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Abstract

This report has been submitted in partial fulfillment of the requirements for the approval of the External
Option curricular unit, of the MAP-i Doctoral Programme in Computer Science, 2016/2017 edition. In
this document, we present the scientific output regarding the work developed in preparation for the
Open Search track of the Text REtrieval Conference (TREC), in the context of the Scientific Activities
curricular option. We being by presenting an overview of how TREC works. Search engine evaluation in
TREC has been historically based on a set of fixed topics, accompanied by relevance judgments provided
by human assessors. The Open Search track changed this approach by introducing the concept of a
Living Labs, where results can be evaluated by real users of real web search engines. The calendar for
the 2017’s edition of this track hasn’t been released as of May 2017. Accordingly, we present the system
we prepared to enable the participation in the TREC Open Search track, when it becomes available.

Army ANT is a workbench we developed to support innovation in entity-oriented search, which
also makes it an essential tool for this doctoral work. While it provides an adequate level of freedom
for information retrieval researchers to build their own search engine implementations, it also provides
reusable code, such as a basic analyzer for tokenization and stopword removal, as well as some structure
to enable the integration of different engines. Each engine should provide documentation on its ranking
functions and indexed datasets, as well as the values for the score components of individual documents.
Army ANT then provides a parallel coordinates visualization to support the understanding of the ranking
function through its individual components, as an aid to explain the final score of each document.

We implemented two graph-based document representation and retrieval models that we integrated
with Army ANT. First, we studied and explored the graph-of-word model. This was originally imple-
mented using an inverted file, replacing the term frequency by a term weight that was computed based
on the graph-of-word for each individual document. Our implementation, however, was done directly
on a graph database, and the ranking function was implemented using the Gremlin domain-specific
language (DSL). While this severely impacted efficiency, both for indexing and retrieval, it provided a
purely graph-based approach that enabled a focused and clear method to explore the relations among
terms, entities, and terms and entities. As one of the goals of this doctoral thesis is to prove that several
retrieval tasks can be unified in a single model, in particular through a graph data structure, we felt this
was a fundamental step, in spite of expected performance issues. While the graph-of-word only contained
a single dimension of nodes representing terms, we also proposed an improvement and extension of this
model, which we called graph-of-entity. The graph-of-entity slightly redefines the edges between term
nodes (it does not use sliding windows) and it also includes entity nodes. Nodes are connected through
edges that model all the available structured and unstructured information as a unified document rep-
resentation. We then integrate two essential tasks of entity-oriented search through this model — query
entity linking and entity ranking — and show that query entity linking can directly contribute to the
ranking process instead of being considered a separate step. The intuition was that the uncertainty of
query entity linking should seamlessly contribute to the weighting scheme as a regular feature.

Given the unexpected delay of the TREC Open Search track, we were required to implement our
own evaluation benchmark, based on available datasets. In particular, we used the Wikipedia Relation
Extraction Data v1.0, which provides textual content about an entity, along with labeled relations to
other entities. This dataset enabled us to build the first implementations of the graph-of-word and
graph-of-entity models. However, since it did not provide any relevance judgments, we also indexed a
subset of the INEX 2009 Wikipedia Collection, which provided a two-fold contribution to this work. On
one hand, it enabled us to test the indexing process of a dataset with a different format and, on the
other hand, it provided a list of topics, assessed by real users, that could be used to evaluate the models,
calculating metrics like the mean average precision (MAP) or the normalized discounted cumulative gain
for the top-p results (NDCG@p).

We close with some final remarks on Army ANT and the two graph-based document representation
and retrieval models that we implemented. Given the lack of enough evidence, we could not conclude
whether there is an improved effectiveness for the graph-of-entity over the graph-of-word model. With
a little tuning, however, our platform should be able to successfully index the complete INEX 2009
Collection, enabling us to assess effectiveness and further extend the range of unified entity-oriented
search subtasks supported by the graph-of-entity.



Chapter 1

Introduction

In this chapter, we introduce the Text REtrieval Conference (TREC), covering some of its most relevant
tracks on entity-oriented and semantic search, as well as presenting the Open Search track, for which
we are preparing through the work we describe in this report. We also describe the methodology used
to structure the process of innovation in entity-oriented search and, in particular, how we will take
advantage of the Living Labs for the second Academic Search Edition of the TREC Open Search track
to assess the effectiveness of two graph-based models.

Text REtrieval Conference

The Text REtrieval Conference (TREC) began in 1992 and has ever since brought together the informa-
tion retrieval (IR) community to participate in several research tracks. Each research track represents a
different open challenge in the area of IR — tracks can be discontinued when a problem has been solved
or interest has faded, and new tracks are frequently created to better represent new relevant challenges
in the area. TREC participants are expected to choose one or multiple tracks, each providing specific
resources (e.g., document collections, relevance judgments, APIs, etc.), in order to develop a search en-
gine that will be evaluated on a common framework. The event is organized as a competition rather
than a typical conference. In the past, FEUP has already participated in TREC multiple times. In
particular, during the last Blog Track, in 2010, we explored the effects of graph-based query-independent
features for blog retrieval, comparing the indegree with the h-index, as two link analysis metrics —– we
established an analogy to bibliometrics, where we considered blogs as scientists and posts as publica-
tions (Devezas, Nunes, and Ribeiro [2010]). We found that the indegree actually decreased performance,
while the h-index was a good score component to improve blog retrieval.

As the result of a TREC participation, a research paper must be submitted to publish in a NIST
Special Publication dedicated to TREC, describing the approach taken and the obtained results. The
focus is on using traditional IR metrics, such as mean average precision (MAP) or normalized discounted
cumulative gain (NDCG@p), to measure the quality of different models or different parameter values
based on human relevance judgments. Most tracks, including the Open Search Track (Balog et al. [2016]),
also provide an overview on the competition, where the quality of the participants’ search engines is
compared. This works as a state-of-the-art assessment of a particular information retrieval task.

Knowledge Base Acceleration Knowledge Base Acceleration (KBA) ran consecutively from 2012 to
2014 and was succeeded by the Dynamic Domain Track in 2015, which also ran in 2016 and is running
again in 2017. KBA describes their mission as follows1: “Given a rich dossier on a subject, filter a stream
of documents to accelerate users filling in knowledge gaps.”. This track tackled the challenge of increasing
the speed at which a news article is cited in a knowledge base from the moment of its publication. In
2014, the median number of days a news article waited to be cited in Wikipedia was 356 days (nearly a
year!)2. The KBA track dealt with this issue by focusing on improving entity-oriented filtering of large

1http://trec-kba.org/
2http://trec-kba.org/data/2014-11-19-TREC-KBA-track-overview.pptx
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Table 1.1: Overview of semantic and entity-oriented research tracks from TREC.

Track Datasets Mission

Knowledge Base
Acceleration
Track1

TREC KBA Stream Corpora 2012-20143 Improve the retrieval of documents about a par-
ticular entity from a stream, in order to accelerate
manual knowledge base population.

Entity Track ClueWeb095, BTC-20096, BTC-20106 Improve the retrieval of related entities based on
one or multiple entities.

Question
Answering
Track8

TIPSTER10, TREC disks9, MSNSearch
logs, AskJeeves logs, The AQUAINT Cor-
pus of English News Text11

Improve the retrieval of document passages capable
of directly answering user questions.

Live QA Track12 Yahoo! Answers13 Similar to the Question Answering Track, but ques-
tions are received directly from a socket, as a
stream, in real-time.

Open Search
Track14

CiteSeerX15, Microsoft Academic Search16 The Academic Search Edition consists of improv-
ing literature retrieval for a given a keyword query,
which might include entities (e.g., authors).

streams, in order to help human curators fill in the knowledge gaps more quickly. Tasks were based on
the TREC KBA Stream Corpora 2012-20143

Entity Track The Entity Track4 ran consecutively from 2009 to 2011 and it consisted of two main
tasks. The first task, Related Entity Finding (REF), was based on the ClueWeb095 dataset, as well
as the Billion Triples Challenge datasets (BTC-20096 and BTC-20107). The second task, Entity List
Completion (ELC), was also based on the BTC-2009 and BTC-2010 Linked Open Data. The overall
problem tackled by the Entity Track consisted of taking one (REF) or several (ELC) entities as a query
and returning a ranked list with the best related entities.

Question Answering Track Question Answering Track8 is one of the longest running tracks organized
by TREC, starting on 1999 and running until 2007, based on several static datasets shared by other tracks,
such as TREC disks 4&59, accompanied by a set of test questions, either manually created or taken, for
instance, from search logs donated by Microsoft or AOL. The track was inactive for eight years, until
2015, when it was revived as the Live QA Track. The Live QA Track also ran in 2016 and is running
again in 2017. The Live QA track was different from its precursor in the sense that it is required to find
answer to questions submitted to Yahoo Answers and pushed to participants as a data stream.

Table 1.1 presents a summary on the most relevant research tracks, their datasets and mission, in
the context of semantic and entity-oriented search. We also included the Open Search track since, in
the particular context of this doctoral work, we will take advantage of an implicit presence of entities,
namely the authors, within academic publications, to compare the impact of indexing only text versus
indexing combined data (i.e., text and knowledge).

Open Search Track
We will take this opportunity to participate in TREC 2017 Open Search track with the main goal
of understanding and creating a working implementation of the graph-of-word model (Rousseau and
Vazirgiannis [2013]), described in Section 3.2. As a secondary goal, we aim to explore novel ways of
extending this graph-based model with information such as entities or relations, while linking with the
indexed text within the same data structure. We implement such approach with the graph-of-entity

3http://s3.amazonaws.com/aws-publicdatasets/trec/kba/index.html
4https://web.archive.org/web/20110811014305/http://ilps.science.uva.nl/trec-entity/
5https://lemurproject.org/clueweb09/
6https://km.aifb.kit.edu/projects/btc-2009/
7https://km.aifb.kit.edu/projects/btc-2010/
8http://trec.nist.gov/data/qamain.html
9http://trec.nist.gov/data/docs_eng.html
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model, described in Section 3.3. The TREC 2017 participation will provide a benchmark for evaluation
that will support the remaining work of this thesis as we improve the indexing and ranking strategies
of our graph-based entity-oriented search framework. The event will continue beyond the ending of the
semester and, therefore, in this report, we only present the preparation work we have done for the Open
Search track, running in TREC 2017, describing how the graph-based models that we plan to evaluate
with the academic data provided by the Living Labs API17 for the track.

