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Abstract— A model for a phased-array radar in the context of
a defensive Naval system has been developed using hierarchical
finite state machines. This model is used to study resource
management for a fleet of ships equipped with one radar unit
each. This fleet is under attack from aerial enemy agents. A
control algorithm formulated on this specific model is used
to dynamically generate a greedy policy for radar operation.
The defense system is evaluated in its capability to acquire and
track those aerial threats, in two configurations -centralized and
decentralized (independent). The performance is quantified on
the basis of time taken to establish the threat trajectory, time to
compute the policy and the number of threats the system fails to
track. A comparison of performance in the two configurations
is provided.

I. INTRODUCTION

A. Motivation

The problem of radar resource management is significant
to modern military systems. The era of fast and intelli-
gent warfare necessitates use of complex radar systems
with sophisticated detection and classification algorithms.
A constraining factor is power utilization, particularly in
offshore defense systems such as Naval vessels. In order to
obtain a solution to the radar resource management problem
that is feasible and matches performance standards, a radar
model from the ONR has been adapted and an optimization
procedure applied to it. The model is presented in this paper
along with the control algorithm which generates a greedy
policy for resource management.

B. Mission Overview

Consider a geographical area containing two forces: en-
emy and friendly. The enemy force is composed of agents
that pose a threat to the friendly force. The friendly force is
composed of radar platforms, which are equipped to detect
and track threats. The goals for the friendly force are to detect
all the threats within the area, and to track all the detected
threats. A practical radar model has been built and a control
algorithm designed to fulfill these goals.
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C. Literature Review

A number of radar models exist at present. They corre-
spond to different types of radars or are developed with spe-
cific radar applications in consideration. One popular method
of modeling radars is by Markovian processes. Visnevski et
al [1] use a generalized semi-Markov process to model the
emitter of a multi-function radar in application to electronic
warfare. Watson and Blair [2] employ a Markov chain to
mix state estimates from multiple models in their Interacting
Multiple Model (IMM) algorithm. Ghosh et al [3] attempt
to provide an integrated framework to optimize Quality of
Service (QoS) and perform dynamic scheduling for radar
systems with multiple resource constraints. A real-time dwell
scheduling algorithm for a multifunction phased array radar
using scheduling gain is presented by Ting et al [4]. It uses a
combination of heuristics and scheduling gain. All of these
papers consider a single radar unit capable of performing
multiple functions simultaneously. In previous work [5], a
method of building Dynamic Finite State Machines and
solving the optimal policy using a Dynamic Programming
method was presented.

In this paper we provide a radar model based on a
hierarchical network of Finite State Machines. The principal
idea of the model is that a phased array radar is an antenna
that can transmit waveforms in any direction. The inputs to
the model are radar pointing orientations and the amount
of energy allocated to each orientation in an interval of
time. The outputs are the parameters of the threats including
position, velocity and heading. This radar model is subject to
a scheduling control algorithm that, under power constraints,
is capable of providing specific schedules for the radar, as
required by the external environment.

D. Original Contributions

The original contributions of this paper are as follows:
1. A radar model that uses F inite State Machines:
The use of abstract models of computation such as finite
state machines makes the model amenable to studying radar
configurations for fleets.
2. A control algorithm that provides a greedy policy
for operation: The control algorithm uses a step-by-step
maximization algorithm applied to the finite state machine
of the radar model. The output of the controller is a decision
for radar orientation control and energy consumption at a
particular time.
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3. A comparative study of centralized and
decentralized configurations: This paper compares
these two modes of operation in the specific context of
radar resource management. The comparison is facilitated
by applying standard state machine composition to the radar
model presented.

The modeling of fleets is relevant because employing
fleets is ubiquitous in modern Naval operations. Unlike
Markov process-based models, this model does not utilize
probabilistic knowledge of the radars’ tracking capabilities.
The control algorithm ensures that power utilization does not
exceed the maximum power under any attack scenario. Also,
re-evaluating the entire situation at each time step means
that the radar is better equipped to handle the unpredictable
nature of the threat dynamics. The comparative study
provided here verifies that a centralized configuration gives
the best possible performance and quantifies the difference
in measure of performance between the centralized and
decentralized cases. It also provides an insight into the
tradeoff between the two.

E. Organization

The material in this paper is organized as follows: Section
II provides background on finite state machines and the
greedy algorithm. Section III presents the radar model and
the control algorithm. Section IV describes in detail the
problem and the specific assumptions that have been made.
This is followed by the technical approach to the problem and
a characterization of the decentralized and centralized modes
of operation in Section V. Section VI contains simulation
results that validate our method, and concluding remarks are
found in Section VII.

