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In biomedical systems, feedback control can be applied 
whenever adequate sensors, actuators, and sufficiently 
accurate mathematical models are available. The key 

issue is the capacity of the control algorithm to tackle the 
large levels of uncertainty, both structured and unstruc-
tured, associated with patient dynamics. In the particular 
case of intravenous anesthesia considered here, manipu-
lated variables are drug infusion rates, administered by 
syringe pumps, and the measured signal outputs are the 
levels of hypnosis or depth of anesthesia (DoA) and of neu-
romuscular blockade (NMB). Figure 1 provides an example 
of a loop closed for the control of NMB.

In addition to these indices that are to be kept close to 
desired target reference values, the medical anesthetist has 
to monitor the general physiological state of the patient [1]. 
This task is performed with equipment of the sort shown in 
Figure 2 that provides information about patient heart rate, 
arterial blood pressure, and oxygen transport.

No attempt is made here to make a review of the rich lit-
erature on control of anesthesia, and only a few landmarks 
that help explain the motivation to develop the case studies 
presented in this article are cited. Since the late 1980s, several 
control techniques have been described for drug administra-
tion in anesthesia with applications to NMB, such as a sim-
ple on–off controller based on a relay and a syringe pump 
[2], or proportional-integral-derivative (PID) controllers [3], 
[4]. More complex PID controllers with self-tuning methods 
that adjust the controller gains to the patient’s dynamics 
have also been reported for NMB [5]–[7]. To maintain the 
hypnosis level, PID controllers are reported as well [8], along 
with model-based control techniques [9]–[12].

The high variability in anesthesia dynamics, both inter- 
and intrapatient, may cause performance degradation and 
even instability of the control loop. To tackle this difficulty, 
there are basically two broad classes of approaches that can 
be followed, namely adaptive control and robust control.

Adaptive control techniques, based on the pharmacoki-
netics/phamacodynamic (PK/PD) model [13]–[16] perform 
better than PID controllers to maintain the desired NMB 

level. More elaborate model-based adaptive feedback control 
algorithms have been reported, such as multimodel adaptive 
controllers with supervisory mechanisms [17], [18]. Adaptive 
control strategies for hypnosis have also been described [19]–
[21]. Methods that explore the nonnegative and compartmen-
tal features of the physiological models used in anesthesia to 
develop both fixed parameter and adaptive controllers are 
highlighted in [22]. However, since, in addition to the output 
feedback loop, adaptive controllers have a nonlinear feedback 
loop associated with the adaptation mechanism, the result-
ing closed loop becomes nonlinear and can exhibit undesir-
able behaviors that are often difficult to anticipate. This is 
due to parameters drifting over manifolds that are difficult, 
or even impossible, to characterize. In particular, for several 
adaptive controllers that result from the certainty equivalence 
principle [23], a complete stability theory is not available. The 
above issues motivate, in relation to the control of anesthesia, 
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FIGURE 1 Closing the neuromuscular blockade (NMB) control loop in 
a patient subject to general anesthesia. Data on the NMB level are 
transmitted to the controller in real time, with a sampling rate of 20 s. 
The control algorithm is embedded in a software package that runs 
in the computer. From the data received from the sensor, the control 
algorithm computes the necessary drug dosage to administer to the 
patient to keep the NMB level at a desired setpoint and communi-
cates the dosage to a syringe pump that functions as the actuator. 
The interface of the computer with the sensor and the syringe pump 
is made through USB ports that emulate RS232 interfaces.
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the consideration of linear constant-parameter controllers that 
are able to withstand the high levels of uncertainty that are 
inherent to a biomedical process. This type of design is in 
the scope of robust control, of which [24] and [25] are early 
attempts. Although, in the case of single-input, single-output 
plants, robust pole placement controllers can be designed 
using a trial-and-error method [26], it is advantageous to use a 
systematic procedure such as the H3  method [27]. An alterna-
tive approach would be to design a fixed-parameter controller 
by applying the techniques described in [22]. In this article, 
a constant linear controller designed by the H3  method is 
employed to compute the control action, thereby avoiding the 
drawbacks of adaptive control caused by gain drifting.

ANESTHESIA AS A CONTROL PROBLEM
In medical practice, the application of general anesthesia 
plays an important role in the patient’s well-being, allow-
ing surgical interventions without discomfort or pain and 
providing surgeons with the conditions to perform with 
increased accuracy and safety.

General anesthesia is a drug-induced, reversible state 
characterized by unconsciousness, immobility, and inabil-
ity to feel pain [28]. This patient state is achieved through 
the administration of a combination of different drugs that 
act to provide adequate hypnosis (unconsciousness and 
amnesia to avoid traumatic recalls), paralysis or muscle 
relaxation (to attain immobility, absence of reflexes, and 
good operating conditions), and analgesia (pain relief).

The automation of general anesthesia has the purpose of 
achieving a sufficient state of hypnosis, paralysis, and analge-
sia while minimizing drug quantities and side effects. Drug 
overdosing or underdosing may lead to undesirable side 
effects. For instance, underdosage of neuromuscular relaxant 
drugs often interferes with the surgical precision, while over-
dosage delays patient recovery. Underdosing hypnotic agents 
may result in patient awareness and cause psychological 
trauma, whereas overdosing may be harmful with respect to 
possible perioperative morbidity. An important consideration 
relating the induction and maintenance of anesthesia is there-
fore patient safety to which automation contributes. Only the 
maintenance phase of anesthesia is addressed in this article.

The characterization of anesthesia in the maintenance 
phase as a control problem is described below.

For NMB, the manipulated variable is the flow of a myor-
elaxant drug, like rocuronium. This drug perfusion is made 
with syringe pumps that are connected to a computer that 
runs the control algorithm via USB interfaces, as shown in 
Figure 3. The process output is the NMB index measured with 
a mechanical sensor (see “Neuromuscular Blockade Moni-
toring and NMB Indices”). Both the manipulated variable 
and the process output are related by a Wiener-type model, 
as described in “Neuromuscular Blockade and Hypnotic 
Models.” Although the NMB index is subject to several dis-
turbances, these influences are considered not to be directly 
measurable. For instance, the electrical bistoury affects the 

NMB index, as do some drugs that are administered to the 
patient, but the signals that represent these influences are not 
available and the models associated with them are unknown; 
hence they are considered to be unmeasured disturbances.