This year, the Open Search Track is partly organized by Krisztian Balog18, a well-known IR scientist
working on entity-oriented search. This task will follow last year’s format, where participants are given
access to an API that provides them with documents from well-known search engines, like CiteSeerX or
Microsoft Academic Search. These documents must be indexed, using whatever strategy the participant
chooses. Then, a list of frequent queries is provided to the participants, who must run these queries
through their search engines and submit the results to the Living Labs platform. This infrastructure
is linked with the real-world search engines that initially provided the documents. The search engines
dedicate a small part of their traffic to evaluating runs from participants, whenever a real user issues one
of the supported queries, participant’s results are interpolated with the search engine’s results and shown
to the final user. Feedback is sent back to the participant with information on which results (theirs or
the search engine’s) were clicked. This implicit feedback can then be used to evaluate the system or even
to train for a learning to rank approach, during the train stage. Two other evaluation stages exist before
the final evaluation metrics can be computed.

Innovating Entity-Oriented Search

When, in 199019, Alan Emtage created the first search engine, Archie20, search was still heavily based
on keyword queries, as inspired by the search potential of back-of-the-book indexing. However, as the
web evolved, so did people’s information needs. Queries changed from simple topic keywords to more
complex entity-oriented queries. Bautin and Skiena (2007) found that nearly 87% of all queries contained
entities, based on the analysis of 36 million queries released by AOL21.

The word entity comes from the Medieval Latin entitas, which means being. Consistently, entity
is defined in the Oxford English dictionary as “a thing with a distinct and independent existence” and
in the English Wikipedia as “something that exists as itself, as a subject or as an object, actually or
potentially, concretely or abstractly, physically or not”.

Traditionally, in information retrieval, we define document as a kind of material of an unstructured
nature, usually consisting of text (Manning, Raghavan, Schütze, et al. [2008]). According to the definition
of entity, we might therefore consider any document to be an entity, however, most systems that index
combined data, usually distinguish between text and knowledge (Bast, Buchhold, Haussmann, et al.
[2016]). We redefine the concept of document, in the context of entity-oriented search, as having three
main components: a unique identifier, an optional textual block, consisting of one or several fields, and
an optional knowledge block, consisting of triples representing statements directly associated with the
concept or concepts illustrated in the document.

Methodology
In order to do any research on entity-oriented search, we must first assume we have access to a collection of
combined data (text and knowledge) and we must then define a specific search task over this collection.
For instance, we might want to use a keyword query to retrieve text, in which case we might take
advantage of any knowledge associated with the text, in order to rank documents based on links to
entities (or relations) in the query. Or we might want to, instead, retrieve entities, either by name, or
through context, as obtained from directly associated text or from indirectly associated text from any of
the linked entities.

While obtaining a dataset is an essential step to start developing a document representation and
retrieval model, it is useless without a way to assess the impact, particularly in effectiveness (as efficiency

17http://doc.trec-open-search.org/en/latest/api-participant.html
18http://krisztianbalog.com/
19http://www.searchenginehistory.com/
20http://archie.icm.edu.pl/archie-adv_eng.html
21https://techcrunch.com/2006/08/06/aol-proudly-releases-massive-amounts-of-user-search-data/
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can usually be measured with time). In order to evaluate a retrieval model, we frequently use a ground
truth made of a selection of topics (i.e., queries, usually with additional information, such as a narrative
describing the information need) and the respective relevance judgments made by humans and usually
represented through a 0 to 3 grading system. Based on the ground truth, we can them compare two
different retrieval models, either representing a simple parameter tune or a completely different approach.

In order to support research work in entity-oriented search, we decided to build a workbench platform,
called Army ANT, that provides a basic programmatic interface to any search engine back-end, as long
as it implements search() and index() functions, where the index() function iterates over a reader
for a particular collection, returning documents that can either contain: (i) solely text, (ii) solely triples,
or (iii) a combination of text and triples. Using such an approach, enabled, for instance, the comparison
of a text-based retrieval model with a retrieval model for combined data, potentiating the measurement
of the impact of entity-awareness in search engines, which will be our main goal for the TREC 2017
Open Search track. In Chapter 2, we will provide further detail on the Army ANT workbench, namely
regarding the evaluation module used to compare different engines.

Graph-Based Approach
Over the years, in information retrieval, the inverted file has been the uncontested winner in efficiency,
as an index data structure inspired by back-of-the-book indexing. Zobel and Moffat (2006) present a
survey on index storage, index construction and query evaluation, where they indicate two alternative
index data structures and a retrieval model that were less efficient, when compared to the inverted index
and state-of-the-art weighting functions, such as TF-IDF or BM25. In particular, regarding index data
structures, they have listed suffix arrays (Manber and Myers [1990]) and signature files (Faloutsos and
Christodoulakis [1984]) as two competing alternatives to the inverted file, that were also proposed for
document indexing and retrieval. However, research over the years (Zobel and Moffat [2006]; Zobel,
Moffat, and Ramamohanarao [1998]) has shown that the inverted file achieves higher compression and
therefore higher efficiency. Furthermore, for the particular case of suffix arrays, there is no equivalent of
ranked querying. Regarding retrieval models, cluster retrieval was also studied (Voorhees [1986]) and,
when compared to inverted file approaches, it was also found to be less efficient.

This doctoral work begins an inglorious but extremely important journey through one of those al-
ternative paths, where the goal is to explore the graph as an index data structure. This can be done
either conceptually, like Rousseau and Vazirgiannis (2013), who, as we will describe in Section 3.2, used
a graph to represent a text document and compute a term weight (analogous and replacing of the term
frequency) that was then stored in an inverted index. This can also be done concretely by implementing
a graph-based index data structure in disk and using it to issue queries and retrieve documents in real
time. As we will show further along this document, in this particular case we followed the second path,
implementing the two graph-based retrieval models using a graph database and incurring in (rather ex-
pected) efficiency issues. The main goal, however, was to explore and assess the graph data structure as
a good (or bad) index data structure for a scenario where there are multiple heterogeneous information
sources that, together, should contribute to an improved ranking of the results.

We propose that the graph would be a particularly good data structure to unify entity-oriented
retrieval tasks, such as query entity linking and document ranking. There has already been work on
using graphs to combine text and entities (Moro, Raganato, and Navigli [2014]), as well as on unifying
machine learning models, in the quest to find a general-purpose learning algorithm, or a “master algo-
rithm” (Domingos [2015]). In this work, we focus on unifying all information sources through a graph
— as opposed to having an inverted file for full-text search and a separate triple store for inference and
knowledge retrieval —, but also to integrate tasks from information extraction and information retrieval
in a way that uncertainty is propagated through a pipeline in a probabilistic manner, obtaining the best
possible ranked list of results without taking any deterministic assumption at a prior step.

Specifically, in this work, we show how we can build a graph of terms and entities, which we call
the graph-of-entity (Section 3.3), as a logical next step to the graph-of-word (Rousseau and Vazirgiannis
[2013]), used to seamlessly index text and knowledge. In this model, we implement a ranking function
that is inclusive of the query entity linking process and, in fact, takes that signal into consideration when
computing the final score of a document or entity, instead of using that process as a separate step where
only the best linking is to be considered.
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Chapter 2

Army ANT

Army ANT is a Python-based software package developed as a workbench for innovation in entity-
oriented search. The goal is to make it easier for researchers, teachers or students to experiment with
different search engine implementations, easily switching from between retrieval models (engines) to ex-
plore differences in results and to learn about the datasets and the scoring function, with the aid of visual
tools to explore individual values of score components per document or entity. Besides centralization
and exploration, it is also important, for innovation, to evaluate different retrieval models over the same
queries and given a ground truth. Army ANT also provides a framework to easily implement evaluation
schemes, where evaluation tasks can be queued by uploading a topics file with queries and an assessments
file with relevance judgments usually given by human evaluators.

In the following sections, we will describe the Army ANT workbench from an engineering perspective.
First, we will provide details on the system architecture, describing how it can be used by IR researchers
or students to test and evaluate their engines on different datasets. Next, we provide a user’s manual
both for the command line interface and for the web interface, in order to illustrate how the workbench
should be used for research or even for teaching IR.

System Architecture

A typical workflow for Army ANT begins with the implementation or reusing of a reader for a particular
dataset. A reader is essentially an iterator of documents (instances of army_ant.reader.Document ).
Each Document contains four main fields: doc_id (a number or string that uniquely identifies the
document), text (a string representing the textual block of the document), triples (a list of string
tuples representing the knowledge block of the document, where each tuple has a subject, a predicate
and an object, and the subject is usually a representation of the main concept or entity covered within
the document), and metadata (a map of document properties). During the indexing process, the index
also acts as an iterator of documents. Documents yielded by the index can be different in content from
documents yielded by the reader, for example extending the knowledge block with additional entities
and relations extracted from the textual block. The metadata for these documents is then stored in the
database. Figure 2.1 illustrates the main dispatchable actions from the command line (index, search
and server), along with the two main HTTP requests handled by the server (GET /search and POST
/evaluation). Most actions, with the exception of the evaluation, involve contacting the index to either
index or search documents, as well as the database to either store or retrieve the metadata for a set
of documents. The evaluation is based on the queuing of tasks that batch retrieve results for a set of
queries, which are then compared with a ground truth and assessed using metrics like the mean average
precision (MAP) or the normalized discounted cumulative gain for the top-p results (NDCG@p).

Next, we will go through each module, describing existing implementations, as well as the necessary
steps to implement new instances of Reader , Index , Database or Evaluator . We will also present
an overview on the CommandLineInterface and Server modules, although we do not anticipate any
extensions to be developed for these modules, as it would tamper with the normal operation of the
workbench.

5



Figure 2.1: Army ANT sequence diagram for index, search and server actions.

Command Line Interface

The command line interface (CLI), implemented using Python Fire1, provides an interface to index,
search, launch the web server, and access any available extras. Python Fire automatically transforms
the methods of a class into application commands and the parameters of the methods into individual
command line arguments for a command. Listing 2.1 shows the usage for all commands implemented
in Army ANT’s CLI. As we can see, a reader is selected through the --source-reader argument and,
since it is only used within the index command, there is no command to only read a dataset, outside of
this context. There is also a --source-path argument to select the path of the dataset to be indexed.
Generally, we use the location designation instead of path or hostname , but we haven’t yet converted
the Reader class to respect this convention. This is justifiable given the general aspect of Army ANT
as a workbench, where a reader should be able to either iterate over documents in a database, in a
compressed file or in a directory. Or an index could be accessed through a web service like Apache
Solr2 or, in our case, Apache TinkerPop Gremlin Server3, just as easily as a disk interface to an inverted
file. In fact, we have already applied this convention to the index, search and fetch-wikipedia-images
commands, accepting <hostname> or <hostname>:<port> as the index location for our particular

1https://github.com/google/python-fire
2http://lucene.apache.org/solr/
3https://tinkerpop.apache.org/
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Listing 2.1: Usage help for all Army ANT commands.

