW: Penalization cost for

time-windows

HT: Heterogeneous

The review is divided into the studies that include the routing problem and those that
do not (Section 2.4.2 and 2.4.3, respectively). Table 2.3 categorizes the papers reviewed
according to the different attributes. Information about the solution methods (exact or
heuristic approaches) used in the different problems and if the problem is modeled with
time dynamism or not are also stated.

As it can be observed in Table 2.3, the DMP of hybrid networks has received more
attention recently and most literature focus on cross-docking networks (Van Belle et al.,
2012).

2.4.2 DMP with routing problem

The papers that incorporate the routing problem in the DMP problem normally use a trans-
portation cost based on the distance traveled, and sometimes add a fixed cost for each
vehicle used.

Liu et al. (2003) were the first to consider the planning of hybrid networks with the
routing problem. They consider a network where a set of suppliers have to visit a set of
customers and the decision is whether to make the deliveries directly or indirectly, passing
through an IF. The objective is to minimize the transportation costs associated with the
distance and the authors propose a heuristic procedure to solve the problem. It starts by
solving the problem considering a pure network and afterwards it makes iterative improve-
ments by changing pairs supplier-customer from one delivery mode type to the other.

Van der Vlist and Broekmeulen (2006) do not explicitly include the routing problem,
but incorporate in their analysis a parameter that expresses the efficiency of the routing and
the cost per stop. They use a formula that identifies the break-even point between direct-
shipment and cross-docking deliveries, considering the cost of an FTL between facilities
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Deli k Ti luti
Paper clivery Routing Networ Authors’ problem definition  Fleet Operational considerations Costs lm? Solution
mode structure dynamism method
. . . HM ; .
Liu et al. (2003) DS ;CD Yes 1-1 Mixed truck delivery system UL - VTC No Heuristic
Lap(l;gg ‘St al. DS ;CD No 1-1 Distribution network design - - - No Meta-Heuristic
Berman and Wang DS;CD No 1-1 Distribution strategy HM:; Consolidation time FTC ; HC No Exact Method
(2006) UL
Van der Vlist and HM -
Broekmeulen DS ;CD No 1-1 Transport consolidation ’ - FTC No Heuristic
UL
(2006)
Shipment consolidation . ..
. e HM ; C tated ; TW f VTC ; HC .
Li et al. (2006) DS ;CD No M-M problem in distribution apzfc1. ae 0r1g1n§ . or No Meta-Heuristic
UL origins and destinations FTC
networks
Capacitated IF ; Earlier .
Galbreth et al. DS ;CD No 1-M - HT; supplies allowed ; Limited FTC ; VIC Yes Exact Method
(2008) UL . HC
shipments per customer
Giinther and Seiler DS : MR No 1-1 Operatlon.al transportation HT; Allows plc.:k.ups and del%ver%es ; VIC No Heuristic
(2009) planning problem UL  TW for origins and destinations
T i 1 f HM ;
Musa et al. (2010) DS ; CD No 1-1 ransponatl'on problem o ’ - FTC No Meta-Heuristic
cross-docking networks UL
0 Agrahari HT ;
Uster ?;8 | O)gra an DS ;CD No 1-1 Load-planning problem UL+’L CD with two IFs VTC No Heuristic
hi lidati HM ; i igins ; TW f FTC; VT
Ma et al. (2011 DS : CD No M-M Shipment cor?so idation and ; Capa!m'tated 0r1g1n§ ; .W or C; VTC No Meta-Heuristic
transportation problem UL origins and destinations HC
Vehicle routing problem with HT - Allows pickups and deliveries ; FIC : VIC
Dondo et al. (2011) DS ;CD Yes M-M cross-docking in supply chain UL’ TW for destinations ; service p CLFW Yes Exact Method
management time
Jewpanya and Cross-docking distribution ~ HM ; Capacitated origins : FIC ; VTC
Kachitvichyanukul DS ;CD No M-M ) g_ ) ’ Consolidation time ; TW for ) Yes Meta-Heuristic
planning UL .. L HC; C
(2012) origins and destinations
Santos et al. (2013)  CD ; MR No 1-1 Pickup and delivery problem  HM:; ; FTC No Exact Method
with cross-docking L
Hosseini et al. DS ;CD Yes Transportation problem of a HM ; ..
1-1 . - FTC N Meta-H t
(2014b) MR (MR) consolidation network UL © cla-tleunistie
. HT; C itated IF ; Possibility t VTC ; FTC
Holla (2015) DS ;CD No 1-1 Cross-docking problem apactiate OsSBULy to Yes Exact Method
L lease or rent trucks HC;C
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and the load to be sent directly and consolidated. The consolidated load is updated in an
iterative process.

Dondo et al. (2011) include a pickup and delivery routing problem in their model. The
network considered has one origin, a set of IFs and a set of customers. The customers
can be supplied from the origin or from an IF. The IFs are used as warehouses with target
inventory levels, but they can also be used as cross-docking facilities. A route that starts
at the origin can perform deliveries to the customers and pickups or deliveries to the IFs.
The routes starting at the IFs can only perform deliveries to the customers. A heteroge-
neous fleet of vehicles is considered with depots at different locations and each vehicle can
perform more than one route. The vehicles’ capacity is verified both in terms of weight
and volume. The work by Dondo et al. (2011) is an extension and generalization of the
model proposed in Dondo et al. (2009), where cross-docking is not allowed and the IFs
are considered demand points. Both problems are formulated and solved with an exact
method.

2.4.3 DMP without routing problem

The papers that do not include the routing decisions most commonly assume either a cost
structure similar to an LTL rate, with quantity discount in some cases, or an FTL rate per
vehicle sent between two given locations.

Lapierre et al. (2004) analyze a hybrid network with a one-to-one structure. Their
model decides the best delivery mode to supply the customers taking into account the
consolidations that can be performed. These consolidations are determined considering
the distinct attributes of the load (weight and volume) and the distinct transportation costs
of LTL, FTL and parcel. Hence, the decisions regarding the consolidation and carrier
selection on each delivery are dynamic and connected. Two meta-heuristics are used to
solve the problem.

Uster and Agrahari (2010) also consider an FTL and an LTL cost structure in a network
with a one-to-one structure. However, in this case the products can flow directly from an
origin to a destination or pass by two IFs. In the latter, the products are sent in an LTL
carrier to a consolidation center, where they are combined and sent by an FTL carrier to
the deconsolidation center. At this point the shipments are divided again between LTLs
and sent to their destinations. The vehicles used for an FTL are limited and assumed
homogeneous. To solve the problem, the authors develop three heuristics.

Galbreth et al. (2008) analyze a different network structure, namely a one-to-many.
Their goal is to decide whether the supplier should send an FTL to customers or an FTL
to a cross-docking facility, with limited capacity, where the load will be divided between
several LTLs. The FTL shipments are restricted and have a fixed cost associated per pair
origin-destination. In contrast, the LTL shipments are incapacitated and associated with a
modified all-unit discount (MAUD) cost function (Chan et al., 2002). Galbreth et al. (2008)
assume that the customers allow earlier supplies with a penalty cost and that the number
of shipments received per period is limited. They use an exact method to solve a small
instance and have insights regarding the cross-docking value in a network. An analysis is
also conducted on the effects of the demand and holding costs.
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The capacitated cross-docking problem is also tackled by Holla (2015) in a one-to-
one structure network. The author considers a cross-docking facility with a small storage
area limited per product, which has distinct consolidation costs. The suppliers and cross-
docking facilities own a limited fleet of vehicles, having a fixed cost regardless of the route
and a variable cost depending on the quantity transported. If required, the vehicles not
used can be rented or more vehicles can be leased. Holla (2015) solves the problem with
an exact method and performs a sensitivity analysis.

Petersen and Ropke (2011) also incorporate consolidation costs at the cross-docking fa-
cilities. The authors analyze a Danish transporter of flowers in which containers of flowers
have to be picked up at an origin and then delivered to a destination. Hard time-windows
are considered for both origins and destinations. The service time for loading and unload-
ing the containers in the three echelons is determined using a staircase linear function. A
meta-heuristic is proposed to solve the problem.

A cost structure different from the previous ones is considered by Li et al. (2006). In
their work, the transportation cost includes a setup cost for sending a vehicle between a
given pair origin-destination and a cost related to the time between the two points and
the size of the shipment. The problem has several homogeneous suppliers with limited
capacity. The decision is to determine how each customer should be supplied, considering
the possibility of using an IF for (de)consolidation at a given holding cost, which depends
on the number of units handled and the time spent. Time-windows are imposed for the
suppliers, the IFs and the customers. Li et al. (2006) propose a two-step approach to solve
the problem. This is also analyzed by Ma et al. (2011), who considers the same problem
structure, but uses distinct heuristics to solve it. Jewpanya and Kachitvichyanukul (2012)
further extend this work by including the cost of the consolidation operations in the cross-
docking.

Musa et al. (2010) develop a model to define the best consolidation plan and fleet
dispatching, adapted from Donaldson et al. (1998). The network contains a one-to-one
structure where the objective is to minimize the transportation costs. Musa et al. (2010)
propose meta-heuristic to solve the problem.

Hosseini et al. (2014b) extend the work of Musa et al. (2010) by including the pos-
sibility of supplying the customers through milk-run deliveries. The network and costs
considered are the same, but the paper also comprises the transportation costs between
distinct suppliers. In their model, the authors consider a routing sub-problem only for
milk-run deliveries. It is assumed that whatever the delivery mode used, the customers
are always supplied in a single-drop route. To solve the problem, Hosseini et al. (2014b)
propose two meta-heuristics. This work is an extension of their previous research where
only direct-shipment and milk-run deliveries were allowed (Hosseini et al., 2014a). To the
best of our knowledge, the paper by Hosseini et al. (2014b) is one of the few to consider
the three types of delivery modes as decision variables in the distribution process.

In Berman and Wang (2006), the milk-run delivery mode is also identified as one of
the possible ways of supplying the customers, but it is not included as a decision. They
propose a pre-processing step before running their model to group suppliers in milk-runs,
which are afterwards considered one origin. However, this approach does not evaluate the
trade-off between using a milk-run or cross-docking delivery mode, which imposes distinct
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consolidation strategies and resources.

Giinther and Seiler (2009) design an operational transportation planning to decide the
orders that should be consolidated in one shipment according to the savings that could be
accomplished. The authors use four distinct consolidation schemes: bundling, inbound and
outbound milk-run and pickup and delivery. The combination of the first three schemes
lead to a direct-shipment or milk-run delivery mode with single or multiple drop routes.
The schemes are run in sequence and generate the different order combinations. The con-
solidations respect a set of constraints regarding time-windows and truck characteristics
and only the ones that generate savings compared to their individual distribution are con-
sidered. In the end, Giinther and Seiler (2009) propose an exact method to select the order
combinations that make it possible to achieve the minimum global cost. Additionally, they
developed a heuristic that can be integrated with commercial Transportation Management
Systems.

The pickup and delivery problem with cross-docking addressed in Santos et al. (2013),
although not referred as such, also considers the milk-run delivery mode besides cross-
docking. It relies on a hybrid network with a one-to-one structure where two types of
routes can be performed. Firstly, the vehicles can visit multiple origins to pick up the
products, return to the IF for possible shipment rearrangement and afterwards go to the
destinations for deliveries. Moreover, after visiting multiple origins the vehicles can start
immediately delivering to the destinations, without passing by the IF. This last case can
be defined as a milk-run, where one delivery or multiple deliveries can be performed. In
both cases, the fleet is considered homogeneous and limited. Santos et al. (2013) assume
a set of routes of each type and their respective cost. The authors use an exact method to
identify which routes to perform. Although not explicitly, this work also makes it possible
to execute the three delivery mode types with given particularities, such as the depot being
the cross-docking facility.

2.5. Conclusions and research opportunities

In the retail industry there are multiple products flowing from distinct DCs to B&M stores
with heterogeneous needs. In such a context, defining the most efficient way to supply each
store is a complex task. Delivery mode planning (DMP) is a tactical decision that defines
how the products should flow throughout the SC and which facilities the products should
pass by on the way to a given store.

This paper identifies and analyzes the inconsistency found in literature in the definition
of DMP and the delivery mode types available and, therefore, our own definition is pro-
posed. The distinct delivery mode types (warehousing, direct-shipment, cross-docking and
milk-run) are characterized and their advantages and disadvantages discussed.

The main interdependencies between the DMP and the SC network design and product-
DC-store assignment decisions, the selection of the means of transportation and the defi-
nition of delivery patterns are also discussed. Moreover, a review is presented focusing on
research related to hybrid network distribution, where at least two distinct delivery mode
types can be used in the same network.
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Based on the discussion of the previous sections four research directions are identified
to improve DMP.

Include the different delivery mode types in the same model

Hosseini et al. (2014b) is the only work that analyzes the three delivery modes simultane-
ously. The milk-run delivery mode is only beneficial in specific cases, when the facilities
are close to each other, which may justify its absence in most research on DMP research.
However, as the products require distinct temperatures in grocery retailing, it is normal to
have DCs with different temperatures in the same location, fostering the milk-run deliveries
to leverage the retailer distribution.

Introduce consistency

Most research on DMP focuses on a single period planning horizon. The authors analyze a
given SC network and the goal is to optimize the flow of goods between origins and destina-
tions using IFs, if needed. Dondo et al. (2011) and Jewpanya and Kachitvichyanukul (2012)
consider a multi period planning horizon in their models because of the time-window con-
straint, but assume only one day of distribution. Galbreth et al. (2008) and Holla (2015) are
the only ones to consider multiple periods but only to account the operational characteris-
tics of their problems. However, it is very important for both the retailer DCs and the B&M
stores to have a planned consistent distribution throughout time to facilitate the operations
management. Therefore, as the different delivery mode types yield different requirements
and impact the DCs and the stores in distinct ways, performing the same type of delivery
for a given period allows more efficient procedures.

Consider operational constraints related to the IFs and the B&M stores

Few of the papers surveyed consider the operational costs of IFs and their capacity con-
straints. This is related to the fact that the majority of the papers do not consider time
dynamism. This topic is addressed more frequently in the cross-docking problems with
pure networks where synchronization issues need to be analyzed. More information on
this type of problems is available in Van Belle et al. (2012) and Ladier and Alpan (2016).
Besides the IFs, the B&M stores may also have operational constraints in terms of the de-
livery time-windows that are considered in some of the papers surveyed, and in receiving
capacity. However, none of the papers reviewed incorporated this constraint.

Incorporate the interdependencies with other SCP decisions

The DMP has several interdependencies with other SCP decisions. The products’ alloca-
tion to the DCs, whether they are centralized or not, as well as the distance between them,
leverage different types of delivery modes that can be used by the retailer. Moreover, the
allocation of stores to the DCs influences the bundling effects for spatial consolidation.
Only two papers analyze both the DMP with location and allocation decisions, con-
sidering a hybrid network (Gilimiis and Bookbinder, 2004; Mokhtarinejad et al., 2015).
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Furthermore, the bundling effects that can be achieved are limited by the delivery patterns
defined. There is one work that tackles the delivery pattern decision in a retail context,
considering product and spatial consolidation of stores, but it assumes that different prod-
ucts delivered in the same day flow together with the same cost (Holzapfel et al., 2016).
However, if the products require distinct transportation requirements the resources neces-
sary to perform the joint delivery might not be available by the retailer or yield distinct
transportation costs. This leads to the decision regarding the selection of transportation
means, which, as discussed previously, can restrict the types of deliveries performed. In
addition, in case the distinct product segments are located in different DCs, it is necessary
to consolidate the segments prior to the delivery to the stores.
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Abstract The pharmaceutical industry operates in a very competitive and regulated mar-
ket. The increased pressure of pharmacies to order fewer products and to receive them more
frequently is overcharging the pharmaceutical’s distribution network. Furthermore, the
tight margins and the continuous growth of generic drugs consumption are pressing whole-
salers to optimize their supply chains. In order to survive, wholesalers are rethinking their
strategies to increase competitiveness. This paper proposes an optimization-simulation ap-
proach to address the wholesalers network redesign problem, trading off the operational
costs and customer service level. Firstly, at a strategic-tactical level, the supply chain net-
work redesign decisions are optimized via a mixed integer programming model. Here, the
number, location, function and capacity of the warehouses, the allocation of customers to
the warehouses and the capacity and function of the distribution channels are defined. Sec-
ondly, at an operation level, the solution found is evaluated by means of a discrete event
simulation model to assess the impact of the redesign in the wholesaler’s daily activities.
Computational results on a pharmaceutical wholesaler case-study are discussed and the
benefits of this solution approach exposed.

Keywords Network Redesign - Pharmaceutical Industry - Optimization - Simulation

3.1. Introduction

Pharmaceutical wholesalers purchase large quantities of drugs to manufacturers (laborato-
ries), store them in warehouses and later distribute them to retailers (pharmacies) accord-
ing to their demand. Because of the high number of laboratories, products and retailers,
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wholesalers play an important role in the pharmaceutical industry. Retailers do not have
to negotiate with several suppliers to purchase the products they need. Moreover, labora-
tories can benefit from economies of scale by not managing and distributing multiple low
quantity orders to the retailers.

The pharmaceutical industry operates in a very regulated market. Regulatory entities
outline distribution procedures and fix prices, imposing the margins of each player of the
supply chain (SC). Wholesalers have the lowest margin, about 4%, while the laboratories’
margins can reach up to 70%. These figures, together with product exclusivity, under-
line the bargaining power of laboratories that depreciate their delivery service with long
and highly variable delivery lead times. However, this behavior is changing because of
the increasing acceptance and growth in the market of generics, predicting a shift in the
pharmaceutical SC management. This may result in an improvement of the suppliers’ lead
time, which will in turn boost their service and make them more competitive, enabling
wholesalers to advance in their inventory management.

On the other stream of the SC, the economic crisis is forcing pharmacies to change their
purchasing behavior, ordering more frequently and in lower volumes, reaching up to 3-4
daily deliveries, thus burdening the wholesalers’ distribution system. Due to the intense
competition in today’s marketplace, companies need to rethink their strategies and to start
operating as SC members instead of competing individually (Baghalian et al., 2013). The
pharmaceutical SC is shifting towards this philosophy, where laboratories, wholesalers and
retailers will collaborate in a more synchronized way.

With these transformations occurring in the pharmaceutical industry, companies are
committed to optimizing their current SC. For this reason, the supply chain network re-
design (SCNR) is one of the most important decisions. In this industry, the response time
of wholesalers and the availability of products are their competitive edges. Therefore,
the process of redesigning a wholesaler network must be carefully studied, involving the
logistics and marketing departments. It is critical to analyze how a solution affects the
operational procedures and the respective customer service level. A small variation in the
service can result in substantial sales losses as the customers have no changeover costs for
switching between competitors. This is the reason why supply chain network design and
redesign need to be analyzed differently. Typically, the former is defined as trading-off the
costs and the expected attraction function of customer service. In the latter, the company
already has a market share and the customers are subjected to a certain service level.

There is scarce literature addressing the SCNR from the point of view of the wholesaler.
This paper is a contribution in this direction, proposing a novel approach to the SCNR prob-
lem of pharmaceutical wholesalers. The aim is to optimize the strategic-tactical redesign
decisions of the wholesalers’ network and operationally evaluate the solutions obtained.
The objective is to minimize the wholesaler total costs without jeopardizing the current
customer service level. Because a wholesaler activity is very time sensitive, with multiple
orders taking place at the same time and in a large scale, modeling the different operations
and their relationships in one mathematical programming model would be very complex
and lead to an intractable model. In these types of systems, simulation is a popular ap-
proach, since it deals with complex flows with no mathematical sophistication. On the
other hand, by using solely simulation models, the number of decision scenarios is rather
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limited, and hence the optimization can be compromised. Therefore, in order to truly op-
timize the wholesaler’s network and at the same time obtain a clear image of the impact
of implementing a new design, both from the operational and marketing points of view,
this paper develops an optimization-simulation approach. This approach simplifies the op-
timization model and at the same time makes it easier to understand the pressure that the
redesigning process will put on the operational activities, and how that would reverberate
on the customer service level. Firstly, a mixed integer linear programming (MIP) model
is formulated at a macro level to optimize the main strategic-tactical decisions involved in
the network redesign. Then, the real-world operational conditions of the SC are simulated
by means of a discrete event simulation model. This paper thus contributes with a com-
prehensive approach to the SCNR problem, as well as its instantiation in a real-world case
study.

The remainder of this paper is organized as follows. Section 3.2 presents a literature
review on network design and redesign problems. The problem characteristics are defined
in Section 3.3 and the optimization-simulation methodology adopted is described in Sec-
tion 3.4. The evaluation of computational results obtained for a pharmaceutical wholesaler
case-study, which is described in Section 3.5, is provided in Section 3.6. Section 3.7 con-
cludes with some remarks on the methodology, results and future work.

3.2. Literature review

An SC is composed of a set of facilities from suppliers to customers and processes related
to purchasing, inventory control and distribution (Sabri and Beamon, 2000). The number
and location of facilities and the allocation of customers to one or more locations are exten-
sively studied in the literature as facility location problems. The facility location problem
can be modeled for various real-world situations, for instance supporting the strategic de-
cision of a company’s supply chain network design (SCND).

The SCND is considered one of the most important strategic decisions for businesses
because it influences all the other SC decisions. There is vast literature on SCND models
with different considerations, such as the SC structure, the objective function, the incorpo-
ration of uncertainty and the integration of different decisions.

Badri et al. (2013) propose a mathematical model and a Lagrangean relaxation ap-
proach for the SCND problem considering different time periods for strategic and tactical
decisions. The model incorporates investment decisions throughout time, indicating when
a facility should be opened or enlarged. Moreover, a distinction is considered between sub-
contracted and private facilities, where the former can be closed at a given period and the
latter cannot. This can also be applied in a company SCNR, where there are open facilities
that are owned and cannot be closed in the redesigning phase.

Eskigun et al. (2005) develop an SCND model for an outbound automotive SC, where
vehicles are transported from the assembly plants to dealers, with the possibility of passing
through distribution centers (DC) to consolidate the merchandise. To evaluate customer
satisfaction, the authors used indicators such as lead times, incorporating in the model the
waiting time of the vehicles in the facilities, considering that a vehicle only departures from
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the DC when the last unit arrives. A similar analogy can be made to the pharmaceutical
wholesaler case, where the vehicles only depart when all orders placed by the pharmacies
in that route are prepared. To avoid congestion in the DC, Eskigun et al. (2005) limit its
capacity to a given number of vehicles. To solve this problem, the authors use a Lagrangean
heuristic for a deterministic model, and afterwards address the uncertainty involved in the
problem through scenario analysis.

In Baghalian et al. (2013) a robust SCND model is presented that considers uncertainty
both from the demand and supply sides. The first type of uncertainty is addressed using a
demand distribution function, and the second using the probability of disruption occurrence
in the upstream stages of the SC. These considerations help to incorporate costs related
to customer service level. Due to the nonlinear relations, the problem is solved using a
piecewise linear approximation in order to obtain a linear model. The authors also provide
a review of stochastic SCND research, concluding that most of the research only considers
demand-side uncertainty.

Sabri and Beamon (2000) propose an approach for a four echelon SCND where strate-
gic and operational levels are integrated simultaneously. Their model incorporates pro-
duction, delivery and demand uncertainty, as well as a performance vector to evaluate the
entire SCND. They employed an e-constraint method because it is simple and capable of
solving non-linear models.

The importance of integrating different decision levels in the SCND problem has been
extensively studied and different models and approaches are proposed in the literature.
Due to the influence that strategic location decisions have on inventory and distribution
planning, ignoring these tactical decisions at network stage leads to sub-optimality (Shen
and Qi, 2007; Stadtler and Kilger, 2008; Baghalian et al., 2013; Guerrero et al., 2013).
For instance, a higher number of facilities make it possible to reduce the distribution costs,
but at the same time it increases inventory costs (Hiibner et al., 2013; Zinn et al., 1989).
Consequently, models combining the facility location problem (FLP) with the inventory
control problem (ICP) and the routing problems (RP) have been proposed.

Location-inventory problems (LIPs) analyze the inventory control policy by adding to
the location problem decisions on the facilities’ ordering process, both regarding the size
and time of order fulfillment. Naturally, integrating these problems increases the mod-
els” complexity. Diabat et al. (2013) propose a Lagrangean relaxation-based heuristic to
solve the LIP. A set of DCs and retailers that hold working inventory which has not yet
been requested by retailers or end-customers, respectively, are considered. The goal is to
determine the optimal number and location of DCs, the customer-DC allocation and the
respective inventory strategies. A reformulation and piecewise linearization is proposed
for this problem by Diabat and Theodorou (2015). Gzara et al. (2014) present a model for
designing a responsive service parts logistic system with backorders. The authors consider
a time-based service level to guarantee deliveries of service parts within a specific time
window.

Location-routing problems (LRPs) include, besides the location decisions, the defini-
tion of the best delivery routes from the selected facilities to the assigned customers. Drexl
and Schneider (2014) review different variants and extensions of the LRP and conclude that
the main difficulty of LRP is managing the location-allocation and routing sub-problems.
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One of the most commonly used solution methods is a heuristic approach that decomposes
the problem in an iterative sequence of location-allocation and routing sub-problems. By
incorporating the routing problem, the distribution costs can be more precisely estimated.

