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Abstract This paper presents a hybrid approach to solve

singular optimal control problems. It combines the direct

Euler method with a modified indirect shooting method.

The presented method circumvents the main difficulties

and drawbacks of both the direct and indirect methods,

when applied to the singular optimal control problems.

This method does not require a priori knowledge of the

switching structure of the solution and it can be applied to

finite or infinite order singular optimal control problems. It

provides not only an approximate optimal solution for the

problem but, remarkably, it also produces the switching

times. We illustrate the features of this new approach

treating numerically through two optimal control problems,

one of finite order and the other with infinite order.

Keywords Singular optimal control problem � Hybrid
method � Direct Euler method � Indirect shooting method

1 Introduction

A classic and challenging subject in the optimal control

field is singular optimal control problem (SOCP). In these

problems, Pontryagin’s maximum principle fails to directly

determine the optimal control over at least one interval.

SOCPs arise in many areas, ranging from aerospace engi-

neering (Goddard 1920; Powers and McDanell 1971) to

robotic (Chen and Desrochers 1993), industrial chemistry

(Oberle and Sothmann 1999; Luus and Okongwu 1999)

and biological science (Ledzewicz et al. 2011; Ledzewicz

and Schättler 2008).

In many practical optimal control problems and

especially SOCPs, the analytical solution cannot be

obtained and we must resort to numerical approximate

solution. Numerical methods for optimal control are

classified into the indirect and direct approaches. Indi-

rect methods use necessary conditions of optimality.

These conditions yield a Hamiltonian boundary value

problem. Such problem is commonly solved numerically

by the shooting or collocations methods. In a direct

method, without using necessary optimal conditions, the

optimal control problem is transcribed to a nonlinear

programming problem which can be solved by well-de-

veloped algorithms and softwares.

As advantages of the indirect methods, we can refer to

high accuracy in the solution and the assurance that the

solution satisfies the optimality conditions. However, the

indirect methods suffer from two major disadvantages.

First, the need to a good initial guess, not only for the state

trajectories but also for the costates. Second, the need to a

priori knowledge of the control structure. On the other

hand, the direct methods have much larger radii of con-

vergence than the indirect methods and unlike the indirect

methods and also for problems with path constraints, the
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switching structure of control does not need to be known a

priori. In the direct method, nevertheless, the obtained

solution is less accurate than the one obtained by the

indirect approaches.

Despite the great developments in the direct and

indirect methods for numerical solution of optimal

control problems with path constraint (Maurer and

Osmolovskii 2013; Razmjooy and Ramezani 2016;

Marzban and Hoseini 2015; Azhmyakov et al. 2015),

the solution of SOCPs has remained a challenge.

Accordingly, the simulation and numerical approxima-

tion of SOCPs have received considerable attention. For

instance, we can refer to indirect multiple shooting

method (Maurer 1976; Aronna et al. 2013), direct

shooting method (Vossen 2010), iterative dynamic pro-

gramming method (Luus 1992) and continuation

approach (Bonnans et al. 2008). The main difficulties in

the indirect solving SOCPs lie in determining the

switching structure of optimal control function and

extreme sensitivity to initial guess (Maurer 1976). On

the other hand, in the direct solution of SOCPs, the

accuracy of the obtained solution, especially in singular

arcs, is not satisfactory. These technical difficulties have

caused serious barriers for the solution of SOCPs, by

both the direct and indirect methods.

In this paper, we show that these mentioned difficulties

in solving SOCPs can be overcome by combining the direct

and indirect methods. Such an approach is called hybrid

method, which combines some of the best features of both

the direct and indirect methods to develop a robust and

accurate numerical method (von Stryk and Bulirsch 1992).

The aim of this hybrid method is to obtain accurate results

for SOCPs so that the user need not provide a good initial

guess and need not know a priori the switching structure.