II. THEORETICAL BACKGROUND
A. Finite State Machines

To describe the battle situation, we use an FSM that con-
structs the output signal one symbol at a time by observing
the input signal one symbol at a time [6], [7], [8]. An FSM
is a five-tuple:

FSM = (States, Inputs,Outputs, update, x0), (1)

where States, Inputs, and Outputs are sets, update is a
function, and x0 ∈ States. The meanings of these symbols
are as follows:

1) States is the state space,
2) Inputs is the input alphabet,
3) Outputs is the output alphabet,
4) x0 ∈ States is the initial state,
5) update: States × Inputs → States × Outputs is

the update function,
The effect of update is as follows: if x(k) ∈ States is the
current state at step k, and u(k) ∈ Inputs is the current
input signal, then the current output symbol y(k) and the
next state x(k + 1) are given by:

(x(k + 1), y(k)) = update(x(k), u(k)) (2)

and x(0) is x0.

B. Greedy Algorithm

A greedy algorithm [9] generally does not give an optimal
control for a dynamic system. In this paper, we use a greedy
algorithm to get the solution for the following four reasons.
First, there is a curse of dimensionality. For the case of
three radars, the total number of states is 287,875 and the
number of inputs is the same (see Section V-B). This is
computationally expensive. Second, there is no restriction
on movement in the state space and third, there is no cost
for switching between states. Lastly, we compute the cost
function at every time step.

The greedy algorithm proceeds as follows. Let x ∈ States
be the state, k be the step, u ∈ Inputs be the decision at step
k and state x. Given the state transition mapping as shown
in Equation (2), and the objective function,

J(x(k), u(k)) = Φ(x(k), u(k)), (3)

where Φ is the transition cost, the optimal cost at step k is

J∗(x(k), u(k)) = min
u(k)∈Inputs

{Φ(x(k), u(k))}. (4)

The optimal decision is then,

u∗(x(k)) = arg min
u(k)∈Inputs

{Φ(x(k), u(k))}. (5)

Equation (5) illustrates the greedy algorithm. Based on the
cost function at the current step, the algorithm can provide
the optimal input for the time step.

III. RADAR MODELING

Each radar is limited in total energy and power rate at
each time step, and the power can only be parceld out in
discrete amounts. The effectiveness is measured as a function
of range to the fourth power. The Quality of service (QoS)
of a search is a function of the range scanned, the radar cross
section of any threat and the power used. Here we assume
that Quality of Service is maintained at a certain desirable
level. The radar sensor is required to search for, acquire,
and track threats, before the threats can be discriminated.
The sensor can search along the azimuth. In this paper, if a
threat is detected in a sector, it is considered acquired and is
regarded as being tracked. Threat discrimination is assumed
to be accomplished after a threat has been tracked for some
amount of time.

A. Background

We consider a radar model in a 2D space. The space
is divided into sectors of aperture θ = 2π

N where N is an
integer. At every time, the radar can search simultaneously
all sectors, allocating an amount of power ni to the ith sector,
as long as

N∑
i=1

ni ≤ N. (6)

Figures 1(a) and 1(b) illustrate two possible power allo-
cations for the radar: searching in all sectors at short range
or searching in a sector of aperture π

2 at long range and all



sectors on its path. The 2D space is also divided into N
annuli, as shown in Figure 1. The discretizations in sectors
and annuli hence generate M = N2 sub-areas, as shown in
Figure 1. Each sub-area is bounded by two radial lines and
two concentric arcs of circle. In Figure 1, there is a total of
16 sub-areas.

Fig. 1. Radar Space with N = 4 θ = π
2

.

B. Radar FSM

The structure of the radar system is shown in Figure 2.
The radar controller decides how many power units should
be allocated to the Power Resource Management (PRM) unit
and also how those power units are distributed. The PRM
allocates the number of power units to the Radar Resource
Management (RRM) unit and RRM distributes the power
units to different sectors. These power units are utilized to
transmit waveforms. This results in detection of threats by
the radar model, and it outputs the parameters of the threats.
The Threat Parameter Recorder (TPR) records and analyzes
the parameters, and then outputs the status of each threat
to the controller. The controller takes in this information
and generates inputs for the radar model based on the threat
parameters and the environmental conditions.

