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Abstract—This paper presents a control strategy for neuromus-
cular blockade (NMB) level, in order to determine the optimal
time to initialize the administration of the muscle relaxant
rocuronium by means of the continuous infusion of a constant
dose. The constant value of muscle relaxant for a particular
patient undergoing general anesthesia is computed in order to
guarantee that the steady-state value of neuromuscular blockade
level is the desired reference value. In order to apply this open-
loop control strategy, the patient’s NMB response to rocuronium
is assumed to be modeled by a recently proposed parameter
parsimonious model.

I. INTRODUCTION

As is well-known, general anesthesia is obtained by means
of the administration of three different kinds of drug, an
opioid, an analgesic ans a muscle relaxant, in order to achieve
analgesia, unconsciousness, and paralysis in the patient during
surgery [1], [2], [3].

The automatic control of drug delivery in anesthesia and in
particular the control of muscle relaxant administration, has
deserved great attention in last years [2], [4], [5].

The administration of a muscle relaxant for surgery pur-
poses essentially consists of two phases: in a first stage, a
considerable quantity of drug (bolus) is injected in order to
quickly decrease muscle activity; then when muscle relaxant
is administered in order to maintain the desired level of
neuromuscular blockade (NMB) during the surgery, which is
usually set to 10% (where 100% corresponds to full activity
and 0% corresponds to full paralysis).

Several methods have been proposed in the literature for
the automatic control of the infusion of muscle relaxants [6],
[71, [8], [9], [10]. A particularly simple, but non the less
efficient, approach is TCI (Target Control Infusion) [1], [11],
[12], which consists in administering a piecewise constant drug
dose, suitably computed from the desired reference (target)
level of neuromuscular blockade.

Following this approach, in this paper an analytical study
is made of the optimal time to initiate the constant drug
infusion in order to minimize the reference tracking error for
the neuromuscular blockade level. The obtained results are
illustrated by means of simulations, based a bank of identified
real patient models.
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Figure 1: Structure of the mode for NMB level

II. NEUROMUSCULAR BLOCKADE MODEL

The study presented in this paper focuses on the muscle
relaxant rocuronium, but similar results can easily obtained for
the drugs, such as, for instance, atracurium. The model adapted
here to describe the relationship between the administered dose
of rocuronium and the corresponding NMB level is the one
proposed in [13].

This model consists of a linear part, than describes the drug
effect concentration, followed by a nonlinear part, the Hill
equation, that relates the effect concentration with the actual
NMB level, as is depicted in 1.

In This figure, u [pg.K g~ '.min~!] denotes the drug dose,
%e [ug.ml~1] is the effect concentration, and 7 [%] denotes
the NMB level. The transfer function G(s) is given by:
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where ki, ks e ks and « are positive patient dependent
parameters. However, based an the previous knowledge of
the patient population, good modeling results are obtained for
fixed values of ki, ko and ks, namely k1 = 1, ko = 4 and
ks = 10, [10], [13]. This leaves « as only parameter to be
identified in the linear part of the process dynamics, which
can, for instance, be done during the initial phase of bolus
administration, before initializing the controlled drug infusion.
As for the nonlinear dynamics, the Hill equation is given by

r(t) =

G(s) = )

To

where 1y = 100 is the NMB level by a zero value of the
drug concentration, v is a patient dependent parameter (than

2



https://core.ac.uk/display/148428563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

can be identified as «), finally, EC5q [pg.mi~'] is the drug
effect concentration corresponding to a NMB of 50%. For
rocuronium the value of EC5y can be taken equal to 1,
independently of the patient under consideration.

III. CONTROL STRATEGY

The first step to design the control strategy proposed here
is to invert the Hill equation, i. e., given a desired target value
r* for the NMB level, one computes the corresponding effect
concentration of rocuronium

/v
xr = <10*0 — 1> . 3)

In a second stage, a constant value u* for the drug infusion is
computed in order to guarantee that the steady-state value of
x(t) is x¥. This procedure is possible since the poles of the
transfer function G(s), —ki1a, —kacv, —ksa, are all negative,
which ensures the the stability of the process. Noting that a
constant drug dose u* corresponds to a step of amplitude u*,
it follows from the final value theorem [14] that

tli}m z.(t) = G(0)u™, 4)

where G(0) is the steady-state gain of G.
In this way, in order to achieve the desired target value 7,
the value of u* must be given by

x*
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As mentioned earlier, due to clinical constraints infusion,
the continuous drug infusion only starts a certain time after
the initial bolus is administered, say at a certain time instant
T'. Since the transient phase after the beginning of the constant
drug dose administration highly depends initialization time 7',
several attempts to optimize this value were carried out. The
OLARD (OnLine tuned Algorithm for Recovery Detection)
algorithm [15] was developed in order to identify the recovery
time instant from the real noisy of NMB signal. Since then this
value has been considered as a reference time for beginning
the control action. Here the optimal vale of 7" is computed
in order to minimize the global quadratic reference tracking
error for the effect concentration:

