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Abstract: In this paper a state-feedback law for the control of the neuromuscular blockade level
is presented. The control law is designed based on an optimal problem that is relaxed into a semi-
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model is used to describe the patient’s response to a muscle relaxant. Due to clinical restrictions
the controller action begins when the patient recovers after an initial drug bolus. The results
obtained encourage the implementation of this controller in the clinical environment even in the
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1. INTRODUCTION

Over the last years, control systems, and, in particular,
feedback control, have gained increasing importance in
biomedical applications. Feedback control systems use in-
formation from measurements in order to determine a
suitable input signal that achieves a desired goal. Such
systems have been applied to the automatic administra-
tion of anesthetics during surgeries. In this case standard
physiological-based models are, in general, used to describe
the relationship between the administered anesthetic dose
and a measure of the corresponding effect. The effect of
muscle relaxants, e.g., atracurium or rocuronium, used to
facilitate the intubation and other surgical procedures is
measured by the neuromuscular blockade (NMB) level.
This level is measured using a supra-maximal train-of-
four (TOF) stimulation of the adductor pollicis mus-
cle of the hand and is registered by electromyography
(EEG), mechanomyography (MMG) or acceleromyogra-
phy (AMG) C.McGranth and J.Hunter (2006). The NMB
level then corresponds to the first response calibrated by
a reference twitch and varies between 100% (full muscle
activity) and 0% (full paralysis). For the great majority of
clinical procedures an NMB level of 10% is desired.

Fig. 1. PK/PD model diagram scheme.

In mathematical terms, the NMB level can be modeled by
a pharmacokinetic/pharmacodynamic (PK/PD) model.

Fig. 2. PP model diagram scheme.

This is physiological model that explains the drug inter-
actions as illustrated in Fig. 1. The first block of Fig. 1
corresponds to the pharmacokinetics, that describes how
the body “absorbs” a specific drug through the different
body compartments. The drug dose u(t) is related with
the blood concentration cp(t) by linear dynamic equations.
Then, in the second block, the drug blood concentration
is related with the effect concentration ce(t) by another
linear dynamic equation and the measured effect r(t) is
obtained from ce(t) by a nonlinear static equation, known
as the Hill’s equation, B.Weatherley et al. (1983). This
constitutes the pharmacodynamic part of the model, that
studies the action of the drug on the body. This model for
the NMB level was proposed in B.Weatherley et al. (1983)
and involves a total of eight patient-dependent parameters.

Recently, an alternative model for the NMB response to
muscle relaxants has been introduced in M.M.Silva et al.
(2012) which has the advantage of involving a lower num-
ber of patient dependent parameters while keeping a good
modeling accuracy, M.M.Silva et al. (2014a). For this rea-
son this model is known as parsimoniously parameterized
(PP), M.M.Silva et al. (2012). The PP model is not a
physiological model and does not have a PK/PD structure.
However it maintains a Wiener structure with the Hill’s
equation as nonlinear part, Fig. 2. Due to its advantages,
the PP model has already been used for the construction
of some automatic control schemes, namely one based on
the control of the total drug mass J.Almeida et al. (2011),
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and another using an adaptive strategy M.M.Silva et al.
(2014b).

In this paper the problem of tracking the desired NMB
target level of 10% is formulated as an optimal control
problem (OCP). This OCP is relaxed into a semi-definite
program (SDP) by replacing the original variables by their
moments up to a certain order in the same line of what
is done in J.Lasserre (2009). The optimal values of the
moments are approximated by semidefinite programming
solvers J.F.Sturm (2013), J.Lofberg (2013) and the gains
of the state-feedback control law are computed based on
these values. The advantage of this approach is the facility
to handle state and input constraints. A comparison with
other existing methods to solve OCPs with input and state
constraints (such as, for instance, Pontyagruin’s minimum
principle) is the subject of current investigation.

