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Abstract. Autonomous robots must be able to navigate on a given unknown en-

vironment, which implies awareness of the environment and self-localization. 

Although the Global Position System (GPS) is widely used for localization, the 

position provided is not free of deviations, which increases when the environment 

conditions block the signal. Robots used for crop monitoring and harvesting re-

quire robust and accurate localization systems in order to navigate on harsh and 

challenging environment conditions. This work explored the use of artificial 

landmarks to increase the accuracy of a robot localization based on GPS data. 

Distance estimations were done using Received Strength Signal Indicator (RSSI) 

based approaches. By comparing the Empirical and Analytical models for wave 

propagation, it’s expected to observe a better distance estimation for the Analyt-

ical model, because the Empirical one does not considered signal attenuation. 

Regarding the robot pose estimation, it’s expected to be more accurate when fus-

ing the GPS data and the estimated distances, instead of using only the GPS data. 

Keywords: Outdoor Mobile Robot Localization · SLAM · Sensor Fusion · 

iBeacons · Wave Propagation · Path Loss Model 

1 Introduction 

Robot navigation is a key problem when developing autonomous robots. In order to be 

truly autonomous, the robot must be able to navigate freely on an unknown environ-

ment. For this to be true, the robot must be aware of the world around him and be 

capable to self-locate in that environment. Self-awareness and self-localization capa-

bilities rely greatly on environment perceptions, which is possible due to the usage of 

sensors. These capabilities are challenging, because sensors aren’t perfect and noisy 

sensor data leads to errors on the world representation and in bad position estimations. 

Moreover, inferring the robot position must be done by integrating sensor data from 

multiple sensors over time, using sensor fusion techniques [6, 9, 27], since one sensor 

is usually insufficient to do a good estimation. The problem becomes even more com-

plex if the environment is highly dynamic or if the robot needs to represent a 3D world 

instead of a 2D.  

Nowadays, the American Global Position System (GPS) [7, 11, 12] is widely used 

for outdoor localization, since the service is globally available, providing a good quality 
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3D position and the GPS receivers are relatively cheap. This system is limited to out-

door environments due to the signal blockage that occur when the receiver hasn’t a 

clear sight of the satellites. But, even outdoor environments present challenges to the 

development of robot localization and mapping capabilities using only GPS signal. 

These may occur due to signal blockage, harsh atmospheric conditions or even tall 

buildings or mountains that cause multi-path interference, compromising the GPS ac-

curacy and signal availability.  

This work intends to improve robot outdoor self-location capabilities, when GPS 

data is compromised. It’s expected to improve robot position estimation, by fusion GPS 

data and other sensor data, such as Odometry, distance observations to artificial beacons 

and beacon’s mapping, by means of a Particle filter. Regarding the distance observa-

tions to the artificial beacons, RSSI methodologies were used to estimate the distances. 

A comparison between an Empirical and Analytical wave propagation models is per-

formed, which is expected to obtain a better distance estimation using the Analytical 

model, because the Empirical one does not considered signal attenuation. 

The paper is organized in four more sections. Section 2 gives an overview of what 

mobile robot localization is, describing how GPS works and its main limitations and 

the top challenges of wave propagation analysis. Section 3 describes the methodology 

of this work. Session 4 describes the tests performed and results. Session 5 finalizes the 

paper with conclusions and future work.  

2 Mobile Robot Localization Strategies 

There are no universal best solution regarding localization approaches. Each approach 

is fitted to a specific environment, such as indoor or outdoor spaces and the conditions 

in each environment, such as urban areas, forests, underwater, etc. Also, since the lo-

calization task depends greatly on sensor data, the sensors used on the robot for locali-

zation are chosen accordingly to the specific environment conditions. These sensors 

can be classified by how the interaction is made with the environment and what is the 

origin of the sensor data [18]. 