For DoA, the manipulated variable is the flow of 
a hypnotic drug like propofol, also administered to the 
patient intravenously using a syringe pump. In the case 

FIGURE 2 A view of the monitors in the operating room. Commer-
cially available monitors display important information concerning 
the state of the patient who is undergoing surgery, both in numeri-
cal and graphical form. A large amount of diverse information can 
be monitored and the type and form of the information displayed 
results from a compromise between characterizing the patient’s 
clinical state and the capacity of the anesthetist to correctly read 
and interpret the data, particularly during critical situations.

FIGURE 3 The computer used to run the control algorithms and the 
syringe pumps used in the tests (upper right). One syringe pump 
was used to administer the neuromuscular blockade-inducing drug, 
and the other syringe pump was used to administer the hypnotic 
drug. The analgesic drug is administered by the anesthetist using 
a manual syringe. At any time, for safety purposes, the anesthetist 
can turn off the automatic control action and command any syringe 
pump directly in manual mode.
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Neuromuscular Blockade Monitoring and NMB Indices

Neuromuscular blockade (NMB) monitoring of a patient sub-
ject to general anesthesia [S1], [S2], in a hypnotic and an-

algesic state, is used to evaluate the level of muscle relaxation 
induced by drugs. NMB monitoring has three main purposes. 
The first is to ensure appropriate relaxation of vocal cords and 
neck muscles to allow safe tracheal intubation and mechanical 
ventilation. The second is to assess the muscle tonus during 
surgery, allowing for adjustment to particular surgical require-
ments of immobility and muscle relaxation. The third, at the end 
of the anesthesia, is to assess the level of residual NMB and 
muscle strength to decide the timing of tracheal extubation and 
assumption of spontaneous autonomous ventilation.

The principle of NMB monitoring consists of the electrical 
stimulation of a motor nerve and the evaluation of the induced 

muscle response level [S1], [S2]. Usually the ulnar nerve at the 
wrist is used, where electrodes are applied over the cleaned skin 
above the nerve. A calibration process is performed initially to find 
the electrical current intensity that corresponds to the supra maxi-
mal stimulation, which typically ranges between 20 and 70 mA. 
The electrical stimulation can be generated by just one rectangu-
lar pulse with a duration of 0.2 ms (single twitch) and a frequency 
of 0.1– 1 Hz [S3]. Other possibilities are the train-of-four (TOF), the 
double-burst stimulation, and the tetanic stimulation [S4], [S5]. As 
shown in Figure S1, the TOF is characterized by a sequence of 
four pulses (twitches) at 0.5 s intervals. The train of pulses is re-
peated with a TOF period that can be selected and is typically 20 s,  
a value that ensures the recovery of the muscle to its unstimulat-
ed state. The TOF method is adequate for the assessment of the 
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FIGURE S1 An illustration of neuromuscular blockade (NMB) indices based on train-of-four (TOF) stimulation and the muscle 
response with nondepolarizing and depolarizing NMB agents.

considered here, the process output is the bispectral (BIS) 
index (see “Monitoring the Depth of Anesthesia (DoA)”). 
The analgesic drug (in this case, remifentanil) interferes 
with the effect caused by the hypnotic drug. Although 
the analgesic drug flow could therefore be used to cre-

ate a feedforward effect, this approach is not pursued 
here. The model that relates the manipulated variable, 
the input disturbance associated to the analgesic drug, 
and the process output is described in “Neuromuscular 
Blockade and Hypnotic Models.”
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onset of action of the NMB drug, for nondeep NMB monitoring 
when there are TOF responses, and for neuromuscular recovery. 
But for deep neuromuscular blockade, when TOF responses are 
not present, tetanic stimulation must be used.

Several methods can be used to measure the intensity of 
the muscle response to electrical pulse stimulation [S6]. In the 
mecanomyography method, the force developed during the iso-
metric contraction of the adductor policis muscle is recorded. In 
the electromyography method, electrodes are used to record the 
muscle electrical activity. In acceleromyography, the accelera-
tion of the thumb is recorded. In phonomyography, low-frequency 
acoustic signals emitted by a muscle in contraction are recorded 
and analyzed.

The muscle response to TOF stimulation pulses, in patients who 
do not have neuromuscular diseases, depends on the type of NMB 
drug used and on the time-varying drug concentration in the blood. 
With the onset of NMB with nondepolarizing NMB agents, the re-
sponses to TOF pulses have a fade characteristic, their amplitude 
decreases with drug concentration, and the response to the fourth 
pulse is lower than the response to the third pulse, which is lower 
to the response of the second pulse, and so on. This phenomenon 
is explored to define indices, either by taking the ratio between the 
fourth response to the first response, the TOF ratio / ,T T10 0 4 1=  or 
by computing the ratio between the first response and the response 
obtained with the supra maximal stimulation during the calibration, 
given by the T1  ratio / .T T10 0 1 1ma x=  It has been demonstrated [S7] 
that for a 90% suppression of ,T1  compared with the supra maximal 
stimulation response, only one response will be observed. During 
surgery, and according to clinical requirements, the T1  ratio is kept 
equal or lower than 10%. As an additional index, the TOF count, 
consisting in the counting of responses to a train of four pulses, is 
also used by anesthetists.

In the case of depolarizing NMB drugs, the depolarizing block 
has two phases. In phase I, the fading characteristic is not pres-
ent, but for some patients the fade occurs (phase II) with increas-
ing depolarization. With depolarizing NMB agents, the TOF ratio 
is meaningless, but the T1  ratio index can be computed.

During surgery, the level of the T1  ratio is adjusted (through 
drug administration) to suppress muscle movements with the 
minimal amount of drug, but near the end of the surgery, it must 
be adjusted to allow a rapid recovering of the muscle activity.