According to the performed simulations, the obtained
results in this way prove to be better than the ones
obtained by means of a linear quadratic regulator (LQR),
R.Bellman (1954).

This paper is organized as follows. Section 2 presents the
NMB model used to design the control law and to simulate
the patient’s response. Section 3 is dedicated to the design
of the state-feedback control law, and Section 4 presents
the main simulation results. Finally, the conclusions are
presented in Section 5.

2. NEUROMUSCULAR BLOCKADE MODEL

This section presents in more detail the PP model for
the NMB level that is used to design the proposed state-
feedback control law as well as to simulate the patient’s
response during a general anesthesia. As mentioned before,
this model was introduced in M.M.Silva et al. (2012) and
is composed of a linear block followed by a nonlinear block.

2.1 Linear block

The linear part of the PP model is a 3-rd order model
that relates the input signal with the effect concentration
thus grouping the pharmacokinetic process with the linear
part of the pharmacodynamic process. This model can be
represented in state-space form J.Almeida et al. (2011), as
follows:

ẋ(t) =

[
−l3α 0 0
l2α −l2α 0
0 l1α −l1α

]
x(t) +

[
l3α
0
0

]
u(t) ,

ce(t) =
[
0 0 1

]
x(t) (1)

where x(t) = [x1(t) x2(t) x3(t)]
T is the state vector, u(t) is

the administered muscle relaxant dose, ce(t) is the effect
concentration and α is a patient dependent parameter. The
positive parameters l1, l2 and l3 only depend on the specific
drug used to achieve muscle relaxation.

2.2 Nonlinear block

The relationship between the effect oncentration and the
NMB level is described by a static nonlinear equation
known as Hill’s equation B.Weatherley et al. (1983), more
concretely,

r(t) =
100

1 +
(
ce(t)
C50

)γ , (2)

where r(t) is the NMB level and C50 is the half maximal
effect concentration. The value of the C50 is kept con-
stant for all patients according to the study performed
in H.Alonso et al. (2008), whereas γ, the model parameter
associated to the nonlinearity, is patient dependent.

3. FEEDBACK GAIN DESIGN

This section presents a method to design a state-feedback
gain matrix for the administration of a muscle relaxant
with the aim of tracking a desired NMB level. The idea
is to associate the tracking problem with an optimal con-
trol problem (OCP). The OCP is relaxed into a SDP by
introducing as new variables the moments of the original
variables (up to a suitable order) J.Lasserre (2009). The
solver SeDuMi J.F.Sturm (2013) is used here to solve the
SDP numerically and the result is interfaced by means
of YALMIP J.Lofberg (2013). Before considering the neu-
romuscular blockade level tracking problem, a general
overview of the transformation of a polynomial OCP into
a SDP together with the explanation of how to obtain the
optimal control in the form of a feedback law is presented.

3.1 Optimal control reformulation

Consider the following optimal control problem,

min
u(t),T

H (x, u) =

∫ T

0

h (x(t), u(t)) dt

s.t. ẋ(t) = f (x(t), u(t))

x(0) = x0

x(T ) = xT , (3)
(x(t), u(t)) ∈ G

where x(t) ∈ Rn is the state vector, u ∈ R is the
input signal, h (x(t), u(t)) and f (x(t), u(t)) are polynomial
functions and G is the constrained region for the state
and input values. This is a compact and semi-algebraic
set defined as:

G = {(x(t), u(t)) : gi (x(t), u(t)) ≥ 0, ∀t ≥ 0, i = 1, . . . , p} (4)
⊂ Rn × R ,

where each gi (x(t), u(t)) is a polynomial function. In order
to transform the OCP into a SDP a change of variables
is made. For this purpose the new variables are defined as
the moments of x̄, i.e.,

yβ =

∫ T

0

x̄β dt , (5)

where β = (β1, . . . , βn, βn+1) is a multi-index, x̄(t) =

(x(t), u(t)) ∈ Rn+1 and x̄β =
∏

x̄βi

i .