Known approaches for self-localization, without relying on external components, are 

the Dead Reckoning systems, which calculates one’s current position using a previous 

know position, such as Odometry and Inertial Measurement Unit (IMU) [2]. These sys-

tems are based on the distance, orientation and speed of the robot motion by using ac-

celerometers (motion sensors), gyroscopes (rotation sensors) and encoders connected 

to the motor or wheels. Accuracy may be compromised in this systems. A small devia-

tion in the beginning will result on a big deviation after some iterations, invalidating 

the use of these techniques over a large period of time. For this reason, in order to avoid 

internal state cumulative errors, sensors must also measure the state of the environment. 

The world around the robot can be measured using landmarks (both natural and ar-

tificial), which consists on specific spots in the worlds with known location. With these 

approaches, the robot must use sensors to detect the landmark in the environment and 

calculate its position related to the known position of the landmark, using triangulation 

and trilateration techniques [5, 15]. Natural landmarks [19], such as walls, doors or 



trees can be detected using Light Detection and Ranging (LIDAR) sensors [10, 26] and 

Radio Detection and Ranging (RADAR) [1]. LIDAR and RADAR use respectively a 

laser scanner or radio waves to measure the distance to the landmark, calculated by the 

signal Time of Flight (TOF) [21], i.e., the time duration between signal emission and 

eco reception. Other wide used sensors are the optical sensors, which are based on vi-

sion systems such as RGB-D [29] and monocular/stereo vision algorithms [30]. 

Artificial landmarks can be passive, such as laser reflectors and computer vision 

patterns, or active, such as Radio Frequency (RF) beacons, Radio Frequency Identifi-

cation (RFID) tags and WiFi/cellphone relays. There are several methods [15] to esti-

mate the distance between the robot and a beacon, based on the RF signal time travel 

between beacon and robot or signal angle of arrival in the robot. Some of these methods 

are the previously mentioned TOF, Time Difference of Arrival (TDOA) [20] and Angle 

of Arrival (AOA) [14, 16]. Another method is the RSSI [1, 20, 25], which estimates the 

distance based on the strength of the RF signal received on the robot. In comparison 

with other methods, the RSSI method has the advantage of no extra hardware is re-

quired, other than a simple RF antenna. The disadvantage is the lower precision of 

measurements when signal noise and interference exist.   

All the previous solutions are suitable (but not limited) to use on indoor environ-

ments, since first, there are controlled conditions regarding indoor environments and, 

second, on outdoor environments Global Navigation Satellite Systems (GNSS) [11] are 

widely used, in particular the GPS.  

2.1 Global Position System 

The GPS [7, 11, 12] was the first and still by far the most commonly used advanced 

satellite navigation system in the world. GPS is globally fully operational and it’s as-

sured to be free of cost to all users. The tremendous growth of GPS is driven by the 

enormous number of applications of this system, which are far beyond what was origi-

nally designed to be strictly U.S. military system. GPS is widely used on aviation, ma-

rine, space and vehicle navigation, mapping, locating and tracking of objects and peo-

ple, for medical purposes and disaster management. 

Restrictions. If the distance between the satellites and the receiver is known, together 

with the speed of light, the receivers can determine its location. The speed of light is 

approximately 300000 Km/s in vacuum, but the signal has to propagate through Earth’s 

atmosphere, ionosphere and troposphere, which bend and slow the signal, causing po-

sition errors on the ground by making the satellites appear farther than they are. Alt-

hough being the largest source of error, several other factors affect the accuracy of the 

GPS, such as accuracy of satellite and receiver clocks, position error on the satellites, 

atmospheric errors, multi-path interference in the signal and receiver internal errors 

(when computing the location). 



GPS Alternatives. Currently, several countries launched or are developing their own 

navigation satellite systems, which are used regionally or globally. GPS is the Ameri-

can system, currently the world’s most utilized satellite navigation system. The Russian 

Global Navigation Satellite System1 (Glonass) also operates globally. The Chinese Bei-

dou Navigation Satellite System2 (BDS) and the Indian Regional Navigation Satellite 

System3 (INRSS) operate regionally, with the possibility of expand their operation 

globally in the future. The Galileo4 is European navigation system, currently being de-

veloped and with no predictions of being operational before 2020. 

