
Intrusion Detection in Databases

José Fonseca
ESTG/CISUC

University of Coimbra -
Portugal

josefonseca@ipg.pt

Abstract

Database management systems (DBMS), which are
the ultimate layer in preventing malicious data access
or corruption, implement several security mechanisms
to protect data. However these mechanisms cannot
always stop malicious users from accessing to the
data by exploiting system vulnerabilities. This paper
presents a study towards the proposal of an intrusion
detection mechanism for DBMS. The approach uses a
directed graph representing the profile of valid trans-
actions to detect unauthorized ones, which are seen
as invalid sequences of SQL1 commands. This is done
by analyzing the commands the users execute and
comparing them to the profile of the authorized trans-
actions previously learned.

1. Introduction

A major problem faced by organizations today is the
protection of their data against malicious access or cor-
ruption. Database security mechanisms offer basic secu-
rity features such as authentication, authorization, access
control, data encryption, and auditing. However, these
mechanisms do not assure protection against DBMS
vulnerabilities exploits and are very limited in defending
data attacks from the inside or from unsecured applica-
tions.

The general lack of intrusion detection features in
commercial DBMS is an important limitation since ma-
licious actions in a database environment may not be fil-
tered by existing intrusion detection mechanisms at the
network or the operating system levels. For example, in-
side attacks (e.g., a disgruntled employee that may ac-
cess and damage critical private data) are particularly
difficult to detect and isolate, because as these attacks
are carried out by legitimate users that may have access
rights to data and system resources. In addition, mas-
querade attacks where people hide their identity by im-
personating others are one of the most frequent forms of

1 SQL stands for Structured Query Language, the language used by
relational DBMS

computer security attacks [1]. Another example is SQL
injection in web applications, where an attacker changes
the SQL commands sent to the server, and therefore, ac-
cessing sensitive data.

Intrusion detection mechanisms for DBMS have not
been studied much, in a clear contrast to what has hap-
pened in operating systems and networking fields. How-
ever, recent works have addressed concurrent intrusion
detection and attack isolation in DBMS, and this issue is
clearly receiving more and more attention. DEMIDS [2]
is a misuse detection system tailored to relational
database systems. It uses the audit logs to derive user
profiles that describe typical behaviors. In [3] a real-time
intrusion detection mechanism based on the profile of
user roles obtained by mining database logs is proposed.
An intrusion attack and isolation mechanism is proposed
in [4]. Vieira and Madeira [5] propose a mechanism for
the detection of malicious transactions (sequences of
SQL commands creating a unit of interaction in DBMS)
based on the manual definition of the transaction pro-
files.

This paper presents our research study towards the
definition of an intrusion detection mechanism for
DBMS. The approach is based on the fact that the users
usually interact with the database through a well defined
application interface. Therefore, the user does not exe-
cute ad-hoc transactions but are confined to those pro-
grammed in the code of the application. A database is a
transactional environment and the set of transactions a
given user executes may be viewed as an abstraction of
that user's behavior. This represents the user's profile
and the assumption is that knowing the profiles of all the
users of the database is the key to detect intrusions. If a
user’s actions do not match a known profile, it is consid-
ered an intruder.

Our proposal is to describe each database transaction
as a directed graph representing the corresponding se-
quence of SQL commands. In a first step, this sequence
of commands is obtained by analyzing the execution
profile of the database applications. After learning the
authorized transactions the intrusion detector concurrent-
ly monitors the commands the user executes and com-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional do Instituto Politécnico da Guarda

https://core.ac.uk/display/148389745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:josefonseca@ipg.pt

pares them with the directed graph.
The structure of the paper is as follows: Section 2

presents our current approach for transactions learning
and intrusion detection. Section 3 presents some prelimi-
nary results. Section 4 concludes the paper and presents
future research directions.

2. Proposed approach

In a typical database environment the transactions are
programmed in the database application, which means
that the set of transactions remains stable, as long as the
database application is not changed. For example, in a
banking database application users can only perform the
predefined operations available at the application inter-
face (e.g., withdraw money, balance check account, etc).
No other operation is available for those users. Normal-
ly, end-users cannot execute ad-hoc SQL commands.