The state machine TPR is the composition of several

Fig. 2. Radar Model Structure.

smaller state machines (STPR). STPR is defined as follows:
Suppose the threat needs to be tracked for w time steps

before being discriminated,
1) States = {undetected, tracked1, tracked2, ...,

tracked(w − 1), discriminated},
2) Inputs={tracking, nottracking}×{losing, notlosing},
3) Outputs = States,
4) x0 = {undetected},

5) update: States × Inputs → States × Outputs
can be decomposed into two functions: nextState :
States × Inputs → States and output : States ×
Inputs → Outputs, which are given as follows:
∀ x(k) ∈ States, ∀ u(k) ∈ Inputs, x(k +
1) = nextState(x(k), u(k)) =

tracked1⇐ x(k) = undetected, u(k) = [tracking, :]T

tracked m+ 1⇐ x(k) = tracked m and

u(k) = [:, not losing]T

discriminated⇐ x(k) = tracked w − 1 and

u(k) = [tracking, :]T

undetected⇐ x(k) 6= discriminated and

u(k) = [not tracking, losing]T

undetected⇐ x(k) = undetected and

u(k) = [not tracking, :]T

discriminated⇐ x(k) = discriminated

y(k) = output(x(k), u(k)) = x(k + 1)
where tracking and not tracking indicate, respectively,
whether a threat is being observed by the radar or not, and
losing and not losing indicate, respectively, whether a threat
will be lost by radar or not, if it is unobserved at the current
time step. Considering there are S threats in this area, then
TPR is obtained via side by side composition of S STPR.

The finite state machine PRM is defined as,
1) States = { 0,1,2,3, ..., N},
2) Inputs = {u ∈ Integers| −N ≤ u ≤ N},
3) Outputs = States,
4) x0 = 0,
5) update(x(k), u(k)) 7→
(x (k) + u (k) , x (k) + u (k)) ⇐ 0 < x (k) + u (k) < N,

(N,N) ⇐ x (k) + u (k) > N,

(0, 0) ⇐ x (k) + u (k) < 0.

The finite state machine RRM is defined as follows:
Define A = {a ∈ Integers | 1 ≤ a ≤ M} as the set
of indices of sub-areas, and suppose S threats are detected;
then B = {(s, as) | as ∈ A, s ∈ Integers and s ≤ S},
so each element in B is a tuple that indicates that the sth

threat is in sub-area as. P(A) is the power set of set A.
1) States = P(A),
2) Inputs = {[n1, n2, ..., ni, ..., nN ]T },
3) Outputs = P(B),
4) x0 = ∅,
5) update:∀x(k) ∈ States, and ∀u(k) ∈ Inputs, x(k+

1) = nextState(x(k), u(k)) =
N⋃

i=1 & ni>0

{i, i+N, ...i+ (ni − 1)N}

where ni indicates each entry of u(k), and
y(k) = output(x(k), u(k)) = {(s, as) ∈ B|as ∈ x(k+1)},
where x(k + 1) is the set of the sub-area indices that are
covered by radar waveform, while y(k) is a set of tuples
that display the threats located in the sub-areas ∈ x(k +
1). For the example in Figure 1, suppose the index of the



closest northeast sub-area is ”1” and number the sub-areas
counterclockwise, then the u(k) to RRM for (a) and (b) are
[1 1 1 1]T and [4 0 0 0]T , respectively. For (a) and (b),
the elements in x(k + 1) are {1, 2, 3, 4} and {1, 5, 9, 13},
respectively.

C. Radar Controller

The controller is built based on the analysis of each sub-
area. It results in the most advantageous sub-areas at each
timestep, the advantage being dictated by the cost function.
Three factors are considered in the controller design.

When the radar is searching, given a certain RRM input,
we assume perfect measurement for all elements in the set
x(k). The appearance of a threat in sub-area aq /∈ x(k) has a
probability Pq , that follows an exponential distribution with
respect to tq , where tq is the time elapsed since aq was last
observed. Therefore, the appearance probability of a threat
in those sub-areas Pta is

Pq = 1− e−tq , (7)

Pta = 1−
M∏

q=1,aq /∈x(k)

(1− Pq). (8)

When the radar is tracking, the rate at which it collects
information after acquisition is modeled as

İ = W log2(1 +
K4

r4
), (9)

where W is a constant determined by the radar, K is
determined by the threat, and r indicates the range to the
acquired threat [10].