In this work, the Datex-Ohmeda NMB monitoring system 
shown in Figure S2 was configured to operate in the TOF mode 
with the TOF period of 20 s. This value is selected as a balance 
between the selection of the sampling time for the NMB control 
system and the time needed for rebuilding of acethylcholine in the 
nerve ending. The muscle responses are measured with a Datex 

NMT mechanosensor, in which the bending of the thumb produc-
es a voltage signal from a piezoelectric. The T1  ratio is used as the 
NMB index and the TOF count is also available to the anesthetist.

In practice, any NMB index has noise and artifacts caused 
by procedures performed by the anesthetist, nurse practitio-
ners, and the surgical team. To use the NMB signal in a closed-
loop control system, a median filter combined with low-pass 
filters can be used to attenuate the artifact effects in the NMB 
signal. Median filters are used to cancel outliers generated by 
non-Gaussian noise with a heavy tail distribution.
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FIGURE S2 The neuromuscular blockade (NMB) sensor. This 
photograph is of the Datex-Ohmeda NMB monitoring with stim-
ulation electrodes applied over the ulnar nerve and the NMB 
sensor applied to measure thumb movements. The force sen-
sor that measures the contraction of the thumb induced by the 
electrical stimulation.
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Since reliable indices to measure analgesia do not 
exist, this component of anesthesia is not automated. 
Furthermore, only intravenous anesthesia is considered 
in this article, leaving aside the important area of inhala-
tion anesthesia.

MODELS FOR CONTROL OF ANESTHESIA
Despite the complexity of the mechanisms for drug absorp-
tion, distribution through the patient body, metabolism, and 
elimination, it is possible from a control engineering point of 
view to use phenomenological-type models that relate the 
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Monitoring the Depth of Anesthesia (DoA)

T he traditional medical assessment of DoA is based on a 
qualitative assessment of clinical signs, such as sweating, 

body movement, and changes in the blood pressure or heart 
rate. These qualitative measures allow the anesthetist to verify 
the depth of anesthesia but are not adequate for closed-loop 
control. Thus, other sources of information have been explored 
to assess DoA, such as the recording of electrical activity along 
the scalp (electroencephalography), either by processing the 
autonomous electroencephalogram (EEG) signal or by using 
evoked potentials and seeking the corresponding pattern in the 
EEG signal, as in the auditory evoked potential.

When a person is awake and alert with open eyes, the EEG 
has beta waves characterized by a frequency between 13 and 
30 Hz. In a relaxed state with the eyes closed, the EEG is char-
acterized by waves with frequency components between 8 and 
13 Hz. Above 30 Hz, the EEG has components from the electri-
cal activity produced by skeletal muscles as well as from other 
sources, such as from the main power system at 50– 60 Hz. 
Thus, the EEG must be filtered to remove artifacts. Research has 
shown that humans are able to describe dreams that they have 
during rapid eye movement (REM) sleep, which corresponds to 
cognitive activity and is associated with desynchronous EEG of 
small amplitude and high frequency content. Absence of cogni-
tive functions is associated with synchronous EEG that has a 
high amplitude and low frequency content.

Desynchronous EEG is observed during hypnotic states in-
duced in patients with anesthetic drugs [28], [S8]. An increase 
of beta waves occurs during the initial stages of sedation, am-
nesia, and anxiolsys, with drugs such as benzodiazepines and 
barbiturates. Increasing anesthetic drug doses causes syn-
chronous EEG during anesthesia. If drug concentration in the 
brain becomes too high, then the EEG starts to have periods of 
isoelectric signal, known as burst suppression periods, which 
in the limit with increasing drug concentrations cause a com-
plete isoelectrical EEG. This is considered the deepest DoA 
level and is usually avoided.

It would be difficult or impossible for a human to process 
the EEG in real time. Automation of EEG processing is being 
explored by extracting features that correlate with the hypnotic 
state of the patient. The analysis can be made in the time, fre-
quency, or time-frequency domains. The features that are usu-
ally extracted from the EEG signal are related to the amplitude, 
the power of the signal, or the power density distribution in the 
frequency or time domain, combined with the percentage of 
burst suppression. The aim is to obtain an estimate of the prob-

ability density functions (PDFs) of variables that are relevant to 
assessing the hypnotic state of the patient and their changes 
over time. Histograms, Fourier analysis, wavelets, and bispec-
tral (BIS) analysis are mathematical tools for generating PDFs 
of features (or subparameters). These features are weighted 
according to correlation factors that are obtained from databas-
es of controlled clinical studies to produce a normalization rule 
that yields a number between zero and 100 that describes the 
DoA level, where zero represents the isoelectric EEG and 100 
represents a patient in the awake state.

EEG signals can also be characterizing in terms of an entropy 
index, which is linked with the notion of complexity associated 
with predictable/unpredictable or regular/irregular properties of 
the EEG signal. This concept has its roots in the idea of Shan-
non’s entropy. Other entropy types have been proposed, such as 
approximate, spectral, Tsallis, Kolmogorov, and time-frequency 
balanced spectral entropy. The entropy/Datex-Ohmeda index 
is based on spectral entropy, where the discrete Fourier trans-
form is applied to EEG epochs to obtain the power spectrum. 
The power spectrum is then normalized and used to compute 
the Shannon entropy. An interpretation of this approach is that 
the message is composed by symbols defined by the frequency 
content of the EEG that are associated with the hypnotic state of 
the patient. Additional details can be found in [S9].

FIGURE S3 The patient in the operating room, in the initial phase 
of the anesthesia with the anesthetist holding the mask that 
supplies oxygen to the patient. The depth of anesthesia (hyp-
nosis) is measured using the bispectral (BIS) sensor; the BIS 
electrodes are placed on the forehead of the patient.
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manipulated variables with the intermediate variables that 
are of main significance, such as the drug plasma concentra-
tion and the drug effect concentration (that is to say, the con-
centration at the place where the drug produces effect) and 
with the level of the desired index (such as NMB or BIS). For 
instance, the translation of neuronal electrical signals into 

muscle activity involves many electrochemical processes that 
interact in a chain to produce muscle contraction. These pro-
cesses are affected by the presence of neuromuscular-block-
ing drug molecules in the cleft between the neuron and the 
muscle. Although it is possible to model all the above elec-
trochemical reactions [29], [30], the resulting model would be 
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too complex and would depend on too many parameters to 
estimate from the data available in clinical practice to be use-
ful for control purposes.