Similar to what is done in J.Lasserre (2009), a linear
functional L on the polynomial functions in (n + 1)
variables is introduced in the following way. Given p(x̄) =∑
β∈Nn+1

pβ x̄β , L is defined as:

L(p) =
∑

β∈Nn+1

pβ yβ . (6)

This amounts to replacing the monomials in p by the
corresponding integrals, according to (5). Based on the
moments yβ with β ∈ Bd

def
= {(β1, . . . , βn+1) ∈ Nn+1 :∑n+1

j=1 βj ≤ d} one also introduces the moment matrix
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of order d, Md(y), which plays an important role in the
reformulation of the OCP (3). The moment matrix has
rows and columns labeled by:

Vd(x̄) = [1, x̄1, x̄2, . . . , x̄n+1, x̄
2
1, x̄1x̄2, . . . (7)

. . . , x̄1x̄n+1, x̄
d
1, . . . , x̄

d
n+1]

T

and is constructed as follows:
Md(y) = L

(
Vd(x̄)Vd(x̄)

T
)

(8)

with L as defined in (6). This means that L is applied to
each entry of the matrix Vd(x̄)Vd(x̄)

T .

It is also useful to define the moment vector of order d as
y = L(Vd(x̄)).

As a consequence, the cost functional L(x, u) can be
rewritten as

L(h) =
∑
β

hβ yβ , (9)

where hβ are the coefficients of the polynomial h (x(t), u(t))
in the OCP formulation (3).

To incorporate the system dynamics and the end-point
constraints as constraints of the demi-definite, monomial
test functions υ(x) will be considered. These functions are
polynomial functions given by υ(x) = xβ . Note that, on
one hand, from the Fundamental Theorem of Calculus:∫ T

0

dυ

dt
(x(t)) dt = υ (x(T ))− υ (x(0)) , (10)

and on the other hand, using the chain rule and the system
dynamics the total time derivative is equal to:

dυ(x)

dt
=

∂υ

∂x
·
dx

dt
=

∂υ

∂x
· f (x(t), u(t)) . (11)

Thus for each function υ(x) one obtains:∫ T

0

∂υ

∂x
· f (x(t), u(t)) d t = υ(xT )− υ(x0) ∀υ . (12)

Since f is a polynomial function of x and u and υ and
∂υ
∂x are polynomial functions of x this equation can be
rewritten in terms of the moments as:

∑
j aijyαj = bi,

where the multi-index αj varies so as to yield all the
relevant moments.

To handle the state and input constraints the localizing
matrix Md(giy) with respect to y and to the polynomials
gi(x̄) = gi(x(t), u(t)) is defined. This matrix is obtained
from Md(y) by:

Md(giy) = L
(
giVd(x̄)Vd(x̄)

T
)

∀i = 1, . . . , p (13)

with Vd(x) defined in (7). In this way the OCP is replaced
by the following SDP: ,

min
y

L(h)

s.t.
∑
j

ajyαj = bj

Md(y) ≥ 0 (14)
Md(giy) ≥ 0 ∀i = 1, . . . , p

where p is the number of state and input constraints.
This problem is solved using the solver SeDuMi J.F.Sturm
(2013) and the values of the optimal moments yβ = y∗β are
obtained.

Remark: Since the considered moment matrix has finite
order d, this SDP is not equivalent to the original prob-
lem. Therefore, the solution to this problem is only on

approximation to the solution of the OCP. As d → ∞ the
approximation converges to the optimal solution (under
some mild assumptions stated in J.Lasserre (2009)). Due
to this reason, it is necessary to check if the obtained
solution indeed satisfes the original contraints.