Systems based on Differential GPS (D-GPS) and Augmented GPS (A-GPS) cur-

rently exist in order to improve the quality and reliability of GNSS, by mitigating signal 

path distortions and satellite errors. Wide Area Augmentation System (WAAS) pro-

vides real time and continental augmentation, operating in North America and extended 

coverage into South America, the Atlantic and Pacific Oceans. Several other similar 

international systems exist, such as the Russian System for Differential Corrections and 

Monitoring (SDCM), the Indian GPS And Geo-Augmented Navigation (GAGAN), the 

Japanese Multi-functional Transport Satellite (MTSAT)-based Satellite augmentation 

System (MSAS) and the European EGNOS5.  

2.2 Robot Localization based on RSSI 

As mentioned previously, RF devices can be used as artificial landmarks. By receiv-

ing and extracting the RSSI value of the RF signal emitted by those devices, the robot 

is able to estimate the distance between them, using a wave propagation model.  

A RF signal is an electromagnetic wave that propagates in every direction through 

space in a straight line. In the presence of obstacles, both direction of the wave propa-

gation and its amplitude are modified, which represent deviations on signal reception. 

Wave Propagation. It’s very complex to characterize a wave propagation’s behavior, 

because behavior changes are caused by random events. According to Alencar [3], sev-

eral phenomenon affect negatively the wave propagation [13], such as reflection, re-

fraction, dispersion (shown on Fig. 1), diffraction and fading. There are advanced tech-

niques, shown by He [28] that try to simulate the complex signal attenuation by having 

a 3D model of the world and simulating the reflections / refractions that a signal would 

be subject to before arriving to the receiver. 

                                                           
1  Available in https://www.glonass-iac.ru/en/ 
2  Available in http://en.beidou.gov.cn/ 
3  Available in http://www.isro.gov.in/irnss-programme 
4  Available in http://www.gsa.europa.eu/galileo/why-galileo 
5  Available in http://egnos-portal.gsa.europa.eu/ 
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Fig. 1. Reflection, Refraction and Dispersion phenomenon on signal propagation 

When a RF signal travels through an object with different density (often occurs on at-

mospheric variations), a part of the signal is refracted and another one is reflected, 

which is the number one cause for problems regarding multipath transmission. Disper-

sion/Spreading is a phenomenon that occurs when the RF signal reaches a rough surface 

object, dividing the signal into multiple one with different intensity and direction.  

Propagation Models. Wave propagation models [13] try to estimate the RSSI at a 

given distance. Several models exist for different environment conditions, but they are 

all based on the Free Space propagation model [8, 22], which uses the Friis formula 

[24] to characterize the signal propagation when no obstacles are blocking the path 

between transmitter and receiver. Friis formula is valid only in situations where 𝑑 (dis-

tance between the transmitter and the receiver) is at a minimum distance of the trans-

mitter antenna, called the Fraunhofer distance 𝑑𝑓, represented on Eq. (1), where 𝜆 is the 

wave length of the RF signal.  

𝑑𝑓 =  
2𝑑2

𝜆
 ,      𝑑𝑓 ≫ 𝑑 ⋀  𝑑𝑓  ≫  𝜆                                         (1) 

 

Since the Fraunhofer distance is not defined for 𝐷 = 0, the model uses a reference 

distance 𝑑0, represented by Eq. (2), where  𝑃𝑟(𝑑0) is the received signal strength of ref-

erence.  