In our work we use the profile of the transactions im-
plemented by the database applications to identify user
attempts to execute malicious SQL commands. A
database transaction is represented by a directed graph
describing the different SQL execution paths from the
beginning to the end of each transaction. The nodes in
the graph represent commands and the arcs represent the
valid command sequences. Depending on the data being
processed, several execution paths may exist for the
same transaction and an execution path may include cy-
cles representing the repetitive execution of sets of com-
mands (a typical example of cycles in a transaction is
the insertion of a variable number of lines in a cus-
tomer’s order). The transaction ends with a commit or
rollback command.

Our intrusion detection approach comprises a learn-
ing phase and a detection phase. In the first phase the
transaction profiles are learned through the identification
of the authorized sequences of SQL commands, which
result in a directed graph. In the second phase they are
used to detect deviating behaviors, which are considered
to be intrusions.

One important security mechanism of DBMS is au-
diting. The audit trail can be used to perform a posteriori
analysis of the operations done by each user in order to
identify potential intrusion attempts. However, the anal-
ysis of the audit trail is a difficult and time consuming
task and only serves for diagnosis or investigation pur-
poses of past security attacks. The time between a mali-
cious action and its detection is of major importance and
every second of delay may represent loss of privacy, risk
of data destruction, and propagation of corrupted data
after the attack.

Our first approach to the intrusion detection problem
is based on the information collected by the database au-
diting mechanism. The goal is to add on-line intrusion
detection capabilities to typical DBMS auditing system.
In the learning phase, the audit trail is used off-line to
generate the graphs representing the authorized transac-

tions. The minimum information that needs to be avail-
able for each executed command is the name of the user,
the identification of the session, the identification of the
transaction, the command text and the time stamp of the
command. This information must be collected in con-
trolled conditions guaranteeing that the system is free of
intrusion attempts (which would potentially lead to the
identification of malicious transactions as authorized
ones). Of course, the DBA must choose the adequate
time window that is both representative of database uti-
lization and free of attacks. Inspection of the database
audit trail collected during the learning window can be
used to assure that no malicious actions have been
learned.

After having concluded the learning phase, the detec-
tion mechanism is ready to detect intrusions. During this
phase the audit trail is used on-line to obtain the se-
quence of commands executed by each user, which is
concurrently compared to the profile of the authorized
transactions to identify potential malicious transactions.
The detection is done at the SQL command level. That
is, it is not necessary to reach the end of the transaction
where the suspicious command was found to detect the
potential intrusion. All the transactions that have suspi-
cious commands are considered malicious and that trig-
gers several actions depending on the configuration. It
can raise an alarm, send a message to the DBA, kill the
session, or even activate a damage confinement proce-
dure [6].

3. Preliminary results

In this section we present the experiments conducted
to evaluate our intrusion detection mechanism imple-
mented over the audit trail of the Oracle 10g R2 DBMS.
The experimental setup includes three computers con-
nected through an Ethernet broadband router/switch. We
used two different database application scenarios in this
evaluation:
- A well-known database performance benchmark,

the TPC-C [7], which provides a controlled
database environment quite adequate for initial
evaluation of the learning algorithm and for the
evaluation of performance overhead, coverage and
latency. The mechanism has been evaluated consid-
ering both transactions generated as random se-
quences of commands and malicious transactions
submitted by real database users that tried to break
the intrusion detection mechanism and change the
database content or access data in database tables.

- A real large hospital database sterilization applica-
tion to assess mainly the transaction learning curve
in a real situation. This allows us to obtain the time
window necessary to perform a representative
learning of the transactions.

The intrusion detection efficiency can be character-
ized by the following measures: coverage, latency, false

positives, and impact in the performance.
The detection coverage observed for random transac-

tions was 99.23%. The small percentage of undetected
transactions corresponds to very small TPC-C transac-
tions whose commands were occasionally mimicked by
the random transaction injector. However, in all the cas-
es the intrusion was immediately detected in the follow-
ing command. In reality, the intrusion detection cover-
age was 100%, if we consider the sequence of transac-
tions.

As far as the human users are concerned, the intru-
sions have been detected in all the cases. Four people
volunteered to test the system. Three of them are stu-
dents with basic skills and one is a professional DBA. In
5 sessions, from a total of 132, the users managed to in-
troduce changes in the database, but they were spotted as
an intruder in the subsequent command. The intrusion
detection latency is consistently low, ranging from 1
second to 1.6 seconds.