Usage: ./army-ant.py index SOURCE_PATH SOURCE_READER [INDEX_LOCATION] [INDEX_TYPE] [DB_LOCATION
] [DB_NAME] [DB_TYPE] [LIMIT]

./army-ant.py index --source-path SOURCE_PATH --source-reader SOURCE_READER [--index-
location INDEX_LOCATION] [--index-type INDEX_TYPE] [--db-location DB_LOCATION] [--db
-name DB_NAME] [--db-type DB_TYPE] [--limit LIMIT]

Usage: ./army-ant.py search QUERY [OFFSET] [LIMIT] [INDEX_LOCATION] [INDEX_TYPE] [DB_LOCATION]
[DB_NAME] [DB_TYPE]

./army-ant.py search --query QUERY [--offset OFFSET] [--limit LIMIT] [--index-location
INDEX_LOCATION] [--index-type INDEX_TYPE] [--db-location DB_LOCATION] [--db-name
DB_NAME] [--db-type DB_TYPE]

Usage: ./army-ant.py fetch-wikipedia-images DB_NAME [DB_LOCATION] [DB_TYPE]
./army-ant.py fetch-wikipedia-images --db-name DB_NAME [--db-location DB_LOCATION] [--db

-type DB_TYPE]

Usage: ./army-ant.py server

implementations of graph-of-word and graph-of-entity. This way, the index location is dependent only
on the index implementation. Finally, a --limit argument can be used to only read or retrieve the first
n documents from a dataset. In the following paragraphs, we will present further details on the inner
workings of each module.

Reader
The army_ant.reader package contains two main classes: Reader and Document . The Reader class
must be extended for implementing a particular dataset iterator that returns Document instances. It
can also be used to instantiate readers, given a source_reader argument to the factory() method,
which must also be extended with a new elif condition to instantiate any new implemented reader.
Implementing a new Reader consists of overriding the __next__() method that must either return the
next Document from the dataset or raise a StopIteration exception indicating that it has finished iter-
ating. This first version of Army ANT already implements two readers: WikipediaDataReader , for the
Wikipedia Relation Extraction Data v1.04 (Culotta, McCallum, and Betz [2006]) and INEXReader , for
the INEX 2009 Collection5 (Schenkel, Suchanek, and Kasneci [2007]). Both readers share a Wikipedia-
Entity class that will, later on, be made available generally to any other reader that indexes a knowledge
block, at which point it will simply be renamed to Entity in resemblance to Document .

Index
The army_ant.index package contains two main classes: Index and ServiceIndex . The Index class,
which also acts as a factory to instantiate any supported index, must be extended for implementing a
particular engine by overriding the index() and search() methods. Alternatively, a ServiceIndex
class can be extended instead, in order to obtain an index_host and an index_port property from
the index_location (e.g., “localhost:8182”). The index() method can, optionally, yield instances
of Document that will then be passed to a Database instance to store document metadata. Each
implemented Index or engine must use Python’s new async API, since this will then be served via
aiohttp in the army_ant.server package. This first version of Army ANT already implements two
engines: GraphOfWord and GraphOfEntity . These retrieval models are detailed in Chapter 3, however
there is a relevant technical detail about either model that we will share here. While GraphOfWord yields
a Document instance directly from the reader, as it focuses on indexing text documents, GraphOfEntity

4http://cs.iit.edu/~culotta/data/wikipedia.html
5http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/software/inex/
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Listing 2.2: Army ANT MongoDatabase example of a JSON document in the documents collection.

{
"_id" : ObjectId("591dad4c02f3ddaa2d990d1b"),
"doc_id" : "7577000",
"metadata" : {

"url" : "http://en.wikipedia.org/?curid=7577000",
"name" : "Johnny Burke"

}
}

instead yields a Document instance for the subject entity in the list of triples, consisting of the same
doc_id as the original document and providing metadata for the url and name of the entity. We
might say that the retrieval unit for the graph-of-word is a text document, while the retrieval unit for
the graph-of-entity is an entity. In this case, however, both are represented by a URL associated with
the respective Wikipedia article.

Database
The army_ant.database package contains a single main class: Database . The Database class, which
also acts as a factory to instantiate any supported metadata databases, must be extended for implement-
ing a facade to access the storage layer by overriding the store() and retrieve() methods, which
take an Index and a results list from an Index.search() method, respectively. Storing and retrieving
batches of documents, instead of individual documents, gives a chance to the storage layer for improving
performance with transactions and batch operations. This first version of Army ANT already imple-
ments a database facade for MongoDatabase . It stores metadata in a documents collection, following
the schema illustrated in Listing 2.2.

Evaluation
The army_ant.evaluation package contains three main classes: EvaluationTaskManager , Evalu-
ationTask and Evaluator . The EvaluationTaskManager class is called by the army_ant.server
module to add a task to a batch via add_task() , to queue all added tasks via queue() , to process
the next task via process() or to list queued tasks via get_tasks() . It also manages other lower
level activities like removing unreferenced files or reseting the status of running tasks in the event of a
server interruption. The EvaluationTask is a data class to store the following fields associated with
an evaluation task: topics_filename (original filename when uploaded), topics_path (internal path
of the file, pointing to a temporary file in a spool directory), topics_md5 , assessments_filename ,
assessments_path , assessments_md5 , index_location , index_type (currently “gow” and “goe”
are supported), eval_format (currently “inex” is supported, with plans to also implement a “trec” eval-
uator), status (an IntEnum implemented through EvaluationTaskStatus with values for WAITING ,
RUNNING and DONE ), time (the timestamp for the queue time), results (only for DONE tasks) and
_id (only for tasks loaded from the database). Finally, the Evaluator class, which also acts as a fac-
tory to instantiate any supported evaluator, must be extended for implementing a particular evaluation
format by overriding the run() method, which must generate an output CSV on the results directory,
with three columns: rank (positive integer), doc_id (string or number) and relevant (“True” or
“False” string values). It can also generate a series of CSV files in the assessments directory, with in-
termediate data required by each computed evaluation metric. A results property can be set during
any stage of the run, containing a map of metric 7→ value to be displayed in the web interface. This
first version of Army ANT already implements the INEXEvaluator for the topic and assessment files
of the INEX 2009 Collection. In particular, this iterates over the title child element (the query) of
each topic element, creating a results file named with the id attribute of the topic element. Results
are then assessed using a binary grade (relevant/not relevant), based on the relevance judgments and,

8



in particular for INEX, on whether the number of relevant characters was zero (not relevant) or larger
then zero (relevant). Based on this information, we then calculate MAP and NDCG@10, which we store
in the database; any intermediate files are stored in the evaluation output directory and can then be
downloaded as a ZIP file, along with a CSV with the values for the two evaluation metrics.

Server

The army_ant.server package implements an aiohttp 6 server. HTTP methods are directly defined
within the __init__.py of the module, using the templates directory to store Jinja27 HTML templates
and the static directory to store css , img or js files. CSS and JavaScript web packages are
managed by NPM8 through a packages.json file on the root directory of the project. The server
module implements the following HTTP requests: GET / for the home page, GET /search for the
search and learn mode interface, GET /evaluation to manage evaluation tasks, POST /evaluation to
launch a new evaluation task, GET /evaluation/results to download ZIP files containing the output
of an evaluation task, GET /about with information about Army ANT and GET /static to serve static
files. The server also runs the EvaluationTaskManager.manage() method, which periodically launches
WAIT ing tasks.

Util
The army_ant.util package simply implements functions that can be reused throughout the application
and currently includes, for this first version of Army ANT: html_to_text() to strip HTML tags from
an HTML fragment string, load_gremlin_script() to load a Gremlin script as a string, md5() to
compute the MD5 of a file given its filename, get_first() to get the first element of a list or None if
empty, and zipdir to create a ZIP archive of a given directory.

Extras
The army_ant.extras package provides additional functions that are frequently called from the com-
mand line interface and that are particular to a given dataset or engine implementation. In this first
version of Army ANT, we provide the procedure fetch_wikipedia_images() to complement metadata
for Wikipedia documents with the first image in the infobox of the corresponding web page. This enables
us to display a thumbnail next to a Wikipedia result within the web interface.

User’s Manual

In this section, we will provide an overview of the requirements for a normal operation of Army ANT,
including any dependencies for the implemented classes. We will then provide examples for the command
line interface, in particular listing supported values for the arguments of implemented readers, engines
and extras. Finally, we will describe the web interface and how it can be used to learn about, explore
and evaluate implemented engines.

Requirements and Installation
In order to run Army ANT, you first require an installation of Python 3.6.x. Since the latest version of
Python is not widely available in the software repositories for the main Linux distributions, we instead
managed the Python version through pyenv9. As of the writing of this report, pyenv should be installed
and configured as follows:

git clone https://github.com/pyenv/pyenv.git ~/.pyenv
echo ’export PYENV_ROOT="$HOME/.pyenv"’ >> ~/.bashrc

6http://aiohttp.readthedocs.io/en/stable/
7http://jinja.pocoo.org/
8https://www.npmjs.com/
9https://github.com/pyenv/pyenv#installation
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echo ’export PATH="$PYENV_ROOT/bin:$PATH"’ >> ~/.bashrc
echo ’eval "$(pyenv init -)"’ >> ~/.bashrc

After installing pyenv and restarting the terminal emulator to load the ∼/.bashrc script (or simply by
running source ∼/.bashrc , Python 3.6.0 will automatically be used within the Army ANT directory,
as configured in the .python-version file. At this point, you should run the following command, in
the root of the project, to install Python dependencies:

pip install -r requirements.txt

For the MongoDatabase , you will also need a MongoDB instance running. In a Debian based distribution,
you can simply run the following command to do this:

sudo apt-get install mongodb-server
sudo service mongodb start

For the provided GraphOfWord and GraphOfEntity implementations, you will also need Java 8 and
Apache TinkerPop Gremlin Server. Java 8 can be installed through the following command:

sudo apt-get install openjdk-8-jdk

You can install Apache TinkerPop Gremlin server by visiting the website10, downloading the binary for
the 3.2.4 version of the Gremlin Server and uncompressing it in /opt/apache-tinkerpop-gremlin-
server-3.2.4 . The Neo4j Plugin must then be installed, otherwise the server will not provide any
persistence and will not work with the provided configurations:

cd /opt/apache-tinkerpop-gremlin-server-3.2.4
bin/gremlin-server.sh -i org.apache.tinkerpop neo4j-gremlin 3.2.4

In the event that the installation fails, try to create the Groovy configuration file ∼/.groovy/groovyCon-
fig.xml , with the following contents, in order to reconfigure the download location for Grapes (the
Groovy dependency management software) and retry the previous command:

<ivysettings>
<settings defaultResolver="downloadGrapes"/>
<resolvers>
<chain name="downloadGrapes">
<filesystem name="cachedGrapes">
<ivy pattern="${user.home}/.groovy/grapes/[organisation]/[module]/ivy-[revision].xml"/>
<artifact pattern="${user.home}/.groovy/grapes/[organisation]/[module]/[type]s/[artifact