To obtain a simpler model, aggregate models are con-
sidered by neglecting the dynamics of fast subsystems. 
According to the approach of compartmental model theory 

[31], the body is divided into a (reduced) number of com-
partments, which correspond to “reservoirs” that exchange 
drugs among them. In NMB, one reservoir is the plasma 
and another is the cleft, called the “effect compartment” 
because the effect of the drug depends on its concentration 
in the cleft. Writing the balance equations by taking into 

This article uses the BIS index implemented in the Datex-
Ohmeda Entropy Module [S10]. Figure S3 shows the placement 
of the BIS sensor electrodes on the head of the patient, and Fig-
ure S4 shows the monitor indicating the current value of the BIS 
index and part of the EEG signal. The BIS index has several ver-
sions that correspond to the evolution of the algorithm. Its basic 
implementation comprises several time- and frequency-domain 
(sub)parameters that are combined to form the index. The EEG 
is filtered to remove known artifacts, such as the mains power 
frequency, and then is split into time segments called epochs 
that are analyzed for the presence of additional artifacts to be 
removed. Additional tests are performed to validate the quality 
of the EEG epochs, for example, if they are corrupted by the 
electrical interference caused by the operation of an electrical 
bistoury or if they have eye blink signatures. Assuming that EEG 
epochs are free of artifacts, they are used to compute time- and 
frequency-domain parameters.

In the time domain, the burst suppression ratio (BSR) is 
computed, and an additional algorithm is used for robust de-
tection of burst suppression in the presence of changes on 
the EEG baseline voltage. In the frequency domain, the fast 
Fourier transform is applied and the beta ratio is computed, 
which is the log power ratio between two empirically derived 
frequency bands, defined as ( / ) .lo g P PHz Hz30 47 11 20- -

Another parameter, SynchFastSlow, is computed based on 
the analysis of a bispectrum, which quantifies the relationship 

between different sinusoidal components of the EEG. The aim 
is to evaluate the coupling between the components of two 
primary frequencies, f1  and ,f2  and a modulation component of 
frequency .f f1 2+  The bispectrum ( , ) ( ) ( ) ( )B f f X f X f X f f1 2 1 2 1 2= +  
incorporates both phase and power information, where ( )X fi  is 
the complex spectral value at frequency fi  and X  is the com-
plex conjugate of .X  SynchFastSlow is the log of the ratio of 
the sum of all bispectrum peaks in a frequency range from 
0.5 to 47 Hz to the sum of all bispectrum peaks in a frequency 
range from 40 to 47 Hz [S10], [S11]. The BIS index is a weight-
ed combination of these parameters, with weights determined 
by regression of data collected for many patients.

The above measure does not take into account phase in-
formation in the bispectrum, as the physiological meaning of 
phase coupling is uncertain [S10] and according to [S12], “the 
traditional explanation of the bispectrum as a measure of inter-
frequency phase coupling is misleading when applied to most 
real EEG signals.” But according to [S13], “EEG bicoherence 
was sensitive to noxious stimuli, which suggested that EEG 
bicoherence would become an indicator for adequacy of an-
algesia during anesthesia.” These two works show that there 
are some aspects of how to define the most clinically relevant 
bispectral index are not fully understood and that how to best 
assess the loss and recovery of consciousness is still an open 
research problem [S14].
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FIGURE S4 A view of the monitor with the information on the 
patient vital variables. Observe in particular the EEG signal 
during the anesthesia with the bispectral index indicating the 
value of 59.
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account the drug interchange between the different reser-
voirs [31] yields a linear state-space model whose input is 
the drug infusion flow rate and whose states are the drug 
concentration in the different compartments.

The relation between the drug effect concentration and 
the NMB level is assumed to be given by a static nonlinear 
function called the “Hill equation.” The Hill equation is not 
derived from first principles but is a good approximation to 
observed clinical data. For zero effect concentration, the Hill 
equation yields an NMB index of 100% (see “Neuromuscular 
Blockade Monitoring and NMB Indices”), while for higher 

values the NMB index decreases. Figure 4 shows the overall 
structure of the NMB model together with a qualitative sketch 
of the time evolution of the main signals. Further details are 
given in “Neuromuscular Blockade and Hypnotic Models.”

A similar approach can be followed with respect to 
DoA, resulting in the nonlinear model with the overall 
structure shown in Figure 5. The details are described in 
“Neuromuscular Blockade and Hypnotic Models.” A major 
difference with respect to NMB is that, in this case, the DoA 
level is now affected by two drugs, namely the hypnotic 
drug and the analgesic drug. In mathematical terms, the 

Neuromuscular Blockade and Hypnotic Models

T he effect of the both muscular relaxant and hypnotic drugs (in 
this case, rocuronium and propofol, respectively) can be mod-

eled by multicompartment models that comprise both pharmaco-
kinetics (PK) and phamacodynamic (PD) models. These models 
have the structure of a linear model in series with a static nonlin-
earity modeled by the Hill equation described below. The effect 
of muscula-relaxant drugs on the patient [S15], [S16] is modeled 
by a three-compartment PK model, as shown is Figure S5, and 
the effect of the hypnotic drug [S17]– [S19] is modeled by the four-
compartment PK model shown in Figure S6.

In both models, the drug is infused in the central compart-
ment ,Ccentra l  which represents the blood, liver, and brain, and 
interacts with the other compartments. The drug is assumed to 
be uniformly distributed in each compartment. The compart-
ment CMO  represents the drug distribution to the muscles and 
organs, and the compartment CBF  represents the drug distri-
bution to the bone and fatty tissue. The interaction between 
these compartments relates the drug infusion rate u  with the 
drug concentration in the plasma, ,cp  which, in turn, is related 
to the drug concentration in the effect compartment, .ce  The 
mathematical model that describes the drug-patient pharma-
cokinetics is written in state-space form as