The presented hybrid method combines the direct and

indirect methods in two steps. In the first step, the direct

Euler method is used (Betts and Huffman 1992). Based on

our experience, the Euler method is a robust method that

provides an approximate solution, which is sufficient for

detecting the structure of optimal control. However, the

obtained solution is not accurate and the position of

switching points is not obtained accurately. To improve the

low accuracy of the direct Euler method, in the second

stage, we propose an adaptive shooting method which is

initialized by the obtained information of Euler method in

the first stage.

The paper is organized as follows. In Sect. 2, the for-

mulation of SOCPs and some necessary definitions are

reviewed. In Sect. 3, by combining the direct Euler method

and a modified indirect shooting method, a hybrid method

to solve SOCPs is presented. The proposed hybrid method

is applied to two examples in Sect. 4. Finally, conclusions

are given in Sect. 5.

2 Statement of the Problem and Preliminaries

Consider the following optimal control problems, in which

the scalar control function is appeared linearly in dynamic

system and cost functional is of Mayer type

min J ðu; tf Þ ¼ gðxðtf Þ; tf Þ; ð1aÞ

s:t: _x ¼ fðxðtÞ; uðtÞ; tÞ ¼ f1ðxðtÞ; tÞ þ f2ðxðtÞ; tÞuðtÞ; ð1bÞ
xðt0Þ ¼ x0; ð1cÞ
wðxðtf Þ; tf Þ ¼ 0; ð1dÞ

u 2 U :¼ fu j uð�Þ 2 ½umin; umax� is piecewise continuousg:
ð1eÞ

Here, tf may be fixed or free, the state variable xðtÞ ¼
½x1ðtÞ; . . .; xpðtÞ�T 2 Rp is a continuous vector function and

uðtÞ 2 R is a piecewise continuous function. Furthermore,

the functions g; f1; f2 and w are sufficiently continuously

differentiable in all arguments and defined by the following

mappings:

g : Rpþ1 ! R; f1; f2 : R
pþ1 ! Rp;

w : Rpþ1 ! Rr; 0� r� p:

The Hamiltonian function for the above problem is defined

by:

Hðx; u; k; tÞ :¼ kT f1ðx; tÞ þ kT f2ðx; tÞu; ð2Þ

where kðtÞ ¼ ½k1ðtÞ; . . .; kpðtÞ�T 2 Rp is the so-called

adjoint or costate vector function.

According to the Pontryagin’s minimum principle Pon-

tryagin et al. (1962), the solution of the problem (1)

requires minimization of the Hamiltonian function (2) with

respect to u� 2 U along the entire trajectories, which satisfy

(1b), (1d) and the following costate equations

_k�ðtÞ ¼ �Hxðx�ðtÞ; u�ðtÞ; k�; tÞ; ð3Þ

and the following terminal conditions

k�ðtf Þ ¼ ‘xf ðu�ðtf Þ; t�f ; qÞ; ð4aÞ

Hjt¼tf
¼ �‘tf ðu�ðtf Þ; t�f ; qÞ; if tf is free; ð4bÞ

where

‘ðxf ; tf ;qÞ :¼ gðxf ; tf Þ þ qTwðxf ; tf Þ:

In the considered problem, u appears linearly in the

dynamic equations. So, the Hamiltonian is linear in the

control u as well. The factor u in the Hamiltonian is called

switching function and denoted by:

rðx; k; tÞ :¼ kT f2ðx; tÞ:

As a result of Pontryagin’s minimum principle, if in the

time interval ½t1; t2� 2 ½t0; tf �, the switching function rðtÞ be
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positive (negative), then u(t) takes the smallest (largest)

admissible control value umin (umax). So, if rðtÞ in the time

interval ½t1; t2� 2 ½t0; tf � has finite isolated zeros, then the

optimal control u�ðtÞ fulfills:

u�ðtÞ 2 fumin; umaxg; 8t 2 ½t1; t2�;

which, in this case, the u is called bang-bang in the interval

½t1; t2�. However, if there is a time interval ½t1; t2� 2 ½t0; tf � in
which the switching function rðtÞ vanishes, then Pon-

tryagin’s minimum principle provides no information

about how to select u�ðtÞ. In this case, it is said that the

problem is singular and the interval ½t1; t2� is called a sin-

gular interval, in addition, the control over a singular

interval is referred to singular arc.