]-[revision].[ext]"/>
</filesystem>
<ibiblio name="codehaus" root="http://repository.codehaus.org/" m2compatible="true"/>
<ibiblio name="central" root="http://central.maven.org/maven2/" m2compatible="true"/>
<ibiblio name="jitpack" root="https://jitpack.io" m2compatible="true"/>
<ibiblio name="java.net2" root="http://download.java.net/maven/2/" m2compatible="true"/>

</chain>
</resolvers>

</ivysettings>

After installing the Neo4j Plugin, we suggest you create symbolic links to the provided configuration files
in /opt/apache-tinkerpop-gremlin-server-3.2.4/conf :

10https://tinkerpop.apache.org/
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cd /opt/apache-tinkerpop-gremlin-server-3.2.4/conf
ln -s <Army ANT directory>/config/gremlin-server-neo4j-graph-of-word-wikipedia.yaml
ln -s <Army ANT directory>/config/gremlin-server-neo4j-graph-of-entity-wikipedia.yaml
ln -s <Army ANT directory>/config/gremlin-server-neo4j-graph-of-word-inex.yaml
ln -s <Army ANT directory>/config/gremlin-server-neo4j-graph-of-entity-inex.yaml
ln -s <Army ANT directory>/config/neo4j-graph-of-word-wikipedia.properties
ln -s <Army ANT directory>/config/neo4j-graph-of-entity-wikipedia.properties
ln -s <Army ANT directory>/config/neo4j-graph-of-word-inex.properties
ln -s <Army ANT directory>/config/neo4j-graph-of-entity-inex.properties

Finally, create the directory structure for Army ANT on /opt/army-ant :

mkdir /opt/army-ant
mkdir /opt/army-ant/{data,eval}
mkdir /opt/army-ant/eval/{spool,results,assessment}

You can now try to run for instance Army ANT server to ensure everything went right:

cd <Army ANT directory>
./army-ant.py server

In the following sections, we will present further details on how to use the command line interface to
index one of the supported collections using one of the implemented engines, as well as to use the web
interface to issues queries and explore results to the indexed collections and to evaluate different engines
over the INEX 2009 Collection.

Command Line Interface
In this section, we will illustrate the four commands supported by army-ant.py , presenting a complete
example for each of them and a list of the supported values for each argument.

Index

The first step in a workflow, assuming a reader and an engine has already been implemented, is to index
a supported dataset. Next, we exemplify the indexing action based on the INEX 2009 Collection, the
graph-of-word index type and a MongoDB instance to store metadata:

cd <Army ANT directory>
./army-ant.py index --source-path "INEX 2009/dataset/pages25.tar.bz2" --source-reader "inex" --

index-location "localhost:8184" --index-type "gow" --db-location "localhost:27017" --db-
name "graph_of_word_inex" --db-type "mongo"

Valid --source-reader values include wikipedia_data for Wikipedia Relation Extraction Data v1.0
and inex for INEX 2009 Collection. Valid --index-type values include gow for the graph-of-word
engine and goe for the graph-of-entity engine. Valid --db-type values only include mongo . Any of
these adapted for different dataset sources, retrieval models and storage layers, respectively, by extending
the base classes as described previously in Section 2.1.

Search

While the command line is not the preferred search interface (we suggest you use the web interface instead,
for obvious reasons), Army ANT still provides some facilities to test the engine via the command line.
Next, we present an example of a search query to the graph-of-word engine for the INEX 2009 Collection:
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cd <Army ANT directory>
./army-ant.py search --query "york" --offset 0 --limit 3 --index-location "localhost:8184" --

index-type "gow" --db-location "localhost:27017" --db-name "graph_of_word_inex" --db-type "
mongo"

This will result in the following output, with the rank, score, document identifier and metadata for each
returned item:

===> 1 75.08 193001
url: http://en.wikipedia.org/?curid=193001
name: Louis Brandeis

===> 2 56.76 15334002
url: http://en.wikipedia.org/?curid=15334002
name: New York State Route 323

===> 3 50.02 19346003
url: http://en.wikipedia.org/?curid=19346003
name: Bond Clothing Stores

The same set of valid values described for the index command can be used with the search command,
specifically for --index-type and --db-type .

Server

Listing 2.3: Army ANT server configuration file for a graph-of-word and a graph-of-entity index per
dataset: Wikipedia Relation Extraction Data v1.0 and INEX 2009 Collection.

[DEFAULT]
db_location=localhost
db_type=mongo
eval_location=/opt/army-ant/eval

[gow-wikipedia_data]
name=Wikipedia Data - Graph of Word
index_type=gow
index_location=localhost:8182
db_name=graph_of_word_wikipedia

[goe-wikipedia_data]
name=Wikipedia Data - Graph of Entity
index_type=goe
index_location=localhost:8183
db_name=graph_of_entity_wikipedia

[gow-inex]
name=INEX - Graph of Word
index_type=gow
index_location=localhost:8184
db_name=graph_of_word_inex

[goe-inex]
name=INEX - Graph of Entity
index_type=goe
index_location=localhost:8185
db_name=graph_of_entity_inex
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In order to run the server and access the learning mode and evaluation modules, you must first
configure a set of valid engines and other parameters through the server.cfg file. Listing 2.3 presents
an example of the configuration file used during this experience. The properties defined in DEFAULT
section are shared by the remaining sections, unless redefined in that section. In particular, we use the
localhost instance of MongoDB on the default port (unspecified). We also use the /opt/army-ant/eval
directory as the base directory for evaluation task input and output. Besides DEFAULT , each of the other
sections contains the configuration for an engine, with the name of section defined in the format <en-
gine>-<dataset> and directly used as the value of the selection dropdown in the web interface. The
name of the engine is used to display each option in the dropdown to the user. The index_type
property determines the engine to use and the index_location property defines the location of the
index of the given type, for the particular dataset it refers to. Finally, db_name simply points to the
MongoDB database that stores metadata about the documents. While, in this example, we use different
instances for all engines, we could have used the same database per dataset, since both indexes would
reference the same document collection. The server, which runs in port 8080, can then be run using the
following command:

./army-ant.py server

Extras

As we have previously described in Section 2.1, we have only implemented one extra feature that can
be called through the command line interface with the fetch-wikipedia-images command, as shown
below:

./army-ant.py fetch-wikipedia-images --db-name "graph_of_word_inex" --db-location "localhost
:27017" --db-type "mongo"

This will read a url metadata attribute and, if it matches a Wikipedia URL, visit the corresponding
web page and extract the first image from the infobox table, if any exists. The URL for the image is
then stored in the img_url metadata attribute and will be used, when available, to display an image
next to each search result.

Web Interface
In this section, we describe the web interface and how it can be used to learn about, explore and evaluate
implemented retrieval models (engines). This can only be done after implementing the required reader,
index and evaluator classes, and indexing any relevant collections. First, we describe the basic search
interface, not unlike a common search engine, with the exception of the ability to select a retrieval model
to search with and an indexed dataset to search over. Then, we describe the learn mode interface,
where information for the first 30 results is displayed, with the goal of explaining how the scores for
each document were calculated. This also includes bibliographic references to scientific publications
describing the retrieval model (document representation and weighting scheme) and the indexed dataset.
Finally, we explain how the evaluation interface works, presenting further details on accepted formats
and generated output.

Search

When you first access Army ANT server, for example on http://localhost:8080 , you will be taken
to a Home page, suggesting you visit the About page for further information. From the Home page, you
can also access the search and learn mode interface via the Search anchor, or the evaluation interface via
the Evaluation anchor. When you first press the Search anchor, you will be taken to an empty search
page with a query input box, an engine selection dropdown and a learn mode toggle button. Let us say
we wanted to search for born new york , using the graph-of-entity retrieval model over the Wikipedia
Relation Extraction Data v1.0. The result of this action is illustrated in Figure 2.2. As we can see, we
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Figure 2.2: Army ANT basic search and engine selection.

present a clean interface, paginating results and providing an image and link to each web document when
possible. This provides a basic interface to explore indexed datasets with different retrieval models.

Learn Mode

The learn mode was created with two goals in mind. First, it can be used to help in the design of a
retrieval model by explaining a document’s score through its individual components. Secondly, it can
be used to teach information retrieval, as an interactive documentation platform for retrieval models
and document collections. It clearly shows how each particular weighting function works and provides
further web and bibliographic references on the subject, as well as on the document collection, aiding
with understanding the structure of indexed contents.

Parallel Coordinates Plot Figure 2.3 shows a visualization of individual score components — we
chose the parallel coordinates system (Inselberg [1985]), since it allows for a condensed and useful view
of multivariate data. This kind of plot acts as a decision support mechanism, in order to choose whether
a component is redundant, has too low or too high of an impact, requiring scaling or normalization, and
to build an intuition on the discriminative power of a score component.

Score As a complement to the parallel coordinates plot, we also provide descriptive content on the
score components, fully describing the weighting function and providing a bibliographic citation and
corresponding link to the publication that details that particular retrieval model, usually also covering the
document representation model. Figure 2.4 illustrates such information for the graph-of-word retrieval
model.
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Figure 2.3: Army ANT learn mode parallel coordinates plot for score components per document.

Dataset Similarly, we also provide descriptive content on the indexed dataset, including a link to its
web page, usually providing a download location, when available. We then present a short description
of the collection, along with an example of the structure and content of a particular document. When
available, we provide a bibliographic citation and corresponding link to the main publication associated
with the dataset. This usually corresponds to a data collection and characterization paper, but sometimes
it only describes a particularly relevant usage of the dataset.

Results Finally, as illustrated in Figure 2.7, we present the ranked list of results, displaying the rank
position, the computed score and the document identifier, stripped of any metadata. This is useful in
clarifying the difference between indexing and storage. Indexing solutions like Apache Solr have lately
been used as databases, since documents are analyzed and indexed but also stored within this software.
This has made the two processes harder to distinguish for a new student of information retrieval and,
therefore, showing the results without any metadata is a useful tool to clarify this. While solutions like
Apache Lucene/Solr also implement a kind of document database storage layer, the index is not, per se,
a database! In fact, in Army ANT, we separate the two layers — nevertheless, it is useful to mention
that this logical segmentation of indexing and storage might result in a slight loss of performance unless,
of course, there is no interest in retrieving document metadata. This is because, at a low level, the index
might directly store the offset of the metadata to retrieve for a document, while separating this would
require a database index or a sequential search to reach the same metadata. For educative purposes,
however, we believe this is the right choice, to separate the two layers.