FIGURE S5 A schematic representation of the multicompartmen-
tal model for the neuromuscular blockade dynamic response. 
The nonlinear Hill equation is denoted as PD (for “pharmacody-
namic”). The linear model is assumed to be made of three com-
partments that interchange drug due to interactions among them. 
These compartments are Ccentral  consisting mainly of the blood 
and liver, CMO  consisting mainly of muscle and organs, and Ceffect  
associated with the drug effect. The drug concentration in Ccentral  
is denoted cp  for “plasma concentration.” This concentration 
results from the influx of the drug, with flow ,u  the drug efflux to 
compartment CMO  given by ( ),k c cMOp12 -  the influx from com-
partment CMO  to compartment Ccentral  given by ( ),k c cMO p21 -  the 
drug elimination efflux ,k cp10  and the efflux to the effect compart-
ment Ceffect  given by .k ce p1  In these rate expressions, the variable 
cMO  denotes the drug concentration in compartment CMO  and ce  
denotes the drug concentration in the effect compartment .Ceffect
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Index
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FIGURE S6 A schematic representation of the multicompartmen-
tal model for the hypnosis dynamic response. The nonlinear Hill 
equation is denoted as PD (pharmacodynamic). The linear model 
is a four-compartment model in which the central compartment 
Ccentral  is interconnected with compartments CMO  and .CBF  Com-
partment CBF  consisting mainly of the bones and fatty tissue. The 
drug concentration in ,Ccentra l  ,cp  results from the influx of the 
drug, with flow ,u  the drug efflux from compartment CMO  given by 

( ),k c cMOp12 -  the influx from compartment CMO  to compartment 
Ccentral  given by ( ),k c cMO p21 -  the drug efflux from compartment 
CBF  given by ( ),k c cBFp13 -  the influx from compartment CBF  to 
compartment Ccentral  given by ( ),k c cBF p31 -  the drug elimination 
efflux ,k cp10  and the efflux to the effect compartment Ceffect  given 
by .k ce p1  In these rate expressions, the variable cMO  denotes the 
drug concentration in compartment ,CMO  cBF  denotes the drug 
concentration in compartment ,CBF  and ce  denotes the drug con-
centration in the effect compartment.

CMO CBF

k21

k12 k31

k13

k10

u

BIS
Index

k1e

ke0
PD

CCentral
Cp

CEffect
Ce



DECEMBER 2014 « IEEE CONTROL SYSTEMS MAGAZINE 31

interaction between both classes of drugs is represented by 
the Hill equation modified to have two inputs.

The control of NMB and DoA both rely on indices com-
puted from online physiological data. As such, what is 
actually controlled are the values of the indices. Using dif-
ferent indices would lead to different results, and it is still a 
matter of debate among the scientific community what are 
the best indices. In “Neuromuscular Blockade Monitoring 
and NMB Indices” and in “Monitoring the Depth of Anes-
thesia (DoA),” the indices are explained in general terms. 

For DoA, the BIS index is used, which takes its name from 
the fact that it relies on the bispectrum of the electroen-
cephalogram. In this article, “BIS” is used in some formulas 
to refer to this index.

At the beginning of the anesthesia (during the induction 
phase), the anesthetist applies a drug bolus to the patient to 
drive the corresponding index close to the desired value. This 
fast procedure is subject to clinical constraints for the sake 
of patient safety. It is only then that the automatic controller 
starts to operate, for a period that may last several hours in 

 ( ) ( ) ( ),
( ) ( ),

x t x t u t
c t x tIe

U C= +

=
o)  

(S1)

where U  is a patient-dependent matrix; C  is a column vector 
with the first element equal to 1C  and the remaining elements 
equal to zero, with 11C =  for the NMB model and .16 71C =   
(a conversion factor) for the DoA model; I  is a row vector with 
the last element equal to one and the remaining elements equal 
to zero; and  t  is continuous time. For the NMB model, the vari-
able ( )x t  is the state whose entries are the drug concentrations 
in the different compartments. For the DoA model, the state 
is the mass in each compartment , , andC C Ccentral MO BF^ h and 
whose last element is .ce  The matrix U  of the NMB model is
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where kij  is the equilibrium constant between compartments. 
In particular, k e1  is the equilibrium constant between the cen-
tral and the effect compartments and is assumed to be equal 
to .keo  For the DoA model, the patient-dependent matrix U  is
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where Vc  is the volume of the .Ccentra l

The nonlinear PD model of NMB, which relates the drug 
concentration in the effect compartment with the NMB index 
T1^ ratio), is given by the Hill equation

 NMB ,
C c

C10 0
e50

50=
+

c c

c

 (S4)

where C50  and c  are patient-dependent parameters. The pa-
rameter C50  is interpreted as the value of the effect concentra-
tion that corresponds to the NMB index of 50%. The NMB index 
is a normalized scale, in which 0% corresponds to full paralysis 
and 100% corresponding to no blockade effect at all.

For the hypnotic model, the drug effect observed on the pa-
tient is expressed as a nonlinear function of the drug concen-
tration in the effect compartment, given by

 BIS ( ) ,E E E
c C

c
ma x

e

e
0 0

50
= + -

+c
c

c

 (S5)

where BIS is the BIS index of DoA, E0  is the baseline effect at 
zero concentrations, Emax  is the peak drug effect, C50  is the 
concentration related with 50% of the drug effect, and c  is the 
steepness of the concentration-response relation.

There is a synergetic effect between the analgesic drug 
remifentanil and the hypnotic drug propofol [S19] that is re-
vealed in the electroencephalographic measure BIS index (see 
“Monitoring the Depth of Anesthesia (DoA)” for further infor-
mation on hypnosis indices). This synergic relationship can be 
expressed in the overall effect as

 BIS . ,
U U1 1

97 7
prop remib

=
+ + +

c^^ h h  (S6)

where b  is a patient-dependent parameter and Uprop  and Uremi

are the normalized effect concentrations defined as

 , ,U
C
c U

C
cprop

prop

prop
remi

remi

remi
e e

50 50
= =  (S7)

where the superscript prop refers to the variables associated with 
propofol and the hypnotic model, whereas the superscript remi re-
fers to the variables associated with remifentanil and the analgesic 
model. In this article, the remifentanil dose appears in the model 
as a disturbance. Although knowing its value can be taken as an 
advantage, a feedforward term is not considered in this article.