In summary, minimization of the Hamiltonian function

leads to the following control law (Pontryagin et al. 1962;

Kirk 2012):

u�ðtÞ ¼
umin; if rðtÞ[ 0;

umax; if rðtÞ\0;

usin; if rðtÞ ¼ 0:

8
><

>:

Accordingly, in general, singular optimal control contains

both bang-bang and singular sub-arcs. Each point that is a

transition between one bang-bang arc and another bang-

bang or singular arc is called switching point.

2.1 Order of Singular Optimal Control Problems

Note that, d
dt
rðx; k; tÞ is explicitly a function of x, k, _x, _k

and t. By substituting _x and _k from (1b) and (3), d
dt
rðx; k; tÞ

can be expressed as a function of x, k and t. It is easy to

show that the control function u does not appear in d
dt
r

(Lewis 1980). By repeating this manner, dj

dtj
rðx; k; tÞ can be

expressed as a function of x, k, t and maybe u. Further-

more, if u appears in dj

dtj
r, then it appears linearly (Lewis

1980). It is possible that the control u does not appear in
dj

dtj
r for any j. However, if w be the first integer number, in

which u appears in dw

dtw
r, then w is always even (Lewis

1980; Lamnabhi-Lagarrigue 1987). In the former case, the

order of SOCP is defined to be infinite and in the latter

case, the integer number j ¼ w
2
is called order of the sin-

gular problem.

Definition 1 [order of singular problem (Lamnabhi-La-

garrigue 1987)] The integer number j is called order of the

singular problem when 2j is the lowest order derivative of

switching function r such that u appears explicitly. In other

words

d2j

dt2j
rðx; k; tÞ � eðx; k; tÞ þ dðx; k; tÞu; d 6¼ 0: ð5Þ

If u never appears explicitly in the differentiation process,

then the optimal control problem is called an infinite-order

singular problem.

Let the problem (1) be a singular problem of order j and

½t1; t2� be the singular interval. So, the control u appears

explicitly and linearly in the 2j-th derivative of the

switching function r with respect to t, as Eq. (5). There-

fore, by noting that r ¼ 0 for t 2 ½t1; t2�, we conclude
d2j

dt2j
rðx; k; tÞ ¼ 0 ¼ eðx; k; tÞ þ dðx; k; tÞu; d 6¼ 0:

ð6Þ

Now, by solving the Eq. (6) for u, we get

u ¼ uðx; k; tÞ ¼ � dðx; k; tÞ
eðx; k; tÞ ; t 2 ½t1; t2�: ð7Þ

In summary, if the singularity order of the problem be

finite, then by successive differentiation of the switching

function, the control function u can be expressed as a

function of x, k and t.

3 Proposed Hybrid Method for Solving SOCPs

In this section, a hybrid method to solve SOCPs which

contains two stages is proposed. In the first stage, we use a

robust method which can detect the structure of optimal

control. Basically, for this purpose, the direct methods are

more suitable than the indirect ones. Apart from various

direct transcription methods developed for solving optimal

control problems, we select Euler transcription method for

the first stage. Of course, there are more sophisticated

direct methods, such as Simpson (Betts and Huffman 1992)

and Pseudo-spectral methods (Elnagar et al. 1995). How-

ever, based upon our experience, in singular problems,

Euler method is more robust than other methods. Indeed,

Euler method has the advantage of directly finding appro-

priate approximate solutions, which is sufficient for

detecting the structure of optimal control. But, in Pseudo-

spectral and Simpson methods, some oscillations are

appeared in the obtained solution, which cause trouble in

detecting the structure of optimal control.

The obtained solution by Euler method offers informa-

tion on the structure of optimal control. It also provides

estimation for the costate variables. However, the accuracy

of the obtained solution is not satisfactory. Thus, we have

to improve the obtained results of the first stage by another

one. In the second stage, we use a modified shooting

method which leads to very accurate results. It goes

without saying that the obtained information and estima-

tions of the first stage are used to initialize this method.
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3.1 Stage I: Direct Euler Method

The basic approach to solve the optimal control problem by

Euler transcription has been presented in details in (Betts

1994; Betts and Huffman 1993). However, in what follows,

we shortly recall Euler method for solving SOCP (1).