 𝑃𝑟(𝑑)𝑑𝐵𝑚 =   𝑃𝑟(𝑑0)𝑑𝐵𝑚 + 20 ×  log(
𝑑0

𝑑
) ,      𝑑 ≥ 𝑑0 ≥ 𝑑𝑓                 (2) 

Outdoor Path Loss Model. Because there is no perfect conditions, the RF signal is nor-

mally attenuated due to the phenomenon described earlier, leading to deviations on the 

calculations [3, 13]. Signal noise and deviations are considered on Eq. (3), where η is 

the path loss coefficient,  𝑋𝜃 is a normal random variable used to modulate and A is the 

signal attenuation. The path loss coefficient depends on the propagation environment 

and must be calculated according to the context (on outdoor the usual value is 2). By 

knowing η, is possible to linearize the relation between the RSSI ( 𝑃𝑟(𝑑)) and the dis-

tance between the signal emitter and receiver (𝑑𝑖,𝑗), represented on Eq. (4). The calcu-

lated distance is always associated with an ambiguity factor represented by a Gaussian 

distribution.  

 𝑃𝑟(𝑑)𝑑𝐵 =   𝑃𝑟(𝑑0)𝑑𝐵 + A − 10η ×  log (
𝑑0

𝑑
) +  𝑋𝜃                        (3) 



𝑑𝑖,𝑗 =  𝑑0  × 10
 𝑃𝑟(𝑑0)−  𝑃𝑟(d) 

10η                                             (4) 

Dual-Slope Model. While the Path Loss model considers only the original wave that 

travels between the emitter and receiver, the Dual-Slope model considers also the re-

sulting waves of reflection that reaches the receiver. The model is characterized by Eq. 

(5), where ℎ𝑡 and ℎ𝑟 are the highs of the transmitter and receiver related to the ground. 

 𝑃𝑟(𝑑) = 𝑃𝑡  × 𝐺𝑡 ×  𝐺𝑟  
ℎ𝑡

2 × ℎ𝑟
2

 𝑑4  ,     d >  
4ℎ𝑡ℎ𝑟

𝜆
                      (5) 

3 Methodology 

Sensor fusion was used to improve the quality of a mobile robot (AGROB V14 platform 

[19]) localization. A Simultaneous Localization And Mapping (SLAM) technique was 

implemented, where GPS and RSSI data (from artificial RF beacons) were used to lo-

cate the robot and map the world. The robot location was improved by GPS data fusion 

with Odometry velocity, the beacons distance observations and the beacon’s mapping.  

Localization systems based on RSSI have three main components: distance estima-

tion between the RF signal emitter and receiver, position calculation based on the dis-

tance estimations and localization algorithm.  

3.1 Beacons Distance Observation 

iBeacons6 are small Bluetooth devices used as artificial landmarks in the environ-

ment. The RF signals emitted were received by an Android mobile device connected to 

the robot, which used the RSSI value to estimate the distance to the beacon. The dis-

tance was first estimated by means of an empirical model that is described, in the An-

droid Beacon Library7, by Eq. (6), where 𝑑 is the estimated distance in meters, 𝑅𝑆𝑆𝐼 is 

the value received in the Android phone from one iBeacon, 𝑅𝑒𝑓𝑃𝑜𝑤𝑒𝑟 is the reference 

of the RSSI value (at a distance of 1 meter) and 𝐴, 𝐵 and 𝐶 are constants to be adjusted 

according to the environment conditions where the iBeacons are being used. After sev-

eral field tests, 𝐴, 𝐵 and 𝐶 were derived from power regression against a table of dis-

tance/RSSI values (provided by the referred library), resulting on Eq. (7).  

𝑑 = 𝐴 × (
𝑅𝑆𝑆𝐼

𝑅𝑒𝑓𝑃𝑜𝑤𝑒𝑟
)𝐵 + 𝐶                                           (6) 

𝑑 = 0.3534536 × (
𝑅𝑆𝑆𝐼

𝑅𝑒𝑓𝑃𝑜𝑤𝑒𝑟
)14.8393466 + 0.7566785                     (7) 

The empirical analysis has the advantage to consider every factor that influence the 

radio wave propagation on a given context. On the other hand, the equation obtained 

from regression may not work correctly on environments different from the one used 

                                                           
6  Available in https://developer.apple.com/ibeacon/ 
7  Available in http://altbeacon.github.io/android-beacon-library/distance-calculations.html 



to collect data in the first place. Moreover, Eq. (6) may itself be source of deviations 

and noise. Also, the regression process is very dependent on the Android device used 

to obtain the data. The simple fact of using devices with different characteristics may 

lead to deviations and noise. For these reasons, analytical models, namely the outdoor 

path loss and dual-slope models mentioned before, for wave propagation were used in 

order to calculate the distance based on the RSSI values.  