Evaluation

Finally, we describe the evaluation interface, which requires the prior indexing of a dataset with relevance
judgments for a set of search topics. In particular, the first version of Army ANT supports the inex
evaluation format. This means that, in order to launch an evaluation task, we must first select the
topics and assessments files, picking the INEX evaluator format and one of the available INEX engines
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Figure 2.4: Army ANT learn mode descriptive explanation of the ranking function.

to evaluate. In the current version, only one evaluator can be active per topics file, assessments file and
index, but this will changed in the future. The ability to delete evaluation tasks will also be added. An
evaluation task has three possible statuses: when it’s queued, it enters the queue in the WAIT status
and, when the EventTaskManager.process() method is periodically called, the next available task
will be started (only one task can currently run at a time). At this point, the task will change its
status to RUNNING and, when it finishes, it will change its status to DONE . Finished tasks, enable an
interface button with a plus/minus to toggle the results of the evaluation, in the form of a dictionary
and usually displaying the values for MAP and NDGC@10. Additionally, the user can download a ZIP
file containing a CSV with these metrics, as well as intermediate files used to compute the metrics, by
pressing the download link in a DONE status.

16



Figure 2.5: Army ANT learn mode descriptive explanation of the indexed dataset(s).

Figure 2.6: Army ANT learn mode detailed view of the top-30 results, without metadata.
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Figure 2.7: Army ANT learn mode evaluation task manager.
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Chapter 3

Graph-Based Models

As a net is made up of a series of ties, so
everything in this world is connected by a se-
ries of ties. If anyone thinks that the mesh of
a net is an independent, isolated thing, he is
mistaken. It is called a net because it is made
up of a series of an interconnected meshes,
and each mesh has its place and responsibil-
ity in relation to other meshes.

— Gautama Buddha

In this chapter, we describe the two graph-based document representation and retrieval models imple-
mented in Army ANT. First, we cover the graph-of-word model, proposed by Rousseau and Vazirgiannis
(2013), along with our implementation of the model. We used a common graph structure for all docu-
ments, built for the sake of generalization within our explorative approach. This was stored on a graph
database and queried through the Gremlin1 domain-specific language for graphs. We also propose a novel
graph-of-entity model, where we extend the notion of document beyond textual content, associating text
with a set of statements that portray knowledge related to the text. This was an attempt to structure
and more clearly define the task of entity-oriented search, looking at the document as a richer source
of information. The graph-of-entity is therefore an early attempt at integrating different information
sources, seamlessly and in a unified model, where text, entities and their relations are included in a
common graph structure. While we certainly sacrifice efficiency, by using a graph database instead of
an inverted file to index the documents, our goal is to be able to explore graph-based approaches, with
a focus on benchmarking effectiveness, in order to determine whether it is worth it to further invest on
developing graph-based index data structures.

In the following sections, we will begin by describing the two datasets we used to build and evaluate
the two models. We will introduce the graph-of-word, describing graph-based document representation
and comparing the original implementation based on an inverted file with our implementation based on
a graph database. We then describe the process of doing document retrieval on the graph database, as
well as the graph-of-word ranking function and the information retrieval theory behind it. We follow
this with a description of the graph-of-entity model, as a proposal to extend the graph-of-word with a
knowledge block of entities and their relations in connection to the text. We then show how we can take
advantage of graph querying to unify the information extraction task of query entity linking with the
information retrieval task of entity ranking. We close the chapter with the evaluation of the two retrieval
models, using MAP and NDCG@10 for the topics and relevance judgments of the INEX 2009 Collection.

Datasets for Combined Data

In order to experiment with entity-oriented search, we first had to obtain a dataset. We had two options
to do this. We could find a collection of textual documents and then apply information extraction

1http://tinkerpop.apache.org/docs/current/reference/#_on_gremlin_language_variants
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Listing 3.1: Example of Wikipedia Relation Extraction Data v1.0.

url=http://en.wikipedia.org/wiki/Charles_Darwin
In recognition of Darwin’s pre-eminence, he was buried in <a href="/wiki/Westminster_Abbey"
title="Westminster Abbey" relation="death_place">Westminster Abbey</a>, close to <a href="/wiki
/William_Herschel" title="William Herschel">William Herschel</a> and <a href="/wiki/
Isaac_Newton" title="Isaac Newton">Isaac Newton</a>.

url=http://en.wikipedia.org/wiki/John_Quincy_Adams
Adams’s most important contributions to American history came before and after his relatively
ineffective term as President. Before becoming President, he was the most experienced diplomat
in the United States. While serving as <a href="/wiki/United_States_Secretary_of_State" title="
United States Secretary of State" relation="job_title">Secretary of State</a> under President <
a href="/wiki/James_Monroe" title="James Monroe" relation="superior">James Monroe</a>, Adams
negotiated the <a href="/wiki/Adams-On%C3%ADs_Treaty" title="Adams-Onís Treaty">Adams-Onís
Treaty</a> with <a href="/wiki/Spain" title="Spain">Spain</a> and devised the <a href="/wiki/
Monroe_Doctrine" title="Monroe Doctrine">Monroe Doctrine</a>, both of which were of long
lasting importance. For these activities he has been called "the most influential American
grand strategist of the nineteenth century" and "perhaps the greatest secretary of state in
American history."<span class="reference"><sup id="fn_1_back"><a href="#fn_1" title="">1</a></
sup></span>

techniques, like named entity recognition and relation extraction, to build the associated knowledge
base. Or we could find a dataset of combined data that already provides knowledge (i.e., entities and
relations) along with the textual content. In order to focus on the construction of the workbench and
the study and implementation of the retrieval models, we chose the latter. We found a small dataset
— Wikipedia Relation Extraction Data v1.0 — that fit the criteria and was ideal for the development
stage and for continuous experimentation. Lacking topics and relevance judgments, we were required to
find another dataset that provided this information, in order to evaluate the retrieval models. Another
alternative would be to test the system with real users, but, given the time constraints, this was not an
option. Furthermore, we used an already established dataset — INEX 2009 Collection —, which has
been used to evaluate several information retrieval tasks, in competition tracks similar to TREC. Using
this dataset also helped position the two tested models in regards to the state of the art. Next, we will
describe the two datasets in more detail, identifying the parts that were indexed as text and the parts
that were indexed as knowledge.

Wikipedia Relation Extraction Data v1.0

Wikipedia Relation Extraction Data v1.02 is freely provided by Aron Culotta, who leads TAPI Lab (Text
Analysis in the Public Interest Laboratory). This dataset was created from a collaboration between
the University of Massachusetts and Google, Inc. It contains two text files, wikipedia.train and
wikipedia.test , with several passages (paragraphs) from Wikipedia pages. Anchors provided within
each passage are annotated with the relation between the entities described by the current Wikipedia
page and the target Wikipedia pages. Overall, it covers 441 Wikipedia pages (257 in the training set
and 184 in the test set), 1110 passages (777 in the training set and 333 in the test set), 4681 relations
(3332 in the training set and 1349 in the test set) and 53 relation types. Listing 3.1 shows the first two
passages of the wikipedia.train file — for our experiments, we only indexed the training file. Each
passage beings with its corresponding URL from Wikipedia and is followed by a paragraph containing
an HTML fragment with a elements annotated with a special relation attribute.

There can be multiple passages per Wikipedia page. In Army ANT, we consider all the passages per
Wikipedia page as a single document. We use the concatenated passages, stripped of HTML tags, as
our text block, and associate each Wikipedia page with its implicit entity, as extracted from the URL
ending, building a knowledge block based on the relations between such entities. During indexing, we

2http://cs.iit.edu/~culotta/data/wikipedia.html
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Listing 3.2: Example of INEX 2009 Collection.

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated by CLiX/Wiki2XML [MPI-Inf, MMCI@UdS] $LastChangedRevision: 92 $ on 17.04.2009
04:39:56[mciao0825] -->
<!DOCTYPE article SYSTEM "../article.dtd">
<article xmlns:xlink="http://www.w3.org/1999/xlink">
<header>
<title>Portal:Comedy/Did you know/61</title>
<id>18359000</id>
[...]
</header>
<bdy>

... that the <link xlink:type="simple" xlink:href="../616/44616.xml">
British radio sitcom</link> <b><it><link xlink:type="simple" xlink:href="../276/18249276.xml">
Safety Catch</link></it></b> is built around the moral dilemmas of a man who inadvertently
became an <link xlink:type="simple" xlink:href="../296/608296.xml">
arms dealer</link>?
[...]
</bdy>
</article>

annotate any retrievable instance of a document or entity with a doc_id equal to the URL, in order to
distinguish between entities that are used for enriching the model versus entities that are to be retrieved.
Ideally, we should not have to do this, but during our experiments we found that adding incomplete data
(i.e., entities without associated text) would somehow imbalance the model and introduce noise that
would decrease the quality of the results. While we did not measure this explicitly, it was clear from the
results that, for the two studied models, the retrieval unit had to be properly identified. In the future,
we would like to further explore this issue and generalize retrieval to any available information.

INEX 2009 Collection
While the focus was on measuring the effectiveness of the retrieval models, we had visible performance
issues while indexing the INEX 2009 Collection. This is a larger dataset that comprises 50.7 GB of
Wikipedia articles, in XML format, annotated with entity categories and internal links to other doc-
uments; it contains over 2.6 million documents, from October 8, 2008, with over 1.4 billion XML ele-
ments. Listing 3.2 shows the structure of document 18359000.xml from pages/000 of the sample-
25-000.tar.bz2 archive — each document has a header element, with metadata, and a bdy element,
with the main content of the document. Out of all the available XML annotations, we have only taken
into consideration link elements, in order to establish a relation from the current document to other
documents in the collection. This was used as the knowledge block of the entity-oriented document,
mapping Wikipedia pages to their implicit entity and considering only related_to relations to other
entities. The textual block of the document consisted on the text of the bdy tag, stripped of XML tags.
We indexed the textual block with the graph-of-text and both the textual and knowledge blocks with the
graph-of-entity. The intent was to build a better graph-based model by also taking available knowledge
into consideration. We were able to assess the quality of our proposed model based on the topics and
relevance judgments provided along the INEX 2009 Collection.

Graph of Word

The graph-of-word model has been proposed by Rousseau and Vazirgiannis (2013) as a novel graph-based
document representation, defying the term independence assumption of the bag-of-word approach. In
particular, they used an unweighted directed graph (the graph-of-word), where nodes represent terms
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Listing 3.3: Example document consisting of the first sentence of the “Semantic Search” Wikipedia
page, with DOCID=https://en.wikipedia.org/wiki/Semantic_search .