At first, the domain ½0; tf � is mapped to [0, 1], via the affine

transformation t�! t
tf
. Consequently, the optimal control

problem given in (1) is converted to the following problem

min J ðu; tf Þ ¼ gðxð1Þ; tf Þ; ð8aÞ

s:t: _x ¼ tf fðxðtÞ; uðtÞ; tÞ; 0\t\1; ð8bÞ

xð0Þ ¼ x0; ð8cÞ
wðxð1Þ; tf Þ ¼ 0; ð8dÞ

u 2 U: ð8eÞ

It is noting that, by applying the transformation, the

symbols of variables will change and new symbols should

be used instead. However, For simplicity, we will retain the

symbols already used.

Now, we divide the interval [0, 1] into the n equal parts

by the following mesh points

sk ¼ kh; k ¼ 0; . . .; n;

where h ¼ 1
n
. We note that, for the sake of simplicity, the

above uniform mesh is taken, although Euler method can

be extended to variable meshes. Utilization of the Euler

discretization scheme to the problem (8) results the fol-

lowing NLP problem:

min J ðu; tf Þ ¼ gðxn; tf Þ; ð9aÞ

s:t: xkþ1 ¼ xk þ htf fðxk; uk; skÞ; k ¼ 0; . . .; n� 1; ð9bÞ

wðxn; tf Þ ¼ 0; ð9cÞ

where xk, uk, fk and wk stand for xðskÞ, uðskÞ,
fðsk; xðskÞ; uðskÞÞ and wðskÞ respectivly. Note that, the

variables of NLP (9) are xk, k ¼ 1; . . .; n, uk, k ¼ 0; . . .; n

and maybe tf . Using an optimization solver, we can solve

the NLP (9) and the approximations of state and control

functions are obtained in the mesh points sk; k ¼ 0; . . .; n.
As we see, Euler method does not concern with costate

variables. Thus, it seems that by Euler method we cannot

provide any information about costate variables. Neverthe-

less, it is demonstrated that the Lagrange multipliers(dual

variables) of NLP (9) are related to the costate variables Betts

(2010) and thesemultipliers canbeused to estimate the costate

variables in the mesh points. See the following theorem.

Theorem 1 (Betts 2010) Let lk 2 Rp be the Lagrange

multiplier associated with the constraints xkþ1 ¼ xk þ
hfðxk; uk; skÞ in NLP (9), then lk is a first order estimation

for the costate variable at the grid points, i.e.

klk � kðskÞk ¼ OðhÞ; k ¼ 0; . . .; n:

According to the above theorem, one can use the

Lagrange multipliers obtained from the solution NLP (9) to

estimate the costate variables.

3.2 Stage II: Adaptive Indirect Shooting Method

By Stage I, the structure of optimal control, i.e. the

sequence and type of subarcs are determined. However, the

accurate positions of switching points are not attained, and

moreover, singular control function does not compute

precisely. These drawbacks are resolved in Stage II. For

this purpose, we consider an indirect scenario in which, by

utilizing Pontryagin’s maximum principle and the obtained

information of Stage I, a Multi-Domain Boundary Value

Problem(MDBVP) is obtained. Then, using shooting

method, this MDBVP is solved and accurate solution of the

singular optimal control problem is obtained. In addition,

the accurate positions of the switching points are captured.

3.2.1 Converting the Singular Optimal Control Problem

to a Multi-domain Boundary Value Problem

At first, based upon the results of Stage I, let s be the

number of switching points. We consider the decision

variables t1; . . .; ts as switching points, where

t0 � t1 � . . .� ts � tsþ1 ¼ tf : ð10Þ

Therefore, the control function can be expressed as:

uðtÞ ¼

u½0�ðtÞ; t 2 ½t0; t1�;
u½1�ðtÞ; t 2 ½t1; t2�;

..