The integration of these three problems, in what is called inventory-location-routing
problem (ILRP), was first tackled by Javid and Azad (2010). The authors propose a
methodology based on tabu search and simulated annealing for a single period, single
product, two echelon SC structure with stochastic demand and (Q,R) inventory policy.
Guerrero et al. (2013) propose a matheuristic approach to the ILRP, using an exact method
with estimated distribution costs to obtain the SC design, which is then used in a heuristic
to optimize the routing decisions.

Due to the influence that these strategic-tactical decisions have on the supply chain net-
work redesign, the approach presented in this paper explores the main interdependencies
of the distinct dimensions to better restrict and evaluate different solutions. In the pro-
posed approach, the inventory control policy decision is not incorporated in the optimiza-
tion model; instead, a (R,s,S) policy (Silver et al., 2009) is embedded in the simulation
model, involving operational uncertainty. Moreover, since the stock levels are influenced
by the customers’ allocation decisions, the benefits of aggregating customers and of resort-
ing to cross-docking facilities (Zinn et al., 1989) are included in the optimization model
when determining the safety stock of the warehouses. In addition, because there are times
of the day where most pharmacies place orders, generating demand peaks, it is also im-
portant to consider the warehouses’ capacity, the congestion that might occur at different
points in time of the day and their impact on the distribution.

With regard to the pharmaceutical industry, the research mostly focuses on the man-
ufacturers, mainly because of the high costs involved in the R&D of new drugs and their
time-to-market-side. Sousa et al. (2011) address an allocation / dynamic planning problem
that optimizes the SC of a pharmaceutical company, considering primary and secondary
sites with their respective warehouses and final product market areas, neglecting the distri-
bution network inside the market. The objective of the model is to maximize the profit.

Izadi and Kimiagari (2014) present a study on a pharmaceutical distributor in Iran
where a Monte Carlo simulation is used to evaluate the demand risk factor. Buil et al.
(2010) implement a discrete event simulation model to optimize the configuration of an
SC, while analyzing the implementation of innovative processes in the operation. Using
this type of simulation models is advantageous for analyzing the possible impacts of im-
plementing a strategy, because it makes it possible to visualize how the system can react
to changes. Various companies are already using these models to represent the systems,
to detect improvement opportunities on the flow of materials and information, and to test
strategies to be adopted (Brown and Sturrock, 2009). Nevertheless, by using simulation
models instead of optimization models, the number of decision scenarios is quite limited.

In recent years, the increase in computing performance has made it possible to use
methodologies incorporating optimization and simulation models simultaneously (Barto-
lacci et al., 2012). According to Figueira and Almada-Lobo (2014), there are several meth-
ods to hybridize optimization-simulation, which can be classified according to the inter-
action between the two models and the search algorithm. In this paper, the optimization-
simulation methodology used can be classified as Solution Generator (SG). The simulator
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is only required to evaluate the solution obtained in the optimizer, instead of evaluating
each solution found along the search.

3.3. Pharmaceutical Wholesaler Supply Chain Network Redesign

A wholesaler’s SC is defined by ‘W warehouses that distribute # products to C customers,
produced by various suppliers, as illustrated in Figure 3.1.

WHOLESALER CUSTOMERS
WAREHOUSES

- (O -

T T TRANSSHIPMENT

U RECEPTION }.{CONFERENCE}.{ STORAGE }.{ PICKING }.{ EXPEDITION }.{ TRANSPORTj]

Figure 3.1: Supply chain of a wholesaler

The warehouses can have different functions, . They can operate as stockists, holding
inventory of products, as cross-docking, having the incoming materials directly loaded
onto outbound transportation with low or no storage in between, or with both functions,
where some products are stored and others are not. Customer demand is satisfied by the
inventory held by the wholesalers. The number of stockist warehouses influences the total
inventory level. The higher the number of warehouses, the higher the company’s total
inventory. To reduce the number of stockist warehouses and achieve economies of scale in
the transportation, wholesalers can use cross-docking warehouses. These facilities make it
possible to send larger vehicles to a cross-docking facility, instead of using small vehicles
to each region. In this intermediate facility, the load is divided into smaller vehicles, which
perform the last miles of the distribution. When cross-docking warehouses are used, a
lateral transshipment channel has to be defined, representing the link between the company
facilities, through which internal material is transported.

As shown in Figure 3.1, warehouses perform many activities. The supplier delivers
the product and its condition is verified. If the product’s quality is ensured, it is stored in
accordance with its specifications. When a customer order arrives, the products are picked
and forwarded to the expedition zone. The orders are then transported and delivered to
customers, following a previously agreed schedule.

Each warehouse performs its activities with an operational level £, which indicates
the processing capacity of the activity (similarly to a plant’s production capacity). Since
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the distribution can be made using heterogeneous vehicles with different capacities, an
operational capacity level must be defined for each vehicle typology, V.

The network design of a wholesaler is defined by the number, location, function and
capacity of its warehouses, the allocation of products and customers to those warehouses,
and the capacity and definition of the transportation resources.

The pharmaceutical sector has specific characteristics to be taken into consideration
when analyzing the SCNR of a wholesaler. Although the product allocation to warehouses
is one of the main decisions when defining a network design, it is not addressed in this
paper. As most of the warehouses in this industry are full-liners, they have to cover the
complete assortment of products. Therefore, the main strategic-tactical decisions analyzed
here are as follows:

e Warehouse location and function

Allocation of customers to warehouses

Lateral transshipment definition

Level of activity of each operation at each warehouse

Inventory level at each warehouse

Some pharmaceutical wholesalers perform additional services as third-party logistic
providers to capitalize and facilitate the utilization of their resources. Considering this ma-
terial flow in the analysis is important because it consumes distribution capacity. Therefore,
two types of material flow will be differentiated, which result in two types of merchandise
transportation containers (M):

e Products owned by the wholesaler that are bought, stored, picked and transported to
their customers.

e External merchandise that is simply transported (cross-docking operation).

The products owned by the company are picked according to customer orders and
packed into containers called tubs, which have standard volumes. This means that even
if the customer only orders one product, one tub must be used. External merchandise is
managed as a cross-docking operation, only passing through the wholesaler’s expedition
zone. They are distributed as delivered by the suppliers and transportation units do not have
a standard measurement.

3.4. Hybrid Optimization-Simulation Methodology

This paper describes a hybrid optimization-simulation methodology for analyzing and re-
designing the pharmaceutical wholesalers’ SC. This methodology includes a mathematical
programming model to generate solutions according to the parameters defined initially,
which are latter analyzed using a discrete event simulation model.
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The mathematical programming model optimizes the main decisions of the SCNR
through a macro analysis of the wholesaler’s operation. The objective of the model is
to find a network design solution that reduces the total costs for the wholesaler. In this
phase, the problem is analyzed from a strategic perspective and aggregated data are used.

The operational characteristics of a wholesaler’s activities are detailed in the discrete
event simulation model. The operational activities of the new network design of the whole-
saler’s SC are evaluated by means of operational indicators, such as vehicle delays.

The purpose of combining simulation and optimization in a single approach is to en-
hance the solutions obtained. Since in SCNR the company is already established in the
market and possesses historical data on the business, this approach can provide valuable
indicators about a solution, because it is possible to establish comparisons with the current
state. In this Solution Generator (SG) scheme, the simulator is only required to evaluate
the solution obtained in the optimizer (Figueira and Almada-Lobo, 2014). The interaction
between the two models is illustrated in Figure 3.2.
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— g Cost indicators % + N.° orders waiting
* Deman * Orders waiting time
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frequency « Operation
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management « Transportation
* Products
« Suppliers
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Figure 3.2: Interaction scheme between the optimization and simulation model.

The optimization model is fed with high level data related to the wholesaler’s activity,
such as customer demand and operational costs. According to the pharmaceutical whole-
saler restrictions, a solution is obtained for redesigning the company’s network, corre-
sponding to the main strategic decisions incorporated in the model. Moreover, cost indica-
tors are estimated for the respective configuration. Subsequently, the network redesign is
imposed in the simulation model. The number and function of warehouses, activity levels
and customer allocations are defined according to the optimization model results and the
new configuration is simulated, making it possible to analyze the expected operation in a
real application. At this stage, a more detailed data set is incorporated regarding customer
orders, routing schedules and specifications of products and suppliers. These inputs make
it possible to mimic the operation of the warehouses using the same past conditions, such
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as the time when the customers placed their orders and the suppliers’ actual lead time, but
applying the new network design. This way, for instance, a customer order might be pro-
cessed in a different warehouse than in the past, and thus prepared at a different point in
time because of the congestion at the new warehouse. At the end of the run, the simulator
provides operational indicators regarding the activities performance.

3.4.1 Network Redesign Optimization Model

The network redesign problem is formulated as a mathematical mixed-integer program-
ming (MIP) model, where the main strategic and tactical decisions regarding the SCNR are
optimized.

As in traditional facility location problems, the complexity of this model increases with
the number of warehouses and customers considered. Due to the high number and density
of customers (mostly pharmacies in some regions, normally cities) of a pharmaceutical
wholesaler, a clustering of customers it is suggested according to their geographical loca-
tion. This makes it possible to reduce the number of customer-related variables since in
reality these customers will most probably be served by the same route.

The notation used in the formulation is presented below.

Indices and sets

teT time period
peP product
w,d € W warehouse

feF warehouse functions

ceC clusters of customers

veV vehicle typologies

le L operational levels (of the warehouses)

meM merchandise transportation containers

neN number of break points of linear pieces

P, set of products p allocated to warehouse w

Parameters

IS, initial stock of warehouse w (units)

D » demand for product p of customers of cluster ¢ in period ¢ (units)

ASD average standard deviation of clusters demand in the warehouse average
replenishment cycle time (units)

CFyp capacity consumption factor of product p in conference and picking activities of
warehouse w

CCyy conference activity capacity with operational level / at warehouse w (units)

CP,,; picking activity capacity with operational level / at warehouse w (units)

CTy transport activity capacity of vehicle typology v with operational level / at warehouse
w (cubic meters)

FCC,y, fixed cost of conference activity with operational level / at warehouse w (euros)

FCP,, fixed cost of picking activity with operational level / at warehouse w (euros)

FCT,, fixed cost of transport activity for vehicle typology v with operational level / at
warehouse w (euros)
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MTQ
C mew

TVCC,y.
TFCW,q
Owa
ic,
CcUD

Minimum transportation quantity to serve a cluster (percentage of demand)
Conversion factor of product p transported in a container m at warehouse w to
volume (cubic meters/unit)

transport activity variable cost for serving cluster ¢ through warehouse w (euros/km)
transport activity fixed cost for serving warehouse d through warehouse w (euros)
monthly operation cost of warehouse w with function f (euros)

inventory cost of each unit of product p stocked per time period (euros)

unit cost of unsatisfied demand (euros/unit)

Decision variables

NCyp
OTCepy

Q T thvd pv

I,
OR,,
CAyy

PAwl

Tval
CFC,,
PFC,

TFC,
UD

equals 1 if warehouse w is operational with function f, 0 otherwise

equals 1 if warehouse w supplies warehouse d with function f, O otherwise
equals 1 if warehouse w supplies directly cluster ¢, O otherwise

equals 1 if warehouse w supplies indirectly cluster ¢, 0 otherwise

equals 1 if warehouse w supplies indirectly cluster ¢ through cross-docking on
warehouse d, 0 otherwise

equals 1 if warehouse w supplies n number of clusters, 0 otherwise

quantity of product p transported on vehicle typology v from warehouse w to cluster
¢ at time period ¢ (units)

quantity of product p transported on vehicle typology v from warehouse w to
warehouse d at time period ¢ (units)

inventory level of product p at warehouse w in time period 7 (units)

quantity of product p received at warehouse w in time period ¢ (units)

equals 1 if warehouse w performs the conference activity at operational level /,
0 otherwise

equals 1 if warehouse w performs the picking activity at operational level /,

0 otherwise

equals 1 if warehouse w performs the transport activity with vehicle typology v at
operational level /, 0 otherwise

conference activity cost at warehouse w (euros/time period)

picking activity cost at warehouse w (euros/time period)

transport activity cost at warehouse w (euros/time period)

unsatisfied demand (units)

This model considers products owned by the wholesaler that are stocked, represented
by p =1, and merchandise from the additional (external) services, represented by p = 2. Itis
assumed that the warehouses functioning as cross-dockers (f = 1) can receive and send both
types of products, while warehouses with stock function (f = 2) must have inventory of the
first type of products and perform cross-docking with the second. The parameter CV,,,
regarding the conversion of product quantities in transportation volume, is calculated based
on the percentage of products that are transported in each container type at each warehouse,

the average number of products in each container type and the volume of the container.
For ease of notation, |T|, |W| and |C| refer to the cardinalities of the respective sets. The
model for finding the optimal network redesign for a wholesaler reads:
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Minimize |71 )" > Xy OCys+ >° 3 3 ML, 1C, +IT| Y (CFCy+ PFC,y + TFC,)

weW feF weW peP t€T weW
+ Z Z(Tvccm. : Z Z Z QTC', /DLy +IT] Z Z Z Y/ \TFCW,q
weW ceC teT pePveV weW deW:d+w feF
+UD-CUD (3.1

Objective function (3.1) minimizes the global costs of the SC. The first three terms
refer to the operation costs of the warehouses, the inventory holding costs and the fixed
costs associated with the warehouses activity levels, respectively. The following two terms
relate to the distribution costs. The first is related to the distribution to the customers,
considering a variable cost influenced by the distance, the cost per kilometer, the frequency
of supplies and the position of the customers in relation to the other customers in the cluster
(the more customers there are close to a given customer, the better). Because a cluster can
be served by two warehouses, for instance depending on the time of the day, the distribution
costs of the cluster must be split by the warehouses. This division is made based on the
proportion of the customer demand each warehouse supplies. The second term of the
distribution costs refers to the lateral transshipment, where a fixed cost is applied to each
connection. The cost of unmet demand is incorporated in the last term.

wafsl VYwe W (3.2)
feF

Z Y. >Xy VdeWw (3.3)
weW:w#d

Z Zyijdsqm—l)-xwz VYwe W (3.4)
deW:d+#w feF
Zyidsl Vw,deW:w#+d (3.5)
feF

Z Y/ <(WI-1)-Xy VdeW,feF (3.6)
weW:w#d
ZZZQTW;MSM-ZYV{L[ Vw,deW:w#d (3.7)
pePveV €T feF

Constraints (3.2)-(3.7) are related to the operation of the warehouses. Constraints (3.2)
and (3.3) assure that a warehouse can only have one function (or be closed) and that when
it operates as cross-docking it must be supplied by another warehouse, respectively. Con-
straint (3.4) ensures that only a stock warehouse can transfer products to other warehouses.
The lateral transshipments are required not only to supply the cross-docking warehouses,
but also to transfer orders between stock warehouses, according to the company policies.
The frequency of deliveries is different depending on the type of supply. Therefore, the lat-
eral transshipment can have one of two different functions, and can only supply an active
warehouse (constraints (3.5) and (3.6)). The transfer of goods between warehouses can
only be performed in case there is a connection between them, as established in constraint
(3.7). Note that M denotes a big number.

Zch <ICl|- Zwa Ywe W 3.9)
ceC feF
DD 0TCly <M -Zye YweW,ceC (3.9)

peP veV teT
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> > orc,,, <D, VeeCpePieT (3.10)

weW veV

Constraints (3.8) - (3.10) impose that clusters can only be allocated and receive goods
from operational warehouses, limiting the quantities transported in each time period to the
cluster’s demand.

QRin * Z Z QTW;’WPV + Iﬁ‘;} = Z Z QTthvdpv + Z Z QTCivdpv + Iivp

deW veV deW veV ceC veV
YweW,pePteT (3.11)
ZZ[{WSM-XWQ VYwe W (3.12)
pEP teT
L =18, X YweW (3.13)
L,=0 Ywew (3.14)

Constraints (3.11) - (3.14) control the level of inventory according to the function of
the warehouses and the type of product. Constraint (3.11) guarantees the material flow
balance through each warehouse, at each time period. Constraints (3.12) and (3.13) state
that only stock warehouses can hold inventory and set the initial inventory levels for the
current active warehouses. Naturally, warehouses that are not activated have null stock
at the beginning of the planning horizon. Constraint (3.14) establishes that the products
related to external merchandise (p = 2) cannot be retained in inventory, being only subject
to a cross-docking operation.

Due to the variability of customer orders and the suppliers’ replenishment lead time,
the stock warehouses have to maintain enough inventory (cycle and safety stock) to pro-
vide an adequate service level. The safety stock depends on the number of customers the
warehouse supplies and their demand variability. By aggregating customers, it is possi-
ble to reduce the global inventory level, if it is assumed that the demands are uncorrelated
(Zinn et al., 1989). Thereby, it is possible to calculate an approximation of the safety
stock according to the allocation decisions, based on the number of customers a warehouse
supplies, incorporating in the model the benefits of aggregating stock, and resorting to
cross-docking.

Assuming the cluster demands are uncorrelated and that the variability of demand is
the same at all locations, the Square Root Law (SRL) can be applied to estimate how much
the safety stock varies when the clusters are aggregated in one warehouse. The SRL is
defined as follows.

oa=0i-Vn

Where o, is the aggregated standard deviation, o; the standard deviation of location
i and n is the number of locations aggregated. o; is the average standard deviation of the
cluster demand. Therefore, considering the formula of the SRL, the safety stock of the
warehouses can be calculated as follows.

15vleSD-\/Z(zchrzdc-Yw,d)—M-(l—sz) Vw,de W,teT (3.15)
c
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Note that Z,,. indicates the clusters that warehouse w supplies directly and Zy. - Yy 4
indicates whether warehouse w supplies cluster ¢ through cross-docking at warehouse d.
Summing Z,,. + Zy. - Y,v.4 gives the number of clusters aggregated in warehouse w.

The assumption of equal variability throughout all locations is a simplification that
leads to an overestimation of the advantages of aggregating stocks. However, in this prob-
lem this assumption yields an adequate approximation to the model proposed by Zinn
et al. (1989), considering different demand variabilities. Figure 3.3 compares the results
achieved by the SRL and the model proposed by Zinn et al. (1989), where two methods for
aggregating locations are used (Zinn 1 and Zinn 2). The results show that the overestima-
tion is more significant when the number of locations aggregated is high.
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Figure 3.3: Comparison of the aggregated standard deviation using the SRL and the Zinn
et al. (1989) model

ZCAwlzl VYweWw (3.16)
leL

ZPAW, =1 YweW (3.17)
leL

DIOR,, <M-X,, VweWpeP, (3.18)
teT

Z OR.,,-CF,, < ZCCW, \CA,; VYweWiteT (3.19)
peP,, leL

Z Z(Z QT W, CFup+ Z QTC!,,,-CFyp)

PEP,, veV deW ceC

SZCPWI-PAW1+M-XW1 VweWieT (3.20)

leL

Constraints (3.16) - (3.20) define the operating conditions of the conference and pick-
ing activities. These warehouse activities are modeled with levels that limit the available
capacity (constraints (3.16) and (3.17)) (Guimaraes et al., 2012). Constraint (3.18) imposes
that only stock warehouses can receive goods from suppliers and only for products that are
allocated to the respective warehouse. Constraints (3.19) and (3.20) guarantee that the total
amount of units processed in the conference and picking activities at each period of time
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does not exceed the capacity of the activity’s operational level defined.

ZTAW,:I YweWyveV (3.21)
leL

Z Z (Z QTCWLPV pmw + Z QT dpv Cvpmw) < Z CTyy-TAyy

peP,, meM ceC deW leL

YweWveV,teT (3.22)

When it comes to distribution (outbound logistics), constraints (3.21) and (3.22) define
the level of activity for each vehicle typology in each warehouse, in a way that the volume
transported at each time period meets the capacity set for that level.

CFC, > Z FCCyy-CAw YweW (3.23)
leL

PFC,, > Z FCP,;-PA, VYweW (3.24)
leL

TFC, > Z Z FCTyi- TAwy YweW (3.25)
veV leL
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Constraints (3.23)-(3.26) define the cost terms of the objective function. The fixed costs
per time period related to the conference, picking and distribution activities that depend on
the activity level set are determined in constraints (3.23)-(3.25), respectively. Constraint
(3.26) computes the unmet demand. Note that back ordering is not allowed.

Finally, the variable domains are defined as follows:

X, Y{d,zm,Ncwn, CAwt, PAwt, TA €0, 1);
QT Clyepr OT Wiy I ORS, ,, CFC,y, PFC,,, TFC,y, UD > 0 (3.27)

Remark.The model SCNR (3.1)-(3.27) is non-linear because of constraint (3.15), which
contains the warehouses’ safety stock (represented below). Therefore, to linearize the
model the constraint has to be reformulated and new constraints must be added.

term 2

| = ASD- \/Z(ZMJrzdc Ywa)-M-(1-X,2) VYw,deWiteT

term 1

Similarly to Diabat and Theodorou (2015), term 1 is linearized using an auxiliary vari-
able and term 2 by means of a piecewise linearization. Let A,4. = Zy. - Y g and ZA,,. be
a binary variable that equals 1 if warehouse w supplies ¢ indirectly. Now, the number of
clusters supplied (directly and indirectly) by a warehouse can be calculated as Z,,. + ZA,,,
subject to the following auxiliary constraints.

Awde 2 Zge+ Y}~ 1 Vw,deWceC (3.28)
ZAWC <Zs VdeWceC (3.29)

ZAWC <M-Y!, VwdeWw (3.30)
c
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ZAWCSMZAWC YweW,ceC (3.31)
d

ZA,. < ZAWC VweW.ceC (3.32)
d

Constraints (3.28)-(3.30) define the auxiliary variable A, as Z,. - Y, 4, indicating
whether cluster c is supplied indirectly by warehouse w, through cross-docking in ware-
house d. Constraints (3.31) and (3.32) identify the clusters that are supplied indirectly by
warehouse w, independently of the cross-docking warehouse.

Since an active warehouse can supply from one to all clusters, the term 2 is divided into

n=1,...,|C| linear pieces. Let NC,,, be equal to 1 in case warehouse w supplies n clusters,
and O otherwise.

Zve + ZA e = Zn-Ncwn VYweW,ceC (3.33)
n
ZNCW,, <1 VYweW (3.34)
n
I' >ASD-Vn-M-(2-X,» —NCy,) YweWneN,teT (3.35)
chsZZZQTc;W VweW,ceC (3.36)
PEP VeV teT
>.0TClypy > MTQ-D},)-Z,ye NweWceCpePteT (3.37)
veV

By adding two more constraints to identify the linear piece that is activated (3.33) and
(3.34), the safety stock level of a stock warehouse can be reformulated as in constraint
(3.35). Constraints (3.36) and (3.37) need to be added to restrict the allocation variable
even more and impose a minimum transportation quantity to serve a cluster, respectively.
Otherwise, the model would allocate all clusters to the open stock warehouses, even when
not supplied, in order to reduce the inventory.

Note that all clusters supplied by a cross-docking warehouse are indirectly allocated to
the warehouses that supply it and that one cluster can be directly allocated to more than one
warehouse. Here it is assumed that all warehouses to which the cluster is allocated have to
cover its demand, as only at an operational level it is decided which of the warehouses will
supply the cluster in each occasion.

The linear SCNR (denoted as SCNR/™) reads:

SCNR/" Minimize |T]| Z waf.ocwf + Z Z Z[ﬁvp-lc,,

weW feF weW peP teT

HT| Y (CFC,+PFC,+TFC,)

weW

QTCivcpv
3 Svee, 55,5 Ok,
weW ceC teT peP veV cp

AT Y 3 TFECW,

weW deW:d+w feF

+UD-CUD
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subject to: (3.2) = (3.14)(3.16) - (3.37)
wa, Y‘,J;d’zmeAquwdCa Ncwn» CAwl’ PAWI? TAwl € {05 1 };
OTClyepys OTW, 5 1y OR,,,, CFC,, PFC,,, TFC,,, UD 2 0

wepy» wp>

In order to better understand the dynamics of the model, an illustrative example is
provided below.

34.1.1 Illustrative Example

Figure 3.4 presents a toy instance for the network redesign problem. In this example, there
are four possible locations for warehouses (w) that have to supply just one type of product
(to simplify the index, p is omitted in this example) and meet the demand of five customers
(c). Only one period of time is optimized (index ¢ is eliminated from the variables). The
graph shows the base capacity of the warehouse activities (CC,,;, CP,,), customer demand
(D), and the distance between adjacent entities. An average standard deviation of sixty
(o = 60) is considered for the cluster demand. Full line arrows represent a distribution
line between warehouses and customers, and dashed arrows represent a distribution line
between warehouses.

Figure 3.4: Network design illustrative example

The warehouses’ activities may have 1 of 3 operational levels, being the value of their
fixed costs equal to the double of their capacity (FCC,,; = 2-CC,,, for the conference
activity). For the conference and picking activities, besides the base level presented (/ = 1),
the level / = 0 indicates that the activity is not performed and the level [ = 2 refers to the
double of the base capacity. The distribution activity can be performed by two vehicle
typologies, v =1 and v = 2. Table 3.1 shows the capacity and fixed cost of each operational
level. The same conditions are assumed for all warehouses.