<b>Semantic search</b> seeks to improve <a href="/wiki/Search_engine_technology" title="Search
engine technology">search</a> accuracy by understanding the searcher’s <a href="/wiki/
Intention" title="Intention">intent</a> and the <a href="/wiki/Context_(language_use)"
title="Context (language use)">contextual</a> meaning of terms as they appear in the
searchable dataspace, whether on the <a href="/wiki/World_Wide_Web" title="World Wide Web">
Web</a> or within a closed system, to generate more relevant results.

and edges link each term to its following terms within a sliding window of size 3, in order to capture
context. They also defined the TW-IDF retrieval model, based on retrieval heuristics (Fang, Tao, and
Zhai [2004]), over the graph representation, and built on the indegree of the nodes. The idea was to
measure the “number of contexts” a given term appears in. In their implementation, the graph-of-word
was generated per document, computing the TW metric and storing it within an inverted file instead
of the typical TF, and so the graph structures for each document were discarded. They evaluated their
TW-IDF weighting function with and without regularization over document length, as well as with and
without parameter tuning for the pivoted document length normalization b parameter. They did a
comparison of TW-IDF with TF-IDF (Salton and McGill [1986]) and BM25 (Robertson et al. [1994]),
as well as Piv+ and BM25+ (Lv and Zhai [2011]), showing that TW-IDF consistently outperformed the
other weighting functions, particularly in realistic conditions, where parameter tuning is costly and is
seldom an option.

Document Representation
In order to illustrate how document representation is done in the graph-of-word model, we first introduce
an example document based on the first sentence of the Wikipedia page for “Semantic Search”, as shown
in Listing 3.3. The resulting graph-of-word for the document, assuming a sliding window of 3 that covers
the analyzed term, is illustrated in Figure 3.1. As we can see, words were converted to lowercase and
stopwords were removed. Working under the assumption that the terms following a given term would
be a good representation of context, the indegree of this graph is a measurement of term relevance that
takes term dependence into consideration.

The authors originally build this graph for each document, extracting the term weight (TW) from the
indegree of each node and storing the value in the inverted index, discarding the graph structure. Instead
of following this implementation approach, we stored each graph in a Neo4j3 graph database, using a
name property with the term adding a doc_id property to each edge, in order to enable the indegree
computation for any document-induced subgraph. This incurs in an obvious cost in efficiency that is
justified only by the flexibility to explore and extend the graph, as well as the ability to produce graph
computations using the Gremlin DSL. By definition, a graph database is a graph storage and retrieval
system that provides index-free adjacency, that is, each node can access any of its neighbors without
first querying an index. The Neo4j instances we use throughout this work are configured with node and
relationship (edge) auto indexing. This means that nodes and edges can be reached or filtered through
their properties using an index, but traversals are still index-free. In fact, Gremlin graphs follow the
property graph model, which can be formally defined as a directed, binary, labeled, attributed multigraph.
This means that relationships are binary (i.e., it’s not a hypergraph), (v1, v2) 6= (v2, v1) : ∀v1, v2 ∈ V
(i.e., direction matters in defining a relationship), nodes and edges have types (i.e., the graph is labeled),
and nodes and edges can have properties (i.e., the graph is attributed).

Document Retrieval
Document retrieval consists of computing the TW-IDF for each term in the query, over each document in
the collection. Next, we will present a short summary of the most relevant techniques used by Rousseau

3https://neo4j.com/
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Figure 3.1: Graph-of-word document representation model. Nodes represent terms, while arrows link each term
to the following two terms (within a sliding window of size three). This aims at capturing context.

and Vazirgiannis (2013) to construct their retrieval model. The TW-IDF weighting function is displayed
in Equation 3.1.

TW -IDF (t, d) =
tw(t,d)

1− b+ b× |d|
avdl

× logN + 1

df(t)
(3.1)

The authors took advantage of information retrieval heuristics, as formally studied by Fang, Tao, and
Zhai (2004) and, later, by Lv and Zhai (2011), to obtain a valid weighting function. These heuristics
form a toolkit of functions that can either replace TF or be combined through composition, in order
to obtain many of the well-known weighting schemes, such as TF-IDF (vector space model), BM25
(divergence from randomness) or Dirichlet prior smoothing (language modeling). Table 3.1 presents
an overview, based on the description by Rousseau and Vazirgiannis (2013), on information retrieval
heuristics, and Table 3.2 describes each individual component used within the functions. TW-IDF was
obtained by applying pivoted document length normalization to the term weight (TW) a multiplying it
by the inverse document frequency (IDF).

The document retrieval process, over the graph database implementation, requires three arguments:
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Table 3.1: Overview on information retrieval heuristics.

Designation Goal Functions

Concave function To decrease the marginal gain of
multiple occurrences of a term within a
particular document.

TFk(t,d) =
(k1 + 1)× tf(t,d)
k1 + tf (t,d)

TFl(t,d) = 1 + ln[1 + ln[tf(t, d)]]

Pivoted length
normalization

To scale by document length, handling
documents of varying lengths and ensur-
ing “probability of retrieval matches prob-
ability of relevance”.

TFp(t,d) =
tf(t,d)

1− b+ b× |d|
avdl

Lower-bounding
regularization

To scale by document length, handling
documents of varying lengths and ensur-
ing “probability of retrieval matches prob-
ability of relevance”.

TFδ =

{
tf(t,d) + δ if tf(t,d) > 0

otherwise

an array of query tokens, and an offset and a limit for pagination purposes. In order to calculate TW-IDF,
we follow the subsequent steps:

1. For each node matching a query token, we count the number of incoming edges per document,
obtaining the tw(t, d) component.

2. For each node matching a query token, we count the number of unique doc_id for incoming and
outgoing edges, obtaining the document frequency df(t) component.

3. We compute the length |d| of each document, based on the number of unique terms per document,
by grouping edges by doc_id and counting the number of target nodes. This deviates slightly
from the original graph-of-word model, as a restriction imposed by our current implementation,
which we plan to correct in the future, by adding an edge weight and summing over this weight
instead of counting.

4. Based on the document lengths computed in the previous step, we calculate the avdl average
document length.

5. Corpus size can be computed by counting the number of unique doc_id over all edges.

6. Finally, we iterate over the precomputed indegree of each term node and calculate the tw-idf(t, d)
for each document. We then group by document and sum the individual tw-idf(t, d) values to
obtain the final score for the document.

The actual Gremlin code used to query the graph-of-word is available in Appendix A.1.

Table 3.2: Description of individual components used in information retrieval heuristic functions.

Component Description

tf(t, d) Term frequency of the term t in the document d.
k1 Asymptotical maximal gain achievable by multiple occurrences compared to a single

occurrence (by default, k1 = 1.2).
b ∈ [0,1] Slope parameter of the tilting.
|d| Document length.
avdl Average document length across the corpus.
δ Lower-bounding gap (by default, δ = 1.0).
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Graph of Entity

We propose the graph-of-entity as an extension to the graph-of-word with the goal of unifying all available
information sources (text and knowledge) in a single data structure. The intuition is that seamlessly
integrating text and knowledge has the potential to unlock novel solutions for multiple tasks within
entity-oriented search. Furthermore, we believe as well that we might be able to somehow combine these
solutions in order to improve the outcome of each other and the overall performance of the system.

Information retrieval (IR) and information extraction (IE) have always been two complementing
areas, but in the last few years we have seen an increasing combination of the two areas in hybrid
systems that are not clearly an IR or IE system, but rather both. This is the case of entity-oriented
search engines like Google. The goal is to use the best available information, which sometimes means
taking advantage of a well-curated knowledge base, automatically building our own or simply retrieving
complete textual documents or specific relevant passages in an attempt to solve the information needs
of the users.

There are several tasks to be tackled in the context of a search engine, well beyond document rep-
resentation and indexing or document ranking and retrieval. In particular, when there is additional
knowledge available, and given the relevance of entities in search queries (Bautin and Skiena [2007]),
we can process the query in order to better understand user intent (Hu et al. [2009]; Rose and Levin-
son [2004]; Li and Xu [2014]; Hasibi, Balog, and Bratsberg [2015]; Gupta and Bendersky [2015]; Foley,
O’Connor, and Allan [2016]; Pound et al. [2012]; Tan et al. [2017]), taking advantage of query entity
linking to improve retrieval.

Our proposal is that we bridge text and knowledge through a graph-based data structure to improve
entity-oriented search. As proof of concept, we implement query entity linking over the graph, weighting
candidate entities based on the edges between text and entity nodes and integrating these weights into
the ranking function. We view the tasks in entity-oriented search as a whole, proposing that, instead of
choosing the best query segmentation and semantic tags, we should propagate uncertainty and combine
it with the ranking function as an additional feature — a decision on relevance should only be taken
based on maximal information.

Next, we describe the graph-of-entity model, explaining how it evolved from the graph-of-word, and
working as a first approach to the problem of unifying text and knowledge for better retrieval.

Document Representation
Let us assume that a document consists of a unique identifier, a text field and a list of triples containing
knowledge related to the covered topic(s). Figure 3.2 shows the graph-of-entity for the same example
document from Listing 3.3, that was also used to illustrate the graph-of-word in Section 3.2. This is a
labeled multigraph, with two node types — term , in pink, and entity , in green — and three edge
types — related_to , represented as a solid arrow between two entity nodes, before , represented as
a dashed arrow between two term nodes, and contained_in , represented as a dotted arrow between
a term node and an entity node. Perhaps the biggest difference between the graph-of-entity and the
graph-of-word, apart from the extensions, is that we do not use a sliding window to obtain the edges
and establish a context. Instead, we simply capture term dependence by modeling term sequence. The
same information is captured within this graph and we can obtain the same statistic by traversing all
paths from a given node and under a maximum distance which is equivalent to the window size. The
impact in storage size is visible, as we will show in Section 3.4.1, and it allows for alternative techniques
like using random walks instead of traversing all paths to compute probabilities for a weighted context,
introducing yet another level of uncertainty that can be propagated to the ranking function.

The Neo4j graph database for the graph-of-entity stores a doc_id property associated with before
edges, as well as with searchable entity nodes. Some metadata is also stored within entity nodes,
including name and url properties, when available. Similarly to the graph-of-word implementation, we
configured node and relationship (edge) auto indexing for the graph database.

Document Retrieval
We model document retrieval as an entity retrieval problem, proposing an EW -TEF (Q, e) weighting
function where we take into consideration the entity weight (EW), computed from coverage (fraction
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Figure 3.2: Graph-of-entity document representation model. Solid arrows represent related_to relations
between entity nodes (in green), dashed arrows represent before relations between term nodes (in pink), and
dotted arrows represent contained_in relations between term nodes and entity nodes.

of links to seed entities) and average weighted inverse path length (from each entity to seed entities,
weighted by the seed node confidence). We then combine the results obtained from entity weight with
the results obtained from a term entity frequency (TEF) component. Seed entities are obtained through
a query entity linking process, consisting of all entities with a given probability of representing the
query. While the ranking function for the graph-of-entity is far from being publishable, given it still
requires further research and improvements, it is already worth documenting and evaluating, in order to
establish a baseline that we can build upon. It is of particular interest to discuss the unification of query
entity linking and entity ranking as a single task, in a system that is not purely based on either text or
knowledge, heavily relying, instead, on combining weights for terms and entities.