REFERENCES
[S15] B. C. Weatherley, S. G. Williams, and E. A. Neill, “Pharmacokinet-
ics, phamacodynamics and dose-response relationships of atracurium 
administered i.v.,” Br. J. Anaesth., vol. 55, no. 1, pp. 39S– 45S, 1983.
[S16] S. Ward, E. A. Neill, B. C. Weatherley, and I. M. Coral, “Pharma-
cokinetics of atracurium besylate in healthy patients (after a single i.v. 
bolus dose),” Br. J. Anaesth., vol. 55, no. 2, pp. 113– 118, 1983.
[S17] B. Marsh, M. White, N. Morton, and G. N. C. Kenny, “Pharmacoki-
netic model driven infusion of propofol in children,” Br. J. Anaesth., vol. 
67, pp. 41– 48, July 1991.
[S18] T. W. Schnider, C. F. Minto, S. L. Shafer, P. L. Gambus, C. Andre-
sen, D. B. Goodale, and E. J. Youngs, “The influence of age on propofol 
pharmacodynamics,” Anesthesiology, vol. 90, pp. 1502– 1516, June 1999.
[S19] T. W. Bouillon, J. Bruhn, L. Radulescu, C. Andresen, T. J. Shafer, 
C. Cohane, and S. L. Shafter, “Pharmacodynamic interaction between 
propofol and remifentanil regarding hypnosis, tolerance of laryngos-
copy, bispectral index, and electroencephalographic approximate 
entropy,” Anesthesiology, vol. 100, pp. 1353– 1372, June 2004.



32 IEEE CONTROL SYSTEMS MAGAZINE » DECEMBER 2014

the maintenance phase. The aim is therefore to regulate the 
anesthesia indices around references that are constant most 
of the time. Given this fact, linearized models, using Jaco-
bian linearization, are considered for NMB and DoA. Since 
both these systems are of Wiener type (see “Neuromuscular 
Blockade and Hypnotic Models” for a detailed description 
of the nonlinear models), their Jacobian linearization sim-
ply amounts to replacing their static output nonlinearities 

(defined by the Hill equation) with a gain. Assuming some 
uncertainty on this gain allows the controller to work for val-
ues of the reference that differ from the nominal value.

UNCERTAINTY CHARACTERIZATION
The patient’s dynamic response to the drug infusion rate is 
highly dependent on the patient’s characteristics, such as 
age, gender, and weight, as well as on the drug used. The 
response also depends on the patient’s genetic character-
istics. This fact generates high levels of uncertainty when 
modeling the patient’s dynamic response. To characterize 
the dynamics, two patient model databases are used. For 
the NMB model, a database of 50 patient models denoted 

, , ,G i 1 50GNMB
NMB
i f= =" , is considered, whereas a data-

base of 18 models denoted { , , , }G i 1 18GDOA
DOA
i f= =  is 

considered for the DoA models. These databases have been 
obtained using system identification and statistical meth-
ods from primary patient data, for patients undergoing 
elective surgery at two hospitals in Portugal. The physical 
status classification of the patients, according to the Ameri-
can Society of Anesthesiologists (ASA), is ASA II and III. 
The degrees ASA are used by anesthesiologists to stratify 
the severity of patient’s disease and potential for suffering 
complications from general anesthesia. The degree II refers 
to patients with mild systemic disease and no functional 
limitation, while degree III refers to patients with severe 
systemic disease and definite functional impairment. The 
main limitation of these two databases concerns other ASA 
degrees, in particular for patients with more severe condi-
tions, so this case study does not allow any conclusions to 
be made on the effectiveness of the proposed control sys-
tem for such patients.

For an input bolus of drug represented by a square func-
tion with very short duration and very large amplitude, 
Figures 6 and 7 show the simulated response for NMB and 
DoA, using the nonlinear model, for the nonlinear patient 
models in the databases. After the bolus is administered, 
the index drops initially and subsequently rises as the drug 
is metabolized to regain the initial value of 100%. When 
control is used, the return to the 100% level is prevented by 
further administration of drug. The time responses shown 
in Figures 6 and 7 provide a qualitative indication of the 
uncertainty associated with patient-to-patient variability.

The first step in the control design is to define nominal 
models, which assume the form of continuous-time trans-
fer functions

 ( )
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s s s s
s s
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for DoA (using the BIS index), assuming a nominal refer-
ence of ,50BIS =  and
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for NMB, with a nominal reference of 10%.

FIGURE 4 The overall structure of the nonlinear neuromuscular 
blockade (NMB) model. Mathematical models of the different blocks 
are given in “Neuromuscular Blockade and Hypnotic Models.” The 
model comprises a linear dynamic part, called the pharmacokinetic 
(PK) model, that relates the drug infusion rate to the plasma and 
the effect concentrations, and a static nonlinear part described by 
the Hill equation called the pharmacodynamic (PD) model, that 
describes the relation between the effect concentration and the 
NMB level. In simplistic terms, the pharmacokinetic model is some-
times said to describe “what the body does to the drug” because 
it describes the drug propagation inside the body, from compart-
ment to compartment, while the pharmacodynamic model is said 
to describe “what the drug does to the body” because it relates the 
drug concentration with its observed effect. The NMB model is a 
Wiener-type model, made of a dynamic linear model in series with 
a nonlinear static function. This figure also shows the typical time 
evolution of the variables in response to a bolus of drug. The NMB 
index ,T1  that is initially at 100%, decreases with the increase of 
drug concentration in the effect compartment, to increase again 
when the drug disappears.
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FIGURE 5 The overall structure of the nonlinear depth of anesthe-
sia (DoA) model. Mathematical models of the different blocks are 
given in “Neuromuscular Blockade and Hypnotic Models.” The 
structure is similar to that of the neuromuscular blockade (NMB) 
model, with the main difference being that there are now two drugs 
affecting the output. In contrast to the NMB model, the Hill equa-
tion now has two inputs that are combined algebraically to yield 
the DoA index. In this article, the hypnotic drug infusion rate is 
the manipulated variable, and the analgesic drug infusion rate is 
considered to be a disturbance.
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Figure 8 shows the frequency response plots of GDoA
N  

and the models in the database for DoA. Similar plots have 
been also obtained for NMB (these plots are omitted for 
simplicity). As seen from Figure 8, the nominal model is 
of low-pass type, with a low frequency phase of 180˚ that 
reflects the fact that an increase of the drug dosage leads to 
a decrease of the output index.