The radar must revisit the same sub-area where a threat is
located before the threat exits this area. The revisit deadline
is defined as the minimum estimated time that a threat resides
in a sub-area. The revisit deadline td enters the cost function
as a parameter. Let Rv be defined as

Rv = e−td . (10)

For each state, the cost is,

T (x(k), k) = KpPta −KI

v∑
k=1

İk +KRRv (11)

where KP , KI , KR are the weights of each term.
Thus, the transition cost is:

Φ(x(k), u(k), k) = T (u(k), k)− T (x(k), k), (12)

with the constraint in Equation (6). Then, at each step, we
employ the greedy algorithm to find the input that leads the
system to the state with minimum cost value.

Three properties make greed work for our radar modeling.
First, the cost function contains all of the information for the
current time step and takes into account all of the decisions
made at previous time steps. Thus, a given decision for the
current time step will change the cost function for the next
step. In addition, the threats’ action will also be taken into
account by the cost function. Moreover, the states being

unions of the sub-areas that the radars can observe, there
is no restriction on movement in the state space and no cost
for switching between states.

IV. PROBLEM FORMULATION

The radar resource management problem has been relaxed
by certain assumptions in this paper: (1) The motion of the
threats and the radar waves are restricted to a horizontal
plane; (2) The number of enemy threats is finite and is
not capable of overwhelming the defense; (3) There is no
electronic warfare, i.e., no jamming of the radars by enemy
agents.

Consider a multifunction radar, that is capable of executing
both search and track tasks simutaneous via intermittent
irradiation. There is a rectangular area of interest A to be
defended, with n ships in a linear configuration, separated
from each other by a distance of d. There are s1 ballistic
threats and s2 aircraft threats, of different speeds v1 and
v2 from different distances d1 and d2, which are incumbent
upon this fleet of ships. The goal of the defense radar
system is to track all these threats until they can be engaged,
ensuring zero leakage. The radar has basic tracking range of
r0 and a maximum tracking range of rmax. We assume for
this scenario that d ≤ 2rmax. At initial time t0, the threats
are assigned positions at random. They then start moving
towards the fleet.

When the ships are under central control, there is perfect
communication between the ships, i.e., what is known to one
is known to all. When they are decentralized, communication
between the ships is absent, i.e., there is no consolidation of
the total information available from all the ships.

V. TECHNICAL APPROACH

A. Decentralization

In the case of decentralization, there are distinct radar
units, modeled identically and controlled by the same con-
trol algorithm for each. Moreover, communication between
different radar systems is not allowed. Without any commu-
nication, each radar system does not know the inputs of the
other radars and is only responsible for its own area.

B. Centralization

In the case of centralization, the distinct units are inte-
grated into one system. We develop rules for composing
the state machines and the cost function to build a globally
integrated state machine, which is called the Super State
Machine (SSM). Consider the formation of three radars
shown in Figure 3. The areas monitored by the individual
radars overlap. We set a threshold that if one radar’s sub-
area overlaps with τ or more of another radar’s sub-area,
we can assume that the two sub-areas are the same. Under
this assumption, we say that the sub-areas 4A and 2B are
the same, as are sub-areas 4B and 2C. These sub-areas are
defined as redundant sub-areas. Then we construct a SSM
for the whole system. The SSM is composed by parallel
composition [7] with one limitation - each super state in the
super state space does not contain more than one redundant



sub-area. This prohibits different radars from searching the
same sub-area at the same time. If we limit maximum radar
power to two units, the super states of the SSM in the given
example have the following form:

States = {(C4
2 )A, (C

4
2 )B , (C

4
2 )C , JA + JB + JC}, (13)

where it is not permissible to have 4A and 2B in the same
super state and 4B and 2C in the same super state. (C4

2 )A,
(C4

2 )B and (C4
2 )C are the two combinations of four radar

areas for the sets {1A, 2A, 3A, 4A}, {1B, 2B, 3B, 4B} and
{1C, 2C, 3C, 4C} respectively, and JA, JB , JC are the cost
functions of radar A, radar B, and radar C, respectively. After
the SSM is composed, we find the greedy policy by using
the same controller with a new cost function, JA+JB +JC .

Fig. 3. Radar Formation.

VI. SIMULATION & RESULTS

In the simulation, we use the values of n = 3, d = 424,
where n is the number of ships and d is the distance
between them. Ballistic threats are initially located very
far from the radars, and travel towards the central radar
at a constant speed from different directions, while aircraft
threats are initially located closer to the central radar and
travel towards the radars at a constant speed, slower than
that of the missiles, in different directions. The distribution
of speeds and initial distances of threats are as follows:
v1 = 60 units/step, v2 = 15 units/step, d1 = 1200 units
and d2 = 600 units. In addition, θ = π

2 and N = 4 as
defined in Sec. III. Thus, each radar system is capable of
allocating four power units among four sectors. Moreover,
the threats have to be tracked for at least three time steps
before being discriminated.