Next, we will describe each computational step taken towards obtaining a particular component of
the final score, starting with query entity linking to obtain a set of seed nodes, then computing an entity
weight for each entity in the graph with an associated doc_id and extending the results list with any
missing text-based results. The biggest pitfall of the final step is that it uses the standard boolean model,
meaning that a document is either included in the results list when it’s relevant or not at all when it’s
not relevant, but it is not ranked, having a score of zero. This is clearly an area that requires further
work, in particular regarding the combination of EW and TEF. However, we included this component
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simply to improve recall, ensuring that graph-of-entity is at least on par with graph-of-word.

Query Entity Linking

The retrieval process begins with the identification of the term nodes corresponding to each query term.
The selection process of seed nodes is then analogous to query entity linking, with two main differences:
(i) linking is probabilistic instead of deterministic, and (ii) whenever a term cannot be linked with an
entity, the term node is used as a seed node with unitary weight, in a zero to one scale. The process is
then described as follows:

1. For each node matching a query token (from now on, query node), follow all contained_in edges
and gather entity nodes along with query nodes that have no outgoing contained_in edges. These
are the seed nodes.

2. For each seed node, either return a confidence weight of one, if it is a term node, or the fraction of
query nodes linking to the entity seed node per total number of incoming contained_in edges.

For further details on the implementation of the query entity linking process, pay special attention
to the seedScoresPipe and seedScores variables, as displayed in Appendix A.2.

Entity Weighting

The goal is then to rank all entity nodes based on the identified seed nodes that, in turn, are a fuzzy
representation of the query in the graph. We compute the relevance of an entity in regards to the seed
nodes based on the geodesic distance. Particularly, we consider that the further away an entity node is
from the seed nodes, the less relevant it is to the query — as an indicator or relevance, we use the inverse
of the distance between an entity node and a seed node, under a given maximum distance threshold. We
then multiply this by the confidence weight of each seed node — an entity might be relevant for a seed
node, but if that seed node is only weakly linked to the query, then it is less relevant (unless no other,
more relevant results are available). We call this metric the average weighted inverse distance to seed
nodes.

The second component of the entity weight that we compute is the coverage of an entity node in
regards to the seed nodes — the more seed nodes are linked (i.e., have a path) to an entity node, the
more relevant they are to the query. The coverage is simply the fraction of seeds with a path to the
entity per total number of seeds. The product of the coverage and the average weighted inverse distance
to seed nodes is the entity weight (EW).

For further details on the implementation of the entity weight, pay special attention to the distances-
ToSeedsPerEntity variable, as well as the first block of code within the ewTef variable, as displayed
in Appendix A.2.

Factoring in Text

Finally, after directly using the entity weight as our ranking function and experimenting with Army ANT,
we noticed that the graph-of-word would, in some cases, return results when none were returned by the
graph-of-entity. At this point, we decided to introduce the term entity frequency (TEF) component. The
idea was to match the doc_id property, found within before edges between a query node and another
term node, with the respective entity nodes (with the same doc_id ), calculating the number of entities
per term (i.e., the term entity frequency).

While we experimented with log normalization for TEF, due to time constraints we were unable to
find a good candidate ranking function to combine EW and TEF. Thus, we simply added all documents
retrieved via TEF that hadn’t already been retrieved by EW, giving them a zero score. We did this
simply to improve recall and assuming a continued improvement of the graph-of-entity ranking function.

For further details on the implementation of the entity weight, pay special attention to the term-
EntityFrequency variable, as well as the second block of code within the ewTef variable, as displayed
in Appendix A.2.
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Figure 3.3: Searching for web search system over the graph-of-entity. Thicker node borders indicate query
nodes, while light gray nodes correspond to identified seed nodes. We also show the confidence weight w(s) for
each seed node, as well as the distances d(s) from seed nodes to each entity node.

Practical Example

Let us assume we issue the query web search system over the graph-of-entity for the example document
in Listing 3.3. Notice also that the graph-of-entity does not exist in isolation for each document, but
instead everything is connected to represent the document collection. However, for this practical example,
we only use the graph-of-entity for the first paragraph of the “Semantic Search” Wikipedia page.

As we can see in Figure 3.3, the first step was to identify the term nodes matching the query terms.
These are displayed with a thicker border. We then identify the seed nodes that will represent the query
in the graph. These are displayed in light gray. There are three entity seed nodes — World Wide Web ,
Semantic Search and Search engine technology — and one term seed node — system . For each
seed node, we annotate the graph with the confidence weight. Both the World Wide Web , Search
engine technology and system have a maximum confidence weight of one, while Semantic Search
has a confidence weight of 0.5, since only one in two contained_in incoming edges comes from a query
node ( search ). We then calculate, for each entity node, the distance from each seed. In this example,
given we are analyzing a single document, there is a path from every seed to every entity node, but,
in the event there wasn’t, some of these distances would be infinite (undefined). The coverage for each
entity node in this graph is maximal, with a value of one, since there is always a path from an entity
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Table 3.3: Entity weight for all entities in the graph-of-entity from Figure 3.3.

Rank Entity EW(Q, e)

1 World Wide Web 0.5944444
2 Search engine technology 0.5753968
3 Semantic search 0.5555556
4 Contextual (language use) 0.3531746
5 Intention 0.3531746

node to all seed nodes. Given all these values, we can easily calculate the entity weight for each entity
e and query Q. Individual entity weight values are shown in Table 3.3, as calculated using Equation 3.2
and already ranked accordingly. The coverage is always one, which multiples with the average of the
weighted inverted distances.

EW (Q, e) = 1· 1
3
·
(
w(s1) ·

1

1 + d(s1)
+ w(s2) ·

1

1 + d(s2)
+ w(s3) ·

1

1 + d(s3)
+ w(s4) ·

1

1 + d(s4)

)
(3.2)

Brief Discussion From the elaboration of this practical example, we found three interesting details.
First, we noticed there was an error in the calculation of the inverse distance to seed nodes as, in some
cases, a division by zero was possible. We corrected this by using 2

1+d instead. Then, regarding the
document retrieval strategy, we found that an entity that is a seed node and often a good candidate for
a high score, was potentially being ignore when there wasn’t a path from other seed nodes. While, in
practice, we didn’t notice the impact of this, it is something that we must correct in the future. Finally,
we also noticed that, while the weight of a term seed node should be higher than that of an entity seed
node, simply because there usually are more entity seed nodes, we might have exaggerated in setting the
weight of a term seed node to one. In the future, we should experiment with lower fixed values or even
a function instead.

Evaluation

In this section, we present some performance statistics regarding the current indexing efficiency of the
rather underoptimized implementation based on graph databases. We also present disk space and graph
statistics, comparing the indexes for Wikipedia Relation Extraction Data v1.0 and for INEX 2009 Col-
lection. We also present the MAP and NCDG@10 effectiveness metrics for each graph-based retrieval
model, computed using the Army ANT workbench over a small sample of the INEX 2009 Collection.

Index Performance Statistics
During the preparation of this implementation, we opted to not prematurely optimize the system, as our
focus on on effectiveness. Otherwise, we would have reconsidered a different approach to implement the
index, given that a graph database already uses two inverted indexes, for the node and edge properties, be-
sides the data structure for index-free adjacency graph traversals. Nevertheless, in Tables 3.4 and 3.5, we
present several statistics, per dataset, regarding Neo4j and MongoDB storage of both the graph-of-word
and graph-of-entity models. As we can see, the graph-of-entity takes longer to be built, but also results
in a smaller index. When comparing the two index time for either dataset, it is clear that the current
approach does not scale well and even after basic optimizations using the BulkLoaderVertexProgram ,
we predict that it still won’t be up to par on scalability (at least not without a different storage strategy).

As we can see, the storage space taken by the metadata is minimal — it’s always under 1 MB. For
the Wikipedia Relation Extraction Data v1.0, the resulting graph-of-word contained over 7k nodes and
73k edges, while the graph-of-entity contained over 14k nodes and 49k edges, resulting in double the
nodes and nearly half the edges. For the INEX 2009 Collection, the resulting graph-of-word contained
over 135k nodes and 2.4 million edges, while the graph-of-entity contained over 284k nodes and 1 million
edges, resulting in less than double the nodes and less than half the edges.
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Table 3.4: Index and database statistics for Wikipedia Relation Extraction Data v1.0.

Neo4j Data

Index Time 2m44s
Index Size 143 MB
Number of Vertices 7,957
Number of Edges 73,232
Number of Documents 257

MongoDB Data

Storage Size 0.1757 MB
Index Size 0.0068 MB

(a) Graph of Word.

Neo4j Data

Index Time 32m41s
Index Size 40 MB
Number of Vertices 14,551
Number of Edges 49,095
Number of Documents 257

MongoDB Data

Storage Size 1.0078 MB
Index Size 0.0849 MB

(b) Graph of Entity.

Table 3.5: Index and database statistics for INEX 2009 Collection (subset containing pages/000 , pages/001 ,
pages/002 and pages/003 from the pages25.tar.bz2 archive).

Neo4j Data

Index Time 52h58m
Index Size 1.4 GB
Number of Vertices 135,005
Number of Edges 2,363,741
Number of Documents 2608

MongoDB Data

Storage Size 0.6758 MB
Index Size 0.0936 MB

(a) Graph of Word.

Neo4j Data

Index Time 67h55m
Index Size 823 MB
Number of Vertices 284,902
Number of Edges 1,014,884
Number of Documents 2610

MongoDB Data

Storage Size 0.6758 MB
Index Size 0.0936 MB

(b) Graph of Entity.

Retrieval Model Effectiveness
We measured the retrieval model effectiveness based on the mean average precision (MAP) and the
normalized discounted cumulative gain for the top 10 results (NDCG@10). We used the topics and
relevance judgments provided along with the INEX 2009 Collection to assess both models. However,
given the inefficiency of our implementation, we were only able to test the system based on a small
subset of nearly three thousand documents. This was not ideal since, as we verified, many of the queries
for each topic did not return any results, given only a small fraction of the document collection was
indexed.

Nevertheless, we present the results that we obtained for the MAP and NDCG@10 metric for either
model. In the future, we intent to improve the indexing performance, in order to be able to index
the complete dataset and properly rerun the evaluation tasks in Army ANT. The relevance judgment
files present an assessment for the context of passage retrieval, thus providing the number of relevant
characters in a document, for a given topic, as the judgment grade. For the MAP metric, we only required
a binary relevance grade and thus simply considered that zero relevant characters meant the document
was not relevant and vice-versa. For the NDCG@10, it is more common to use a grade between 0 and 3

Table 3.6: Evaluation metrics for the graph-of-word and graph-of-entity retrieval models over a small sample
of the INEX 2009 Collection.