.

u½s�ðtÞ; t 2 ½ts; tsþ1�:

8
>>>><

>>>>:

ð11Þ

Here, the control function in the k-th subinterval ½tk; tkþ1� is
denoted by u½k�ðtÞ. Note that, according to the obtained

structure in Stage I, we know that in each sub-domain

½tk; tkþ1�, the control function u½k�ðtÞ is singular or takes its
maximum value (i.e. umax) or minimum value (i.e. umin).

In the cases that the singular problem has a finite order,

as mentioned in Sect. 2, the control in the singular arcs can

be expressed based on state and costate functions. In this

way, if the control in ½tk; tkþ1� be singular, then the control

function in this interval can be expressed as:

u½k�ðtÞ ¼ uðt; x½k�; k½k�; tk; tkþ1Þ: ð12Þ

On the contrary, in the cases that the order of the singular

optimal control problem be infinite, we cannot express the

control function by state and costate functions. In this case,
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if the control in kth interval be singular, then we approxi-

mate u½k�ðtÞ by the following expansion

u½k�ðtÞ ’
Xm

i¼0

aiPi 2
t � tk

tkþ1 � tk
� 1

� �

; ð13Þ

where, Pið�Þ is the well-known Legendre function of degree
i and ai; i ¼ 0; . . .; n are unknown coefficients.

Based on (10) and (11), the state and costate equations

(1b) and (3), in the optimality conditions, are reformulated

to the following equations:

_x½k�ðtÞ ¼ Hkðt; x½k�; u½k�; k½k�Þ;
_k½k�ðtÞ ¼ �Hxðt; x½k�; u½k�; k½k�Þ;

(

t 2 ½tk; tkþ1�; k ¼ 1; . . .; s;

ð14Þ

where, x½k�ðtÞ ¼ ½x½k�1 ðtÞ; . . .; x½k�p ðtÞ�T and k½k�ðtÞ ¼ ½k½k�1 ðtÞ;
. . .; k½k�p ðtÞ�T are the state function xðtÞ and costate function

kðtÞ in the k-th subinterval ½tk; tkþ1�, respectively. It is noted
that, in (14), the control u½k� is defined by (12) or (13).

Now, we associate the following boundary conditions

with the above system of differential equations

x½0�ðt0Þ ¼ x0; ð15aÞ

x½k�ðtkþ1Þ ¼ x½kþ1�ðtkþ1Þ; k ¼ 0; . . .; s� 1; ð15bÞ

k½k�ðtkþ1Þ ¼ k½kþ1�ðtkþ1Þ; k ¼ 0; . . .; s� 1; ð15cÞ

rðx½k�ðtkÞ; k½k�ðtkÞ; tkÞ ¼ 0; k ¼ 1; . . .; s; ð15dÞ

wðx½s�ðtf Þ; tf Þ ¼ 0; ð15eÞ

k½s�ðtf Þ ¼ ‘xf ðx½s�ðtf Þ; tf ; qÞ; ð15fÞ

Hðx½s�ðtf Þ;u½s�ðtf Þ;k½s�ðtf Þ; tf Þ
¼�‘tf ðx½s�ðtf Þ; tf ;qÞ; if tf is free:

ð15gÞ

The Eqs. (15b) and (15c) are considered to guarantee the

continuity of state and costate functions, respectively. More-

over, as we know from the optimality conditions, the value of

switching function r at switching points tk; k ¼ 1; . . .; s must

be vanished. Hence, the conditions (15d) were considered.

3.2.2 Shooting Method for Solving the Resulted MDBVP

Associate with MDBVP (14)–(15), the following initial

value problem is considered

_x½k�ðtÞ ¼ Hkðt; x½k�; u½k�; k½k�Þ; t 2 ½tk; tkþ1�; k ¼ 1; . . .; s;

_k½k�ðtÞ ¼ �Hxðt; x½k�; u½k�; k½k�Þ; t 2 ½tk; tkþ1�; k ¼ 1; . . .; s;

x½k�ðtkÞ ¼ hk; k ¼ 0; 1; . . .; s

k½k�ðtkÞ ¼ fk; k ¼ 0; 1; . . .; s;

8
>>>><

>>>>:

ð16Þ

where h0 ¼ x0. Let z be the vector of initial values and

unknown parameters in the above initial value problem.