An active stock warehouse costs $10.000, with zero initial stock, whilst a cross-docking
warehouse costs $200. To calculate the variable distribution cost, a frequency of one and
two daily deliveries are considered for cross-docking and stock warehouses, respectively,
31 days a month. The cost per unit of distance for deliveries between warehouses and
customers is 0.6 and 0.3 between warehouses.
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Table 3.1: Operational levels of the transport activity for all warehouses.

Vehicle typology (v)  Activity level (/) Capacity (CT,,,;) Fixed cost (FCT,,,;)

1 0 0 0
1 1 150 50
1 2 250 100
2 0 0 0
2 1 250 110
2 2 400 200

Figure 3.5 illustrates the optimal network design solution to model S CNR" for this
instance. Values are represented for the main strategic decision variables, related to the
warehouse function and capacity, customer allocations and quantities transported.

Zps=1
¥ QTC,, =100

23v

~ el
AT w2

K X =1 \

\ZCAy =¥ PAy =0/

Figure 3.5: Network design illustrative example solution

Warehouses 1 and 4 are open as stock warehouses (X, = 1 ; X4p = 1), operating both
with conference and picking activities at level 2. The former supplies customers 1 and
2, and the latter customers 4 and 5. Warehouse 2 is open as a cross-docking (X>; = 1)
with a null conference and picking capacity. It receives products from warehouse 1 (Y 112 =
1) which are supplied to customer 3 indirectly (ZA;3 = 1). Regarding the distribution,
warehouses 2 and 4 only use one vehicle typology, the former uses typology 2 (v = 2) with
the base capacity level and the latter uses typology 1 (v = 1) at maximum capacity (level
2). Warehouse 1 uses both vehicle typologies operating typology 1 with the maximum
capacity and typology 2 with the base capacity. Note that warehouse 3 is not part of the
network.

3.4.2 Operational Discrete Event Simulation

The aim of the discrete-event simulation model is to replicate in detail the wholesalers
activities and add to the solution previously obtained by the optimization model operational
indicators that support its evaluation.

Simulating real-world operational conditions makes it possible to understand the pres-
sure that the new design will cause on the operational activities and how it will impact the
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customer service level. Therefore, all activities performed by a warehouse are depicted in
the simulation model, from the procurement of products to the loading and departure of
vehicles from the shipping dock (see Figure 3.1).

All the warehouses that should function as stockists are analyzed in this model accord-
ing to the solution provided by the optimization model. As mentioned in Section 3.3, the
cross-docking considered in this problem is a simple exchange of orders between vehicles
(without any rearrangement or consolidation with orders from other vehicles), which can
be considered as a transshipment process. Therefore, since the operational stress takes
place in the orders preparation at the stock warehouse, the cross-docking warehouses are
not included in the simulation model. The cross-docking operation will only be affected
in case a delay occurs upstream in the SC. Similarly, the operation of the additional ser-
vices performed by the wholesaler as a third-party logistic provider is not considered in
this analysis, as it does not influence the activities evaluated in this model, but solely the
distribution activity capacity, which is already analyzed in the optimization model.

There are three major actions that trigger events in the wholesalers’ SC: procurement,
lateral transshipment and customer orders. Customer orders trigger the picking of products
that reduces the inventory, which is later replaced by the procurement and lateral transship-
ment actions.

The simulator is designed to replicate real-world conditions so that the material flow
is identical to what happens in reality, going through the several phases according to the
causal relationships created by the different actions. The way the events triggered by the
three defined actions (represented in Figures 3.6-3.8) are formulated in the simulator and
will be explained in the remaining of this Section.

3.4.2.1 Procurement

Timer triggers the Purchases are made

review of suppliers to suppliers that takes Pr(iﬂgcrtessazecfﬁlr;t to anOdr ?ﬁ?;giﬂe%ﬁgd
who achieved the a LT to process them warehoupses (P3) (P4) P
revision date (P1) (P2)

Figure 3.6: Simulated procurement process

The procurement process (Figure 3.6) is triggered by the inventory policy of the whole-
saler (sub-process P1). This paper considers an (R,s,S) inventory policy. This policy gener-
ates a supplier review each time the inventory position is below the minimum stock (s) at the
periodic review (R). Each time a supplier is reviewed, the quantities to order for all products
are calculated based on the maximum level (S) for each warehouse (sub-processes P2-P3).
When the goods are received at the warehouse, the products are verified and stocked by the
First-in-First-out (FIFO) rule, with stochastic processing times (sub-process P4).

The new design of the SC affects this process in the number of procurement orders
made (procurement activity) and quantities ordered (conference activity). Clearly, if a
warehouse accommodates more demand, it may have more orders to perform and more
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quantities to verify. Therefore, from this process it is possible to analyze the procurement
and conference activities.

3.4.2.2 Lateral transshipment

Products’ stock is

. . The picking of the The products are
I a-{;p;f;rgr:gsgﬁir;rw :nt products to be sent is transferred to the updatgg (L4
of products (L1) performed and the respective Cross-docking is
stock updated (L2) warehouses (L3)

performed (L5)

Figure 3.7: Simulated lateral transshipment process

The lateral transshipment process (Figure 3.7) is triggered every day according to the
supply policy defined for serving warehouses that have a stock function and cross-docking
function. The products are picked according to the destination and sent to the warehouses
(sub-processes L2-L.3), where either the stock is updated (sub-process L4) or a cross-
docking operation is performed (sub-process L5).

3.4.2.3 Customer orders

Order is released for The picking of the The order is sent to
Customer order processing at the products ordered is the slot where is
arrival (C1) warehouse defined performed and the going to be expedited
(C2) stock updated (C3) (C4)

Figure 3.8: Simulated customers orders process

The dispatching of the orders (Figure 3.8) is triggered by the arrival of a customer re-
quest, which is immediately sent for processing by the FIFO rule (sub-process C1). The
orders are picked in the warehouse where the client is allocated and expedited in a prede-
fined route (sub-processes C2-C3). Each vehicle waits for all orders made before the route
departure time. The orders placed afterwards are transferred automatically to the next route
of the respective client (sub-process C4).

The number of products in each order and the respective amounts are determined by
probability distributions. Moreover, the products are randomly chosen according to the
probability of selecting each one. These probability distributions are defined for each ware-
house based on the demand history. When a vehicle arrives at the warehouse, it waits until
the slot defined for its route is free to park and then starts expediting its orders. If its re-
spective order processing is delayed due to congestion in the picking activity, the departure
may also be delayed.

The two processes previously described, lateral transshipment and customer orders,
affect the picking and expedition activities, which in turn will influence the distribution ac-
tivity and ultimately the customer service level. The two activities analyzed in this process
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make it possible to define indicators related to the congestion in the picking area (process-
ing and waiting time) and in the expedition zone (waiting time and departure delays).

3.5. Pharmaceutical Wholesaler Case-study

The case study presented in this paper focus on one of the leading distributors of phar-
maceutical products operating in a European country. It commercializes approximately
17,000 products from over 300 different suppliers to more than 1,500 pharmacies.

The group mainly operates as a pharmaceutical wholesaler, buying and storing products
to be sold to customers (mainly pharmacies) in the future. Despite the difficulties of the
market, with several pharmacies closing down, the company has struggled to increase its
market share. Due to the fragility of the sector, the company’s strategy not only focuses on
growth, but also on differentiating itself from the competition by the quality of its service.
Currently, the group operates in the domestic market through five warehouses. Two of
them are large-scale warehouses with automated operations, P1 and S1, being the first the
main warehouse of the company. To be closer to the customers, three smaller secondary
warehouses, S2, S3 and S4, with a manual operation, are also used by the group.

This company performs two additional businesses besides the normal wholesaler oper-
ation that may influence the different activities. As presented before in Section 3.3, these
businesses can be divided into two classes of products: products related to the normal
operation of the wholesaler (p = 1), which affects all activities, and products related to
additional services (p = 2), which only affect the distribution activity. The second case
requires the definition of lateral transshipment movements between the larger warehouses,
P1 and S1, and the remaining warehouses, because only the former receives the products
from the suppliers of the additional services (p = 2). Moreover, as warehouse P1 is the only
one operating at night, all orders placed at this period are prepared there and distributed in
the morning to all the other warehouses. The orders are subsequently forwarded to the cus-
tomers. In order to incorporate this last specification in the S CNR"™ model, it is necessary
to include the constraints presented below.

> OTW.yp <PNDg- Y 3" Zge- Dy M- Xar
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YweW:w=Pl,deW:d+w,teT (3.38)
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Constraints (3.38) and (3.39) guarantee that a pre-defined percentage of demand of
night orders (PN D,) is processed in warehouse P1 and transferred to the other warehouses
with a stock function.

Besides analyzing the location and activity of the current warehouses, the goal with this
study is also to assess whether there is another configuration of the SC that could reduce the



3.6. Computational Results 63

operational costs. Therefore, three new possible locations are considered in the analysis,
in addition to the five warehouses currently operated by the company. These new locations
were defined together with the company’s managers.

Due to the importance that the company gives to the quality of its service, it is necessary
to evaluate the impact on customer service, as well as, the cost reduction. Therefore, the
methodology proposed in this paper can serve as a guideline and perform what-if analysis
for the company’s SCNR.

The company’s customers were grouped into 100 clusters using the k-means algorithm
and the demand for the two types of products was assigned to each cluster. This company
works with two types of merchandise containers for each product and three different vehicle
typologies can be used for transportation. All the activities addressed in the optimization
model consider three operational levels.

The computational results for this case study are presented and analyzed in the fol-
lowing section. The instances used in the optimization model can be made available upon
request.

3.6. Computational Results

The experiments were performed on a PC with Intel(R) Core i7 CPU with 3.4 GHz and
32 GB RAM. The optimization model was implemented using ILOG OPL Studio as a
modeling environment and its incorporated CPLEX 12.5 solver. The simulation model
was implemented on Simio simulation software version 6.97.

Results are discussed in three subsections: (1) a validation of the models to confirm the
adherence of the models to the real-world setting and to determine indicators that are used
as baseline; (2) the improvements that may be achieved by optimizing the current SCND;
and (3) the redesign of the SC.

The statistics of the MIP models for cases (2) and (3) are presented in Table 3.2.

Table 3.2: Model statistics

(2) Current SCND  (3) SCNR

Continuous variables 37,696 60,025
Binary variables 575 1,048
Constraints 3,628 4,803

The optimization model considered monthly time periods and analyzed one year of
operation. The model provides an optimal solution in less then twenty minutes. The cost
indicators provided by the optimization model for each scenario are compared consider-
ing the following categories: inventory costs (Inventory), related to the level of inventory
required and the correspondent holding costs; warehouse operation costs (Operation), as-
sociated with the opening and function of the warehouses; activity fixed costs (Activities),
defined by the level of activity selected; direct-shipment (Direct shipment) and lateral trans-
shipment (Lateral transshipment) costs, associated with the transportation to customers and
between warehouses, respectively.
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Due to the detail incorporated in the simulation model, with all products and orders
listed, it is not feasible to simulate a long time horizon within an acceptable running time
that would allow for multiple iterations (the simulator takes around three hours to simulate
a month of operation). The company only had detailed and quality data for the year con-
sidered in the optimization model. Since the demand is seasonal and the company wanted
to design their network for the peak of operation, the peak month was used in the simula-
tion model. According to the company’s coordinators this is the month when the operation
is more in distress (month of the colds), specially in the main warehouses (P1 and S1)
because the picking is automatic and the process cadence can only be increased slightly,
without further investment. Therefore, it was critical to analyze how possible changes in
the network would affect the operation of the warehouses. Analyzing the operation for the
complete peak period makes it possible to build and validate the model. It is assumed that
if a solution presents a good operational performance in the critical month it will probably
also work smoothly in the remaining months. Note that in the presence of more quality
data additional statistical validations should be performed in order to better define the pe-
riod that should be tested (Sargent, 2014), taking into consideration the trade-off between
the running time and the intended goal of the simulation - analyze the activity’s perfor-
mance.

3.6.1 Validation of the Models

Before testing alternative networks, the models are validated against the current scenario
of the SC. This makes it possible to verify the accuracy of the models and the data, and to
determine the indicators that are used as baseline.

3.6.1.1 Optimization model

Real costs (in percentage of the overall costs) for each category are compared to the ones
given by the optimization model when the current network design of the SC is applied
(a linear programming model was run by fixing all the binary decision variables of the
model proposed). The results, shown in Table 3.3, demonstrate that the optimization model
indicators have a good fit to the real-world values. Moreover, operational indicators of each
activity, such as the number of units processed in the conference and picking activities and
the number of kilometers made, are also compared and the deviation obtained is less than
1%.

Table 3.3: Comparison of cost indicators from the optimization model with the real-world
values for baseline scenario.

Inventory Operation Activities Direct shipments Lateral transshipments  Total
Real value 9.5% 8.4% 20.7% 57.1% 4.3% 100.0%
Model value 9.6% 8.4% 20.7% 57.2% 4.1% 100.1%
Deviation +0.1% 0.0% 0.0% +0.1% -0.2% +0.1%
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3.6.1.2 Simulation model

The simulation model was validated using some of the techiques described by Sargent
(2014), such as data validity, face validity and model behavior analysis. All the flows
and connections between the different processes of the company were analyzed and the
conceptual model of the simulator was validated by the company’s coordinators. Moreover,
the model behavior was analyzed using the system input/output data described in Figure
3.2 for the simulation model, where real input data from the month in analysis was used.
Simple indicators, such as the number of units processed in the conference and picking
activities were compared. Although small deviations to the real values were obtained,
they could be explained by the lack of information regarding the in-transit inventory at the
beginning of the period. Additionally, the behavior of the procurement process triggered
by the inventory policy of the wholesaler was also analyzed and the level of inventory
simulated is similar to the real case, as presented in Figure 3.9. Hence, the overall model
behavior was validated.

P1 S1 So S3 Sq Total

Figure 3.9: Comparison of the inventory levels for each warehouse from the simulation
model (dark grey) with the real-world values (light grey)

The operational indicators, which complement the ones provided by the optimization
model, are presented in Tables 3.4 and 3.5. Note that the real data for these indicators is not
available, but they were validated by the respective activity coordinators of the company.

Table 3.4 indicates the current average congestion that the conference and picking ac-
tivities face when orders are processed. The indicators considered in the expedition activity,
Table 3.5, are used to understand in more detail the impact of the SC redesign. The first
indicates the average delay of departing vehicles, and the last two refer to the percentage
of vehicles that depart within a given delay. It is worth noting that delays up to 20 minutes
are usually recoverable during the distribution route.

Table 3.4: Simulation indicators for conference and picking activities for the baseline sce-
nario.

Indicator Conference  Picking
Average number of orders waiting to be processed 71.7 0.5
Average waiting time per order 3.5 days 1.1 min

All the validations were made together with the company’s coordinators and made it
possible to determine that the model is suitable for the intended purpose. Therefore, the
results achieved in this scenario are used as baseline, for comparison to the alternative
scenarios.
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Table 3.5: Simulation indicators for expedition activity for the baseline scenario.

Indicator Expedition
Average delay time 13.1 min
% travels delayed between 10 to 20 minutes 17%
% travels delayed more than 20 minutes 8%

3.6.2 Optimization of the Current Supply Chain Network Design

Once the models are validated, the first aim is to understand whether modifications can be
performed to reduce the total costs without changing the current network design (i.e. main-
taining the current five warehouses), causing minimum disruptions to the current SC oper-
ation. Denoted as C-SCND, this scenario shows the improvements that may be achieved
by optimizing the current SCND.

To test this scenario, the binary variables of the optimization model related to the net-
work design (X,,s and YV{ ;) are fixed to the values of the current design, only making it
possible to optimize the activities operational level and customer allocation.

The results indicate that this scenario may lead to annual savings of about 3%. Table
3.6 compares the cost indicators of this solution against the ones obtained for the base-
line model. Table 3.7 indicates the number of people to reallocate for the conference and
picking activities, according to the operational level selected, and the difference of total
kilometers made for the distribution activity.

Table 3.6: Comparison of cost indicators from the baseline and C-SCND scenarios.

Cost indicator Inventory Operation Activities Direct shipments Lateral transshipments  Total
Baseline scenario 9.6% 8.4% 20.7% 57.2% 4.1% 100.1%
C-SCND scenario  9.2% 8.4% 21.0% 54.7% 4.1% 97.3%

Table 3.7: Difference of the operational activities state between the C-SCND and baseline
scenarios.

Warehouse P1 S1 S2 S3 S4 Overall
Conference (person)  +1 +1 0 0 0 +2
Picking (person) -2 0 +3 -1 0 0

Transport (% kms) 9% +1% +3% -3% +3% -42%

The results indicate minor changes that can be performed in the SC operation to yield
significant gains. The direct shipment is the cost category that provides the greatest savings
due to the 4% decrease in kilometers traveled (Table 3.7) as a result of the customers’ real-
location to other warehouses. This reallocation modifies the number of units processed in
the conference and picking activities at the warehouses, causing a reallocation of staff that
increases the fixed costs of these activities (Table 3.6). However, because the conference
activity is reinforced (Table 3.7), the level of inventory is lower, thus reducing the inventory
holding costs. In the picking activity, warehouse S2 is reinforced with three more people
because of its closeness to customers, and the operational capacity of its activities is supe-
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rior to other warehouses (note that this capacity is differentiated in the model by means of
parameter CP,).

3.6.3 Optimization of the Supply Chain Network Redesign

With regards to the optimization of the supply chain network redesign (SCNR scenario),
new potential locations are considered for warehouses, other than the five the company
already has. The goal is to question whether the current location of the warehouses is
appropriate or whether there are other locations that could minimize the operational costs
of the SC. Moreover, the idea is to discuss the function of the current warehouses. Model
S CNR'™ has been solved to optimality. The results indicate that the configuration that
minimizes the global operational costs of the company is maintaining the five warehouses.
However, the function of warehouse S2 should be changed to cross-docking, and supplied
by the main warehouse P1.

The variations in the cost indicators and in the operational level of the conference,
picking and transportation activities are presented in Tables 3.8 and 3.9. As warehouse S2
is changed to cross-docking, no conference and picking activities are performed; therefore,
their level is set to zero. Table 3.9 only shows the variation for the transport activity.

Table 3.8: Comparison of cost indicators between the SCNR and baseline scenarios.

Cost indicator Inventory Operation Activities Direct shipments Lateral transshipments ~ Total
Baseline scenario  9.6% 8.4% 20.7% 57.2% 4.1% 100.1%
SCNR scenario 8.9% 7.9% 20.0% 54.3% 4.6% 95.6%

Table 3.9: Difference of the operational activities state between the SCNR and baseline
scenarios.

‘Warehouse P1 S1 S2 S3 S4 Overall
Conference (person) +1 +1 - 0 +1 +1
Picking (person) +3 0 - +1 +1 -6

Transport (% kms) -12%  +1%  +5% 2% +3% -4.7%

Redesigning the SC allows for savings of about 4.4%, the highest savings resulting
from a reorganization of the distribution to customers (see Table 3.8). As warehouse P1
supplies warehouse S2 in cross-docking, its conference and picking activities have to be
reinforced with four more people (Table 3.9). Moreover, this change triggers the need to
supply warehouse S2 more frequently, thus increasing the costs of lateral transshipments.
However, the warehouse operation costs are reduced.

Looking into more operational indicators obtained through the simulation model, it is
possible to conclude that the picking and expedition activities are the most affected activ-
ities in the SCNR scenario. Table 3.10 demonstrates the pressure that the allocation of
warehouse S2 puts on the activities of warehouse P1. The average number of orders wait-
ing to be processed in the picking activity is expected to increase 10 units, having each an
average waiting time of 5 more minutes.
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Table 3.10: Difference of the picking activity operational indicators between SCNR and
baseline scenarios.

Warehouse P1 St S22 S3 S4
Average number of orders waiting  +10.2 0 - =01 -0.1
Average waiting time (min) +4.6 -0.1 - =08 -07

Because of the stress created in the preparation of the orders, the vehicles leave ware-
house P1 on average 7 minutes later than in the baseline model (Table 3.11).

Table 3.11: Difference of the expedition activity operational indicators between SCNR and
baseline scenarios.

Warehouse P1 St S2  S3 S4

Average delay time (min) +6.9 0 - -0.8  -1.7
% travels delayed between 10 to 20 minutes -1% 0% - -1% +1%
% travels delayed more than 20 minutes +14% 0% - 0% -1%

In this new scenario, the number of travels that are delayed for more than 20 minutes
increases 7%. For warehouse P1, the increase is 14% and, therefore, its service level is
significantly reduced. Besides the delays in the vehicles’ departure from the stock ware-
house, the time required to transport the goods from warehouse P1 to S2, together with the
time required for deconsolidation, must be considered. Moreover, the reduction of daily
deliveries in the region of warehouse S2 has to be taken into consideration as well. In the
current scenario the customers can have up to 5 deliveries per day, but with the warehouse
working as cross-docking this frequency is forced to decrease to 3 deliveries, according to
company policies. A higher frequency jeopardizes projected savings.

3.6.3.1 What-if Analysis

In the previously discussed SCNR scenario, the delays are related to the higher congestion
in the picking activity as a result of an increase in the number of orders to be processed in
warehouse P1.

The pharmacies place more orders at lunch time (for afternoon replenishment), making
the picking activity at this hour rather pressured even in the current design. Therefore,
a new simulation is conducted with the design obtained in SCNR scenario (maintaining
five warehouses, with warehouse S2 changed to cross-docking), hereafter called SCNR
scenario 1, but with an adjustment in the orders’ time of arrival to the warehouse. In this
new simulation, SCNR scenario 2, the orders made to warehouse S2 at the lunch hour are
offset one hour earlier to potentially mitigate the delays obtained in the first test.

It is clear from Table 3.12 that this change is advantageous, reducing the average delays
at warehouse P1 to 16 minutes, and the percentage of delays above 20 minutes by 7%.
Hence, instead of delivering the orders later to the customers of warehouse S2, customers
should be convinced to use an earlier ordering window at lunch time.
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Table 3.12: Comparison of warehouse P1 expedition activity operational indicators from
the baseline scenario and SCNR scenarios 1 and 2.

Warehouse Baseline scenario SCNR Scenario 1 SCNR Scenario 2
Average delay time (min) 12 18.9 15.6
% of travels delayed between 10 to 20 minutes 17% 16% 19%
% of travels delayed more than 20 minutes 3% 17% 10%

3.7. Conclusions and Future Work

This paper focuses on the supply chain network redesign (SCNR) of pharmaceutical whole-
salers. Due to the increased pressure of the market, wholesalers are rethinking their strate-
gies in order to minimize their costs, without jeopardizing the current customer service
levels.

A hybrid optimization-simulation methodology is proposed to determine the best net-
work design for established wholesalers. In the first phase, from a strategic perspective, the
main decisions related to the SCNR are optimized using a MIP model. In this model, the
number, location, function and capacity of the warehouses, as well as customer allocation,
are optimized in order to minimize the total costs. In the second phase, the operation of the
SC is simulated using a discrete event simulation model to analyze the new network design
from an operational perspective. Using historical data from the operation, the warehouses’
activities are simulated to understand the stress that the changes proposed may cause on
them, and subsequently on the level of customer service. To conclude, a what-if analysis is
conducted to determine the robustness of the solutions obtained.

The computational results presented for a case study validated the models and exposed
the benefits of integrating optimization and simulation in one approach for SCNR. The
indicators obtained from both models complement each other and make it possible to eval-
uate a solution from strategic, tactical and operational perspectives. As demonstrated in
the case study, the optimization model can provide insights on the best network redesign
that together with the simulation model helps understand the practicability of that imple-
mentation. In this case, the analysis of the delays caused by the redesign are one of the
most important indicators for the company, because they may impact the service level.
Therefore, the results of the simulation help to understand the adjustments that can be
made for the solution to work. The results demonstrated that maintaining the company’s
five warehouses and yet changing one to cross-docking may guarantee savings up to 4.4%.
Moreover, if an earlier ordering window at lunch time is imposed, the redesign will not
cause delays beyond acceptable limits.

For businesses in which the details are critical and very time sensitive, this approach of
integrating optimization and simulation leads to accurate and robust solutions. Although
this methodology requires a high number of parameters to feed both models, most of them
are obtained from historical data that a company can easily access.