E:/ |ze(t) — a2|dt. (6)
0

Note that this guarantees the minimization of the reference
tracking error for the NMB level. More concretely, the admin-
istration of the typical rocuronium bolus of 500 pg.Kg=! is
followed by the constant infusion of u* = x%/G(0) ug.Kg~!,

starting at time 7' corresponds to setting the system input to:

wr(t) = 5008(t) + u*1(t — T) %)

where 4(t) is the Dirac delta function and 1(¢ — T") denotes
the unit step starting at time 7". This produces sn output

xl = 500227 (t) + ur xSt (t — T) (8)
where xi"P(t) and z5'°P(t — T') are the impulse and delayed

step responses of G, respectively given by:
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The corresponding error E is then given by:
T .
EuT) = [ Jai(e) P
0 (1)

+ / (7P (1) + 2P (t — T)) — ' 2d
T

In order determine the minimum of E(T'), first the critical
points are computed by means of the equation

d

SFE(T) =0, (12)

It can be shown by means that of simple but cumbersome
computations that

d ~ 56366280000« 10aT 10000au*

E(T) = u*e
280600848 63
86400000 femoT 4 (un)2,
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dr

(13)
Thus (12) is equivalent to
(30496000a u*) 210 4 (150000a u*> o
41580 126 (14)

160000
- (297au*) T+ (1L*)2 =0
where x = e=T,

Thus the critical points T ;;cq; are given by
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where ¢ are roots of (14). After these critical points are
identified, are chooses among them the are that corresponds
to a global minimum for E (7).

For models where the optimal time cannot be determined,
due to the fact that the roots of (14) are not real and posi-
tive, the time to initiate the continuous infusion is computed
as follows. The “problematic” model is approximated by a
“nonproblematic” one and the optimal time determined for the
approximate model is used. The model approximation is based



on the Vinnicombe distance between two transfer functions,
G1(s) and Ga(s), 0,(G1,Ge), which is given by, [16]:

55(G1,Ga2) = ||(I + G2G3)7/*(Ga — G1)(I + G1G})||sw

(16)
where G (s) = G;(—s), i = 1,2 and takes values between
0 < 4,(G1,G3) < 1 (where 6,(G1,G2) = 0 corresponds
the same models and 0,(G1,G2) = 1 corresponds to very
different models).

IV. SIMULATION STUDY

With the purpose of testing control strategy previously
described, simulation studies have been carried out using
database R containing 50 models identified from real patients
subject to general anesthesia where the administered muscle
relaxant was rocuronium.

The control strategy proposed in this paper is schematically
represented in Figure 2, and can be described as follows:

« Patient simulation: a model from the bank R is chosen

to the simulate the real patient’s dynamics. At time ¢t =
0 a typical bolus is administered to the patient (us; =
500 pg.Kg~");

o Determination of the constant drug dose: the constant
dose of rocuronium, u*, to be administered to the chosen
patient is calculated from the desired reference level of
neuromuscular blockade r*;

o Determination of the optimal initialization time T.
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Figure 2: Structure of the control system

The first simulations to be carried out are simulations of
the NMB signal for 3 patients in the database R, patient
1 (P1) and the patient 26 (Pag), for which it was possible
to determine the optimal times (7} and T5s) and the patient
11 (P;1) where the initialization time 77, was obtained by
the previously described approximation procedure. The results
obtained for the times 74, Ths and 17 are compared to the
ones obtained for the same patients when an uncertainty, At
, 1s associated to the respective times, yielding initialization
times t; = 11 = At, tog = Tog = At and t1; = Tl*l + At,
respectively. In a second stage, the results obtained for the
times 77, Tos and 17 are compared with the ones obtained
for the same patients when the initialization time is obtained
by the OLARD algorithm .

The figures below show the dose drug profile administered
u(t), the effect concentration response z.(t) and the NMB
response r(t) of each patient. As mentioned before, the desired
NMB level is taken to be 10%, r* = 10.