The performance penalty in normal load conditions
is 6% or less. In heavy load conditions, however, perfor-
mance overhead increases up to 25%. It is important to
note that this is mainly due to the DBMS audit feature
being switched on.

Concerning the learning curve using the real
database application, we could observe that the rate of
transactions learning is very quick at the beginning, re-
ducing over the time. In certain periods of the day or the
week we could see that some new transactions were exe-
cuted. This should be due to some specific procedures
that are executed at a very specific moment.

4. Conclusion and future work

This paper presents our research work on intrusion
detection in DBMS. The goal is to provide DBMS with
on-line intrusion detection capability. Our approach in-
cludes two phases: one which is devoted to the learning
of transaction profiles and another to detect malicious
users. In the learning phase a graph with the sequence of
commands that compose each valid transaction is built.
In the detection phase the mechanism catches malicious
users by detecting the transactions that fall outside the
learned profile. When a intruder is detected some cor-
rective actions may be performed (e.g., warning the
DBA, killing the malicious session, etc).

An implementation of the proposed mechanism in
the Oracle 10g R2 DBMS has been evaluated using the
TPC-C benchmark and a production database used by a
large hospital. Positive results where obtained, showing
that the approach is valuable and can be successfully ap-
plied to current DBMS.

We are now studying new algorithms to improve
performance, latency and false positives. The detection
of ad-hoc queries executed by the DBA, managers and
decision making personnel may be addressed by algo-
rithms adapted from those used by system masquerade

detectors, like those used by [8,1], where the sequence of
commands is not important, but the statistic usage of
those commands is. We are also analyzing other forms
of collecting the transaction logs from both the outside
and the inside the DBMS. The inclusion of the whole
system inside an open source DBMS like PostgreSQL is
also being considered.

5. References

[1] M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr, M.
Theus, Y. Vardi, “Computer intrusion: Detecting masquer-
ades”, Statistical Science, 16(1):58–74, Feb. 2001.
[2] C. Chung, M. Gertz, K. Levitt, “DEMIDS: A Misuse De-
tection System for Database Systems”, in Proc. of Third Int.
IFIP TC-11 WG11.5 Working Conference on Integrity and
Internal Control in Information Systems, Kluwer Academic
Publishers, 1999.
[3] E. Bertino, A. Kamra, E. Terzi, A. Vakali, “Intrusion de-
tection in RBAC-administered databases”, 21st Annual
Computer Security Applications Conference (ACSAC) 2005.
[4] P. Liu, “DAIS: A Real-time Data Attack Isolation Sys-
tem for Commercial Database Applications”, In Proc. of the
17th Annual Comp. Security Applications Conf., 2001.
[5] M. Vieira, H. Madeira, "Detection of malicious transac-
tions in DBMS", The 11th IEEE International Symposium
Pacific Rim Dependable Computing, PRDC2005, Changsha,
Hunan, China, Dec. 2005.
[6] P. Liu, “DAIS: A Real-time Data Attack Isolation Sys-
tem for Commercial Database Applications”, In Proc. of the
17th Annual Computer Security Applications Conference,
2001.
[7] Transaction Processing Performance Council, “TPC
Benchmark C, Standard Specification, Version 5.4”, 2005,
available at: http://www.tpc.org/tpcc/.
[8] L. A. Gordon, M. P. Loeb, W. Lucyshyn and R.
Richardson, Computer Security Institute, computer crime
and security survey, 2005.
[9] R. Maxion, T. Townsend, "Masquerade Detection Using
Truncated Command Lines." International Conference on
Dependable Systems and Networks, pp. 219-228, Washing-
ton, D.C. 23-26 June 2002.
[10] Y. Hu, B. Panda, “Identication of malicious transac-
tions in database systems”, In Proc. of the International
Database Engineering and Applications Symposium
(IDEAS), 2003.
[11] W. Lup Low, J. Lee, P. Teoh, “DIDAFIT: Detecting In-
trusions in Databases Through Fingerprinting Transactions”,
International Conference on Enterprise Information Systems,
2002.
[12] T. Lunt, C. McCollum. “Intrusion detection and re-
sponse research at DARPA”, Technical report, The MITRE
Corporation, McLean, VA, 1998.

	1. Introduction
	2. Proposed approach
	3. Preliminary results
	4. Conclusion and future work
	5. References