Future work should focus on the incorporation of product allocation as one of the opti-
mization decisions, making this methodology more suitable for wholesalers of other indus-
tries that face different operational conditions. The optimization and simulation can also
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be extended to further integrate the delivery routes. This extension would help to evalu-
ate in more detail the customers’ reallocation decisions. Moreover, an interaction between
the simulation and the optimization model, to refine the optimization parameters accord-
ing to the simulator solution and guide the search, would probably improve the final results.
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Abstract Multi-compartment vehicles (MCVs) are able to circumvent the fact that prod-
ucts from different segments cannot be transported together. Using flexible MCVs allows
tailoring the compartment size and position for each different tour. However, compartments
still need to be accessible for loading at the distribution center and orders accessible for un-
loading at customers. This paper addresses such loading and unloading challenges raised
in the distribution planning when using MCVs with flexible compartments. Literature
on multi-compartment vehicle routing problems (MCVRPs) with flexible compartments
is scarce. However, practice shows that a growing number of retailers use these technically
advanced vehicles in their distribution process. Besides classical routing decisions, the
configuration of each vehicle for each tour becomes an essential aspect of tour planning
when using MCVs. This requires definition of the temperature mix, compartment sizes,
and the combination of different orders and therefore customers on the vehicles. Routing
and loading layout planning are therefore interdependent for MCVs. Our work addresses
the problem of obtaining feasible MCV loading with a cost-optimal routing. Hence, we ex-
tend the MCVRP to take into account loading constraints. We present a specialized packing
problem to define how the compartments should be built, taking into account these loading
constraints. This model is used in a branch-and-cut (B&C) and in a large neighborhood
search (LNS) framework to check the loading feasibility of the tours. Numerical studies
show that the adapted LNS framework reaches the optimal solution for small instances and
can be applied efficiently to larger problems. Additionally, further tests on larger instances
helped to derive general rules regarding the influence of loading constraints, which were
validated with a case study analysis with a European retailer.
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4.1. Introduction

This paper addresses loading and unloading issues raised in the distribution planning when
using multi-compartment vehicles (MCVs) with flexible compartments. The main appli-
cations of MCVs are waste collection (e.g., Henke et al. (2015)), fuel distribution (e.g.,
Derigs et al. (2011)) and food distribution (e.g., Hiibner and Ostermeier (2016)). The fo-
cus of this paper is on retail grocery distribution, where efficient logistics are essential due
to narrow margins, requirements for higher product availability and extensive regulations
(e.g., product traceability). Retailers need to fulfill temperature requirements when trans-
porting grocery products (e.g., frozen, fresh, ambient). The usual way in the past was to
deliver each product segment, i.e. each group of products with a particular temperature
requirement, separately on single-compartment vehicles (SCVs). However, in the last 10
years, a growing number of retailers have been using the relatively new technology of
MCVs (Klingler et al., 2016). The MCVs are technically able to split their loading area
flexibly into different compartments, each adjusted to a particular temperature that fulfills
specific product requirements. The number and size of compartments of each MCV are not
predefined. It is possible to built up between one and five different compartments. This can
be adjusted for each tour separately without any loss of capacity. Additionally, the position
of the compartments can be chosen freely on the vehicle according to the orders assigned.
These features of an MCV make it possible to perform joint deliveries of different segments
within the same vehicle.

However, these conditions yields additional challenges. Stores usually order products
from different segments at the same time. Retailers organize the distribution center (DC)
by temperature zone. To consolidate a customer order with different segments, a truck
needs to pick up the orders separately for each segment from the temperature-specific DC
areas. The vehicle loading is carried out from the rear of the vehicle. This is different than
for the waste or glass collection where the products are loaded from the top. Figure 4.1
illustrates a possible loading layout of an exemplary MCV tour with four different product
segments. Retailers use standardized transportation units. The loading area is divided by
two horizontal compartment walls (lengthwise from rear door to front) and three vertical
walls (between segments 1 and 2, 2 and 3 and 2 and 4). When a delivery with orders
from multiple compartments is performed, these compartments have to be easily accessed
to unload all orders of the customer. Due to the rear-loading and unloading, the access to
a compartment may be blocked by other compartments. As given in Figure 4.1, parts of
compartment 1 and therefore orders within it, can only be accessed if the corresponding
parts of compartments 2,3 and 4 have been, at least, partially emptied before. Neglecting
the (un)loading operations during the routing planning can otherwise result in cases where
different orders can only be unloaded by rearranging parts of other loaded orders.

The arising problem can be classified as a multi-compartment vehicle routing problem
(MCVRP) with Loading Constraints (MCVRP_LC). It combines VRP with MCVs and a
loading problem. More specifically, it defines routing, assigns orders to compartments,
defines compartments sizes, and specifies how the compartments and the orders should
be arranged within the vehicle to obtain feasible and cost minimal tours. Since most of
the literature on MCVs focus on waste and petrol applications, where each compartment
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Figure 4.1: Exemplary loading layout of one MCV with four product segments

can be accessed individually (e.g., from top or by separate filler), the loading problem of
MCVs has so far not been studied in literature. This work has multiple contributions. First
of all, we identify the loading constraints with rear-loading. Two solution approaches are
developed for the MCVRP_LC: an exact approach (branch-and-cut (B&C) algorithm) and
a heuristic (extension of a large neighborhood search (LNS) framework). Both approaches
are enriched with the the development of a multi-compartment packing problem (MCPP)
that defines how the compartments should be built and the orders loaded into the truck.
Finally, we identify the impact of loading constraints in MCVRPs by means of numerical
studies with real and simulated retail data, allowing to generalize the findings.

The remainder of this paper is organized as follows. We detail the loading and distribu-
tion problem in Section 4.2 and discuss related literature in Section 4.3. The mathematical
formulation for the MCVRP_LC is given in Section 4.4, together with the MCPP model.
The proposed solution approaches are presented in Section 4.5. Numerical experiments
evaluating the influence of loading constraints are presented in Section 4.6. Finally, section
4.7 summarizes our findings and discusses future research.

4.2. Loading Problem of MCVs

Transportation with MCVs needs to be distinguished from distribution with standard vehi-
cles as different loading/unloading processes need to be considered. In this section, we first
detail the distribution processes and related costs with MCVs, an then we define the actual
loading issues.

As product segments are stored in the DC by temperature zone, an MCV needs to ap-
proach different segment-specific shipping gates to pick up pallets from multiple segments
(see left-hand side of Figure 4.2 where four shipping gates are visited). Therefore, the
loading costs depend on the number of product segments and hence on the number of com-
partments. Each additional segment leads to additional loading costs as there are set-up
costs related to traveling and loading. On the other hand, customer orders from different
segments can be combined, which reduces the number of stops at the stores (see right-hand
side of Figure 4.2 where each customer receives more than one segment). This feature
leads to different unloading costs, related with stopping costs.

Our work focus on the grocery distribution, where the transportation units have identi-
cal size and cannot be stacked. For the SCVs, the loading of the orders just needs to follow
the opposite sequence of the route so that the orders of the first customer approached are
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Figure 4.2: Loading, routing and unloading processes with an MCV

at the rear of the truck. However, when using MCVs, the loading of customer orders from
each segment within each compartment needs to be made in a sequence such that they
can be easily accessed without any rearrangement. The rearrangement of orders during a
tour (e.g., moving orders of store B during a stop at store A) is not desired due to strict
legal regulations with regard to maintaining a constant temperature during the transport,
short time-windows for unloading, limited space at retail stores, and significantly higher
unloading costs. In the remainder, we describe the critical characteristics of (un)loading
procedures that have to be considered to achieve a feasible loading of an MCV.

(1) Requirements for the joint loading of orders of one segment. All orders of one seg-
ment that will be transported on the same vehicle have to be loaded at the same time (i.e.
no other segment can be loaded in between), as otherwise it would be necessary to approach
a shipping gate for the same segment several times. This is not practical as it would lead
to an unmanageable planning situation, increasing the waiting time for loading at the DC,
and the set-up costs for loading. Figure 4.3 illustrates four different loading options for an
MCYV with four compartments (vehicle (V) 1-4). The loading area is separated into three
aisles, and a compartment can be within and across an aisle. Example V1 shows a feasible
solution where two segments share the middle aisle, but are separated by a compartment
wall. Example V2 shows that two compartments for the same segment can be set up one
after another in different aisles of an MCV. This is feasible as the compartments can be
loaded after each other at the same shipping gate. Example V3 shows the possibility of
splitting one compartment for the same segment crosswise, i.e. into different aisles. Ex-
ample V4 illustrates that one compartment cannot be split in the same aisle. A loading as
given in V4 would require the repeated approach of a shipping gate. When a vehicle leaves
the DC the layout of the loading area is fixed and cannot be changed.

Requirements for a feasible (2) customer and (3) segment sequence. The unloading prob-
lem of an MCYV is essentially driven by the question of whether all orders that need to
be unloaded at a customer can be accessed without any obstacles in the form of orders
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Figure 4.3: Illustrative vehicle loading layout with multiple compartments

from other customers. Figure 4.4 illustrates possible sequencing issues for a tour example.
There are three customers (A, B and C, represented by circles) with different order sizes
(represented by the number in the rectangle) from a specific segment. Let us assume that
the customer sequence with the minimum transportation costs is B-C-A. Three loading lay-
outs are presented for the given customer orders. The first two layouts (V1 and V2) are
infeasible because the orders of customer A would block the unloading orders of customer
C who needs to be served before A. The only layout that would allow feasible unloading is
the third (V3). However, this would require approaching the shipping gate of one segment
twice. As a consequence, no feasible loading can be achieved for the tour B-C-A that is
solely focused on minimizing the transportation costs.

[ Product segments (Y] Customer & demand
Illustrative data Examples for infeasible loading arrangements for tour B—C - A

Transportation cost optimal V1 V2 V3
routing: B—-C-A

Orders by customer and
segment:

ehicle capacity: 33

Rear door Rear door Rear door

Figure 4.4: Illustrative example for infeasible loading and unloading

Note that backhauling of empty transportation units (pallets or roll-cages) is not con-
sidered in this study, as we found that this is not an issue for our partners in practice. In
operational practice the driver decides if and how many units he returns from each store.
As empty pallets or roll-cages can be stacked and therefore require only a fraction of space
of full ones, their return is not a bottleneck in distribution.
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4.3. Related Literature

The MCVRP_LC is a variant of the CVRP. Based on the problem characteristics there
are two relevant streams within VRP literature to ve covered. On the one hand, our work
clearly extends the MCVRP as the use of MCVs is a central aspect in our routing decisions.
On the other hand, the problem we are facing concerning the loading of MCVs is related
to the VRP with loading constraints.

4.3.1 Literature related to MCVRP

While there is a wide range of publications dealing with the CVRP and its various exten-
sions (see general overviews at Golden et al. (2008) and Toth and Vigo (2014)), there is only
a small body of MCVRP literature. We are considering MCV's with flexible compartments,
the number and size of which can be adjusted. The MCVRP extends an CVRP by adding
constraints for the building and loading of different compartments on each vehicle. Besides
the delivery of groceries, there are several areas of application for MCVs, such as fuel dis-
tribution or the collection of waste. However, most publications in these areas consider the
use of fixed compartments (e.g., Muyldermans and Pang (2010) for waste collection and
Avella et al. (2004) for fuel distribution), instead of vehicles where compartments can be
adjusted flexibly.

Derigs et al. (2011) are the first to present a comprehensive problem formulation for
MCYVRP with flexible compartments. They formulate a general model for the application
of their MCVRP for food and fuel distribution. They employ a solver suite combining
different heuristic approaches to solve the MCVRP. This involves construction heuristics
(e.g., Sweep-Algorithm) as well as a combination of search and metaheuristics. In addi-
tion, Derigs et al. (2011) identify an LNS with the operator combination Shaw removal and
regret insertion as particularly efficient. Henke et al. (2015) consider the use of MCVs for
the collection of glass waste. They allow flexible compartments but restrict their sizes to
predefined values. They also allow the use of more product categories than compartments.
For their MCVRP, they apply a variable neighborhood search. Further, Henke et al. (2017)
present a branch-and-cut algorithm for their MCVRP in glass collection. Recently, Koch
et al. (2016) propose a genetic algorithm for a similar problem setting. Hiibner and Oster-
meier (2016) present an MCVRP that considers process costs implied by the use of MCVs
in grocery distribution. They show that costs for loading/unloading have to be taken into
account to achieve a more realistic evaluation of total costs due to additional operations
that are required when using MCVs. The LNS proposed by Hiibner and Ostermeier (2016)
is used in this work to solve the MCVRP part of the MCVRP_LC.

4.3.2 Literature related to VRP with loading constraints

Different loading constraints have to be faced in many routing problems. VRP with loading
constraints are a combination of CVRP and packing problems. A general overview of
packing problems and container loading problems can be found in Wischer et al. (2007)
and Bortfeldt and Wischer (2013). A review on the combination of routing and loading
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problems was introduced by lori and Martello (2010) and more recently by Pollaris et al.
(2014). Coté et al. (2016) examine the value of integrating the loading decisions instead of
solving routing and loading sequentially.

Grocery retailers use standardized transportation units for the transport of goods from
the DCs to stores, which cannot be stacked. Two types are available: pallets and roll-cages.
As a consequence, the loading of MCVs in grocery distribution considers the assignment of
two-dimensional objects of identical size (i.e., pallets or roll cages) to identical containers
(i.e., loading area of identical vehicles). We therefore focus on literature concerning two-
dimensional loading CVRP (2L-CVRP) that also considers sequence-based loading. An
2L-CVRP is first addressed by Iori et al. (2007). They propose an B&C algorithm for rout-
ing and an integrated branch-and-bound framework to check loading feasibility. Similarly,
Coté et al. (2014) developed an B&C algorithm that uses a one-dimensional contiguous
bin packing problem to identify and eliminate non-feasible loading. We use a similar ap-
proach recorring to the MCPP to identify and cut infeasible loadings. Further, both Iori
et al. (2007) and Coté et al. (2014) solve the routing and packing sequentially, which can
be seen as a starting point for the problem studied in this paper.

Besides these exact methods for the examination of loading constraints, most publi-
cations focus on heuristic solution approaches for 2L-CVRP. Attanasio et al. (2007) solve
a simplified integer linear program within a cutting plane framework for their variant of
the 2L-CVRP, extended by multiple time windows for each day. Gendreau et al. (2008)
present a tabu search (TS) for the 2L.-CVRP. In their approach, they combine heuristics,
lower bounds and a truncated branch-and-bound procedure to solve the loading problem.
A guided TS is used by Zachariadis et al. (2009), who later propose a metaheuristic that
uses a local search procedure for diversification (Zachariadis et al., 2013). Fuellerer et al.
(2009) address an 2L-CVRP where a rotation of items of 90 degrees is allowed. They ap-
ply ant colony optimization to solve the respective problem. Finally, Pollaris et al. (2016)
develop a special case of 2L-CVRP, an CVRP with sequence-based pallet loading and axle
weight constraints. They present a mixed integer linear program for their problem formu-
lation and compare it to a model without axle weight restrictions.

Summary. In our problem we combine an MCVRP and an 2L-CVRP formulation and
we therefore leverage both streams in literature. More precisely, lori et al. (2007) and Coté
et al. (2014) inspired our approach to sequentially tackle the loading and routing problem.
Further, we use an LNS framework as this showed very good results in various applications
of MCVRPs (Derigs et al., 2011; Hiibner and Ostermeier, 2016).

4.4. MCVRP with Loading Constraints

The formulation proposed for the MCVRP_LC incorporates the loading constraints into an
MCVRP model in the form of sub-tour elimination constraints. This is achieved by defining
a set Q that records tours with infeasible loading. In this section, we first present the overall
problem formulation, followed by the MCPP formulation that defines how compartments
should be built inside the vehicles, respecting loading requirements. If such is not possible
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(infeasibility), the tour is added to Q.

The MCVRP_LC can be defined as follows. For an undirected, weighted graph G =
(N, E) aset of vertices N ={0, 1,...,n} is given, representing the location of the DC ({0}) and
the locations of n customers. The connection between different locations is represented by
the set of edges E = {(i, ) : i, j € N} and each edge has an associated traveling cost f;;. It is
assumed that all traveling costs satisfy the triangle inequality and each tour starts and ends
at the DC. Let V be the set of vehicles available for transportation at the DC. The number
of vehicles available is assumed to be sufficiently large to fulfill all customer demand and
consists of identical vehicles with capacity Q. The loading area of each vehicle can be
split into a limited number of compartments ¢ € C with C = {1,...,c}. The number of
compartments used on each vehicle is indicated by k € K, with K = {1,...,c}. As in Hiibner
and Ostermeier (2016) we also consider an MCVRP with loading/unloading costs. The
loading cost /x depends on the number of segment specific-shipping gates approached and
is related with the number of compartments used. The unloading cost « is incurred every
time a customer is visited.

Let P ={1,..., p} be the set of orders to be delivered on a given day and g, the quan-
tity of each order m € P (g,, > 0). Let § ={1,...,s} be the set of segments available for
distribution. The subsets D; and W}, are used to represent all orders from a customer i € N
and all orders from a segment /4 € S, respectively. Finally, assuming Q as the set of tours
with infeasible loading, let £, C E be the subset composed by the sequenced edges that are
traversed in the infeasible loading tour w € Q. Moreover, let P, C P be the subset of orders
considered in the infeasible loading tour w € Q.

For the formulation of the MCVRP_LC we used the following variables:

1, if order m is assigned to compartment ¢ on vehicle v

Omed .
™1 =0, otherwise

=1, if vehicle v transverses the edge (i, j)
b,' v _ .

= (0, otherwise

=1, if compartment c on vehicle v is active
Bed .

=0, otherwise

=1, if vehicle v has k active compartments
r .
"\ =0, otherwise

fv representing the number of customer stops for vehicle v

0iy =d, d € {1,...,n} representing position d of customer i on vehicle v

The mathematical model can be formulated as follows:

min! Z[Zlk'l’vk-i-zztij'bijv-i-u'ﬁ,] (4.1)

veV kekK ieN jeN

subject to:

D o<l vev (4.2)
JENNT0)
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D bige = > byjy veV,geN (4.3)
ieN jeN
Opw—0jy+(m+1)-bij, <n veV,ieN, je N\{0} “4.4)
Sov =1 vev 4.5)
D m e <0 vev (4.6)
meP ceC
Z Z Oppve = 1 meP 4.7
veV ceC
D0 bme<p ) bip veV, jeN\(0) (4.8)
meD); ceC ieN
ZHmVCSp-(l—ZHWC) veV.ceC, hzeS h#z (4.9)
meW), reW;

Zem < praye ceC,veV (4.10)

mepP

ZﬁW:Zk-rvk vev @.11)

ceC kekK

erksl vev (4.12)

kek

A2Y D bip vev (4.13)
ieN jeN\{0}

DD et D bip <IEJ+IPoI-1  weQ veV (4.14)

meP,, ceC (i,))€Ey

gmvc,bijwﬂvurvk6{0’1};fv,6iv >0 mePyveV,ceC, i,jeN, keK 4.15)

The objective function (4.1) minimizes the total cost of all tours and consists of three
parts: (i) loading, (ii) transportation and (iii) unloading costs. Constraints (4.2) and (4.3)
represent routing constraints, guaranteeing that each vehicle can depart at most once from
the depot, and that every vehicle that visits a location also leaves it. Constraints (4.4) and
(4.5) are used to eliminate sub-tours. The former determines the position of each location
within the tour, while the latter ensures that the depot is the first in the sequence of locations
approached. The overall quantity of the orders assigned to a vehicle cannot exceed the
vehicle capacity as stated by constraint (4.6). According to constraint (4.7), each order
can only be assigned to one compartment and one vehicle. Additionally, an order can
only be assigned to a vehicle if the associated customer is visited on the tour (constraint
(4.8)). Constraint (4.9) ensures that orders from different segments are not assigned to the
same compartment. To model the use of compartments, constraint (4.10) ensures that a
compartment is set to active if an order is assigned to it. Constraints (4.11) and (4.12)
control the value for the number of compartments used. For this, r,; has to be activated
for the correct number of compartments and at the same time it can only be activated once
for each vehicle. In addition, constraint (4.13) ensures that the number of stops is chosen
accordingly for each vehicle. Constraint (4.14) ensures that the infeasible tours in terms
of loading are eliminated. This is accomplish by avoiding tours with the same customer
sequence and order mix as the infeasible tours. Lastly, the variables domains are defined
by constraint (4.15).
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4.4.1 Multi-Compartment Packing Problem

The MCPP can be classified as an Identical Item Packing Problem (IIPP) (see Wischer
et al. (2007)), since it involves the assignment of identical items to exactly one large object
while maximizing the number of orders loaded. In our context, this requires the loading
of all orders assigned to a given tour, while respecting customer and segment sequence.
Hence, if not all orders can be loaded, the corresponding tour is declared infeasible.

The MCPP can be defined as follows. Let A ={1,...,a} be the set of orders assigned
to be loaded on the vehicle in analysis. The loading area and capacity of an MCV can be
divided into a certain set of items (see the left-hand side of Figure 4.5). To position each
single item into the truck, the loading area is divided into |X|-|Y| possible spots. Here,
x € X represents the aisles available on the loading area and y € Y represents the different
positions within an aisle. Each order m € A has a fixed quantity g, that expresses the
number of loading items. The orientation of the items is considered to be fixed in order
to be able to move them in the required manner (e.g., pallets can be accessed using pallet
trucks). Let, now, N = {1,...,n} be the set of customers that have to be visited by the vehicle
and S ={1,..., s} the set of segments to be loaded. Each customer can have more than one
order to be delivered, but only one per segment. Once again, all orders from a customer
i € N compose the subset D; C A and all orders from a segment & € S compose the subset
W, € A. To take into account the customer sequence, a set G; € N is defined indicating
the predecessors of customer i € N, i.e. all customers that need to be visited earlier than
customer i in the tour. Lastly, M is used as a sufficiently high number to regulate the setting
of our decision variables.

Example with vehicle capacity Q=33 and order quantity g,, = 6
a) Vehicle layout for the loading  b) Assignment of orders to vehicle layout

Customer s Split of order W) Assignment to vehicle
order g, into single layout

°
M orive . [ used position
rn' Driver|[] Free position

jopopg ¢

Rear door

Rear door

Figure 4.5: Loading layout for the Multi-Compartment Packing Problem (MCPP) (illustra-
tive example)

We introduce the following decision variables for the formulation of the MCPP:

1 =1, if an item of order m € A has been assigned to position (x,y): x€ X,y €Y
" =0, otherwise

s =1, if segment i € § is loaded after z € S in the segment sequence
h21 =0, otherwise
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Since we want to define a feasible loading, all orders assigned to the vehicle have to be
loaded. Therefore, the MCPP does not require an objective function, but has to respect the
following constraints.

D0 Ay = meA (4.16)

xeX yeY
Z/lmxysl xeX, yey (4.17)
meA
Brz+Bn =1 hzeS: h>z (4.18)
Brz+Br < 1+ By hz,fe€S: s#z#r (4.19)
Y Anxy £V Apxy + M2 = Arxy = Biz) hzeS:s#z, meW, rew,

xeX, y,y ey (4.20)
V- Amxy SV - Apxyr + M(1 = Apyr) i€N, jeG, meD;, reD,

xeX, y,y ey 4.21)
Amxy,Bnz €{0,1} meA, xeX, yeY, h,ze$ 4.22)

Constraint (4.16) ensures that each order assigned to the vehicle has all items loaded.
This is ensured by setting the sum of all assigned items of an order m equal to the order
quantity g,,. Only one item can be assigned to each position on the truck, which is guaran-
teed by constraint (4.17). The requirements for customer and segment sequence described
previously are represented by constraints (4.18) to (4.21). First, constraints (4.18) and
(4.19) define the segment sequence, i.e. in which sequence the segments shipping gates
should be visited. Second, constraint (4.20) ensures that the defined sequence of segments
is not violated during the loading and that the joint loading of each segment is guaranteed.
This is accomplished by ensuring for each aisle of the vehicle that the orders of segment
loaded later are closer to the rear door (see Figure 4.5). Finally, the customer sequence re-
quirement is ensured by constraint (4.21). It ensures that all orders in the same aisle adhere
to the customer sequence of the tour, i.e., the correct unloading sequence is respected. The
variables domains are defined by constraint (4.22).

4.5. Solution Approaches

The MCVRP_LC is an extension of the CVRP and therefore NP-hard (Toth and Vigo
(2014)). In Section 4.5.1 we first present an B&C algorithm that iteratively solves the
routing and loading problem by generating cuts for infeasible tours at each integer node.
However, this exact method is only capable of solving small instances. Therefore, we fur-
ther extend an LNS framework to solve practically relevant problem sizes, by incorporating
a repair mechanism for infeasible loading tours. In addition, exact and heuristic solution
approaches for the MCVRP (without loading constraints) are used to obtain bounds for the
assessment of our extension to the MCVRP_LC. Table 4.1 provides an overview of the
solution approaches applied.
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Table 4.1: Overview of solution approaches that have been applied and developed

Problem ‘ Exact approach  Heuristics  Purpose
MCVRP B&B LNS! Used as benchmark
MCVRP_LC | B&C LNS_LC? Used to benchmark the heuristic quality

and evaluate the impact of loading constraints

! Based on Hiibner and Ostermeier (2016)
2 Extends the LNS approach with a repair mechanism

4.5.1 Exact approach for the MCVRP_LC

An B&C algorithm is proposed to solve the MCVRP_LC (see Figure 4.6). This exact
approach is used to get a benchmark for the heuristics in terms of solution quality. In the
first step, an MCVRP is solved without loading constraints by using the branch-and-bound
(B&B) framework provided by CPLEX, i.e. constraint (4.14) of the MCVRP_LC is not
considered. As soon as a feasible solution for the MCVRP, and therefore an integer node
is reached, the check of loading feasibility is carried out in Step (a). The MCPP model
proposed in Section 4.4.1 is used to check the feasibility of each tour. The sequence of
customers and the orders assigned to each vehicle are passed to the MCPP model, which
returns if a feasible loading is possible or not.

Multi-compartment vehicle
routing problem (MCVRP) Multi-compartment packing problem (MCPP)

Infeasible tour(s)
found?