Expressing u as a state-feedback, ,

u(t) = u∗ +

n∑
i=1

Ki xi(t) . (15)

with unknown gains Ki, and replacing (15) in the moments
that involve u, these can be expressed in terms of other
the moments. For instance, for a simple system with two
state components, x1, x2 and one input u, the moment
y101 becomes:

y101 =

∫ T

0

x1(t)u(t) dt =

∫ T

0

x1(t) (u
∗ +K1x1(t) +K2x2(t)) dt

=

∫ T

0

u∗x1(t) +K1x
2
1(t) +K2x1(t)x2(t) dt

= u∗y100 +K1y200 +K2y110 (16)

Proceeding in the same way for the other moments yields a
system of linear equations. After the values of the optimal
moments are obtained and replaced in the system, the
feedback gains can be computed.

3.2 Application to the NMB model

In this section the problem of tracking a reference level
for the NMB is viewed as an optimal control problem and
the previous method is applied with the aim of designing a
suitable state-feedback control law. The idea is to achieve
the target value xe that corresponds to the steady state
value associated with the desired NMB level. Since, the
control objective is to achieve a target value xe, a change
of coordinates x̂ = x−xe is chosen to transform the original
control objective into a problem of stabilization to the
origin. In this way the following OCP can be formulated,

min
u(t),T

∫ T

0

x̂T (t)Qx̂(t) + uT (t)Ru(t) dt

s.t. ˙̂x(t) = A x̂(t) + b+B u(t)

x̂(0) = x̂0 (17)
x̂(T ) = x̂T

(x̂(t), u(t)) ∈ G = {(x̂, u) ∈ Rn × R : x̂ ≥ −xe, u ≥ 0}

with Q = QT ≥ 0 and R > 0. The model (1) is rewritten
using the new state vector x̂(t). In turn, the target value
xe is obtained by the inversion of Hill’s equation (2) for a
desired NMB level of 10%, and corresponds to the desired
effect concentration. The matrix A and the vector B are
as in the model (1) and the vector b = −B ue where
ue represents the steady-state input corresponding to the
steady-state xe, and can be shown to coincide with the
third component xe

3 of that state; x̂0 and x̂T are known
initial and final conditions, respectively, and are known.
The state-feedback control law is,

u(t) = ue + Kx̂ = xe
3 + Kx̂ , (18)

where K is the vector of gains. The OCP (16) is trans-
formed into the SDP (14) with d = 2, since the cost
functional is quadratic and the constraints are affine, and
solved as described before. Note that this is not a standard
Linear Quadratic Regulator (LQR) problem, since the
control and the states are subject to contraints. This moti-
vates the application of the method of moments presented
in subsection 3.1.
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4. SIMULATION RESULTS

In order to analyse the performance of the presented
method for the feedback gain design a bank R of sixty
models Ri with parameters (αi, γi) (i = 1, . . . , 60) was
used. More concretely, the case shown here corresponds
to the mean of the offline identification of the sixty
cases collected during general anesthesia where the muscle
relaxant used was atracurium. For this drug the values
of l1, l2, l3 of the NMB model are 1, 4, 10, respectively,
according to M.M.Silva et al. (2012), α = 0.0355 and
γ = 2.758. Due to clinical restrictions the controller action
begins when the patient recovers after an initial drug
bolus of 500µ/kg of atracurium. The point of recovery
t∗ is determined by the algorithm OLARD proposed in
M.M.Silva et al. (2009).

The control strategy used here can be summarized by the
following steps:

• First, a bolus of muscle relaxant of 500µg/kg is
administered and the patient’s response is monitored
to determine the recovery time instant t∗;

• The time instant t∗ is determined by the algorithm
OLARD;

• After time t∗ the optimal control solution is com-
puted, the feedback are determined, and the corre-
sponding state feedback controller is set into action.

Fig. 3. Simulation of the NMB level (upper plot) using the
state-feedback control (bottom plot) for ten patients.

Fig. 3 presents the NMB responses and the corresponding
input doses obtained by solving the OCP (17) for ten
patients. As it is possible to see although the patient
parameter variability the desired target is achieved.