3.2 Robot Position Calculation 

For a 2D position estimation, the robot needs at least three distance measurements 

to different beacons with known locations. Because the beacon’s mapping is unknown 

and the robot location is estimated based on noisy GPS data, a SLAM approach is im-

plemented, where the beacons are mapped at the same time as the robot position is 

calculated.   

 

Fig. 2. Both theoretical and real triangulation results 

Mapping the iBeacons is accomplished by estimating the beacons location in relation 

to the robot. By knowing the robot location and the distance between the robot and 

beacons, one can calculate the beacon position by using the trilateration method. Be-

cause only flat terrains were considered so far, the localization problem can be simpli-

fied to a 2D format, instead of 3D. At least three robot locations are represented graph-

ically by circumferences, where the radius is the distance to the beacon. The resulting 

interception point of the three circumferences is the position of the beacon, as shown 

on Fig. 2 on the left.  

3.3 Localization Algorithm 

The uncertainties associated to the distances calculated and robot position, shown on 

Fig.3 on the right, motivated the appearance of probabilistic approaches [17]. Instead 

of resulting in just one point, the interception of the circumferences, when using the 



trilateration, results on a set of points, each one associated with a probability that rep-

resents the actual position of the beacon. These approaches are associated with filters 

[23], such as Kalman, Histogram and Particle filters, which increase the quality of the 

positioning process by decreasing the deviations of samples.  

In this case, because robot localization is a highly nonlinear problem, the beacon 

mapping procedure developed on work [4] was used, which implements both a Particle 

and a Histogram filter. For a better estimation on the robot location, the Particle filter 

was used to fuse the GPS data, Odometry and beacon’s distance estimation. The His-

togram filter was applied to the robot location and distance estimation between robot 

and beacons (based on RSSI data), in order to map the beacons. 

The Particle filter consists in spreading random points through space and associate 

to each one a probability of being in the actual beacon position. Every time a new GPS 

message arrives, the probability of each point is updated and the cloud of points gets 

concentrated, because points with lower probability are deleted and new points are gen-

erated close to the most likely ones. 

𝑃𝑡(𝑥, 𝑦) =  
1

√2𝜋𝜎
𝑒

−(𝑑−𝑧𝑡)2

2𝜎2⁄
                                       (8) 

 

The Histogram filter consists on a discretization of a 2D space into a grid of cells 

(likelihood grid map), where the center of the grid is the robot location estimation. The 

goal is to calculate the grid’s occupancy by assigning to each cell a probability of the 

beacon being located on that cell. The cell probability at time 𝑡 (𝑃𝑡(𝑥, 𝑦)) depends of 

the beacon distance (𝑑) and robot position (𝑧𝑡) estimation, as shown on Eq. (8), where 

𝜎 is the deviation (on a normal distribution) that represents the sum of all uncertainties 

associated with the robot position and beacon distance estimation. 

4 Tests and Results 

Beacon distance estimation was tested by comparing the use of an empirical and ana-

lytical models for wave propagation. The algorithm for beacon mapping on [4] was 

tested, using data provided by the iBeacons Kontakt8. 

4.1 Distance Estimation 

Distance estimation based on RSSI techniques rely on modeling the beacons RF signal 

propagation. The empirical model identified on Eq. (6) and Eq. (7) is compared with 

the Outdoor Path Loss model, identified on Eq. (3) and Eq. (4). Because data is being 

post-processed and the ground true is unknown, the comparison in relatively to each 

approach and not absolute. RSSI values were collected and used on both models to 

calculate the distance to the corresponding beacon. Results are shown on Fig. 3.  