Figures 3 and 4 shows the behavior of the control system
for P; and Psg, respectively, during 240 minutes, where,
after the administration of an initial bolus of rocuronium
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Figure 3: Simulations for the patient P, where the constant
dose u* is administered for ¢ = T [min] (optimal time) and
t =T £ At [min] (where At = 5). (a) Administered drug
doses profile. (b) Response of the effect concentration. (c)
Response of the neuromuscular blockade level.

of 500 pug.Kg~!, is initialized the continuous infusion of
rocuronium from different time instants t: ¢ = T [min]
(optimal time) and ¢t = T £ At [min] , At = 5. The
optimal time, given by (14) and (15), for (P;) and (Psg) was,
respectively, 71 = 52,4071 [min] and 96T = 30,1375 [min)].
From the analysis of Figures 3a and 4a is able to see that
for the same initial bolus the constant drug dose given by
TCI method is different for each patient. The TCI dose value
, u*, computed for P; is 2,8856 uK.Kg~!' and for Pag
is 5,6430 pK.Kg~!. Observing the graphs of the effect
concentration response shown in Figures 3b and 4b and the
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Figure 4: Simulations for the patient P»g where the constant
dose u* is administered from ¢ = T [min] (optimal time)
and from ¢t = T+ At [min] (where At = 5). (a) Administered
drug doses profile. (b) Response of the effect concentration.
(c) Response of the neuromuscular blockade level.

graphs of the NMB response shown in Figures 3¢ and 4c it is
to see that the errors between the actual effect concentration
and the reference effect concentration, and between the actual
NMB and the reference NMB when the continuous infusion
rocuronium is initialized in the respective optimal time instant
(blue graphics) is indeed minimal.

Figure 5 shows the behavior of the control system for Py
during 240 minutes, where, after the administration of an
initial bolus of rocuronium of 500 ;g.K g~! the continuous in-
fusion of rocuronium is initialized from different time instants
t: t = Ty, [min] (blue graphic) and ¢t = T}, £ At [min],
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Figure 5: Simulations for the patient P;; where the constant
dose u* is administered from ¢ = Ty; * [min] (approximate
optimal time) and from ¢ = T1; + At [min] (where At = 5).
(a) Administered drug doses profile. (b) Response of the effect
concentration. (c) Response of the neuromuscular blockade
level.

At = 5. The time T}, computed as the optimal time for the
closest model to Py (according to the Vinnicombe metric) for
which such time is possible to determine, and the constant drug
dose u*, obtained by the TCI method for P, are, respectively,
Ty, = 34,09 min and u* = 5,6064 pug.Kg~'. From the
analysis of the plots in Figure 5c are able to see that the time
T7Y, is a good approximation of the optimal time 7', once when
associated an uncertainty of only 5 minutes is considered, the
error between the real NMB level and the desired reference
of the NMB level is greater.
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Figure 6: Simulations for the patient P»g where the constant
dose u* is administered from instant ¢ = Tsg [min] (optimal
time) and from instant ¢ = Ty [min] (given by the OLARD
algorithm). (a) Administered drug doses profile. (b) Response
of the effect concentration. (c) Response of the neuromuscular
blockade level.

Figure 6 shows the behavior of the control system for
the Po during 240 minutes when the constant drug dose is
administered from our optimal time 75 = 30, 1375min and
from the OLARD time Ty = 25, 7min. Comparing the plots of
the neuromuscular blockade response shown in Figure 6¢ it is
possible to see that, when the constant dose of the rocuronium
is administered from the optimal time 756, the error is smaller.

Figure 7 allows to compare the behavior of the control
system for the P;; during 240 minutes when the constant
drug dose is administered from the time 771% = 34,09min
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Figure 7: Simulations for the patient P;; where the constant
dose u* is administered from instant ¢ = Tyq * [min] (ap-
proximate optimal time) and t = Ty [min] (time obtained by
the OLARD algorithm). (a) Administered drug doses profile.
(b) Response of the effect concentration. (c) Response of the
neuromuscular blockade level.

and from the OLARD time Tp = 30min. Analyzing the plots
of the neuromuscular blockade response shown in Figure 7c
it is possible to see that the error between the real level of
the NMB and the desired reference level is practically the
same, although the error is slightly larger when the continuous
infusion of rocuronium is initialized at time 771 *.

V. CONCLUSION

This paper presents a new strategy for the control of
the administration of the muscle relaxant rocuronium to a



patient during surgical practice to reach and maintain a desired
reference of the neuromuscular blockade level. Although the
performed study focuses on the muscle relaxant rocuronium,
similar results can easily obtained for other drugs, such as, for
instance, atracurium.

The proposed control strategy is based on a TCI approach
(with constant target) combined with the determination of the
optimal time to initiate the constant drug infusion after the
administration os a bolus, having as criterion the minimization
of the error effect concentration response and the desired target
effect concentration level. This in turn has a consequence the
minimization of the reference tracking error for the NMB
level.

The simulations performed for the optimal time confirmed
that the error between real level of the neuromuscular blockade
and the desired reference level of the neuromuscular blockade
is, indeed, the minimum error, when the initialization time is
taken to be the optimal one.

The optimal time 7" and T™* obtained by the control strategy
described in this article yields better results than the time 7}
obtained by the OLARD algorithm.
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