
Monitoring Database Application Behavior for Intrusion Detection

José Fonseca
CISUC - Polithecnic Institute of Guarda

6300 Guarda
Portugal

josefonseca@ipg.pt

Marco Vieira, Henrique Madeira
DEI/CISUC - University of Coimbra

3030 Coimbra
Portugal

{mvieira, henrique}@dei.uc.pt

Abstract

Database management systems (DBMS) represent
the ultimate layer in preventing malicious data access
or corruption and implement several security
mechanisms to protect data. However these
mechanisms cannot always stop malicious users from
accessing data by exploiting system vulnerabilities.
The aim of this paper is to propose an intrusion
detection mechanism for DBMS to fill this gap. Our
approach consists of a comprehensive representation
of user database utilization profiles to perform
concurrent intrusion detection. Prior to the detection it
is necessary to define and learn these utilization
profiles. Profiles are defined using a three level
abstraction and learned directly from monitoring the
database utilization in real conditions. The proposed
mechanism is generic and can be easily implemented
in commercial and open-source DBMS.

1. Introduction

A major problem faced by organizations today is
the protection of their data against malicious access or
corruption. Database security mechanisms offer basic
security features such as authentication, authorization,
access control, data encryption, and auditing. However,
these mechanisms do not assure protection against
DBMS vulnerabilities exploits and are very limited in
defending data attacks from the inside the organization
or from unsecured applications.

The general lack of intrusion detection features in
commercial DBMS is an important limitation since
malicious actions in a database environment may not
be filtered by existing intrusion detection mechanisms
at the network or the operating system levels. For
example, inside attacks (e.g., a disgruntled employee
that may access and damage critical private data) are
particularly difficult to detect and isolate, because as
these attacks are carried out by legitimate users that
may have access rights to data and system resources. In
addition, masquerade attacks where people hide their

identity by impersonating others are one of the most
frequent forms of computer security attacks [1].
Another example is SQL injection in web applications,
where an attacker changes the SQL commands sent to
the server, and therefore, accessing sensitive data.

This paper proposes a new intrusion detection
mechanism that adds concurrent intrusion detection to
DBMS using a comprehensive set of behavior
abstractions representing database activity.

2. Proposed approach

The proposed mechanism is based on anomaly
detection and includes a learning phase and a detection
phase. Very briefly, the database utilization profile is
gathered as a first step to feed the learning phase. Once
the database utilization profile is established, the
information collected is used to concurrently detect
database intrusions. The mechanism is able to detect
and stop database attacks while calling the database
administrator (DBA) attention (e.g., by sending an
email or an SMS message, etc.).

We use three abstraction levels to define the user
profile representing his/her database activity: command
level, transaction level, and session level. The intrusion
detection is based on a set of security constraints
defined at each of these three levels. A database access
that violates any security constraints defined at any
level is considered a potential intrusion:
• Command level: checks if the structure of each

executed command belongs to the set of
command structures previously learned.

• Transaction level: checks if the command is in the
right place inside the transaction profile (a
transaction is a unit formed by a set of SQL
commands always executed in the same
sequence).

• Session level: checks if the transaction fits in a
known transaction sequence. It represents the
sequence of operations that the user executes in a
session.

Intrusion detection activity starts at the lowest level

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional do Instituto Politécnico da Guarda

https://core.ac.uk/display/148389744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(command level). If no intrusion is detected at this
level, the detection continues at the next level
(transaction level), and so on. If no restriction is
violated after having passed all levels, the command is
considered valid.

Different implementation alternatives for data
capturing can be followed, including external database
approaches, such as using a proxy or a sniffer, or
taking advantage of database auditing features
available in most of DBMS (the audit approach was
used by Vieira et al [3], with quite good results). The
detection mechanism can also be implemented inside
the DBMS (although this requires the DBMS
modification).

3. Preliminary results

In this section we present the experiments
conducted to evaluate our intrusion detection
mechanism. The sniffer approach has been used as it
has no impact on the server performance (it is located
in a different computer). It is also a non intrusive
technique which turns out to be the best approach to
use with real database scenarios. For the DBMS we
have chosen the Oracle 10g since it is one of the most
representative in the market. The experimental setup
includes three computers connected through an
Ethernet broadband router/switch. We used two
different database application scenarios in this
evaluation:
• A well-known database performance benchmark,

the TPC-W, which provides a controlled database
environment quite adequate for initial evaluation
of the learning algorithm and for the evaluation of
coverage and latency. After a learning period the
mechanism has been evaluated considering
correct commands executed randomly and correct
commands slightly changed.

• A real large hospital database sterilization
application to assess mainly the transaction
learning curve in a real situation. This allows us
to obtain the time window necessary to perform a
representative learning of the transactions.

The intrusion detection efficiency can be
characterized by the following measures: coverage,
latency, false positives, and impact in the performance.

In the first step we have run TPC-W for 51 minutes
to learn the transactions. We have then executed TPC-
W intensively in order to assess if the all the
transactions were successfully. We have observed that
only one valid TPC-W transaction was detected as
malicious. The injection of slightly changed leaded to a
coverage of 100%, while de injection of correct SQL
commands in a random order (i.e., invalid transactions)

leaded to 4.2% of false negatives.
In another experiment we have manually injected

50 malicious commands while the TPC-W was running
to produce the load. All these 50 commands were
detected as intrusions. The largest latency time
obtained was 10 milliseconds and the average latency
time was 1.6 milliseconds. In all the commands the
detection was done before the server reply to the
malicious command, which makes the detection, was
made before the next command after the malicious
command. The query was very simple, which means it
was quickly executed by the server.

Concerning the learning curve using the real
database application, we could observe that the rate of
transactions learning is very quick at the beginning,
reducing over the time. In certain periods of the day or
the week we could see that some new transactions were
executed. This should be due to some specific
procedures that are executed at a very specific moment.

4. Conclusion and future work

In this paper we present a new mechanism for the
detection of malicious transactions in DBMS. It uses a
representation of the profile of the user utilization of
the database using three levels of detail (command,
transaction and session) to detect the intrusions. The
database intrusion detection mechanism consists of two
main phases: transaction learning and concurrent
intrusion detection. This mechanism is generic as it can
be used in any typical DBMS, including stat-of-the-art
commercial DBMS. A set of experiments were
performed using one implementation of the mechanism
based on the sniffer approach (one of the proposed
alternatives). The experimental results show that the
proposed mechanism is quite effective and can be
easily implemented. For future work we intend to
develop other architectures presented and compare
their results. Another objective is to include a damage
containment module to the intrusion detection
mechanism.

5. References

[1] M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr, M.
Theus, Y. Vardi, “Computer intrusion: Detecting
masquerades”, Statistical Science, 16(1):58–74, Feb. 2001.
[2] E. Bertino, et. al., “Intrusion detection in RBAC-
administered databases”, ACSAC, 2005.
[3] M. Vieira, H. Madeira, "Detection of malicious
transactions in DBMS", PRDC, China, 2005.