Yes

Finish

b) Continue branching

Solve MCVRP and obtain
integer solution

—* (a) Check loading of tours

b) Add loading constraints
cut(s) and continue branching

Figure 4.6: Scheme of exact approach for MCVRP_LC with branch-and-cut

According to the outcome of Step (a), there are two possible cases for Step (b). If
the MCPP returns a feasible solution, no loading constraints are violated and the algorithm
continues branching. If no feasible solutions can be found for a tour, the tour is declared in-
feasible and therefore added to the set Q. This means that a cut is added to the MCVRP_LC
model. The cuts take into account the special characteristics of the problem setting. In con-
trast to classical VRP with loading constraints, in MCVRPs the orders of one customer can
all be put on the same as well as on different tours. Figure 4.7 illustrates this aspect, where
the left-hand side denotes the data for the simplified example and the right-hand side the
possible loading solutions.

The example shows the solution for a tour with three customers (A, B and C) and the
corresponding orders denoted by the customer and the order number for different segments
(e.g., Al). The best MCVRP solution found for this data set includes a tour with a customer
sequence A-B-C (see part i) of Figure 4.7). However, this is an infeasible tour in terms of
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Order list: i) Infeasible solution:
Infeasible loading for planned tour A-B-C, as
Customer order Quantity customer C blocking customer B Add cut:

by segment

I = o) Customer sequence

I
AL 1 & S i A-B-C
o
<2 >
* Al,B1,Cl&C2
+ A2 assigned to

T i -
i i i different tour

Assigned orders:

Joop Jeay

il |
{
T
19ALQ |"j

ii) Feasible solution:

D Not cut:
i
=z ﬁ il.isté)rlwecr sequence
% Segments e =me
8
a @ o Assigned Orders:
§ 5’ « Al,A2,B1&C1
= « C2 assigned to
Vehicle Capacity: 33 different tour

Figure 4.7: Example for added cuts: customers and orders define cut

loading, due to the fact that order C2 is blocking order B1 and customer B is supplied
before customer C. If we add a cut only considering the customer sequence, all possible
order combinations for the sequence A-B-C would also be cut. Nevertheless, the same
customer sequence can result in a feasible tour if other orders from the same customers are
assigned to the vehicle as displayed in the part ii) of Figure 4.7. Just by exchanging the
segments assigned, a feasible loading is possible for the tour. The order mix is therefore
decisive to make sure that a tour that is identified as having infeasible loading is not further
regarded in the solution process. This means that not only the customer sequence needs
to be considered, but also which orders of each customer are assigned. After the cuts are
performed, the branching procedure continues until the best solution is reached (and proved
optimal).

4.5.2 Heuristic approach for the MCVRP_LC

The complexity of the MCVRP is significantly increased compared to classical CVRP
variants due to the consideration of multiple compartments. Therefore, in order to solve
large instances relevant for practice, heuristic solution approaches have been proposed for
the MCVRP. To tackle our problem, the LNS framework is extended to incorporate loading
constraints. This involves the inclusion of a repair mechanism that checks the tours loading
feasibility and repairs it, if no feasible loading is possible. The resulting solution approach
is labeled as LNS_LC, and the overall structure is given in Figure 4.8.

The LNS_LC operates in two phases. First, the LNS is applied solely for the MCVRP,
which is denoted as standard LNS (sLNS), and provides a solution for the MCVRP. After-
wards, the final solution is checked for infeasibilities. If the SLNS solution has tours with
infeasible loading, the search continues solving the MCVRP_LC. At this stage, a repair
mechanism is incorporated into the previous LNS framework, now denoted as repair LNS
(rLNS). Both LNS variants are similar, however the rLNS calls the repair mechanism each
time a new best candidate solution is found. If an infeasible loading is detected in one tour,
it is repaired and the resulted solution checked again by the acceptance criteria. The rLNS
only saves as best solutions, solutions respecting the loading constraints. The main features
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SLNS for MCVRP rLNS for MCVRP_LC

No

New best
candidate?

l No Yes

Solve MCVRP Call repair Final solution
with sLNS mechanism feasible?

Yes

Solve MCVRP_LC
with rLNS

Generate initial
solution

Call repair
mechanism

End search

Figure 4.8: Scheme of LNS_LC approach

of the sSLNS framework used are described in Section 4.5.2.1, followed by the description
of the repair mechanism used in the rLNS (Section 4.5.2.2).
4.5.2.1 Standard LNS (sLNS) for the MCVRP

As previously mentioned, we used the LNS framework proposed by Hiibner and Ostermeier
(2016). Algorithm 1 outlines the SLNS framework.

Algorithm 1 standard Large Neighborhood Search (sLNS)

: generate a solution §

1
2: set regret parameter k
3: set allowed deviation for Record-To-Record Travel RRT
4: set Spess =S
5: repeat
6: §':=8
7: remove r orders from S’ using Shaw Removal
8: reinsert removed orders into S’ using Regret-k Insertion
9: increase number of unsuccessful runs
10: if S better than S p.5 then
11: Spest =S’
12: Ss=8
13: reset number of unsuccessful runs to zero
14: else if S’ complies with acceptance criteria RRT then
15: S =8’
16: end if
17: if number of unsuccessful runs = reset border then
18: remove r orders from S using Shaw Removal
19: reinsert removed orders into S using Regret-k Insertion
20: end if

21: until number of unsuccessful runs < limit
22: return S peg

The sLNS starts by generating a solution using the parallel Savings Algorithm pre-
sented by Clarke and Wright (1964). It operates by building single customer tours for each
given order and then combines tours according to a calculated saving in traveling distance.
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From the initial solution we move on by applying the Shaw removal (Shaw, 1997) as de-
stroy operator to remove orders of the incumbent solution. In the following step, the orders
removed are reinserted in tours using regret-k insertion as repair operator. It was shown
in previous works on MCVRPs that these operators are able to efficiently generate good
solution (Derigs et al., 2011). If the new solution fulfills the acceptance criterion defined
by Record-To-Record Travel (RRT), it replaces the incumbent solution. The procedure is
repeated until a termination criterion is met. In the subsequent paragraphs a description of
the operators used is presented.

Shaw Removal. The Shaw removal was introduced by Shaw (1997) and resembles a re-
move operator based on a similarity measure for pairs of customers. The removal approach
is based on a defined similarity measure R,,;; between any two orders m and / (either from
the same customer or different customers) with m,[ € P and a randomized selection. In to-
tal, a defined number of r orders has to be removed from all orders P. In the following, we
divide the set of all orders P into removed orders (P~) and assigned orders (P*), such that
P*,P~ CP, P*UP =Pand P" NP =@. The first order m removed is chosen randomly
from all orders P. Further orders are gradually removed according a defined procedure
based on the calculated similarity measure R,,;. After one order m has been selected ran-
domly in Step 1, the similarity of orders is calculated in Step 2. The similarity index for all
orders is calculated using the measure R, that is defined in Equation (4.23). It expresses
the similarity of two orders m and [, with m € P~ and [ € P*. The smaller the calculated
value of R,; becomes, the more similar the orders compared are. Derigs et al. (2011)
propose a modified similarity measure to include MCVRP particularities. The measure is
given below and combines traveling costs, order quantity and order segment.

1, tit - tity(l
Ry :=¢- €oStml +i- Iquantity(m) - quantity() + @ - segment,,; (4.23)
COStax quUantityax

The parameters cost,,,, and quantity,,,, indicate the maximum traveling cost and order
quantity across orders that are considered. Further, segment,; is set to 1 if two orders are
from different segments and cannot be allocated to the same compartment, and O otherwise.
For the removal process, this similarity measure is combined with a randomization step in
order not to choose the most similar order, but a random order amongst the similar orders.
In Step 2 the orders are ranked according to similarity in descending order. Then the next
order for removal needs to be selected in Step 3. This selection process is based on the
random number z € [0, 1) and a parameter a. Thus, for the selection of a new order, it is
not the order with the highest similarity that is chosen but one that can be found z* percent
down the similarity ranking. The parameter @ can be seen as a parameter for diversifica-
tion. If @ is chosen to be 1, the similarity is not taken into account and the choice of orders
is completely random. The smaller the value of « is set, the more decisive the similarity
calculated. After r orders are removed, the algorithm continues with the reinsertion.
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Regret-k Insertion. As repair operator, the regret-k insertion is used following the approach
by Ropke and Pisinger (2006). It is a more foresighted heuristic compared to a greedy
approach as it considers information on postponed insertion of orders. More precisely, it
takes into account the k best possibilities for insertion instead of only the best one. Based
on the cost difference between these k options and the best option, a regret value is cal-
culated in the form of Equation (4.24). Let A7 denote the cost of adding a selected order
m € P at its best position on the u-th best tour. The cost calculation is based on the objective
function (4.1).

k
regrety := » (Al — AT") (4.24)
u=2

Then the order m with the highest regret value is chosen to be inserted into the tour
that is best suited to it. This means the insertion does not just consider the actual state but
also uses the regret criterion to evaluate possible future costs. After the order s with the
highest regret is inserted into P*, the regret value is recalculated for each order m on the
removal list P~, as the insertion options might have changed. The insertion procedure is
thus iterated until all orders removed, m € P~, are allocated to a new position in the tour
planning, and hence P~ = @ and P* = P.

Record-To-Record Travel. The search operators of the sLNS are embedded into a RRT
framework as presented in Dueck (1993). A solution obtained is only accepted during the
search if it improves the search, or if it lies within a defined deviation from the solution that
is best so far. Furthermore, additional parameters are integrated for regulation of the ap-
plication runtime. If the number of unsuccessful iterations reaches a reset border, the next
iteration of SLNS is run with a high value (e.g., one half of the order list) for the number
of orders removed (r) in order to create a completely different neighborhood, thus aiming
to avoid local minima. A limit is set for the maximum number of succeeding fruitless
iterations to terminate the algorithm.

4.5.2.2 LNS with repair mechanism (rLNS) for the MCVRP_LC

The incorporation of a repair mechanism into the LNS framework is one central aspect of
our extension to consider loading constraints for MCVRP. The LNS with repair mechanism
(rLNS) framework starts by calling the repair mechanism to check the loading feasibility of
the SLNS solution obtained. If the sLNS solution provides feasible tours, the search ends.
Otherwise, the repair mechanism changes the tours in order to make them feasible and the
rLNS continues solving the MCVRP_LC (see Figure 4.8).

The rLNS framework is similar with the SLNS (see algorithm 1). However, each time
a new best candidate solution is found (line 10 of algorithm 1), instead of saving it as best
solution, it calls the repair mechanism to check its feasibility. If the solution is feasible it
is saved as best and the search continues. Otherwise, the solution is repaired and checked
again by the acceptance criteria. Note that by repairing the solution we are changing some
decisions that could lead to an increase of the solution cost. An overview of the repair
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mechanism is presented in Figure 4.9.

Call repair .
- Continue
mechanism ILNS

No

L
Check loading of Infeasible tour(s) Repack infeasible | | Reinsert not fitting
tours (MCPP) found? tours (MCReP) orders (regret-k)

Figure 4.9: Procedure of repair mechanism within rLNS

First, the repair mechanism applies the MCPP model presented in Section 4.4.1 to each
tour of the solution to assess its loading feasibility. If an infeasible tour is found, a repack-
ing phase is applied to remove the orders that do not completely fit on the truck without
violating the loading constraints. This procedure is carried out for all tours in the current
solution until every tour has been checked for feasibility. By the end of the repacking
phase, every order that caused non-feasible loading for a corresponding tour will have been
added to the list of orders removed. Based on this list, a regret-k insertion step is applied to
find the best option for the removed orders. A tour with removed orders is set tabu for the
corresponding orders in the reinsertion phase. This is done to prevent the circling of the al-
gorithm. As the reinsertion causes changes to the structure of affected tours, the feasibility
has to be assessed again. Therefore, the MCPP is applied to all modified tours within the
reinsertion process and if a tour is found to be infeasible, the repacking is applied again as
described above. This process is repeated, until a feasible loading has been found for all
tours within the solution. Note that a new tour is created if it is the lowest total cost option
or if all available tours are set tabu for an order.

The repacking phase uses a model denoted as Multi Compartment Repacking Problem
(MCReP). The MCReP is based on two modifications of the MCPP. Instead of aiming to
find a feasible loading for a tour, it tries to maximize the number of items loaded (from the
orders assigned to the tour) while satisfying the loading constraints. Therefore, the MCPP
model is transformed in the MCReP model by adding an objective function and changing
constraint (4.16). The MCReP can be read as follows:

max! > 3" A (4.25)

meP xeX yeY
subject to: (4.17)—(4.21) (4.26)
D2 Ay < dm meP (4.27)
xeX yeY
Amxy>Brz €{0,1} meP xeX yeY, hzeS (4.28)

The new constraint (4.27) allows the assignment of a number of items lower than the
quantity of each order. Together with the objective function (4.25) of the MCPP, this re-
sults in the assignment of the maximum number of items without violating the loading
constraints. We therefore obtain a solution with feasible loading for the considered tour,
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but also a solution that does not assign all orders completely as the loading of all orders is
not feasible. The order(s) that could not be assigned to a tour due to loading constraints are
removed from the corresponding tour and reinserted into another tour within the LNS.

4.6. Numerical Experiments

In this section we present numerical experiments to evaluate our solution approaches and
grasp the relevance of including loading constraints in the MCVRP. As a basis for our
experiments we present the structure of our data generation in Section 4.6.1. An overview
of all tests in Sections 4.6.2 to 4.6.4 is given in Table 4.2.

Table 4.2: Overview of numerical tests

Section | Model Solution approaches  Data applied Test purpose
4.6.2.1 | MCVRPand MIP Solver, Small randomly  Impact of loading constraints
MCVRP_LC B&C generated data for small instances

4.6.2.2 | MCVRP_LC B&C,LNS_LC, Small randomly  Effectivity of heuristic approach
sLNS_ExPost generated data

4.6.3 MCVRP_LC LNS_LC, Large randomly  Efficiency of heuristic and impact of
SLNS_ExPost generated data loading constraints for larger instances

4.6.4 MCVRP_LC LNS_LC, Case study Influence of loading constraints

sLNS_ExPost in practice

In Section 4.6.2 we use small size instances and compare the results of the MCVRP_LC
with the results of the MCVRP (without loading constraints) obtained by the corresponding
exact approaches. Furthermore, we investigate the differences of the heuristic to the B&C.
This aims to identify the efficiency of the heuristic in terms of solution quality and runtime.
Additionally, the results of the LNS with the repair mechanism (LNS_LC) are compared
to the SLNS solution with an ex-post evaluation of loading feasibilities. This is done by
applying the repair mechanism only to the final solution of the sLNS framework. We denote
this approach as sLNS_ExPost. In Section 4.6.3 we consider tests with larger instances.
Here we test the LNS_LC as well as the SLNS_ExPost to obtain further insights regarding
runtime and the influence of different data structures on loading constraints. In Section
4.6.4 we apply the methodology to a real life case example of a major European grocery
retailer.

4.6.1 Overview of test instances

In order to perform the numerical experiments to analyze the influence of loading con-
straints in the MCVRP, we use randomly generated problem instances. We leverage our
data generation on the data structures we obtained from our case study (see Section 4.6.4).
The resulting instances can be found on http://www1.ku.de/wwf/pw/forschung/. For both
small and large size problems we define the number of customers, the number of orders
per customers, i.e. the number of different segments each customer orders, and the order
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quantity.

Small instances. As the problem becomes very hard to solve exactly with an increas-
ing number of customers and/or orders, we generate small instances. Please note that for
MCVRP the main drivers for complexity are the number of orders and related segments,
not the number of customers as in classical VRP formulations. The first type of instance
comprises ten customers, and each customer orders one out of four available segments. In
the second type of instances there are four customers and four segments, but each customer
orders all segments. This results in a total of 16 orders. For these small problems the dis-
tance matrix is randomly generated with distances between any two customers set between
7 and 80 kilometers. The distances between customers and the DC are set between 90 and
120 kilometers to create a clustered group of customers.

Large instances. The larger problems are created for 25, 50, 75 and 100 customers with
two or four segments. As not all customers have demand for all segments, it is also pos-
sible that not all available segments are ordered. Therefore, different sets of instances will
be generated changing the number of segments ordered. The distance design in Solomon
(1983) for VRP with 100 customers is used for all tests and has been adjusted to our prob-
lem instances. We use the instances related to clustered customers (C-type) and uniformly
distributed customers (R-type). In food distribution, the mix of orders between customers
and segments is very heterogeneous as the analysis of our case study has shown (see Sec-
tion 4.6.4). Using this information, the quantity of each order will depend on the segment
in question and will vary between a given range. The ranges used are presented in Table
4.3. For instance, segment 4 could comprise the ambient assortment with larger order sizes
and segment 1 could be seen as deep frozen where orders are usually small. The segments
associated with each customer are chosen randomly depending on the number of orders a
customer submits. For instance, in the case where each customer orders three out of four
segments, three segments are selected randomly to generate the orders. The quantity of
orders is defined according to the segments in question.

Table 4.3: Range of order quantity per segment (in TU)

Segment ‘ Minimum Quantity =~ Maximum Quantity

1 1 5

2 1 10
3 5 20
4 10 25

Homogeneous MCVs with a total capacity of 33 transportation units (TU) were used
for all tests. The loading/unloading costs used in the experiments have been derived from
our case study. The loading costs depend on the number of segments to be loaded at the
distribution center and are presented in Table 4.4. Unloading costs accrue with every cus-
tomer stop and are set to 2.20 currency units (CU). The transportation costs are based on
the travel distances between any two locations.
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Table 4.4: Applied costs for loading MCV

# Segments to be loaded ‘ 1 2 3 4
Loading (CU/shipping gate) ‘ 270 557 827 1097

The computational results were obtained on a 3.60 GHz PC with 16 GB memory. The
implementation of the B&C algorithm has been done in C++ and the LNS algorithm in
Java. The setting of the heuristic specific parameters is informed by previous research on
MCVRPs and the application of an LNS as they performed very well on different instances
related to our case (Hiibner and Ostermeier, 2016; Derigs et al., 2011). Accordingly, for
the Shaw Removal the weights for the calculation of the similarity measure R,,; were set to
¢ =¢=0.4and ¢ =0.2 and @ = 4. This choice of weights is based on the higher influence of
distance costs and product segments compared to order size. The number of items removed
r are chosen randomly using a uniform distribution dependent on the respective problem
size as given in Table 4.5. The regret parameter has been set at k = 2. Furthermore, the
termination limit is 1,000 and the limit for a solution reset is 500 for all LNS applications.
The maximum deviation D allowed for the RRT equals 0.4% for all tests.

Table 4.5: Number of removed orders (r)

# Customer | Minimum  Maximum

10 2 5

25 2 10
50 5 15
75 5 20
100 5 30

4.6.2 Comparison between exact and heuristic approaches for small instances

We present two comparisons concerning small problems. First, in Section 4.6.2.1 we com-
pare the exact solutions of an MCVRP, i.e. without loading constraints, with the exact
solutions for the MCVRP_LC provided by our B&C algorithm. With this experiment we
aim to understand the cost implications of adding loading constraints. Second, in order
to validate the efficiency of the heuristics, the results obtained with it are compared to the
results obtained with the B&C in Section 4.6.2.2.

These comparisons comprise the results of ten different instances for each scenario
tested. The B&C approach has been terminated after two hours as it becomes very hard to
prove optimality. However, the search ends with an average solution gap of 0.01%. For
the heuristic approaches 50 repetitions are applied to create a sample for results compari-
son. As the solution approaches provide stable results with an average variation coefficient
(standard deviation/mean) below 1%, the comparisons are made based on the average result
achieved for each instance.
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4.6.2.1 Comparison of exact approaches for MCVRP_LC vs. MCVRP

This experiment uses the B&B and B&C algorithms to solve the MCVRP and MCVRP_LC,
respectively. Instances from two scenarios are tested. Scenario 1 correspondents to in-
stances with 4 customers and 4 out of 4 segments ordered, resulting in 16 orders to dis-
tribute. Scenario 2 relates to 10 customers and 1 out of 4 segments orders, with a total of
10 orders. The cost deviation between the MCVRP_LC solution and the MCVRP solution
achieved for each scenario are presented in Figure 4.10.

3,0%
2,5%
2,0%

1,5%

Cost deviation

1,0% I

0,5%

0,0%

Scenario 1 Scenario 2

Figure 4.10: Comparison of the results for MCVRP_LC vs. MCVRP with exact ap-
proaches, 10 instances per scenario

The results show that the cost deviation of considering loading constraints is around
0.0%-0.5% for Scenario 1 and between 1.2% and 2.3% for Scenario 2. This means that
even for small instances, the loading constraints have an impact on the routing decisions,
particularly for Scenario 2. Here, the impact on costs is higher than in Scenario 1, as ten
different customers are considered with only one order each. Any move of an order is equal
to the move of a customer to a different tour and has a high influence on the routing as only
ten customers are available. However, tours with feasible loading can be reached with a
small increase in the costs and thus would be preferred to a solution that would require
rearrangement of the orders. In most cases the exchange of two orders or the reassignment
of a single order is sufficient to obtain feasible tours.

4.6.2.2 Comparison of exact approaches vs. heuristics for MCVRP_LC

This second numerical experiment aims to analyze the efficiency of the heuristic approaches.
It compares the solutions reached by the LNS_LC and sLNS_ExPost with the exact solu-
tions achieved with the B&C for the MCVRP_LC. Figure 4.11 summarizes the cost devi-
ations of both heuristic approaches to the B&C for the same two scenarios (with 4 and 10
customers) used previously.

The results indicate that the LNS_LC reaches most of the times the optimal solutions
of the MCVRP_LC for both scenarios. The ex post approach also achieves solutions with
an average deviation close to 0% for Scenario 1, but for Scenario 2 the deviations increase.
For Scenario 2, where only 1 out of 4 segments are ordered, the SLNS_ExPost provides
solutions with an average deviation of 8%.



94 Chapter 4. Grocery Retail Distribution with Loading Constraints

20%

15%

10%

Cost deviation

5%

°

0% I e _—
SLNS_ExPost LNS_LC SLNS_ExPost LNS_LC
Scenario 1 Scenario 2

Figure 4.11: Comparison of heuristics vs. exact approach for MCVRP_LC, 10 instances
per scenario

4.6.3 Analysis of loading constraints for larger instances

Subsequent to our tests with small instances, we analyze the impact of loading constraints
for larger instances. Firstly, we analyze the runtime development of the heuristic for dif-
ferent problem sizes. Secondly, we present tests for different problem settings to examine
the influence of loading constraints. For the tests with larger instances, the results of 20
instances for each of the given scenarios are compared. As in the exact approach analysis,
50 repetitions of the heuristic approaches are applied to each instance to create a sample
for results comparison. As the solution approaches also provide stable results for the larger
instances with an average variation coeflicient below 1%, the comparisons are made based
on the average result achieved for each instance.

4.6.3.1 Runtime development

The problem complexity and requirements for the heuristic approach increase quickly
for larger problems. We therefore decided to focus on the runtime development for the
LNS_LC and sLNS_ExPost for 25, 50, 75 and 100 customers. A C-type distance matrix
is considered for the performed tests. In all tests, four segments are available. However,
as in the tests with the exact approach, we consider two different scenarios for all order
structures, where either all four segments are ordered by each customer, or only one seg-
ment per customer. The average, maximum and standard deviation of the computational
time (runtime) required to solve each instance of each scenario are summarized in Table
4.6. Note that as each scenario is tested for 20 instances, which are run for 50 repetitions,
the results presented are calculated considering the 1000 (20 - 50) individual runs.

Our tests show that the number of segments ordered seem to be an important driver
for the computational time required to solve an MCVRP_LC instance. We see that for the
same number of customers, changing the segments ordered from the 4 out of 4 case to the 1
out of 4 case leads to an increase of the LNS_LC runtime. Both the average and maximum
runtime are increased, as well as the standard deviation. An increase of the number of
customers does not seem to have an influence on the runtime development. This can be
attributed to the number of infeasible solutions reached during the search. The increase in
the number of customers could change the routing decisions, but it is the mix of orders that
indicates the number of compartments to be built in the MCVs and that could influence
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Table 4.6: Runtime development for increasing problem sizes (minutes), 20 instances

#Customers  #Segments sLNS_ExPost Runtime LNS_LC Runtime
ordered Average Maximum o Average  Maximum o
)5 1 out of 4 0.10 0.94 0.10 4.54 27.30 2.88
4 out of 4 0.06 0.64 0.07 0.41 16.80 0.78
50 1 out of 4 0.12 1.12 0.12 6.16 61.62 7.61
4 out of 4 0.21 2.18 0.17 1.21 29.65 1.77
75 1 out of 4 0.17 1.03 0.12 16.01 158.50 22.90
4 out of 4 0.34 1.56 0.18 1.27 37.40 2.25
100 1 out of 4 0.54 0.80 0.09 7.12 66.90 8.60
4 out of 4 0.17 1.36 0.17 1.43 11.80 1.44

the loading feasibility. This aspect will be analyzed in more detail in Section 4.6.3.2. The
bottleneck for the LNS_LC is the repair mechanism and therefore the call of the MCPP
and MCReP models. As more infeasible solutions are found during the search, the more
repacking phases are required and the runtime of the LNS_LC increases. This is noticeable
in the tests with 75 customers and 1 out of 4 segments ordered, which have higher runtimes
than the remaining scenarios. As the runtime is highly driven by infeasibility tests, even
though fewer customers are considered, three out of the 20 instances tested had a high
number of infeasible tour combinations. The analysis of the sSLNS_ExPost results shows
that it is able to solve all instance scenarios in less than 3 minutes, as it only calls the repair
mechanism once.