Fig.4 shows the simulation of the NMB level after the
application of the state-feedback control law obtained
by solving problem (17) with Q = 10 I, R = 10 and
T = 325min. In this case, the optimal moment matrix
obtained by the solver SeDuMi, is given by:

M
∗
= M2(y

∗
) = 10

3




0.0617 0.2406 0.1526 −0.0072 0.7250

0.2406 1.2024 0.8197 −0.0874 2.6424

0.1526 0.8197 1.3709 0.6042 1.2575

−0.0072 −0.0874 0.6042 1.0576 −0.4597

0.7250 2.6424 1.2575 −0.4597 8.8473




and the feedback gains can be computed from the following
system of linear equations:

[
M

∗
(2, 5) − u

e

M
∗
(3, 5) − u

e

M
∗
(4, 5) − u

e

]
=

[
M

∗
(2, 2) M

∗
(2, 3) M

∗
(2, 4)

M
∗
(3, 2) M

∗
(3, 3) M

∗
(3, 4)

M
∗
(4, 2) M

∗
(4, 3) M

∗
(4, 4)

] [
K1

K2

K3

]

(19)

yielding,

[
K1 K2 K3

]
=
[
1.1890 −0.6249 0.0696

]

With the aim of evaluating the reference tracking perfor-
mance, the relative error between the controlled NMB level
and the desired level of 10% was computed. As shown in
Fig. 5 this error becomes less than 5% after 45min of con-
trol action and converges to zero, which is very satisfactory
from the clinical point of view. Moreover, as can be seen
in Fig. 4, the control input u(t) is always non-negative.
It can be shown that, due to the structure of the system,
this implies that also the state components x = x̂+xe are
non-negative. Therefore, the original problem constraints
are satisfied.

Fig. 4. Simulation of the NMB level (upper plot) using the
state-feedback control (bottom plot).

Fig. 5. Time-evolution of the error between the controlled
NMB level and the target level of 10%, after the time
instant of the recovery.

Fig. 6 shows the performance of the state-feedback control
law in the presence of noise. The noise added to the
simulated signal was taken from a typical NMB real
record and corresponds to the residuals obtained by the
application of the filter described in T.Mendonça et al.
(2004). This noise vector is typically used to analyse
the performance of controllers in the presence of noise,
M.M.Silva et al. (2012). The control law has a good
performance even in the presence of noise.
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Fig. 6 shows the performance of the state-feedback control
law in the presence of noise. The noise added to the
simulated signal was taken from a typical NMB real
record and corresponds to the residuals obtained by the
application of the filter described in T.Mendonça et al.
(2004). This noise vector is typically used to analyse
the performance of controllers in the presence of noise,
M.M.Silva et al. (2012). The control law has a good
performance even in the presence of noise.
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Fig. 6. Simulation of the NMB level (upper plot) using the
state-feedback control law (bottom plot).

In order to compare the performance of the method pre-
sented here an alternative feedback controller is deter-
mined using a linear-quadratic regulator (LQR). For that
purpose, the MATLAB command line, lqrd is used with
the same weighting matrices as in (17). The following gain
vector was obtained with the application of the LQR,

[K1 K2 K3] = [0.4606 0.2819 0.2018] . (20)

Fig. 7. Patient’s response when the control inputs are
determined by the two approaches.

Fig. 7 shows the patient’s response when the control inputs
are determined by the two approaches. As can be seen, the
control input obtained by solving problem (17) presents
a superior performance and achieves a better reference
tracking than the control input given by the solution of
the LQR.

5. CONCLUSION

In this paper a state-feedback law was designed to control
the neuromuscular blockade level in the scope of general
anesthesia. To obtain the control law, an optimal control
problem was formulated and relaxed into a semi-definite
program by the method of moments. The feedback gains
were computed from the optimal moments obtained by
the solver SeDuMi. A comparison of this method with a
standard LQR was performed, showing that the former
has a better performance than the latter. The next step
is to apply this approach in clinical environment during a
general anesthesia.
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