Retrieval Model MAP NDCG@10

Graph of Word 0.0055 0.0015
Graph of Entity 0.0048 0.0061
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to calculate the metric. We experimented with the number of relevant characters instead, but it resulted
in infinitesimal values that could only read as zero. An alternative would be to calculate the fraction of
relevant characters instead and then split the space into intervals with an equal number of documents,
assigning a grade from 0 to 3 based on the prepared bins. Given the performance issues related to the
processing of this moderately large dataset, we decided to use another alternative, which consisted on
simply assigning a binary grade as we did for the MAP metric. Table 3.6 shows the effectiveness metrics
obtained for both models. As we can see, the metrics do not agree, with MAP being slightly larger for
the graph-of-word and NDCG@10 being slightly larger for the graph-of-entity. After a brief analysis of
the intermediate file for MAP, with the individual average precisions for each topic, we found that the
graph-of-word only returned results for 5 out of 52 topics, while the graph-of-entity only returned results
for 1 out of 52 topics. Clearly this is not enough to support any conclusion, but instead we take it as
an opportunity to illustrate the evaluation methodology we have already prepared for future research in
the area.
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Chapter 4

Conclusion

We have presented the Army ANT workbench for innovation in entity-oriented search. This software
package has been created as a tool for research and education, with the specific problem of evaluating
graph-based entity-oriented retrieval models and to support the incoming participation in the TREC
2017 Open Search track.

We began by introducing TREC and the Open Search track, along with our proposed methodology
for innovation in the area of entity-oriented search and a bit of context as to the reason of exploring
graph-based retrieval models with the goal of unifying information sources and retrieval tasks in a single
model. We then presented the Army ANT system architecture, describing how it can be extended by
other researchers to implemented and evaluate their own models. We also presented the user’s manual for
the workbench, where we described the requirements and installation procedure, along with the command
line and web interfaces. Finally, we experimented with two different graph-based models: graph-of-word,
an already existing model by Rousseau and Vazirgiannis (2013), and graph-of-entity, our proposal of a
model capable of unifying text and knowledge and of supporting the integration of query entity linking
and entity ranking by propagating uncertainty and calculating a combined final score. We described
the two datasets used for the development and testing of the system, as well as for evaluation of the
assessed models. We closed by presenting some index performance statistics, along with the evaluation
of the retrieval model effectiveness based on MAP and NDCG@10. Given we only used a subset of the
INEX 2009 Collection, due to performance restrictions, the final result was inconclusive, based on the
low support given only by a few topics with results.

Future Work

As future work, we propose to improve the graph database loading process, in order to index the full INEX
2009 Collection and to conveniently measure effectiveness with MAP and NDCG@10. An alternative,
although we argue premature, would be to work on a custom, more efficient, graph-based index data
structure. Another line of research that will be the focus of this work in the future is the improvement
of the weighting scheme for graph-of-entity and, in particular, a better integration of the term entity
frequency (TEF) component, which currently only includes relevant documents with a score of zero.

An intuition we gained based on the analysis of the diagram for the graph-of-entity, when thinking
about measuring the “number of contexts” for a term, similarly to what we do for the graph-of-word,
was that we might use random walks instead of traversing all paths, in order to compute some kind of
weighted context; this is also an interesting path to pursue.

Finally, we also done quite an extensive review on graph metrics (Hernández and Van Mieghem
[2011]), graph substructures and traversal algorithms that can be useful in the design of graph-based
retrieval strategies. Some of the concepts we analyzed included: several node-centric metrics, for in-
stance centralities — degree, closeness, random walk closeness, betweenness, eigenvector, PageRank —,
as well as concepts like eccentricity, resistance distance, local clustering coefficient, coreness, rich-club
coefficient, or vertex-connectivity. We also considered the behavior of such metrics in a multidimensional
network (Magnani et al. [2013]), where we identified at least the degree per dimension, distances within
a subset of dimensions, multidimensional betweenness centrality (based on the shortest paths from a
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subset of dimensions) and dimension relevance. Graph-wide metrics, like conductance, were also con-
sidered, as well as graph clustering techniques, commonly known as community detection, because of
their popularity in social network analysis. While there is a well-defined intuition behind each of these
concepts and usually it is relatively simple to describe the real-world representation of a given metric
or subgraph within a particular graph, there is a particularly interesting technique that has not, to our
knowledge, been studied in-depth within network science, which is the quantum walk in a graph. We
would like to experiment with quantum walks, in order to understand their effect on the graph-of-entity,
imputing some kind of semantic to this traversal strategy. For instance, random walks are useful to
compute probabilities that can be used to detect community structure. What about quantum walks?

Finally, and perhaps more importantly in the context of this assignment, we will participate in the
TREC 2017 Open Search track, where we will assess the effectiveness of graph-of-word and graph-of-
entity based on their Living Labs platform. This has always been short term the goal of building Army
ANT and proposing the graph-of-entity. With all the work we describe in this report, we believe we
are well set — with knowledge, workbenches and goals — to innovate entity-oriented search and give a
relevant contribution to the overall area of search in information retrieval.
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Appendix A

Code Listings

Graph of Word

/**
* Calculate the TW-IDF, from Graph of Word model, for a term in a document.
*
* @param indegree Term vertice indegree.
* @param docFreq Document frequency of the term. The number of documents containing the term.
* @param docLength The number of characters of the document.
* @param avgDocLength The average number of characters of the documents in the corpus.
* @param corpusSize The number of documents in the corpus.
* @param b The slope parameter of the tilting. Fixed at 0.003 for TW-IDF.
*/
def twIdf(indegree, docFreq, docLength, avgDocLength, corpusSize, b=0.003) {
indegree / (1 - b + b * docLength / avgDocLength) * Math.log((corpusSize + 1) / docFreq)

}

//queryTokens = [’born’, ’new’, ’york’]
//offset = 0
//limit = 10

graph_of_word_query: {
query = g.V().has("name", within(queryTokens))

if (query.clone().count().next() < 1) return [[results: [:], numDocs: 0]]

indegreePerTokenPerDoc = query.clone()
.project("v", "indegree").by()
.by(inE().values("doc_id").groupCount())

docFrequencyPerToken = query.clone()
.project("v", "docFreq").by()
.by(bothE().groupCount().by("doc_id"))
.collectEntries { e -> [(e["v"]): e["docFreq"].size()] }

docLengthsPipe = g.E().group().by("doc_id").by(inV().count())

docLengths = []

docLengthsPipe.clone().fill(docLengths)

if (docLengths.isEmpty()) return [[results: [:], numDocs: 0]]
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avgDocLength = docLengthsPipe.clone()[0].values().sum() / docLengthsPipe.clone()[0].values().
size()

corpusSize = g.E().values("doc_id").unique().size()

twIdf = indegreePerTokenPerDoc.clone().collect { token ->
token[’indegree’].collect { docID, indegree ->
score = twIdf(indegree, docFrequencyPerToken[token[’v’]], docLengths[docID][0],

avgDocLength, corpusSize)

[
docID: docID,
twIdf: score,
components: [
docID: docID,
’tw(t, d)’: indegree,
b: 0.003d,
’|d|’: docLengths[docID][0],
avdl: avgDocLength.doubleValue(),
N: corpusSize,
’df(t)’: docFrequencyPerToken[token[’v’]],
’tw-idf(t, d)’: score

]
]

}
}
.flatten()
.groupBy { item -> item[’docID’] }
.collect { docID, item -> [docID: docID, score: item[’twIdf’].sum(), components: item[’

components’]] }
.sort { -it.score }

numDocs = twIdf.size()

twIdf = twIdf
.drop(offset)
.take(limit)

[[results: twIdf, numDocs: numDocs]]
}

Graph of Entity

//queryTokens = [’born’, ’new’, ’york’]
//queryTokens = [’musician’, ’architect’]
//offset = 0
//limit = 5

graph_of_entity_query: {
query = g.withSack(0f).V().has("name", within(queryTokens))

if (query.clone().count().next() < 1) return [[results: [:], numDocs: 0]]

termEntityFrequency = g.V().outE("before")
.dedup()
.where(inV().has("name", within(queryTokens)))
.project("entity", "term")
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.by { p = g.V().has("url", it.value("doc_id")); if (p.hasNext()) return p.next() else
return none }

.by(inV())
.where(__.not(select("entity").is(none)))
.group()
.by(select("entity"))
.by(count())

.unfold()

.collectEntries { [(it.key): (1 + Math.log(it.value))] }

seedScoresPipe = query.clone()
.union(
__.out("contained_in"),
__.where(__.not(out("contained_in"))))

.choose(
has("type", "entity"),
group()
.by()
.by(
fold()
.sack(sum).by(count(local))
.sack(div).by(unfold().in("contained_in").dedup().count())
.sack()

),
group()
.by()
.by(constant(1d))

)
.unfold()
//.order()
//.by(values, decr)

seedScores = seedScoresPipe.clone()
.collectEntries { [(it.key): (it.value)] }

maxDistance = 1

// shortest path
distancesToSeedsPerEntity = seedScoresPipe.clone()
.select(keys).as("seed")
.repeat(both().simplePath().where(neq("seed")))
.until(
has("type", "entity")
.and()
//.outE().where(__.not(hasLabel("contained_in"))) // retrieval unit
.has("doc_id")
.or()
.loops().is(eq(maxDistance))

)
.where(
__.has("type", "entity")
.and()
//.outE().where(__.not(hasLabel("contained_in"))) // retrieval unit
.has("doc_id")

)
.path().as("path")
.project("entity", "seed", "distance")
.by { it.getAt(it.size() - 1) }
.by { it.getAt(2) }
.by(sack(assign).by(count(local)).sack(sum).by(constant(-2)).sack())

.group()
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.by(select("entity"))

.by(group().by(select("seed")).by(select("distance").min()))
.unfold()

ewTef = distancesToSeedsPerEntity.clone().collect {
docID = it.key.value("doc_id")
coverage = it.value.size() / seedScores.size()

// Iterate over each seed.
weight = it.value.collect { s ->
seedScores.get(s.key, 0f) * 2f / (1f + s.value)

}
avgWeightedInversePathLength = weight.sum() / weight.size()
entityWeight = coverage * avgWeightedInversePathLength

[
docID: docID.toString(),
score: entityWeight,
components: [[
docID: docID.toString(),
’c(e, S)’: coverage.doubleValue(),
’w(e)’: avgWeightedInversePathLength,
’ew(e, E, b)’: entityWeight.doubleValue(),
’tef(t, e)’: termEntityFrequency.get(it.key, 0),
’ew-tef(q, e)’: score

]]
]

}
.plus(termEntityFrequency.collect {
docID = it.key.value("doc_id")

[
docID: docID.toString(),
score: 0d,
components: [[
docID: docID.toString(),
’c(e, S)’: 0d,
’w(e)’: 0d,
’ew(e, E, b)’: 0d,
’tef(t, e)’: it.value.doubleValue(),
’ew-tef(q, e)’: score

]]
]

})
.unique { a, b -> a.docID <=> b.docID }
.sort { -it.score }

numDocs = ewTef.size()

ewTef = ewTef
.drop(offset)
.take(limit)

[[results: ewTef, numDocs: numDocs]]
}
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