Different numbers of threats are studied to demonstrate
the feasibility of the model and controller. Meanwhile, the
decentralization and centralization strategies are also com-
pared to examine their efficiencies. Considering a case of
s1 = 5 and s2 = 5, the initial configuration of the simulation
is shown in Figure 4. Table I displays the inputs to the central

TABLE I
RRM INPUTS FOR CENTRAL RADAR

Time Step
¯

9 10 11 12 13 14 15 16 17 18 19 20
Sector 1

¯
0 0 0 0 1 0 0 2 1 1 4 0

Sector 2
¯

0 0 0 0 0 4 3 2 0 0 0 4
Sector 3

¯
0 4 4 4 3 0 0 0 3 0 0 0

Sector 3
¯

4 0 0 0 0 0 1 0 0 3 0 0

Fig. 4. Scenario Configuration: blue triangles indicate the locations of the
radars and the blue circles indicate the range of the radar, red stars indicate
the ballistic threats and red small circles indicate the aircraft threats.

Fig. 5. An Example of Threat States: ”2” is ”undetected”, ”1” denotes
”tracked” and ”0” is ”discriminated.”

radar from the controller for the example scenario. The table
shows how many power units are allocated in each time step,
for each transmitting sector.

Figure 5 shows an example of threat states at each time
step. Each threat has to be tracked for at least three time
steps before being discriminated. There is no transition from
a tracked to an undetected state, i.e., the radar does not lose
track of a detected threat. At the last time step, all elements
of the TPR state are discriminated, which means the radar
system has successfully accomplished its task.

The comparison of the simulation results between decen-
tralization and centralization is shown in Figure 6, Figure 7
and Figure 8. In Figure 6, the total discrimination time indi-
cates how many time steps the system takes to discriminate
all the threats, i.e., the time-steps range from detecting the
first threat to discriminating the last threat. Figure 7 displays
the comparison of average missing detection probability Pta
for different cases. The probability value is obtained by
Equation (8), which evaluates how likely it is that the radar
will miss a threat. Figure 8 shows the average computation
time for each time step, which indicates how long it takes
to solve for an input at one time step. Altogether, 40 cases
are simulated here with s1 = s2 ranging from 1 to 40. The
total number of threats ranges from 2 to 80.

As shown in Figure 6, in all cases analyzed in this paper,
the centralization approach can discriminate all the threats
in fewer time steps than the decentralization approach.



Fig. 6. Comparison of Total Discrimination Time.

Fig. 7. Comparision of Missing Detection.

As shown in Figure 7, as the number of threats increases,
the missing detection probability increases. In other words,
the higher the number of threats , the harder it is for the
radar systems to achieve zero leakage. Besides, the average
value logPta for the centralization approach is smaller than
that of the decentralization approach. This indicates that
the centralization approach is capable of distributing the
resources better. Additionally, the difference of missing prob-
ability between two cases increases first and then decrease,
as the number of threats increases. It indicates that when the
number of threats exceeds a certain level, the radar operation
is limited by its power limitation. So, missing detection
probabilities of both approaches tend to converge to similar
value.

However, as shown in Figure 8, the computation time

Fig. 8. Comparison of Average Computation Time.

of the centralization method largely exceeds that of the
decentralization method, which means centralization is com-
putationally expensive. Therefore, there is a trade off be-
tween employing decentralization and centralization for real-
time radar control. Moreover, the computation time mainly
depends on the number of states, which is determined by
the total power units. The computation time thus remains
relatively flat in each case.

VII. CONCLUSIONS & FUTURE WORK

In this paper, a new radar model has been proposed
based on a hierarchy of finite state machines. The logical
abstraction provided by this model has been shown useful
to analyze different possible configurations in a fleet of
radars. A control algorithm specific to this radar model
has been developed for the purpose of radar resource
allocation. This algorithm is based on a cost function that
is dependent on the current state and decision and the
threat dynamics. An instantaneous minimization of cost is
carried out to yield the best decision at each time step.
We have compared a centralized control structure with a
decentralized (independent) mode of operation, and the
results confirm that the centralized approach yields better
performance.
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