4.6.3.2 Scenario analysis for solution quality

In this subsection we present the analysis of different larger data settings. This is done to
examine the influence of loading constraints with different data settings. This also enables
us to gain further insight into the runtime development of the suggested approach. The
analysis is based on the random generated instances with 25 and 100 customers. We would
like to note that even in the case of 25 customers we consider up to 100 orders. In contrast
to other VRP, the order number is an essential parameter for defining the problem size.
Three different scenarios are considered for the number of segments ordered: the 1 out
of 4 and 4 out of 4 scenarios, previously used, and an additional scenario with only two
segments available, and both ordered by all customers (2 out of 2). We emphasize the
case with four segments as usually retailers are confronted with this situation in practice.
In each scenario we further examine changes in customer distribution (matrix type) and
loading costs (costs). The matrix types comprise clustered (C) and uniformly distributed
(R) customers. Loading costs are used as given in Table 4.4 (NC) as well as costs reduced
by 50% (LC) for additional scenarios. This change of loading costs can lead to changes in
the compartment setting of MCVs (see Hiibner and Ostermeier (2016)), i.e. the lower the
loading costs the more compartments could be activated. Besides the number of customers,
all settings and scenarios were equal for the cases with both 25 and 100 customers.

In this numerical experiment, we run the sLNS for the MCVRP (without loading con-
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straints) and if the final solution reached has infeasible tours, we run the sSLNS_ExPost and
the LNS_LC. For each scenario we indicate the number of instances (out of the 20) that
revealed infeasible tours for the best final solution achieved by the SLNS for the MCVRP
(see column 4 in Tables 4.7 and 4.8). Further, the cost of the final solution provided by the
LNS_LC and sLNS_ExPost is compared. The average and minimum deviations reached
for the group of instances of each scenario are displayed in Table 4.7 for 25 customers and
in Table 4.8 for 100 customers. Note that the LNS_LC never provides a worse solution than
the SLNS_ExPost, as it continues the search from the SLNS_ExPost solution (see Figure
4.8). The average and maximum runtime required to solve each instance with the LNS_LC
are also provided in Tables 4.7 and 4.8. The runtime of the SLNS_ExPost is always below
1 minute for all scenarios with 25 customers, and below 4 minutes for the scenarios with
100 customers.

Table 4.7: Test overview for instances with 25 customers, 20 instances

# Segments  Matrix Loading | Infeasible Cost deviation LNS_LC Runtime (minutes)
ordered type! costs? instances’ | Average Minimum | Average Maximum
Scenario 1 C NC 25% -1.32% -2.81% 1.17 16.80
C LC 25% -1.04% -2.65% 0.92 10.46
(4 out of 4) R NC 10% -1.11% -1.65% 0.62 2.88
Scenario 2 C NC 35% -3.62% -4.30% 3.62 27.30
C LC 15% -4.79% -8.44% 1.75 6.99
(1 out of 4) R NC 20% -2.23% -2.66% 2.44 16.64
Scenario 3 ¢ NC 0% i i i i
C LC 0% - - - -
(2 out of 2) R NC 0% - - - -

1" According to Solomon (1983); C: clustered customers; R: uniformly distributed

2 Loading cost: NC - normal costs; LC - lower costs, reduced by 50% compared to NC

3 Share of sLNS solutions that contain at least one infeasible tour (i.e., violate loading constraints)

Table 4.8: Test overview for instances with 100 customers, 20 instances

# Segments  Matrix Loading | Infeasible Cost deviation LNS_LC Runtime (minutes)
ordered type! costs? instances® | Average Minimum | Average Maximum

Scenario 1 C NC 50% -0.28% -3.38% 1.27 11.80

C LC 35% -0.27% -2.94% 1.88 27.77
(4 out of 4) R NC 55% -0.36% -3.29% 2.60 37.33
Scenario 2 C NC 100% -1.98% -9.71% 7.12 66.90

C LC 80% -1.74%  -10.57% 8.70 101.80
(1 out of 4) R NC 95% -1.44% -7.51% 11.15 85.15
Scenario 3 C NC 25% -0.22% -3.23% 0.57 9.81

C LC 30% -0.22% -3.73% 0.47 9.88
(2 out of 2) R NC 30% -0.22% -2.80% 0.76 16.20

1 According to Solomon (1983); C: clustered customers; R: uniformly distributed

2 Loading cost: NC - normal costs; LC - lower costs, reduced by 50% compared to NC

3 Share of SLNS solutions that contain at least one infeasible tour (i.e., violate loading constraints)
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Scenario 1. In the first scenario up to 25% of instances reveal an infeasible solution in
the tests with 25 customers (see Table 4.7). For 100 customers (see Table 4.8), this value
amounts to over 50%. Our solution approach shows that the LNS_LC can improve the
ex-post application of loading constraints from 1% up to 3%, for the case of 25 customers.
When we increase the number of customers, the average cost deviation between the two
approaches is almost null. However, the best solutions found by the LNS_LC can reach an
improvement of up to 3.4%. The runtime of the LNS_LC for the 25 and 100 customer case
shows a moderate increase considering that the number of orders increases from 100 (25
customer case) to 400 (100 customer case).

Scenario 2. The order structure with 1 out of 4 segments ordered shows an higher im-
pact on the loading feasibility of tours. For 25 customers, the results indicate up to 35%
infeasible best solutions, and 100% for 100 customers. This increase in infeasible solutions
impacts both runtime and solution deviation from the SLNS_ExPost. As more feasibility
checks are required, the runtime increases, with some instances requiring more than one
hour to be solved. On the other hand, this increase in runtime is accompanied by a solution
improvement. For the 25 customer case the average cost deviation increases to 3% (maxi-
mum 8%). The average cost deviation for the 100 customer case is still small (below 2%),
but reaches improvements of up to 10.57%.

Scenario 3. It is not surprising that in our last scenario with two segments the influence
of loading issues is smaller compared to the other scenarios. The reduction of available
segments also reduces the planning complexity for the compartment setup on a vehicle and
therefore also for loading at the DC. In the tests with 25 customers these results in feasible
solutions for all tested instances. However, when analyzing the 100 customers case, 30% of
the instances were found to be infeasible, with cost deviations reaching 3% improvement
by using the LNS_LC. This shows that we cannot neglect loading constraints even when
only two segments are distributed.

Summary. In our tests we compare the performance of the LNS_LC and sLNS_ExPost for
different larger data settings. This enabled the analysis of the solution quality, runtime effi-
ciency and influence of loading constraints. As shown in different scenarios, the LNS_LC
performs well in terms of solution quality. The solution approach is able to improve the
solutions of the SLNS_ExPost, reaching maximum improvements between 3% and 10%.
However, the improvements achieved by the LNS_LC comes with a greater computational
effort. The average runtime of the LNS_LC can increase on average to 11 minutes (with
maximums of more than one hour), whereas the SLNS_ExPost has a maximum runtime of
4 minutes. The main driver for these differences in solution quality and runtime is the fre-
quency of infeasible solutions within the search. With an increasing number of infeasible
solutions, the LNS_LC provides a higher solution improvement but also consumes more
computational time. The scenarios considered show that the number of available segments
together with the order structure of customers is the most influential driver for loading is-
sues. Other factors such as the geographic positioning of customers and costs do not have
an impact on runtime and solution quality. With a larger number of segments, the num-
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ber of infeasible tours increases. If only two segments are available, fewer solutions will
contain infeasible tours. However, the occurrence of non-feasible tours increases for four
segments, specially if customers only order 1 out of 4 segments, with up to 100% of the
problems having an infeasible best solution.

4.6.4 Case study

To conclude the numerical experiments, we applied our solution approach to a case study
with a major European grocery retailer. For our analysis we use data from one specific
distribution center and area. The data set received comprises one example week with 4
different product segments available for delivery. As before, the distribution is carried out
by identical vehicles with a capacity of 33 TU. The longest distance from the DC to a
customer is around 300 km. The considered DC supplies around 100 customers spread
around an area of 54.000 km?. The example week comprises seven delivery days and more
than 2,000 customer orders. The complete information regarding our case is presented in
Table 4.9.

Table 4.9: Case data for one example week

Day # of @order Std.dev. @ number of segments

orders size order size per customer
1 261 6 6 2.7
2 330 10 8 3.4
3 353 10 8 3.7
4 335 10 8 35
5 357 11 9 3.7
6 338 11 9 35
7 202 11 5 2.1

We solved the MCVRP_LC using the LNS_LC and sLNS_ExPost for each delivery
day and thus seven different instances. The summary of our findings is displayed in Table
4.10.

Table 4.10: Summary of case study results

Day Cost deviation LNS_LC Runtime (minutes)
Average ~ Minimum ‘ Average Maximum

1 -0.77% -4.46% 5.29 50.50

2 -0.15% -0.94% 1.06 3.51

3 -0.31% -2.78% 3.71 18.51

4 -0.86% -4.09% 2.31 11.34

5 -0.33% -1.70% 3.85 18.12

6 -0.52% -1.85% 6.58 20.53

7 - - - -

In all but the last day infeasible tours have been found within the search procedure
of the sLNS for the MCVRP. This is due to the small number of segments per customer
(on average only 2 out of 4 segments, see Table 4.9). On day 7 most of the customers only
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receive two of the segments. Hence, it is similar with a 2 out of 2 structure, as all customers
receive the same two segments. Consequently, the results indicate that the consideration of
loading constraints in the MCVRP has practical relevance.

The improvement ratio of the LNS_LC is similar with the results for scenario 1 in Table
4.8 (100 customers case). The average cost deviation between the solution approaches is
below 1%, with the highest improvement reaching 4%. The average runtime shows a small
increase but the maximum runtime is reduced for most of the days. The sLNS_ExPost
provided solutions with a computational time lower than 1 minute. Since the LNS_LC
logic uses the solution of the SLNS_ExPost as a starting point for the rLNS search (see
Figure 4.8), retailers can use the SLNS_ExPost to generate tours with feasible loading and
decide if they want to continue with the rLNS search, knowing that option requires a higher
computational effort. Further, the sLNS solution cost for the MCVRP can be compared to
the one of the SLNS_ExPost, i.e. after repairing the infeasibilities, and depending on the
cost increase decide if the computational effort of using the LNS_LC is worthy. Most of
the infeasible tours found could be repaired by exchanging one or two orders. However,
it is important to note that even though the number of orders to be moved can be reduced,
the impact of rearranging instead of changing the tour can be high. For instance, if the
unloading of a truck is made in a street and not within a shipping gate with controlled
temperature, performing the unloading and reloading of the blocking orders could lead to
the degradation of the products.

4.7. Conclusion

The focus of this work was to define and examine the problem of loading constraints that
occurs in grocery distribution with MCVs, developing a solution approach able to solve the
arising MCVRP variant. We therefore presented a detailed problem description to highlight
loading issues with flexible compartment sizes. We showed that even in the simplest cases
problems can arise for the unloading of goods at the customer if the corresponding loading
of a vehicle is not taken into account during the loading process. The loading of MCV's has
never been studied in the literature, therefore we develop a packing problem called Multi-
Compartment Packing Problem that defines how the vehicle should be loaded in order to
respect the loading constraints, if such is possible.

We introduce an extension for MCVRP with flexible compartments, the MCVRP with
Loading Constraints, for which we propose an B&C algorithm to exactly solve the prob-
lem. The solution approach makes use of the packing problem developed to solve the
loading problem for MCVs and add cuts for infeasible tours. Moreover, we adapt the LNS
framework propose by Hiibner and Ostermeier (2016) to consider loading constraints. The
packing problem introduced is used to check the loading feasibility of tours and a modified
packing model is also introduced to repair the infeasible tours and thus guide the search for
feasible solutions.

The numerical experiments indicate that (i) loading constraints matter even for small
instances, (ii) feasible loading can often be achieved by only minor changes to the routing
solution and therefore with limited additional costs, and that (iii) the number of infeasi-
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ble solutions increases as the problem sizes increase, specially when heterogeneous mix
of segments are ordered. The numerical experiments also show that there is a small de-
viation between the average results achieved with the LNS_LC and an ex post check of
loading constraints and that the first requires a higher computational effort. Therefore, for
complicated and slower problems the SLNS_ExPost approach can be used to generate good
feasible solutions in a short running time. Nevertheless, if the obtained solution yields a
high cost increase, the LNS_LC approach can be used to improve it.

We consider a variant of an MCVRP with flexible compartments, which is still a very
novel research area. Literature is very limited as most publications deal with fixed com-
partment sizes. As a consequence, there are various possibilities for extending variants of
the MCVRP with loading constraints. For a start, literature on MCVRP focuses on prob-
lems with homogeneous fleets. An extension of our approach to address a heterogeneous
fleet and determining an optimal fleet mix would be a logical next step. Furthermore, the
packing problem proposed could be adapted for other types of MCVs with less flexibility.
Following classical VRP formulations, an MCVRP with loading constraints could also be
extended to account for backhauls or pick-up and delivery problems. Additionally, there is
a lack of literature concerning MCVRPs across multiple periods. The delivery with MCVs
might impact delivery frequencies and therefore also delivery patterns (Holzapfel et al.,
2016). Usually delivery patterns are defined by retailers for their stores. Using multiple
compartments opens up new possibilities for defining the corresponding delivery patterns.
Lastly, the scope of the research could be extended to include the impact on store opera-
tions or inventory costs (Gaur and Fisher, 2004; Hiibner and Schaal, 2017).
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Abstract  This work extends the research on multi-compartment vehicle routing prob-
lems (MCVRPs) by tackling a multi-period setting with a product-oriented time-window
assignment. In this problem, a fleet of multi-compartment vehicles (MCVs) is used for
distribution and a unique time-window for the delivery of each product to each customer
should be defined and used consistently throughout the planning horizon. Besides fuel and
waste distribution, one core application of MCVs is the distribution of groceries, as retail-
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5.1. Introduction

This paper introduces a multi-compartment vehicle routing problem (MCVRP) for the as-
signment of product-oriented time-windows and extends the capacitated vehicle routing
problem (Toth and Vigo, 2014; Golden et al., 2008). The problem occurs in grocery distri-
bution of different products from a distribution center (DC) to stores.

An efficient supply chain is essential for the success of any retailer and the distribution
planning plays a central role. High product variety with particular temperature require-
ments characterize grocery distribution. For instance, dairy products require continuous
cooling while other products are not sensitive to temperature.

In the past, not all products could be transported within the same vehicle as only one
temperature could be set up at the same time. However, in the last years, vehicles with new
technologies have been deployed, such as multi-compartment vehicles (MCVs) that are
able to split their loading area flexibly into different compartments. These compartments
can be individually adjusted to a given temperature. Hence, MCVs allows for the joint
distribution of different products on compartments set up with distinct temperatures, while
triggering no capacity loss.

With MCVs, retailers need to decide which products are (or not) supplied jointly for
each store. Such decision also implies a higher variety of possible delivery times for the
stores. In practice, grocery stores usually define preferable time-windows to indicate when
deliveries should occur. Stores do need to align their operations to the delivery schedule
to make sure their resources are available for unloading, replenishment and stocking oper-
ations, which impacts staff scheduling and backroom capacity planning. This is especially
significant as these resources are scarce and shared by different activities. Additionally,
stores need to manage the available inventory. Besides capacity restrictions in the back-
room, the shelf inventory is crucial for sales. The defined time-windows help managing the
on-hand inventories at stores as the time until the next supply is known. The scheduling
of deliveries therefore needs to be defined according to the stores’ time-window require-
ments, independent from joint or separate deliveries across products. Only in this way a
smooth operation regarding the supply of stores can be guaranteed. Delivery times have to
be pre-defined and fixed for a given period to efficiently coordinate store resources during
the day. This leads to consistent deliveries throughout the planning horizon.

While the current VRP literature usually assigns time-windows to customers (Spliet
and Gabor, 2014; Spliet and Desaulniers, 2015), when dealing with multiple products with
distinct characteristics, such as grocery products, a more specific product oriented assign-
ment is required. It is not sufficient to consider multiple delivery time-windows per cus-
tomer (Belhaiza et al., 2014). It is rather necessary to define in which of the available
time-windows each product will be delivered (assigned to), ensuring a consistent delivery
for a given planning horizon.

In combination with the transportation in MCVs, this rises the question of when each
product should be supplied and if the same time-window should be assigned to different
products to enable a joint delivery. Our work addresses this special variant of VRP with
MCYV and time-window assignment. It extends the research on MCVRP by tackling a
multi-period setting with a product-oriented time-window assignment that should be con-
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sistently used throughout the planning horizon. The main contributions of this paper are as
follows. Firstly, a mixed integer programming model for the product-oriented time-window
assignment for MCVRP (PTWA-MCVRP) is proposed. Secondly, an adaptive large neigh-
borhood search (ALNS) is designed to solve the problem with daily operators, focusing
on the improvement of routing aspects of the problem on each day, and weekly operators,
called to align the time-windows consistency throughout the periods. Its effectiveness is
tested on benchmark instances of related problems. Thirdly, the effects of product-oriented
time-windows and consistent deliveries in an MCVRP environment are analyzed, as well
as the decision relevant costs of the problem.

The remainder of this paper is organized as follows. A detailed description of the
problem is provided in Section 5.2. Section 5.3 overviews the related literature. In Section
5.4 the mathematical model formulation is given. The ALNS algorithm developed to tackle
the problem is described in Section 5.5. Extensive numerical experiments are carried out
in Section 5.6, where tests on benchmark instances demonstrate the effectiveness of the
solution approach. Additionally, tests on randomly generated data are performed to identify
the impact of consistent time-windows assignment on route planning with MCVs. Finally,
our findings are summarized in Section 5.7.

5.2. Distribution Process and Requirements

The different aspects informing our problem specification need to be understood thoroughly
and are therefore detailed in this section. We will first state the overall planning situation
for retailers before we highlight the implications of using MCVs for transportation. Fol-
lowing, we move on to the need to consider multiple periods and a consistent delivery
across segments. For the remainder of this paper, we refer to products with similar charac-
teristics and temperature requirements as segments. Additionally, the terms customers and
stores are used as equivalents in our context.

Distribution of Groceries. The overall objective of our research is a highly efficient supply
chain that runs simultaneously different temperatures (e.g. frozen, chilled and ambient). In
grocery distribution, the majority of products are sent from suppliers to retailer distribution
centers (DCs), which are responsible for supplying stores according to their needs (Hiibner
et al., 2013; Martins et al., 2017). The distinct products can be allocated to the same DC,
however separate warehouse zones need to be secured according to the products temper-
ature requirements to prevent spoilage. The same reasoning applies to the transportation
process, during which the preferred temperature for each product needs to be maintained
to guarantee a high product quality and to adhere to legal regulations.

Distribution with MCVs. The integration of MCVs into the distribution enables the simul-
taneous supply of multiple segments but also poses some new challenges for the planning.
More precisely, the joint distribution of segments influences not only the transportation
process, but also the upstream and downstream supply chain operations (Hiibner and Oster-
meier, 2018). On the one hand, different gates have to be approached by an MCYV to collect
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different segments as they are allocated to distinct zones of an DC. This leads to an increase
in loading costs that depend on the number of segments assigned to a tour and therefore
on the number of compartments needed on each vehicle. This means that an increase in
the number of segments on a vehicle leads to additional costs for the corresponding tour
regarding the loading. On the other hand, separate deliveries with a single-compartment
vehicle for each segment may be avoided, reducing the number of visits to a store and
transportation kilometers. Trading-off loading and transportation is one of the central deci-
sions while using MCVs. The underlying problem results in the MCVRP which is a special
variant of the capacitated VRP.

The MCVRP considers the traditional routing decisions (assignment of customers to
vehicles and the route sequence), but additionally determines the number and size of the
compartments used in each vehicle together with the orders assignment to the correspond-
ing compartments. These decisions influence the loading, transportation and unloading
costs and therefore the overall decisions on routing (Hiibner and Ostermeier, 2018). The
objective of the MCVRP is consequently to minimize the total operation costs by defining a
routing plan, in which the stores may receive all segments together in one delivery, receive
one delivery per segment or a mix of both.

Summing up, the MCVRP decides on what segments are delivered together or sepa-
rately to a customer and thus how often deliveries take place for each customer on a single
day. In our extended problem formulation, this decision needs to be synchronized with
the decision on when those deliveries should be performed on each day. This requires the
assignment of product-oriented time-windows and a consistent delivery plan.

The Assignment of Product-Oriented Time-Windows. The aim of the PTWA-MCVRP is
to determine an individual time-window for each segment that a store has ordered and to
use this time-window consistently for the complete planning horizon. This means that a
store receives each segment within the same time-window every day. Each segment is
thereby considered independently of all other segments for the time-window assignment.
However, the same time-window can be selected for different segments as stores usually
order more than one segment. This also means that the joint delivery of multiple segments
is possible if they are demanded on the same day. Furthermore, individual segments im-
pose distinct replenishment constraints to the stores. For instance, fresh products, such as
fish, fruit and vegetables, are normally required to be delivered before the store opening to
guarantee a good merchandising performance. Yet, the requirement for consistent deliv-
ery times applies to all segments and emerges from the stores need to align their in-store
operations. Hereafter, we refer to a given segment of a store for which a product-oriented
time-window has to be determined as store-segment pair.

In our application, the assignment of product-oriented time-windows underlies some
further requirements and rules. As such, time-window restrictions are not strict and both
early and late deliveries to the stores are allowed but undesirable, having a negative im-
pact on store operations. Usually, the delivery products are dispatched to the sales area for
replenishment and the excess is stored in the backroom area for later replenishment. There-
fore, the backrooms are designed to store just a portion of the deliveries, securing future
replenishment, and an early delivery can trigger storage problems at this stage if the de-
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liveries are not processed immediately upon arrival, specially for the refrigerated products
(Pires et al., 2017). A late delivery, however, leads to idle times of the personal assigned to
the receiving activity and might delay the replenishment of shelves with the risk of causing
out-of-stocks. We note that in-store operations yield the highest share of operational costs
within the internal supply chain of a retailer, accounting for up to 50% (see e.g., van Zelst
et al. (2009) and Kuhn and Sternbeck (2013)). We therefore propose penalty costs for early
and late deliveries, resembling the setting of VRPs with soft time-windows (Koskosidis
etal., 1992).

An example for the assignment of product-oriented time-windows for different store-
segment pairs is depicted in Figure 5.1. It illustrates two examples of routing schedules,
considering time-window assignments with and without consistent deliveries. For our ap-
plication we assume that the daily demand for each segment is known across the planning
horizon, i.e., the delivery patterns are an input for the decision problem. Accordingly, the
days in which each segment should be delivered for a given store (delivery pattern) are
provided on the left part of the figure. For example, segment A (blue square) is delivered
every day, while segment D (dotted square) is only delivered on Monday, Wednesday and
Friday. Two possible solutions for the time-window assignment are presented. The left
schedule represents a solution where consistency is not taken into account, while the right
one contains a consistent schedule. In the first case, segments are delivered at different
times of the day over the week. In the second case, a delivery within the same time bounds
is guaranteed over the whole planning horizon. It shows that segments A & B are supplied
between 6 and 7 am every day of the planning horizon. Likewise, deliveries for segments
C & D always happen between 8 and 9 am. Clearly, this schedule enables stores to plan
their resources according to the consistent plan, allowing for an efficient processing of de-
liveries. Ultimately, the product-oriented time-window is motivated to reduce the planning
complexity for stores and with this increase the stores satisfaction with its supplier.

lllustrative data Examples of time-windows assignments with and without consistent deliveries
Delivery pattern of a store

. l:l Schedule without consistent deliveries Schedule with consistent deliveries
Monday:

& Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri

Tuesday: N N

N . D oo N N O E S
Wednesday: - \:l 700-goo
Thursday. |8 o T

L N (R s%-9
Friday: . I:I &\ - 900 - 1000

R[] Product segment A - D

Figure 5.1: Illustrative example of routing schedules with and without consistent deliveries

Summing up, in a nutshell, the PTWA-MCVRP combines a multi-period VRP for con-
sistent deliveries with an MCVRP. As a consequence, it involves the following partial deci-
sions that are made simultaneously and define the uniqueness of the problem formulation:

e assignment of product-oriented time-windows to each store-segment pair (this deci-
sion defines the arrival time of each segment at a store on each delivery day);
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e assignment of orders to tours/vehicles (this decision determines which segments are
delivered simultaneously);

e number and size of each compartment (this decision defines the number of compart-
ments on each vehicle, and how the capacity is divided between compartments).

e sequence of store visits, as in every VRP (this decision specify the order by which
each vehicle should perform the delivery of the orders assigned).

Please note that the first decision addresses time-window assignment to achieve consistent
deliveries while the later three are related to MCVRPs.

5.3. Related Literature

The PTWA-MCVRP is a variant of the CVRP (Toth and Vigo, 2014). As previously de-
scribed, the problem deals with two main groups of decisions: (i) the routing decisions
and (ii) the consistent time-window assignment decisions. These decisions relate to three
streams of VRP variants. Since the routing decisions are defined considering MCVs, the
PTWA-MCVRP clearly extends literature on MCVRPs. The time-window assignment de-
cisions derive from an extension of the time-window assignment vehicle routing problem
(TWAVRP), in which one time-window has to be selected for each customer with stochastic
demand in a single-period problem, and the consistent vehicle routing problem (ConVRP),
where a consistent arrival time has to be achieved in a multi-period setting. The related
literature is presented below.

