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I. EXTENDED ABSTRACT

Convolutional codes [4] are an important type of error
correcting codes that can be represented as a time-
invariant discrete linear system over a finite field [8]. They
are used to achieve reliable data transfer, for instance,
in mobile communications, digital video and satellite
communications [9]. In particular, periodically time-varying
convolutional codes have attracted the attention of several
researchers [2], [3]. One of the advantages of this type of
codes is that they can have better distance properties than
the best time-invariant convolutional code of the same rate
and total encoder memory [7].

In this work we consider convolutional codes C with P -
periodic encoders, i.e.:

C := {w : w(Pl + t) = (Gt(D)u)(Pl + t);

t = 0, ..., P � 1; l = 0, 1, ...},
(1)

where each Gt(D) is a n ⇥ k polynomial matrix over a
finite field F, i.e., Gt(D) 2 Fn⇥k[D], D represents the shift
Du(l) = u(l � 1), and u is an information sequence in Fk.

Inspired by the ideas developed in [6] and [1] for the case
of behaviors, considering the linear map

Lp : (Rn)Z !
�

RPn
�Z

defined by

(Lpw)(l) :=
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we associate with C a time-invariant convolutional code CL,
the “lifted” version of C, defined as

CL :=
n

ew 2
�

RPn
�Z | ew = Lpw, w 2 C

o

.

Note that, since

(Gt(D)u)(Pl + t) =
��

D�tGt(D)
�

u
�

(Pl),

Equation (1) can also be written as

(⌦P,n(D)w)(Pl) = (G(D)u)(Pl), l = 0, 1, . . . ,
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with
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and
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2 RPn⇥k.

Moreover, by decomposing the matrix G as

G(D) = GL
�

DP
�

⌦P,n(D)

with

GL(D) =
⇥

GL0(D) GL1(D) · · · GLP�1(D)
⇤

,

the lifted code can be represented as

CL :=
�

ew : ew(l) = (GL(D)eu)(l), l = 0, 1, ...
 

,

where ew = LPw and eu = LPu.

In the sequel, we consider convolutional codes C with 2-
periodic encoders, i.e., such P = 2 and

Gt(D) = Gt
0 +Gt

1D + · · ·+Gt
NDN 2 Fn⇥k[D], t = 0, 1.

Moreover we assume that the matrices G0
0, G

1
0, G

0
N and G1

N
are full column rank. This implies that the matrices Gt(D)
are column reduced (see [5] for a definition), t = 0, 1.
Assuming also that Gt(D) are right-prime, t = 0, 1, we have
that Gt(D) are minimal encoders, t = 0, 1 [4]. Minimal
encoders are particularly important since their McMillan
degrees correspond to the code degree, which is a measure
of its complexity.

The parameters of the encoders Gt, t = 0, 1, are (n, k, �),
where � = kN is the degree of the code Ct generated by
Gt(D).

The generalized Singleton bound for each code Ct is

(n� k)
�⌅

�
k

⇧

+ 1
�

+ � + 1

= (n� k)
�⌅

kN
k

⇧

+ 1
�

+ kN + 1

= nN + n� k + 1.

(2)

By definition,

G0(D) = G0
0 +G0

1D + · · ·+G0
NDN + 0DN+1

DG1(D) = 0 +G1
0D +G1

1D
2 + · · ·+

G1
N�1D

N +G1
NDN+1
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which can be decomposed as
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DG1(D)
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The matrix GL can be written as

GL(D) =



G0
0 G0

1

0 G1
0

�

+
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(3)

We will prove the following result.

Theorem 1: GL(D) is a minimal time-invariant encoder.

Proof: Since, by hypothesis, G0
0, G

1
0, G

0
N and G1

N are
full column rank, we have that GL(D) is column reduced.
We prove now that GL(D) is right-prime. By hypothesis,


G0(D)
DG1(D)

�

is right-prime and



G0(D)
DG1(D)

�

= GL
�

D2
�



In
DIn

�

(4)

If GL
�

D2
�

=
⇥

GL0
�

D2
�

GL1
�

D2
�⇤

is not right-
prime, then GL0

�

D2
�

and GL1
�

D2
�

have a squared non
unimodular common factor, F (D) 2 Fk⇥k[D], i.e.,

GL0
�

D2
�

= eGL0(D)F (D) and GL1
�

D2
�

= eGL1(D)F (D)

Then, by equation (4),


G0(D)
DG1(D)

�

=
h

eGL0(D)F (D) eGL1(D)F (D)
i



In
DIn

�

= eGL0(D)F (D) + eGL1(D)F (D)D

= eGL0(D)F (D) + eGL1(D)DF (D)

=
�

eGL0(D) + eGL1(D)D
�

F (D)

which is a contradiction because


G0(D)
DG1(D)

�

is right-prime.

Hence GL
�

D2
�

is right-prime and therefore also GL(D) is
right-prime.

The parameters of the encoder GL(D) are (2n, 2k, kN)
since it can be shown, by equation (3), that if N is even
the degree is � = 2k

⌃

N
2

⌥

= 2kN
2 = kN and if N is odd the

degree is � = k
⌃

N
2

⌥

+ k
⌅

N
2

⇧

= kN . Then the generalized
Singleton bound is

(2n� 2k)
�⌅

kN
2k

⇧

+ 1
�

+ kN + 1

=

⇢

nN + 2n� 2k + 1, ifN even
nN + n� k + 1, if N odd

which, is equal to the bound of each periodic encoder (2)
when N is odd, but has an increase of n�k when N is even.

This result is similar to the one derived in [2] using a
different reasoning.

Obtaining a larger bound for the odd case is encouraging
from the point of view of achieving a larger distance for the
periodic case. However, the question whether the obtained
bound can be reached is still the subject of current investi-
gation.
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