Note that, in the case of finite order, the unknown

parameters are the switching point ti and in the case of

infinite order, the coefficients are the switching points ti
and coefficients aj, which are appeared in the singular

arc as (13). As such, if the problem be of singular order,

we set

z ¼ ½f0; h1; f1; . . .; hs; fs j t1; t2; . . .; ts; tf �;

and if the problem be of finite order, the vector z is set as

z ¼ ½f0; h1; f1; . . .; hs; fs j t1; t2; . . .; ts; tf j a0; . . .; an�:

It is clear that the solution of (16) depends not only on t but

also on the vector z, and to emphasize this dependence, we

denote the solution of (16) by x½k�ðt; zÞ; k½k�ðt; zÞ; k ¼ 0; 1;

. . .; s. Now, we must find z such that the following equa-

tions might be satisfied

x½k�ðtkþ1; zÞ ¼ hkþ1; k ¼ 0; . . .; s� 1; ð17aÞ

k½k�ðtkþ1; zÞ ¼ fkþ1; k ¼ 0; . . .; s� 1; ð17bÞ

rðx½k�ðtk; zÞ; k½k�ðtk; zÞ; tkÞ ¼ 0; k ¼ 1; . . .; s: ð17cÞ

wðx½s�ðtf ; zÞ; tf Þ ¼ 0; ð17dÞ

k½s�ðtf ; zÞ ¼ ‘xf ðx½s�ðtf ; zÞ; tf ; qÞ; ð17eÞ

Hðx½s�ðtf ; zÞ; u½s�ðtf Þ; k½s�ðtf ; zÞ; tf Þ ¼ �‘tf ðx½s�ðtf ; zÞ; tf ; qÞ:
ð17fÞ

The above equations form a system of nonlinear

equations and by solving it a solution z� is obtained.

Then, by solving the initial value problem (16) with

z ¼ z�, an approximation is obtained for MDBVP (14)–

(15).

4 Illustrative Examples

This section has been devoted to numerical experiments.

We have implemented the proposed method in Sect. 3

using MATLAB in a personal computer and to solve the NLP

(9), the Interior-Point Optimization Solver IPOPT (Wäch-

ter and Biegler 2006) is used. In addition, the MATLAB

function ode45 is utilized for solving IVP (16). It is noted

that ode45 controls the error by two parameters RelTol

and AbsTol. By these parameters, we can adjust the rel-

ative and absolute error tolerances. Moreover, using the

MATLAB function fsolve, the system of equations (17) is

solved.
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4.1 Example 1 (A Finite Order Singular Problem)

We consider the following control problem

min J ðuÞ ¼ 1

2
ðxðtf Þ � xf ÞTðxðtf Þ � xf Þ;

_x1 ¼ x2;

_x2 ¼ F2;

_x3 ¼ x4;

_x4 ¼ F4;

xð0Þ ¼ ½0; 0; 0; 0�;
� 1� u� 1;

where

F2 ¼ � �x22cþ sþ cu

D
; F4 ¼ � �sðx22 þ cÞ þ u

D
;

and

c ¼ cosðx1Þ; s ¼ sinðx1Þ; D ¼ 1� �c2;
� ¼ 0:5; tf ¼ 4:012:

The Hamiltonian function of the above optimal control

problem is:

Hðx; u; k1; k2; k3; k4Þ ¼ k1x2 þ k2 � �x22cþ sþ cu

D

� �

þ k3ðx4Þ þ k4 � �sðx22 þ cÞ þ u

D

� �

:

Applying Pontryagin’s maximum principle leads to the

following costate equations:

_k�1ðtÞ ¼ �Hx1 ¼ Ak2 þ Bk4;

_k�2ðtÞ ¼ �Hx2 ¼ _k�2ðtÞ ¼ �k1 þ Eðck2 � k4Þ;
_k�3ðtÞ ¼ �Hx3 ¼ 0;

_k�4ðtÞ ¼ �Hx4 ¼ �k3;

such that

A ¼ �ðSF2 þ Cx22Þ þ c� su

D
; B ¼ �ðSF4 � cx22 � CÞ

D
;

E ¼ 2�sx2
D

; S ¼ sinð2x1Þ; C ¼ cosð2x1Þ:

The factor of u in the Hamiltonian function is �ck2�k4
D

, so

the switching function is given by rðx; k; tÞ ¼ �ck2�k4
D

.