                                                           
8  Available in https://www.kontakt.io 



 

Fig. 3.   Distance comparison between the Empirical Model and Path Loss Model approaches 

The curve for the empirical model behaves exponentially, while the Path Loss model 

fits the empirical one (differences are lower than 1m) only between -95dBm and -

75dBm, which corresponds closely to 8m and 1m of distance. 

For RSSI values higher than -75dBm, the empirical model is more accurate, because 

1m is the reference distance used in the Path Loss model. As said before, the reference 

distance is the minimum defined distance in this model, so results lower than 1m don’t 

make any sense. On the other hand, the empirical model follows its exponential behav-

ior until it reaches a distance very close to 0 on high RSSI values. 

For RSSI values lower than -95dBm, a major difference is found between the Path 

Loss and the Empirical models. On the 8m distance mark, the RF probably suffers de-

viations, such as reflection and refractions, which weren’t considered on the empirical 

model. Although being theoretically considered on the Path Loss model, the model 

lacks calibration regarding some parameters, such as signal attenuation and path loss 

coefficient, which may lead to less accurate modulation of the wave propagation. The 

static values considered of path loss coefficient is 2 (value defined for outdoor environ-

ments) and the signal attenuation is simplified to 1, but, for better accuracy on calcula-

tions, these variables should be dynamically calculated over each iteration. Still, 8m is 

already a big distance to be estimated, considering the problem context and the noise 

associated to signal propagation at this kind of distances. The accuracy will improve if 

distances higher then 8m are not considered for calculations.  

4.2 Algorithm for beacon mapping 

As shown by Duarte [4], the beacons and robot position estimation have improved sig-

nificantly when fusing the GPS data and the beacon’s distance observation, by using a 

particle filter. 



 

Fig. 4. Evolution of an iBeacon (id = 4903040350) Grid Map with 0.25meters/pixel resolution 

In Fig. 4 is shown the obtained likehood grid map for one beacon at four different time 

instances (0, 70, 200 and 330 seconds), on a test duration of 560. The grid map resolu-

tion is 0.25meters/pixel. The possible beacon position starts with a large circle, evolv-

ing to two small regions on stage two, which becomes one small region and ends with 

a very small spot.  

4.3 Robot Position 

Google maps API was used for illustrating the robot estimated positions on different 

time instances. By using the particle filter, robot estimation was obtained from the fu-

sion of GPS and odometry, considering the mapped beacons and beacons distance ob-

servation.  

 

Fig. 5. Planned and estimated robot trajectory 

Fig. 5 represents the tests performed for evaluating the robot position, by identifying 

the robot planned trajectory (on the left), which is considered to be the ground truth for 

comparison, the estimated trajectory using only GPS data (in the middle) and the esti-

mated trajectory using the results from the sensor fusion described, considering the 

beacons mapping and distance to beacons (on the right). 



5 Conclusions 

The main goal of this work is to improve the robot self-localization capability by per-

forming sensor fusion techniques on data from different sensors built in AGROB V14. 

It was proven in the previous work [4] that the robot location improves by fusing bea-

cons distance information and mapping with GPS data.  

The problem of improving the robot location may be approached on two levels: the 

first is to clean and improve individual noisy sensor data already used to estimate the 

robot location. The second is to add new (still noisy) sensor data to the sensor fusion 

approach, in order to get a better estimative of the robot location. The current work 

approaches the problem by improving the noisy data of the beacons distance observa-

tions before fusing it with GPS data. Empirical and analytical models for wave propa-

gation (on RF signals) were considered and compared. Also, by fusing beacon’s dis-

tance estimation calculated on the models and GPS data, is possible to correct the robot 

position. 

For future work, noisy GPS data can be corrected, by using GPS Augmentation ap-

proaches. Regarding sensor fusion, the AGROB V14 is equipped with other important 

sensors that can be used for localization, such as a RADAR, IMU and a camera, which 

weren’t used in the current work. These sensors’ data can also be fused to the GPS data. 

Also, since several robot locations are required to estimate a beacon position, this work 

can be expanded by using multi-robot scenarios.  
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