5.3.1 Multi-compartment Vehicle Routing Problems

One of the first references to the MCVRP as a variant of the VRP was given in 1979
(Reed et al., 2014). While at that time the MCVRP did not attract much attention from
researchers, the raising deployment of MCVs in the last years is increasing the research on
this problem.

The MCVREP literature focuses mainly on its applications to the fuel distribution (Avella
et al., 2004; Cornillier et al., 2008; Coelho and Laporte, 2015), waste collection (Muylder-
mans and Pang, 2010; Reed et al., 2014; Henke et al., 2015) and food distribution (Chajakis
and Guignard, 2003; Derigs et al., 2011; Hiibner and Ostermeier, 2018). Most of the works
on the MCVRP assume that the customers can only be served by one vehicle (Chajakis
and Guignard, 2003; Reed et al., 2014; Abdulkader et al., 2015) and/or that the number
of compartments and their size are fixed (El Fallahi et al., 2008; Muyldermans and Pang,
2010), which are too restrictive.

Derigs et al. (2011) are the first to consider flexible compartment sizes with multiple
deliveries to customers. This new feature creates a more general MCVRP by adding the
decisions on the number and size of compartments to the problem. Henke et al. (2015)
tackle the MCVRP with discrete flexible compartments, instead of continuous as in Derigs
etal. (2011). The authors allow the number of compartments to be smaller than the number
of products to be collected and apply a variable neighborhood search to the problem.
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Hiibner and Ostermeier (2018) study the distribution of groceries with flexible MCVs,
incorporating the operational costs of the loading and unloading processes. The authors
propose a large neighborhood search to solve the problem. For our problem, the model
formulation can be simplified compared to previous works. Since we group the products
with the same transportation characteristics in segments and consider completely flexible
compartments, the specific allocation of orders to compartments is not required as the
order segment represent itself a compartment. The ALNS that we propose to solve the
problem uses daily operators based on Derigs et al. (2011) and Hiibner and Ostermeier
(2018) approaches and incorporate the operational features of the last.

The MCVRP was also extended by some authors to incorporate time-window restric-
tions, considering fixed compartment sizes. Kaabi and Jabeur (2015) describe an MCVRP
where customer orders are composed of different products with associated profits, which
are collected once the customer is visited within their time-window. Not all customers may
be visited. The authors propose an hybrid approach combining a genetic algorithm and an
iterated local search to solve the problem. Kabcome and Mouktonglang (2015) also con-
sider time-windows but as soft constraints. They allow the customers to be visited outside
their time-windows at a given cost, distinct for earliness and lateness. An upper bound for
the violation of time-windows is set as a hard constraint. The authors use a commercial
software to solve exactly small instances. Although both works consider time-window re-
strictions, they are incorporated as inputs rather than decision variables. Therefore, a model
and solution approach that integrates the MCVRP with time-window assignment decisions
has not yet been analyzed in the literature but has a practical relevance as described in
Section 5.2.

5.3.2 Time-Window Assignment & Consistent Vehicle Routing Problems

The TWAVRP was first introduced by Spliet and Gabor (2014). The problem is described
as the assignment of time windows to each customer before demand is known. Afterwards,
when the demand is revealed, a vehicle routing schedule is made to satisfy the assigned time
windows. The demand realization is described based on a given scenario, from a finite set
of scenarios, each with a known probability of occurrence. The work on TWAVRP by Spliet
and Gabor (2014) assigns time-windows of pre-specified width from a set of exogenous
time-windows. The authors develop a branch-price-and-cut algorithm to find the optimal
expected traveling time, according to the assignment made. Spliet and Desaulniers (2015)
extended that work by considering the assignment of time-windows from a discrete set
of a priori constructed windows. They propose a branch-price-and-cut algorithm and five
column generation heuristics. Spliet et al. (2017) introduced time-dependent travel times
to the TWAVRP, focusing on predictable variations. The authors develop a branch-price-
and-cut algorithm, using an exact labeling and a tabu search heuristic to solve the pricing
problem. Jabali et al. (2015) consider a similar problem, in which travel times are stochastic
but the demand is deterministic. The goal is to define a single route plan that should be fixed
for all days of the year together with the time-windows assignment. The authors propose
a tabu search algorithm to minimize the total traveling costs and expected earliness and
tardiness penalty costs, assuming soft time-windows. Our work is an extension of the
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TWAVRP for a multi-period setting, in which a consistent time-window assignment has to
be defined for all periods of the planing horizon with deterministic demand. Additionally,
our problem tackles a product-oriented time-window assignment rather than just customer
oriented.

Feillet et al. (2014) present a bi-objective time-consistent VRP, which aims at minimiz-
ing besides the total travel time, the maximum number of time classes in which a customer
is visited. The authors solve the problem with a large neighborhood search. Subramanyam
and Gounaris (2016) develop an exact solution for the consistent traveling salesman prob-
lem (CTSP), which aims to identify the minimum-cost set of routes that a single vehicle
should follow for a given period, ensuring that the customers are visited roughly at the same
time of the day. Subramanyam and Gounaris (2017) extend the previous work from an TSP
to an VRP variant and show that each scenario of the TWAVRP stochastic model can be
reduced to an VRP variant known as consistent vehicle routing problem (ConVRP). The
authors adapted an exact algorithm for the ConVRP and solved the TWAVRP benchmark
instances.

The ConVRP is a multi-period problem proposed by Groér et al. (2009) that aims to
design consistent routes over a given planning horizon. Kovacs et al. (2014a) describe
three different types of a consistent routing: (i) arrival-time consistency, which ensures
visits to customers at roughly the same time of the day, (ii) person-oriented consistency,
which means that customers are visited by the same driver, and (iii) delivery consistency,
where customers receive roughly the same quantity of goods. The arrival-time consistency
requirement of the ConVRP is similar to an TWAVRP, as both problems define an interval
of time within which customers visits should occur.

Most of the literature on ConVRP focuses on arrival-time and driver consistency. The
first approaches to solve the problem are based on template concepts, wherein template
routes are built considering the frequent customers and afterwards a daily plan is derived
to include the remaining customers to be visited on each day (Groér et al., 2009; Taran-
tilis et al., 2012; Kovacs et al., 2014b). Groér et al. (2009) propose a multi-start solution
construction combined with a Record-to-Record travel local search metaheuristic algo-
rithm, and Tarantilis et al. (2012) a tabu search algorithm. Kovacs et al. (2014b) present
an ALNS to solve the problem and analyze the variant of allowing later departures from
depot. Sungur et al. (2010) also use the template concept for the courier delivery problem
with uncertainty, where the problem is solved by a master and daily scheduler heuristic
(MADS).

Kovacs et al. (2015a) generalize the ConVRP, allowing the customer to be visited by a
limited number of drivers and penalizing the arrival-time variation in the objective function.
The authors propose a large neighborhood search algorithm to solve the problem. They
found that both driver and arrival-time consistency have a small impact on the fleet size.
Kovacs et al. (2015b) and Lian et al. (2016) study the multi-objective ConVRP, where driver
and arrival-time consistency are considered as objectives, besides the traveling cost. Both
works analyze the trade-off between traveling cost and service consistency, and develop
a multi-directional local search (MDLS), combined with a large neighborhood search to
approximate a Pareto frontier. Kovacs et al. (2015b) also propose two exact approaches
based on the e-constraint framework and state that, on average, it is possible to achieve
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70% better arrival-time consistency by increasing the traveling cost by not more than 4%.

In this work we use the concept of consistency regarding the time-window assignment.
A maximum width between arrivals can be defined as for the ConVRP, but not all arrivals
times are preferable. This means that we need to define a set of time-windows from where
the assignment is made in order to incorporate the stores preferable times for deliveries.
The instances proposed for the ConVRP by Groér et al. (2009) and Kovacs et al. (2014b)
will be extended and used in this work to evaluate the effectiveness of the solution approach
proposed.

5.4. Problem definition

The PTWA-MCVREP is defined on a complete undirected, weighted graph G = (N, E),
where N = {0, 1,...,n} is the set of nodes and E ={(i, j) : i, j € N} is the set of edges. Node
0 represents the DC location. Each edge (i, j) € E is associated with traveling cost #c;; and
traveling time 77;;. It is assumed that all traveling costs satisfy the triangle inequality and
each tour starts and ends at the DC. Let V be the set of vehicles available for transportation
at the DC. The number of vehicles available is assumed to be sufficiently large to fulfill the
demand of all stores and consists of identical vehicles with total capacity Q. Each vehicle
departs from the depot at time zero and must return before time 7', defined as the tour max-
imum duration. Waiting time between deliveries is not allowed. As we consider MCVs,
the loading area of each vehicle can be split into a limited number of compartments c € C,
with C = {1, ...,c}. The number of compartments a vehicle may have active is indicated by
k € K, with K = {1,...,c}. Due to the explained characteristics of an MCVRP, besides the
traveling costs also loading and unloading costs need to be considered. In line with this, /i
represents the loading cost of a vehicle dependent on the number of k compartments used
and u indicates the unloading cost of each stop (Hiibner and Ostermeier, 2018).

The DC is responsible for the distribution of products from S segments for a given
planning horizon consisting of D days. It is assumed that the delivery pattern of each store
for each segment (days in which a delivery should be made (Holzapfel et al., 2016)) are
known, as well as the quantities to be delivered. Thus, ql‘.ls defines the quantity of an order
for segment s to be delivered to store i € N\{0} on day d, and stl‘.ls the correspondent variable
service time that depend on the delivery quantity. Additionally, each time a vehicle stops
at a store a fixed service time sf is incurred, which is independent on the delivery quantity.
Note that if day d does not belong to the delivery pattern of store i for segment s, qfs is set
to 0.

Time-windows are defined by the set TW = {1,...,tw} and the intervals [e,, ], for every
t € TW, indicating the earliest (e¢;) and latest (k) delivery time of time-window ¢. The
assignment of time-windows will be made for each pair store-segment denoted as ((i, s) :
i€ N\{0},s € §). Since, not all time-windows can be used to each pair store-segment, the
subset TW;; € TW indicates which time-windows can be used for each pair (i,s). The
negative impact of having earlier and later deliveries than the time-window assigned to a
store is accounted by A and S, which represent the unitary cost associated with one unit of
time the delivery is too early or late, respectively (Ioannou et al., 2003).
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The objective of the PTWA-MCVRP is to minimize the total routing costs, considering
traveling, loading and unloading costs, as well as the penalties for earlier or later deliveries
than planned, while satisfying the stores demand and performing consistent deliveries. A
solution for the problem determines not only (i) the sequence of store visits, but also (ii)
the number of compartments used in each vehicle, (iii) the assignment of orders (from
different stores and segments) to each compartment, and (iv) the size of each compartment.
Additionally, (v) the assignment of a time-window to be used consistently throughout the
planning horizon for each pair store-segment is performed. The first group of decisions is
related with MCVRP. The last decision is associated with the new feature of the problem,
regarding the consistent assignment of time-windows along with penalty costs. The model
developed uses the following decision variables to map the discussed decisions.

. bl‘?’jv =1 if vehicle v travels from location i to j on day d and bl‘?’jv = 0 otherwise

. Gfsv =1 if segment s is delivered by vehicle v to store i on day d and 9" = 0 otherwise

vist = 1 if store-segment pair (i, s) is assigned to time-window ¢ and y;;; = 0 otherwise

d _ . . d _ .
¥4, = 1 if vehicle v transports segment s on day d and ¢, = 0 otherwise

° r“fk =1 if vehicle v has k active compartments on day ¢ and rfk = 0 otherwise

The continuous variables wl‘.’v denote the arrival time at store i by vehicle v on day d
and pfs the penalty cost incurred on day d by the pair (Z,s) in case of early or late deliv-
eries. Additionally, the discrete auxiliary variables f¢ represent the number of store stops
performed by vehicle v on day d.

Finally, the formulation of the PTWA-MCVRP is given below:

Minimize ZZ[Zlk~r“fk+ZZtc,~j Uv+u fv Z Z Zp” 5.1

deDveV keK ieN jeN deDieN\{0} seS

subject to
Z by, <1 veV,deD (5.2)
JENNIO}
DA veV,geN,deD (5.3)
ieN JEN
D =M, i€ N\{0}, seS,deD (5.4)
veV
Dol ISy b, vevV, jeN\0}, deD (5.5)
seS ieN
Z quis lSV_Q veV,deD 5.6)
ieN\{0} seS
Do <M veV,seS,deD (5.7)
ieN\{0}
ZﬁfS:Zk-rfk veVideD,keK (5.8)

seS keK
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Z"szl veV.deD 5.9
kekK
DY ble veVdeD (5.10)
ieN jeN\{0
> v =1 ie N\{0}, se S (5.11)
€T Wiy
wl <0 veVdeD (5.12)
wh<M- ) o veV,ieN,deD (5.13)
seS
W +tt,,+sf+29m st —M-(1-b%,) < w, veV,ieN, jeN\{0}, deD
seS
(5.14)
W+ tty s+ ) O st M (1=b) >, veV,ieN, je N\{0}, de D
seS
(5.15)
Wit ttig+sf+ ) 0% st —wl - M-(1-b%)<T  veV,ieN\(0}, deD  (5.16)
seS
2D yigre)—wi)-A=M-(1-64) veV,ieN,seS,deD (5.17)
teTWig
d d_ .
Dig = (Wi, Z Vist ) B—M-(1 - lsv) veV,ieN,seS,deD (5.18)
€T Wi

Objective function (5.1) minimizes the total routing costs, including loading, traveling
and unloading costs, plus the penalty costs of performing deliveries outside the bounds
of the time-windows assigned. The constraints of the problems can be aggregated in two
groups. Constraints (5.2)-(5.10) compose the first group, which is related to the routing
decisions of the MCVRP. Inequalities (5.2) and (5.3) ensure that each route starts at the
depot, and that a store has only one predecessor and one successor in the route. Constraints
(5.4) guarantees that a store receives all segments that it requires on each day. Constraints
(5.5) ensure that store deliveries are only performed by a vehicle that actually visits the
store. The vehicles’ capacity is controlled by constraints (5.6). Inequalities (5.7)-(5.9)
define which segments are loaded on the vehicles and, consequently, how many compart-
ments will be used. Constraints (5.10) determine the number of store stops each vehicle
performs on a given day. The remaining constraints compose the second group and regard
the time-windows assignment. Constraints (5.11) ensure that only one time-window can
be assigned to each pair store-segment. These constraints guarantee consistent deliveries
and are hereafter denoted as time-window consistency constraint. The departures from the
depot at time zero is ensured by inequalities (5.12). The arrival times to stores are set by
constraints (5.13)-(5.15), guaranteeing that waiting time between deliveries is not allowed.
Constraints (5.16) ensure that the tours do not exceed the maximum duration established.
The penalty costs incurred by performing earlier or later deliveries than the bounds of the
time-window assigned are determined by constraints (5.17) and (5.18).
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5.5. Solution Approach

The main difficulty in solving the PTWA-MCVRP arises from the interrelation between the
individual days of the planning horizon. In the considered problem, this interrelation relates
to the consistent use of a unique time-window for each pair customer-segment throughout
the planning horizon. An ALNS framework is designed in this paper to cope with the char-
acteristics of the problem regarding its two main groups of decisions: the routing problem
with MCVs and the time-window assignment.

ALNS algorithms are used in the literature to solve different problem settings and
showed to provide good results for distinct VRP variants, such as MCVRP (Derigs et al.,
2011), VRPTW (Ropke and Pisinger, 2006), ConVRP (Kovacs et al., 2014b). The ALNS
framework was first introduced by Ropke and Pisinger (2006). Its central idea is to se-
quentially improve an initial solution by destroying and rebuilding parts of it. In the VRP
variants, the destroying phase uses a destroy operator to remove a given number of re-
quests from the routes, which afterwards are re-inserted according to an insertion operator,
in the rebuilding phase. In an ALNS framework, several destroy and insertion operators
are available and selected during the search procedure in an adaptive way, dependent on
their performance during the search (see Section 5.5.6).

The ALNS framework developed to solve the PTWA-MCVRP combines daily and
weekly operators to tackle the different problem decisions. The daily operators focus on a
particular day and try to improve the routing decisions of the problem, while the weekly
operators have a broader scope, analyzing all the days at the same time, and aligning the
time-window assignment decisions. The pseudocode of the ALNS framework developed
is shown in Algorithm 2. The general framework is explained below and the main features
are detailed in the subsequent subsections.

Algorithm 2 ALNS scheme for the product-oriented time-window assignment for MCVRP

1: generate a solution S > Section 5.5.1
2: set Spesr =8
3: repeat
4 select a destroy-repair heuristic pair (d, r) based on adaptive weights (04,) > Section 5.5.6
5: if d is a daily operator then > Section 5.5.2-Section 5.5.4
6 select randomly day ¢
7 generate solution S’ by applying (d,r) to S on day ¢
8: else > Section 5.5.2-Section 5.5.4
9: generate solution S’ by applying (d,r) to S
10: end if
11: if S’ better than S .5 then > Section 5.5.5
12: Spest =S’
13: S =8’
14: else if S’ complies with the acceptance criteria then > Section 5.5.5
15: S:=5’
16: end if
17: update performance of destroy-repair heuristic pair (d, r) > Section 5.5.6

18: until maximum number of iterations is reached
19: return S pey

The algorithm starts with the generation of an initial solution S (see Section 5.5.1),
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not considering the time-window consistency constraint. This constraint will be enforced
during the search by adding to the objective function (f(S”)) a violation cost as described
in Equation (5.19), creating an artificial objective function (f,(S”)) similar to Kovacs et al.
(2014b).

Jfa(S") = f(S")+ ¢ -inconPairs (5.19)

The violation cost is set proportional to the number of pairs customer-segment with
an inconsistent delivery plan (inconPairs), i.e. number of pairs with more than one time-
window assigned, and on a consistency cost {. Parameter ¢ is initialized at the beginning of
the search and updated every 100 iterations (¢ = exp""#o"s/9)) Hence, the more advanced
we are in the search, the more costly it is to violate the time-window consistency constraint.

In each iteration, a destroy-repair heuristic pair (d,r) is chosen by a roulette wheel
selection, recurring to adaptive weights (see Section 5.5.6). The destroy operator can be
selected from the group of daily or weekly operators (see Section 5.5.2). The removal
step is followed by the reinsertion phase. The reinsertion is performed by the selected
repair operator and each order is reinserted for the corresponding day on which the order
is scheduled (see Section 5.5.3). After each remove and insertion, the arrival times of the
orders are updated and the time-window assignments are reset (see Section 5.5.4). If the
new solution S’ meets the acceptance criteria, then it replaces S. If it improves the best
solution found so far it replaces S ps; (see Section 5.5.5).

5.5.1 Initial Solution

The initial solution is generated by applying the Clarke Wright savings heuristic (Clarke
and Wright, 1964) to each individual day of the planning horizon. This approach starts by
creating routes with single orders and afterwards iteratively combines routes according to a
calculated saving in traveling distance, while satisfying the vehicles capacity and maximum
duration constraints. This heuristic is commonly used in different VRP problems and was
chosen because it provides a fast solution with a reasonable traveling distance.

With the routes defined, the arrival times to each customer are calculated, assuming the
departures from the depot at time zero of each day. A time-window is assigned to each in-
dividual order based on their arrival time, guaranteeing no penalty cost, i.e. not performing
early or late deliveries. Note that the orders of each pair customer-segment can be assigned
to distinct time-windows. Hence, the first generated solution is most probably not feasible
regarding the time-window consistency constraint, therefore generating a violation cost.

5.5.2 Destroy Operators

In this solution approach, the destroy operators are separated in daily and weekly operators.
We use six destroy operators, three for each group. Each of the operators was developed
to address a special characteristic of the problem. The daily destroy operators focus on a
specific day of the planning horizon and, therefore focus on the routing decisions of the
problem. The weekly destroy operators are the unique feature of our search procedure
and were created to tackle the consistency aspect of the PTWA-MCVRP, thus focusing on
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the time-window assignment decisions. In contrast to the daily operators they analyze the
entire planning horizon at once with the aim of aligning the time-window assignment for
the customer-segment pairs.

5.5.2.1 Daily Operators

The daily operators remove r orders for a given day from its routes. The day-selection is
random, however a day is set tabu after its selection until all other days have also been
selected, independently of the quality of the solution generated. The number of removes r
is chosen randomly from the interval [0.1- Nyqy,0.4 - Ngqay ], where Nggy is the total number of
orders to be delivered on the specific day. This interval is proposed by Ropke and Pisinger
(2006) and used in different works of the VRP literature.

The three daily destroy operators used are: random removal, Shaw removal and worst
removal. These operators were proposed by Shaw (1997) and Ropke and Pisinger (20006)
and are frequently used in the ALNS for different VRP variants. The general idea of each
operator is given below.

The random removal operator removes randomly the orders from the set of routes of
the day selected. The Shaw removal removes the orders based on a similarity measure. The
similarity between two orders (z,m) is calculated based on four terms: distance, capacity,
arrival time and segment affiliation. These terms are weighted using the weights ¢, ¥, ¢
and w, respectively. The complete similarity measure is given by Equation (5.20). d,,
represents the distance between corresponding customers of the orders, g(z) the order size,
a(z) the arrival time and s,,, the orders segment affiliation, i.e. s, = 1 if they are from the
same segment, 0 otherwise. The parameters d,qy, @max and dpq, indicate the maximum
distance between two customers and the maximum quantity and arrival time difference
between any two orders across all available orders.

don , , J9@ =gl la@-atm]

Amax qmax Amax

Ro:=¢-

“Szm (5.20)

The smaller R,,, gets, the more similar the orders are. In addition to the similarity
measure, a randomization is used according to Shaw (1997) to diversify the search and
ensure that not the most similar order is chosen during the search. During the procedure, the
first order for removal is chosen randomly, all further orders are based on the similarity to
one of the already removed ones. Finally, the worst removal removes the orders that seem
to be in a costly position in the solution. The cost of an order is the difference between
the current solution cost and the solution cost if the order was removed (not having any
additional cost of not being delivered). In this approach the solution cost is evaluated by
the artificial objective function (f,), which comprises the routing and penalty cost plus
the consistency violation cost. A randomized process is also integrated in this operator to
ensure that not always the order with the worst cost is removed.
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5.5.2.2 Weekly Operators

The weekly operators remove the orders of r pairs customer-segment from all days of the
planning horizon. The number of removes r is chosen randomly from the interval [2,0.1 - n],
where n represents the number of customers. Since all the orders of the r pairs are removed
the value of r has to be more restrictive than for the daily operators. By way of example,
if two pairs are chosen with 5 orders for each pair throughout the planning horizon, this
results already in 10 orders for removal.

Three weekly destroy operators are designed specifically to tackle the assignment de-
cisions of the problem: product-based removal, worst time-window removal, worst arrival
removal. The product-based removal is a variant of a random removal. The operator selects
randomly r pairs of customer-segments and removes all orders of that pair from the solu-
tion, i.e., all orders a customer placed of a segment in the planning horizon are removed.
The aim of this operator is to diversify the assignment of time-windows. The last two op-
erators are variants of a worst removal, based on the operators designed by Kovacs et al.
(2015a). The worst time-window removal operator calculates the number of time-window
assigned to each customer-segment pair along the planning horizon and removes all the or-
ders of the r pairs with the highest number of assignments. This operator aims at reducing
the number of time-windows used for each pair, favoring more consistent deliveries. The
worst arrival removal considers the maximum arrival time difference between two orders
of a customer-segment pair. It identifies the r pairs with the highest arrival time deviation
and removes the two corresponding orders of each pair. It also aims at reducing the number
of time-windows but it is less disruptive since it does not remove all the orders from the
same pair customer-segment.

5.5.3 Repair Operators

Once a destroy operator is applied and orders are removed, the repair operator selected
rebuilds the solution by reinserting the orders into the routes of their delivery days. If the
removals were made by a daily removal operator, all the orders removed are from the same
day of delivery and the repair operator only considers that day. Otherwise, for weekly
removals, the repair operator will focus on each day separately. From the list of days from
which orders have been removed, a day is selected at random and all the orders of the
corresponding day are reinserted according to the repair operator chosen. The process is
repeated until all days are rebuilt.

Following most of the VRP literature that uses ALNS as a solution method, four inser-
tion heuristics are applied as repair operators: one greedy insertion and three regret inser-
tions. These operators are based on Ropke and Pisinger (2006) and account for all costs of
the problem, including consistency violation cost. The greedy insertion operator calculates
for each order removed the cheapest feasible position for reinsertion and the order with the
lowest cost increase is selected to be inserted. The process is repeated until all orders are
inserted. The regret insertion operators improve the greedy insertion by analyzing not only
the best option for each order but the k best. This procedure integrates ahead information
and calculates the regret of postponing an insertion. Let Ag denote the change in the objec-
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tive value for inserting order z at its best feasible position on the j— th cheapest route. The
regret value is calculated according to Equation (5.21) for all the orders removed.

k
regrety := > (Al-Al) (5.21)
=2

The order z with the highest regret value is selected to be inserted at its best feasible
position. In each insertion, the regret value is recalculated for the set of orders remaining
on the removal list, until all orders are inserted. Three regret insertion operators are used
with k € {2,3,4}.