Multiplicative uncertainty is computed from the nomi-
nal model GN

xxx  and the set of database models .Gi
xxx  The 

normalized distance between each model in the database 
and the nominal model at frequency ~  is 

 ( )
( )

( ) ( )
,j

G j
G j G j

i
xxx

N
xxx

N
xxx

i
xxx

~
~

~ ~
D =

-
 (3)

where xxx  is either NMB or DoA, and , ,i 1 50f=  for NMB 
models and , ,i 1 18f=  for DoA models.

An upper-bound ( )lxxx ~  on the normalized distance 
| ( ) |ji

xxx ~D  is used to build a multiplicative description 
of the uncertainty. The upper bound is over all models 
in the class. This bound, together with the error function 
| ( ) |,jDoA

i ~D  is shown in Figure 9 (plotted in red), for DoA. 
From this figure, it is apparent that the bound on the multi-
plicative uncertainty is a high-pass function, being smaller 
for frequencies up to 0.2 rad/min. Similar plots have been 
obtained for NMB but are omitted for the sake of brevity.

The characterization of the model, and of the respective 
uncertainty, consists of the nominal models GDoA

N  for DoA 
and GNMB

N  for NMB, together with the multiplicative uncer-
tainty bounds ( )lDoA ~  and ( ) .lNMB ~  These descriptions are 
used below to design robust controllers for NMB and DoA.

CONTROLLER DESIGN
Figure 10 shows a schematic representation of the intercon-
nection of the controller K  with the process G (either DoA or 
NMB). An integrator is embedded in K  to ensure zero steady-
state error when tracking constant references. The manipulated 
input is ,u  the measured output is ,y  n is sensor noise, and d  
is the output disturbance. The closed-loop objectives are speci-
fied by the selection of the transfer functions WS  and ,WT  with 

WS  associated with performance (both setpoint tracking and 
suppression of the effects of disturbances) and WT  associated 
with robustness to model uncertainties and insensitivity to 
measurement noise. To have low steady-state error while hav-
ing a fast closed-loop response, the function ( )WS

xxx 1-  is chosen 
to have small gain at the low frequencies and high crossover 
frequency. On the other hand, the crossover frequency and 
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FIGURE 6 Neuromuscular blockade (NMB) simulated responses to a 
bolus of rocuronium for the patient models in .GNMB
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FIGURE 7 Depth of anesthesia simulated responses to a bolus of 
propofol for the patient models in .GDoA
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the high frequency gain of the functions ( )WT
xxx 1-  must be low 

enough to ensure adequate insensitivity to high frequency 
noise and model uncertainty [27]. To ensure robust stability to 
the specific uncertainties quantified in the previous section, the 
controller (for DoA and NMB) must satisfy

 ( ) ( ) , for all real ,l T j1 >
xxx

N
xxx

~
~ ~  (4)

where ( )T s KG KG1N
xxx

N
xxx

N
xxx_ +  is the complementary sen-

sitivity for the nominal plant.
Most applications apply H3  design conditions only to 

the nominal plant; here we also applied the conditions to 
all of the data models. For either DoA or NMB, the sensitiv-
ity for the thi  database model is defined by

 ,S
KG1
1

i
xxx

i
xxx_

+
 (5)

and the associated complementary sensitivity is defined by
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i
xxx

i
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The controller K  was designed to satisfy the commonly 
used performance and robust stability conditions for all of 
the database models:

 ( )
( )

, for all and real ,S j
W j

i1<i
xxx

S
xxx~

~
~  (7)

and

 ( )
( )

, for all and real .T j
W j

i1<i
xxx

T
xxx~

~
~  (8)

This approach ensures a higher degree of robustness to 
model uncertainties than using the normal conditions that 
apply the inequalities only to the nominal plant. An alter-
native tuning method would have been to modify WT  to 
have larger amount of model uncertainty.

The Bode magnitude plots for WDoA
S

1-^ h  and WDoA
T

1-^ h  
shown in Figure 11 are typical of H3-control design. The 
transfer function WDoA

S
1-^ h  was defined to have a crossover 

frequency of 0.01 rad/min, and the transfer function WDoA
T

1-^ h  
was selected to have a crossover frequency of  1 rad/min. The 
former crossover frequency ensures a fairly fast closed-loop 
response speed, and the latter crossover frequency should not 
be larger as that would lead to poor suppression of high fre-
quency noise. The gain of WDoA

S
1-^ h  at low frequencies could 

not be made smaller while still satisfying (7).
The Matlab Robust Control Toolbox function dksyn was 

used to design a controller based on H3  optimization. 
Figure 12 shows that the DoA controller fulfills the robust 
stability condition (4), and Figure 13 demonstrates that the 
robustness conditions (7) and (8) are satisfied.

The resulting controller has 19 states, which was approx-
imated by a seventh-order controller. The controller order 
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FIGURE 10 A schematic representation of the control system. The 
controller K  is designed with the H3  approach to compute the input 
u  required for the system G to track the desired output .r  Here, the 
transfer function WT  is designed to filter the effects of sensor noise 
n and the transfer function WS  is designed to suppress the effects 
of disturbances d  and for setpoint tracking. The structure is the 
same for both neuromuscular blockade and depth of anesthesia.
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reduction was performed by a balanced model truncation 
via the square root method [32]. An existing Matlab func-
tion was used for this purpose. For computer implementa-
tion, the DoA controller was discretized by the zero-order 
hold method, with a sampling interval of 5 s. The result-
ing discrete-time controller was then combined with the 
discrete-time integrator.

The control design procedure was the same for the NMB 
control design, so the detailed design plots are not shown 
here. All of the design conditions (4), (7), and (8) were also 
satisfied by the NMB controller, 
with the respective transfer func-
tions WNMB

S  and .WNMB
T

The control algorithm was 
implemented on a laptop com-
puter (shown in Figure 3) on the 
GALENO platform, which was 
designed for the purpose of auto-
mating anesthesia. GALENO is a 
Matlab package, developed by the 
authors, that allows for the inter-
face of control algorithms with the 
medical equipment. The control-
ler computes the appropriate drug 
dosage, which is sent to the syringe 
pump that, in turn, delivers the 
drug to the patient. Figure 14 shows 
a screen of the GALENO platform 
with the designed controller being 
used in real-time mode.