Now, we have

d

dt
rðx; k; tÞ ¼ sx2k2 þ ck1 � k3

d2

dt2
rðx; k; tÞ ¼ ðcðx22 þ Aþ cBÞ þ sF2Þk2 � 2sx2k1:

It can be seen that the control u appears in the second

derivative of r, therefore, the order of the problem is

j ¼ 1. Moreover, by extracting v from d2

dt2
r ¼ 0, the control

function on the singular interval is obtained as:

usingðx; k; tÞ ¼ ð2� 2�� DÞcx22 � 2s2 þ D

S
� Dx2k1

ck2
:

ð18Þ

Now, we apply the proposed method to this problem. At

first, we apply the Euler method in Stage I. The obtaining

control and state functions for n ¼ 1000 are plotted in

Fig. 1. In addition, the estimated costate functions

k1; . . .; k4 are plotted in Fig. 2.

As we see in Fig. 1, the structure of control function is

detected as

uðtÞ ¼

umax; if 0� t� t1;

usin; if t1 � t� t2;

umin; if t2 � t� t3;

umax; if t3 � t� t4;

umin; if t4 � t� tf :

8
>>>>>><

>>>>>>:

Moreover, the approximations of the switching points are

obtained as:

t1 ¼ 0:69; t2 ¼ 1:17; t3 ¼ 2:72; t4 ¼ 4:32:

4.9124.322.721.170.680

-1.5

-1

0

1

2

3
x1(t)
x2(t)
x3(t)
x4(t)

4.9124.322.721.170.680

-1

-0.4

0

0.4

1 u(t)
Fig. 1 (Example 1: Finite order

singular Problem) Stag I: State

and control histories obtained

by the Euler method with

n ¼ 1000
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Furthermore, using Theorem 1, we can find estimation of

the costate functions in the above approximation for the

switching points.

Now, we apply the method of Stage II for this prob-

lem. In this step, the unknowns vector is z ¼ ½f0; h1; f1;
h2; f2; h3; f3; h4; f4jt1; t2; t3; t4�, where is initialized by the

results obtained from Stage I. In this way, the values of

the switching points and costates in t ¼ 0 for various

values of RealTol are obtained and reported in Tables 1

and 2.