5.5.4 Update of Arrival Times and Time-Windows Assignments

Since waiting time between deliveries is not allowed, every remove or insertion in a route
impacts the arrival time of the successive orders and thus times need to be updated. We
assume that all routes start at the depot at time O and therefore the arrival time of each
order is calculated by consecutively adding the travel times between the customers visited
(#t;j) and their correspondent service time. As previously mention, the service time at a
customer has a variable component proportional to the size of the orders delivered (stl‘.i,)
and a fixed component per stop (sf, see also Section 5.2). Note that a customer can receive
more than one order across different segments. In this case, the same arrival time is set for
the correspondent customer orders and the service time at the customer is the total variable
service time of the distinct orders plus the fixed service time.

Once the arrival times are updated, the new arrival time of an order might lie outside the
bounds of the assigned time-window. However, since the problem considers time-windows
bounds as soft constraints, the solution is still feasible, but it yields a penalty cost for an
early or late delivery. Due to the solution approach features, we can decide to change the
time-window assigned to the order to avoid penalty cost which could cause an inconsistent
assignment or accept the penalty cost that maintains the consistent assignment. Therefore,
it is necessary to evaluate if the time-window assignment should be altered or maintained
in order to achieve the minimal cost assignment, i.e. the best option between accepting a
penalty cost or an additional consistency violation cost. Note that during the search, the
time-window assignment will be more restrictive as the consistency cost £ increases.

The time-window assignment update procedure is performed for each order separately,
after the arrival time is determined. We define as current,,s the current penalty and con-
sistency violation cost induced by the pair customer-segment disregarding the order under
analysis. This means, we calculate the penalty and consistency costs for all orders of the
customer-segment pair without the order which is currently under consideration. When
deciding on the new time-window assignment for the order under analysis, there are two
possible situations, as previously mentioned:

e Update only the time-window assignment of the order in analysis, maintaining the
previous assignment of the pair remaining orders. With this decision the total assign-
ment cost of the pair customer-segment is calculated by adding to the current,,s the
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penalty and consistency violation cost associated with the time-window assignment
for the new order. The total cost of this situation is denoted as singleU pdate s,
corresponding to a single assignment update.

e Update the assignment of all the orders from the pair customer-segment to the same
time-window, ensuring a consistent delivery throughout the planning horizon. This
decision guarantees a null consistency violation cost (zero cost, as only one time-
window is assigned to the pair). Therefore, the total assignment cost of the pair
comprises only the penalty costs that all the orders incur due to the new time-window
assigned. The total cost of this situation is denoted as groupU pdate.,s; and a new
assignment is performed for the group of orders.

During the procedure, both costs singleU pdate,s; and groupU pdate.,s are calculated
for each of the time-window available of the pair customer-segment (7'W;;) and the cheap-
est assignment of all is chosen. The penalty cost that an order incurs is calculated by
comparing the order arrival time with the bounds of the time-window assigned. If the ar-
rival time lies outside the time-window bounds it causes a penalty cost proportional to the
deviation. The consistency violation cost of updating the time-window of a single order is
determined by checking if the time-window assigned is already used by one of the other
orders of the pair. If the time-window has not been used the consistency violation cost is
increased proportionally to the current consistency cost (£).

5.5.5 Acceptance Criteria

The solution approach proposed uses a simulated annealing framework to evaluate and
accept the solutions generated. A new solution S’ is accepted as S py if it improves the
best solution. Otherwise, it is compared against the incumbent solution S by means of
the probability e~ (a(S)=/a(S)/ ! The parameter 7 denotes the current temperature. It is
initialized at the beginning of the search and decreased in every iteration with a cooling rate
v (f=1-7y). Solutions are compared regarding the artificial objective function f,, allowing
infeasible solutions to be accepted during the search. The ALNS algorithm stops after a
given number of iterations.

5.5.6 Selection of a Destroy-Repair Heuristic Pair (d,r)

The pairwise selection of the destroy-repair heuristic pair is applied in each iteration and
based on a roulette wheel selection principle, as proposed in Ropke and Pisinger (2006).
The probability @4, of a pair (d,r) to be chosen is given by Equation (5.22), where pg;
denotes the weight of the heuristic pair.

Pdr

ng ny

Z Z Pd'r

d'=1r=1

Dy 1= (5.22)

The weights pg, are set to one at the beginning of the procedure, and updated dynami-
cally during the search. Each pair (d,r) is associated with a score W, that is updated each
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time the heuristic pair is applied according to the following criteria:
o W, +0, if the heuristic pair generates a new best solution;

o W, +0, if the heuristic pair generates a solution that has not been visited before,
and is accepted as the new incumbent solution §.

As in Ropke and Pisinger (2006), the scores are initialized to zero and updated at
each iteration according to the previous criteria. Every 100 iterations, the weights p;, are
updated according to the recursive Equation (5.23) and the scores are reset to zero for the
next round.

par =1 —a)par+a@ (5.23)

dr
max(1,04,)
The parameter « is a reaction factor that controls how the weights are influenced by
past and recent performances. In this way it guides the search by controlling how sensitive
the operator choice reacts to changes during the search. The reaction factor « is initialized
with a small value that is increased once a feasible solution is saved as best solution.

5.6. Numerical Experiments

Extensive numerical experiments are needed to examine (i) the effectiveness and efficiency
of the solution approach presented in Section 5.5, (ii) the impact of introducing consistent
deliveries and (iii) the impact and implications of the introduced product-oriented time-
window assignment. First, the performance of the ALNS is analyzed in Section 5.6.2,
where solutions from related problem formulations from the literature are compared and
an analysis of the operators execution is performed. Extensive analysis concerning the
impact of our new model for the grocery distribution are then presented in Section 5.6.3.
The data sets used for these analyzes are described in Section 5.6.1.

The computational results presented in this section were obtained on a 3.60 GHz PC
with 16 GB memory. The algorithm was implemented in C++ and ran 10 times per in-
stance, in all the tests performed, stopping after 60 000 iterations. The search parameters
used are specified in Table 5.1. Each parameter was set to either a value reported in the
literature (Ropke and Pisinger, 2006; Derigs et al., 2011; Hiibner and Ostermeier, 2018) or
to an initial guess that was tuned. All other parameters, e.g. number of removals, are as
given in Section 5.5.

Table 5.1: Search parameters setting

g ¢ ¥ @ w 4 ooy«
300 028 0.16 028 028 099975 33 13 0.1
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5.6.1 Overview of the data sets tested

In a first analysis, our problem and solution approach are compared to another VRP variant
that considers a consistent delivery over multiple periods. This comparison is made to
benchmark results provided by Kovacs et al. (2014b) for the ConVRP. This experiment
was chosen as Kovacs et al. (2014b) consider a consistency problem with a departure time
at the depot at time zero. The further analysis tackle the specific problem characteristics
and are therefore performed on data based on grocery distribution. The data sets used in
both cases are described in the following.

5.6.1.1 ConVRP data set

The data sets used as benchmark were proposed by Groér et al. (2009) and Kovacs et al.
(2014b), which were based on Christofides and Eilon (1969) instances for VRP considering
a visit frequency of 70% (Groér et al., 2009), as well as 50% and 90% (Kovacs et al.,
2014b). The visit frequency indicates the likelihood of a customer placing an order for
each day in the planning horizon. As our paper deals with a real-life problem in grocery
distribution, we focus on the set of instances with a given maximum duration for tours and
provided service times. We tested the instances with 50 to 100 customers. However, the
problem tackled by Kovacs et al. (2014b) is a ConVRP that considers besides the arrival-
time consistency a driver consistency. Their goal is to minimize the traveling time while
satisfying the two consistencies, i.e. approach each customer by the same driver every day
with a maximum arrival-time deviation (/,,,,) smaller than a pre-defined width L. These
two aspects are not considered in our problem formulation and therefore modifications had
to be applied to enable a fair comparison of both solution approaches.

The driver consistency is added and treated like the time-window consistency con-
straint. That means that we penalize the use of multiple drivers by adding to the artificial
objective function (f,(S’)) a violation cost that is increased during the search, as explained
in Section 5.5. The best /4 found by Kovacs et al. (2014b) is used as input to set the width
of our set of time-windows. Following this approach, the earliest given time-window starts
at time O with a [,,,, width and, from there, new time-windows are available with a shift
of one time-unit. Since Kovacs et al. (2014b) perform a set of tests with the instances, our
comparison is made considering the /,,,, achieved for the tests with a maximum arrival
time bound denoted as L;, which the authors defined by running their algorithm without
bounding the arrival time differences.

Further, to ensure deliveries take place within the given time-windows we need to con-
sider hard time-windows and therefore we set the penalization costs for early/late deliveries
to a very large number. Lastly, as only traveling times are considered, loading and unload-
ing costs are set to 0.

5.6.1.2 Grocery distribution data set

To analyze the problem setting of grocery distribution we used randomly generated in-
stances (20 instances), which comprise a planning horizon of 7 delivery days and 50 stores
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served from a given DC. The order structure is based on a visit frequency of 70% as pro-
posed by Groér et al. (2009). If a store is flagged to be visited on a given day, it will place
orders for all four available segments. The remaining data settings are based on a case study
with a major European retailer. Following the insights from the study, loading/unloading
costs have been derived and are used in the experiments. The loading costs are presented in
Table 5.2 and depend on the number of compartments per vehicle. Unloading costs accrue
with every customer stop and are set to 2.20 currency units (CU). The transportation costs
are based on the travel distance between any two locations i and j, i, j € N. All experiments
assume a vehicle capacity of 33 transportation units (TU). Further, an early or late delivery
is penalized with 0.17 CU per minute, covering the working cost of a store employee.

Table 5.2: Applied costs for loading MCV

# Compartments ‘ 1 2 3 4
Loading (CU/shipping gate) ‘ 2,70 5.57 827 1097

The demand for each segment maps the actual demand structure in practice. For each
segment the individual order size is randomly chosen between a given minimum and max-
imum order quantity. For the first segment, the order quantity ranges between 1 and 5 TUs,
for the second segment between 1 and 10 TUs. Furthermore, to map segments with a higher
sales volume, segment 3 ranges between 5 and 20 TUs and finally segment 4 between 10
and 25 TUs. The distance information is based on the VRP instances by Christofides and
Eilon (1969). As the vehicle capacity in the application by Christofides and Eilon (1969)
is far higher than our given capacity, we modified the distances to suffice our requirements
in practice and still achieve a comparable route length. We therefore multiply the given
distances by four to increase the travel distances, but kept the same density.

5.6.2 Algorithm performance

The average variation coefficient (standard deviation/mean) for the tests performed with the
ALNS is 0.012 for the ConVRP data sets and 0.003 for the grocery distribution ones. This
last value demonstrate that the ALNS proposed is able to provide stable solutions for the
PTWA-MCVRP. Regarding the computational effort, the solution approach takes between
one to one and half hours to provide a solution for the grocery distribution problem. As this
is a tactical decision planning, these values are acceptable in practice. The runtime required
to solve the ConVRP instances is more variable, increasing proportional to the number of
customer and visiting frequency. For the instances with 50 and 75 customers the runtime
ranges from one hour for 50% visit frequency to four hours for 90% visit frequency. The
computational effort for the 100 customers instances ranges from four to twenty hours. The
data sets from the ConVRP require more time to solve because it has to analyze, during
the search, a much higher number of time-windows. As the number of customers and
time-windows available increase, the update of arrival times and time-windows assignment
procedure (see Section 5.5.4) runtime increases. In the following sections, we analyze the
results for the ConVRP benchmark instances and the application frequency of the proposed
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ALNS operators.

5.6.2.1 Results comparison to ConVRP benchmark instances

These numerical experiments confirm the ability of our algorithm to solve related problems
efficiently. We tested nine instances with our ALNS framework and compared the results
with the ones achieved by Kovacs et al. (2014b) with the template ALNS (TALNS). Table
5.3 shows the gaps of the best solution reached for each instance (Best Gap) and the average
solution obtained (Avg Gap). The total travel time plus service times (7'T") for each instance
are the comparison measure.

Table 5.3: Results of comparison to TALNS best solution by Kovacs et al. (2014b)

# Customers ‘ Visit frequency ‘ Best Gap (%) Avg Gap (%)

50% 1.4% 1.5%

50 70% 0.0% 0.1%
90% 0.0% 0.7%

50% 0.2% 1.9%

75 70% 0.1% 1.4%
90% -0.1% 1.7%

50% 0.3% 1.3%

100 70% 0.2% 1.2%
90% 0.1% 1.1%

Average - 0.3% 1.2%

In all tests, the solution approach was able to converge to consistent solutions, in terms
of driver and time-windows. The results show that the proposed ALNS reaches solutions
close to the TALNS best, with the Best Gap close to 0%. Only for the instance with 50
customers and a visit frequency of 50% the best solution reached by the ALNS was 1.4%
worse. Additionally, for the remaining instances the average gap lies below 1.5% for most
instances.

These results demonstrate that our solution approach is able to find a consistent solution
with a good traveling time. Please note that this approach was not developed to incorporate
driver consistency.

5.6.2.2 ALNS operators analysis

Since we propose a new problem and developed an ALNS solution approach to solve it,
an analysis of the operators considered is presented. In the solution approach, we propose
weekly destroy operators that are adjusted from the literature to cope with our problem
characteristics. In this section, we compare the application frequency (AF) of each oper-
ator, i.e. the proportion of iterations each operator is called. This comparison is made for
the runs with the ConVRP and the grocery distribution data sets.

Figures 5.2 and 5.3 present the application frequency (AF) of the destroy operators (see
Section 5.5.2) for both data sets, and Figures 5.4 and 5.5 present the same information, but
for the repair operators (see Section 5.5.3).
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Figure 5.3: Application frequency of destroy operators for grocery distribution data sets

When running our solution approach for the ConVRP data sets, results indicate that all
the operators proposed are called during the search, having the daily operators a share of
70%. Nevertheless, each of the weekly operators is also called around 10% of the times,
being the product-based removal operator the most called due to the diversification that it
allows.

The application frequency of these operators changes when the solution approach is
used for the grocery distribution problem. Daily and weekly operators share 49%/51%
application frequency, respectively. The results also indicate that the random and shaw re-
movals maintain an application frequency around 20%, having the product-based removal
operator an increase of calls. The worst and worst arrival removal are constantly called
7% of the times. The weekly operators included in our solution approach clearly help the
search for the PTWA-MCVRP.
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Figure 5.4: Application frequency of repair operators for ConVRP data sets

Figure 5.4 shows that for the ConVRP data set the four repair operators are similarly
used by the ALNS, which is not the case for the grocery distribution data set. For the last,
the greedy insertion operator has a much smaller application frequency than the remaining
operators. Furthermore, the regret insertion with k£ =2 seems to be the operator contributing
the most with an average application frequency of 40% (see Figure 5.5).
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Figure 5.5: Application frequency of repair operators for grocery distribution data sets

5.6.3 Impact Analysis of Time-Window Assignment in Grocery Distribution

In this second part of our numerical experiments, we analyze the impact and benefits of in-
troducing consistent deliveries and product-oriented time-window assignment in grocery
distribution. We start with the simplest case of introducing time-windows assignment
within the MCVRP with all time-windows available and analyze the impact of consis-
tent deliveries. Afterwards, the complexity is gradually increased by restricting the set of
time-windows for each pair customer-segment. In this way we can analyze the different
characteristics of the problem.

5.6.3.1 Analysis of consistent time-windows deliveries

In this analysis we want to evaluate the impact of performing consistent deliveries on time,
i.e. deliver each segment to stores within a unique time-window assigned. In this exper-
iment, a set of eight time-windows with one hour width is considered, being the full set
available to all customer-segment pairs. Two tests are performed for each instance: (1) the
ALNS is run for each day individually, considering only the daily operators with no time
restrictions, and (2) the full ALNS is run for the complete planning horizon. The first test
only attempts to minimize the routing costs, including the loading, traveling and unloading
costs. Considering the resulted arrival times of the orders, a time-window is assigned to
each customer-segment pair in order to reduce the penalty costs for early or late deliveries.
The expected total cost for the final solution is calculated by summing up the routing costs
of each day with the penalty cost per customer-segment pair. This first test is named unre-
stricted planning and is based on the common practice. The second test aims at minimizing
routing and penalty costs while ensuring consistent deliveries. The final solution provides
a consistent time-window assignment and therefore the test is referred to as consistent de-
livery planning. The deviations between the expected total cost for the consistent delivery
planning and unrestricted planning are presented in Figure 5.6. Three cost deviations are
shown related to the comparison between the best, average and worst solutions found in
each test, for each instance. All tests provided consistent solutions.

The results show that consistent delivery planning enables better overall solutions than
the unrestricted planning just focused on the routing. The best consistent solution is able to
improve the unrestricted best solution by around 0.7%. Furthermore, we see that the solu-
tions generated with a consistent planning are always better than the unrestricted planning,
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Figure 5.6: Results comparison of consistent delivery planning and unrestricted planning

with the cost deviation of the worst solution having an average improvement of 0.5%.

Although the consistent planning provides solutions with a better overall cost, the cost
deviation between the two plannings is small (below 1%). However, the solutions are very
different. The routing cost of the consistent planning is between 1.1% and 1.7% higher than
that for the unrestricted planning, which is compensated by a 68% to 76% improvement
of the overall penalty cost. A further analysis of the delivery time of each order for both
plans shows that the consistent planning originates more on-time deliveries. Table 5.4
presents for both plans the average percentage of orders delivered "X" minutes outside the
time-window assigned bounds.

Table 5.4: Average percentage of orders delivered "X" minutes earlier or later than the
time-window assigned bounds

Interval of time (X in minutes) ‘ Unrestricted planning ~ Consistent planning

0 69% 84%
0-10 9% 8%
10 - 30 11% 6%
30 - 60 5% 2%

60 - 120 3% 1%
120 - 240 3% 1%
> 240 2% 0%

From the results of Table 5.4, we see that the consistent planning reduces the amount of
deliveries performed outside the bounds of the time-window or with a very small deviation.
While the unrestricted planning contains 7% of the orders delivered with at least one hour
deviation, the consistent planning reduces this percentage to 3%. Furthermore, note that the
time deviations from the time-window bounds are penalized in the solution overall cost by
0.17 CU per minute, covering the working cost of a store employee. However, in practice
for some of the deliveries the costs can be much higher as spoilage or stock outs situations

can occur, for example.
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5.6.3.2 Analysis of product-oriented time-window assignment

Having discussed the influence of consistent delivery planning, we now analyze the impact
of defining a product-oriented time-window assignment. In the previous tests, all pairs
customer-segment had the full set of time-windows available for assignment. However, in
practice the stores might prefer to receive some segments in a more restricted set of time-
windows, as it was described in Section 3.3. Therefore, we tested three different scenarios:

1st scenario (Fresh TW): Only a limited number of time-windows can be used for one
of the segments (representing the fresh products), having the remaining segments the full
time-window set available. As the fresh products have usually to be delivered at the begin-
ning of the day, and we assume departures at time 0, the set of time-windows available for
the fresh segment is set to the three earliest from the overall set.

2nd and 3rd scenarios: Other segments might have additional restrictions in different
stores, depending on their operations. Therefore, we used two random sets of time-windows
for the remaining segments. In the second scenario, named Random TW (4-8), it is ran-
domly selected the number and time-windows available, between four and eight, for each
customer-segment pair. For the third scenario (Random TW (4)), the number of time-
windows available is fixed to four, being the time-windows randomly selected. In both
scenarios, the set of time-windows available for the fresh segment is the same of the first
scenario (Fresh TW).

The solutions obtained for the three scenarios are compared with the solutions from the
consistent delivery planning with all time-windows available (obtained in Section 5.6.3.1).
The results are presented in Figure 5.7. Once again, the best, average and worst solutions
reached by each of the tests for each instance are compared.
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Figure 5.7: Results comparison of consistent delivery planning with distinct sets of time-
windows available

Naturally, these results show that restricting the set of time-windows available for each
pair customer-segment increases the solution overall cost. The deviations between the best,
average and worst solutions of each scenario are very similar. Analyzing the cost deviation
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of the best solutions for each scenario, we see that the Fresh TW scenario originates a
small increase in costs (below 1%) in the solution cost compared with the full time-window
set available. This deviation reaches higher levels when all segments have random time-
windows available for assignment.

A further analysis of the two cost contributions (routing and penalty), indicates that
the routing cost is very similar between all scenarios, with an average deviation below
0.4%, pointing the penalty cost as the main driver for the cost increase. Similarly to the
previous section, Table 5.5 presents for each scenario the average percentage of orders
delivered "X" minutes outside the time-window assigned bounds. The results from the
previous unrestricted planning and consistent delivery planning analysis are also presented
for comparison. The average number of time-windows assigned per customer are presented
for all scenarios in the bottom line.

Table 5.5: Percentage of orders "X" minutes earlier or later than the time-window assigned
in each scenario

Interval of time (X in minutes) ‘ Unrestricted AlIl'TW  Fresh TW  Random TW (4-8) Random TW (4)

0 69% 84% 82% 72% 65%

0-10 9% 8% 9% 10% 10%

10-30 11% 6% 6% 11% 12%

30-60 5% 2% 2% 5% 8%

60-120 3% 1% 1% 2% 4%
120-240 3% 1% 1% 1% 1%

>240 2% 0% 0% 0% 0%
Avg # TW per customer 1.32 1.32 1.42 1.92 2.22

The results show a reduction of on-time deliveries from the consistent scenario with all
time-windows available to the more restricted scenarios. We can see that when all time-
windows are available for all customer-segment pairs, the best solutions try to assign the
same time-window to the full range of products, having both the unrestricted and consistent
planning scenarios an average of 1.32 time-windows assigned to each customer. As the
scenarios constrain the time-window set, the average number of time-windows assigned
per customer increases. This would lead to separate deliveries which would increase the
routing cost. However, it seems that by reducing the on-time deliveries, we maintain similar
routing cost, having better overall costs.

5.7. Conclusion

This work extended the research on multi-compartment vehicle routing problems (MCVRPs)
by tackling a multi-period setting with a product-oriented time-window assignment. The
resulting PTWA-MCVRP was studied for the grocery distribution application, which has
particular characteristics due to the multiple products it distributes with distinct temper-
ature requirements. The aim of the PTWA-MCVRP is to define a unique time-window
that should be used consistently throughout the planning horizon for each type of product
of a store, taking into account the possibility of delivering the full product range jointly
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or separated with the use of MCVs. However, in practice the time-windows are not hard
constraints and, therefore, deliveries outside the time-windows bounds are allowed with a
negative impact for the in-store operations. Hence, the objective of the problem proposed
is to minimize the routing costs inherent to the use of MCVs and the penalty cost related
with missing the time-windows assigned.

An ALNS framework was designed in this paper to cope with the characteristics of
the PTWA-MCVRP, combining daily and weekly operators to tackle the different problem
decisions. The daily operators focus on a particular day and try to improve the routing
decisions of the problem, while the weekly operators have a broader scope, aligning the
time-window assignment decisions across all days.

The algorithm was tested on benchmark instances for the ConVRP, which is closely
related with our problem due to the arrival time consistency constraint, and generated in-
stances based on a grocery distribution problem. The effectiveness and efficiency of the
ALNS framework proposed was validated as the solution approach was able to converge to
consistent solutions close to the best solutions of the ConVRP. Furthermore, an analysis of
the application frequency of the operators used showed that the PTWA-MCVRP requires a
high search diversification, and that both daily and weekly destroy operators help guiding
the search to better solutions.

An impact analysis of time-window assignment in grocery distribution was also con-
ducted. At a first stage, we showed that performing a consistent delivery planning pro-
vides better overall solutions than an unrestricted planning, just focused on the routing
costs. Although the deviation cost achieved between both plans was small (0.7% average
improvement), it was shown that there was a significant difference on the percentage of
orders delivered outside the time-window bounds, which could lead to higher costs due to
spoilage or stock-outs situations. Finally, the implication of using a product-oriented time-
window assignment was analyzed by restricting the number of time-windows available for
the assignment to the different products. We concluded that if all products have the same
time-windows available, most of the stores will receive the full range of products within
the same time-window. Therefore, as we restrict the set of time-windows the number of
time-windows used per customer increases, as well as the overall solution cost. This last
effect is originated by the increase in the percentage of orders delivered outside the time-
window bounds, indicating that it is less costly to miss the time-window than changing the
routing.

Further extensions of this work can be made by considering lower and upper bounds
for time-windows violation to prevent excessive penalties, as proposed by loannou et al.
(2003). These bounds can be defined per customer and product, differentiating the cases
that would not be so much affected by the situation. For instance, stores with small back-
rooms would require more on-time deliveries than the others. As we assumed departures
from depot at time zero, a logic extension is to consider different departure times for the
vehicles, as already considered by Kovacs et al. (2015b) for ConVRP. Additionally, con-
siderations regarding DC docks capacity and fleet size could be included. Not all vehicles
can departure at the same time due to loading docks capacity restrictions. Moreover, the
fleet size is dependent on the number of simultaneous deliveries, so having different de-
parture times allows for a smaller fleet. The development of an exact approach, such as a
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branch-and-price, would also be a future research direction in order to achieve near optimal
solutions for comparison and evaluate in more detail the ALNS performance.
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