CLINICAL RESULTS
Several clinical experiments have 
been performed with the control-
lers for DoA and NMB.

In the first case study presented, the DoA robust control-
ler is used during a general anesthesia in a 56-year-old male 
patient, with a height of 1.50 m and a weight of 50 kg, dur-
ing a pancreatoduodenectomy (a surgery in which tumors 
are removed from the pancreas and surrounding organs). 
The results are shown in Figure 15. The patient is initially 
in a state characterized by a BIS index between 90 and 100.  
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FIGURE 13 The depth of anesthesia robust control design. Bode 
magnitude plots of the sensitivity SDoA

i  and the complementary sen-
sitivity TDoA

i  for all of the database models, with the upper bounds 
( )WDoA

S
1-  and ( ) .WDoA

T
1-  This plot shows that the robustness condi-

tions (7)– (8) are fulfilled since the WS
1-  and WT

1-  are upper bounds 
of the functions SDoA

i  and   ,TDoA
i  respectively.

FIGURE 14 A computer display showing the GALENO anesthesia 
control system in operation, during one of the first tests in an early 
version of the platform. The display shows information concerning 
the control of neuromuscular blockade and depth of anesthesia, 
including the settings of the algorithm being used. In addition to 
tracking the reference, the associated operator interface allows 
changing between automatic (closed-loop) and manual control 
to administer to the patient a bolus of specified quantities of the 
relaxant or hypnotic drugs. The interface also allows including 
remarks—such as when the anesthetist manually administers a 
bolus of analgesic or when the electric bistoury is in operation—in 
the signal plots, which are useful for future interpretation of the data.
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FIGURE 15 A clinical experiment: The patient response, during a general anesthesia, when the 
depth of anesthesia H3  controller is used. The bispectral (BIS) index is plotted in blue in (a), 
with the reference level set to 50 (red dashed line) and the drug dose uprop  delivered to the 
patient in (b). The arrows marked “On” and “Off” indicate when the controller is turned on and 
off, respectively. In the drug dose plot, the dashed line corresponds to the baseline equilibrium 
value of the drug dose, to which the incremental dose computed by the control algorithm is 
added. In some cases, the baseline value u0  is adjusted manually for clinical convenience. In 
this figure, the value of u0  is kept constant for the entire maintenance phase.
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A bolus of the hypnotic drug propofol is administered manu-
ally to the patient in the induction phase, driving his BIS 
index to around 60 in a few minutes. Subsequently, the 
pump is adjusted to provide a constant drug infusion that 
keeps the BIS index in equilibrium. These equilibrium val-
ues of the drug infusion and the average BIS index define 
an operating point around which the linear H3  controller 
adjusts the drug infusion. When the controller is turned on 
at the time indicated by the vertical arrow (9 min), the rate of 
drug infusion is adjusted so that the BIS signal remains near 
the reference value of 50. The whole intervention lasts about 
2 h and 40 min. Although the BIS signal is noisy, the con-
troller is tuned to provide a relatively smooth manipulated 
variable. The controller is able to provide an adequate drug 

dosage during the entire procedure, maintaining the patient 
at the desired level of 50.

In the second case study, both robust controllers for DoA 
and NMB are simultaneously put in operation during a general 
anesthesia in a 78-year-old male patient, with a height of 1.70 m 
and a weight of 60 kg, during a hemicolectomy (an operation to 
remove a segment of the colon). The resulting drug dosage for 
both controllers are presented in Figure 16. In the case of DoA 
control, the controller computed the adequate amount of drug 
over the major part of the procedure. After the induction phase, 
the DoA controller is switched on. Since the controller was slow 
in driving the BIS index to the reference, the dose of the hypnotic 
drug was adjusted manually. After t 40=  min, the controller is 
able to maintain the patient at the desired BIS level of 50. The 

performance of the NMB control-
ler is also appropriate during this 
surgery. After the induction phase, 
where a bolus is applied to induce a 
fast NMB-level drop to near 0% and 
after a manual manipulation of the 
drug dosage to stabilize the patient, 
the controller is switched on. During 
this maintenance phase, the control-
ler is able to compute the adequate 
drug dosage to maintain the NMB 
level at the desired reference of 5%.

The NMB controller has been 
compared to a pole-placement con-
troller that was developed based on 
a trial-and-error process to guaran-
tee robust stability. The controller 
has been designed by adjusting the 
time response specifications and 
verifying a posteriori the robust 
stability condition. Results with this 
controller are presented in Figure 17, 
where its performance is shown dur-
ing general anesthesia on a 75-year-
old male patient, with a height of 
1.75 m and a weight of 68 kg, during 
a cephalic pancreatoduodenectomy. 
With the NMB pole-placement con-
troller, the control action must be 
assisted by imposing a hard upper 
bound. This strategy avoids the 
aggressive control action and noise 
amplification that would otherwise 
probably lead to excessive infusion 
doses and a consequent drop of the 
NMB level to 0%. This pole-place-
ment controller has a poor closed-
loop performance compared to the 
H3-based controller, which is able 
to filter high frequency sensor noise 
and deliver the adequate dosage.

FIGURE 16 A clinical experiment: The patient response during a general anesthesia, using both 
depth of anesthesia (DoA) and neuromuscular blockade (NMB) H3  controllers. The arrow 
marked “On” indicates when the controller is turned on. The DoA level, measured by the bispec-
tral (BIS) index, is represented in blue in (a), with desired level (red dashed line) and the drug 
dose uprop  delivered to the patient in (b). The NMB level, measured by the T1  ratio, is presented in 
purple in (c), with the drug dose uroc  infused in (d). The vertical arrows indicate when the control-
lers are switched on. The dashed lines in the BIS and T1  plots represent the reference to track.
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CONCLUSION
This article demonstrates through clinical cases the use 
of a robust controller to regulate the NMB and hypnotic 
(BIS) indices during the maintenance phase of anesthesia 
applied to patients undergoing general elective surgery.
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