The obtained control and state functions for Real-

Tol=1e-14 are plotted in Fig. 3. To show the accuracy of

λ1

λ2

λ3

λ4

1.170.680 2.72 4.31 4.912

×10-3

-3

-2

-1

0

1

2

3

4

5
Fig. 2 (Example 1: Finite order

singular Problem) Stage I: The

obtained costate function with

n ¼ 1000

Table 1 (Example 1: Finite

order singular Problem) The

obtained values of switching

times and performance index for

various values of RealTol

RealTol t1 t2 t3 tf J

1e-10 0.68828306387 1.176405501.76 2.7239316480.9 4.32007124980 3.5205972513-06

1e-11 0.68828306379 1.17640550186 2.72393164803 4.32007124977 3.520597251e-06

1e-12 0.68828306378 1.17640550187 2.72393164802 4.32007124977 3.520597249e-06

1e-13 0.68828306378 1.17640550187 2.72393164802 4.32007124977 3.520597249e-06

Correct decimal places of the approximations are highlighted in bold

Table 2 (Example 1: Finite

order singular Problem) The

obtained values of costate

functions in initial point for

various values of RealTol

RealTol k1ðt0Þ k2ðt0Þ k3ðt0Þ k4ðt0Þ

1e-10 0.0020545747762 20.001456427.5310 20.000424399.5824 20.0026007097869

1e-11 0.0020545746434 20.0014564274085 20.0004243994759 20.0026007096461

1e-12 0.0020545746405 20.0014564274065 20.0004243994753 20.0026007096425

1e-13 0.0020545746402 20.0014564274063 20.0004243994752 20.0026007096421

1e-14 0.0020545746402 20.0014564274063 20.0004243994752 20.0026007096421

Correct decimal places of the approximations are highlighted in bold

0 0.68828306378

1.17640550187

2.723931648029

4.32007124977

4.912

x1(t)
x2(t)
x3(t)
x4(t)

0 0.68828306378

1.17640550187

2.723931648029

4.32007124977

4.912

u(t)

-1.5

-1

0

1

2

3

-1

-0.4

0

0.4

1Fig. 3 (Example 1: Finite order

singular Problem) Stage II: The

obtained State and control

histories with RealTol=1e-14
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the method, the switching function and derivative of

switching function in the singular arc are plotted in Fig. 4.

We note that the switching function and its derivatives

must be zero in the singular arc.

4.2 Example 2 (An Infinite Order Singular

Problem)

We consider the following Catalyst Mixing optimal control

problem

min J ðuÞ ¼ �1þ x1ð1Þ þ x2ð1Þ; ð19aÞ
_x1 ¼ ð10x2 � x1Þu; ð19bÞ
_x2 ¼ ðx1 � 10x2Þu� ð1� uÞx2; ð19cÞ
xð0Þ ¼ ½1; 0�; ð19dÞ
0� u� 1: ð19eÞ

In a similar manner, we can obtain the switching function

as

rðx; k; tÞ ¼ k1ð10x2 � x1Þ þ k2ðx1 � 9x2Þ:

Now, for i ¼ 1; 2; . . . we can get

0 ¼ di

dti
Hu ¼ �10k1x2 þ k2x1:

It can be seen that the control u does not appear in the

derivative of r, therefore, the order of the problem is

infinite. Now, we apply the proposed method for this

problem. At first, we apply the Euler method in Stage I.

The obtaining control and state functions for n ¼ 1000 are

plotted in Fig. 5.

As we see in Fig. 5, The structure of control function is

obtained as

uðtÞ ¼
umax; if 0� t� t1;

usin; if t1 � t� t2;

umin; if t2 � t� tf :

8
><

>:

Moreover, the estimation of switching points, state and

costate functions at the switching points can be obtained.

By applying Stage II with m ¼ 15, when the results of

Stage I serve as the initial guess, the values of the obtained

switching points for various choices of RealTol are

reported in Table 3. The obtained control and state func-

tions with RealTol=1e-12 are plotted in Fig. 6. To show

the accuracy of the method, the switching function and

derivative of switching function in the singular arc are

plotted in Fig. 7.

5 Conclusion

This paper presents an approach for the efficient and

accurate solution of singular optimal control problems with

finite or infinite order. The employed method is of the

σ(t)

σ̇(t)

0.68828306378 1.17640550187

×10
-13

-5

0

5

0.68828306378 1.17640550187

×10-12

-5

0

5

Fig. 4 (Example 1: Finite order

singular Problem) Switching

function and derivative of

switching function in singular

arc obtained by the Stage II

method with RealTol=1e-14

x1(t)
x2(t)

u(t)

0 0.15 117.0
0

0.2

0.4

0.6

0.8

1

0 0.15 10.71

0.2

0.4

0.6

0.8

1Fig. 5 (Example 2: Infinite

order singular Problem) Stage I:

State and control histories

obtained by the Euler method

with n ¼ 1000
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hybrid type, which combines the best features of the direct

Euler method and indirect shooting techniques. The pre-

sented hybrid method is illustrated in two test problems and

the results verify that the method detects the structure of

optimal control without a priori information and can

accurately capture the switching points. By means of these

test problems, we see that the presented method converges

and is stable for the singular optimal control problems with

finite or infinite order. However, obtaining some theoretical

estimates for the approximation errors would be desirable.

This work is currently in progress.
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