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ABSTRACT 
This paper proposes a mechanism that allows concurrent detection 
of malicious data access through the online analysis of the Data-
base Management Systems (DBMS) audit trail. The proposed 
mechanism uses a directed graph representing the profile of valid 
transactions to detect illegal accesses to data, which are seen as 
unauthorized sequences of Structured Query Language (SQL) 
commands. The paper proposes a generic algorithm that learns the 
graph representing the profile of the transactions executed by the 
users. This mechanism can be used to protect traditional database 
applications from data attacks as well as web based applications 
from SQL injection types of attacks. The proposed mechanism is 
generic and can be used in most commercial DBMS, adding con-
current detection of malicious data access to classical database 
security mechanisms. The paper presents a practical example of 
the implementation of the proposed mechanism using Oracle 10g. 
The Transaction Processing Performance Council benchmark C 
(TPC-C) and a real database installation were used to assess the 
detection mechanism and learning algorithm.  

Categories and Subject Descriptors 
H.2.7 Database Administration: Security, integrity, and protection 

General Terms 
Management, Security. 

Keywords 
Intrusion detection, SQL injection, DBMS auditing. 

1. INTRODUCTION 
A major problem faced by organizations today is the protection of 
their data against malicious access or corruption. Traditional da-
tabase security mechanisms offer basic security features such as 
authentication, authorization, access control, data encryption, and 
auditing. However, these mechanisms do not assure protection 
against exploiting database applications bugs and are very limited 
in defending data from attacks.  

According to a Computer Crime and Security Survey [5] done by 
the FBI in 2006, around 32% of the respondents had reported 
unauthorized access to information estimating a loss of $ 
10.617.000 and a loss of $ 6.034.000 due to theft of proprietary 
info. Up to 52% of the respondents reported unauthorized use of 
computer systems and 10% did not know if they have been at-
tacked. Furthermore, 92% of the correspondents reported more 
than 10 web site incidents.  

Masquerade attacks where people hide their identity by imperson-
ating other people on the computer are one of the most frequent 
forms of security attacks [9, 10, 15, 16], including in the database 
domain. Another common database attack is SQL injection in web 
applications, where unchecked input is passed to a back-end data-
base for execution. The attacker can perform this by simply 
changing the SQL query sent to the server, getting access to sensi-
tive data.  

One important security mechanism in Database Management Sys-
tems (DBMS) is auditing [14]. In many database applications 
auditing is required by law, in order to assure that any action in 
the database can be traced back to an individual user/program if 
needed (e.g., hospitals, banking, electronic voting, etc). In less 
demanding applications, the audit trail is switched on only when 
the Database Administrator (DBA) suspects that the database is 
being subjected to anomalous accesses. Of course, the auditing 
causes some performance overhead, which is in general not very 
relevant unless the server is running close to its loading limits [14, 
13, 18]. 

The audit trail can be used by the DBA to perform a posteriori 
analysis of the accesses to the data in order to identify potential 
malicious data accesses. However, the analysis of the audit trail is 
a difficult (or even impossible in databases with hundreds of users 
performing operations simultaneously) and time consuming task. 
Furthermore, DBMS lack in intelligent auditing tools able to help 
in the audit process [19]. More important, auditing is only useful 
for diagnosis or investigation purposes of past security attacks. 

The general lack of concurrent detection of malicious data ac-
cesses capabilities in commercial DBMS is an important limita-
tion when it is necessary to assure a strong data security policy. A 
practical mechanism for concurrent audit trail analysis in DBMS 
will provide an extra layer of security that cannot be assured by 
the basic DBMS security mechanism or by operating systems and 
networking intrusion detection. It is worth noting that malicious 
actions for a database application may not be seen as malicious by 
existing intrusion detection mechanisms at the network or the 
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operating system levels, which means that they would not be de-
tected. For example, inside attacks (e.g., a disgruntled employee 
that may access and damage critical private data) are particularly 
difficult to detect and isolate, as the attacks are carried out by 
legitimate users that may have access rights to data and system 
resources. Furthermore, daily routine and long established habits 
tend to relax many security procedures. Even simple things such 
as choosing strong passwords and purging periodically unused 
database accounts are often neglected in many organizations [11].  

The mechanism for concurrent detection of malicious data access 
proposed in this paper adds real-time analysis capabilities to the 
auditing mechanisms of DBMS. This way, a data attack can be 
detected and stopped in due time (e.g., by killing or isolating the 
database session of the attacker) while the mechanism may call 
the attention of the DBA (by sending a screen alert, an email or an 
SMS message). The DBA does not have to spend time analyzing 
the audit records because they are being analyzed on the fly and 
the malicious behaviors detected are immediately reported to the 
DBA. Additionally, the audit trail analysis mechanism can also be 
used to help in the traditional off-line analysis of audit entries. 
This mechanism can be easily implemented and used in commer-
cial DBMS, as shown in the examples presented in this paper. 

The proposed mechanism, named MDAD – Malicious Data Ac-
cess Detector, includes two phases: learning and detection. The 
DBMS must be configured to record the audit entries for basic 
data access operations (select, insert, delete and update). This will 
feed the learning phase and the result is the graph of the transac-
tion profiles for all the transactions recorded in the audit trail. 
These learned graphs are stored and used later on by the detection 
engine to detect malicious commands.  

The structure of the paper is as follows. Section 2 provides some 
background on security in DBMS. Section 3 presents the pro-
posed mechanism of learning the transaction profiles from audit 
entries and the corresponding detection mechanism. Section 4 
presents the evaluation of the proposed mechanism using the 
TPC-C standard benchmark and a real database. Section 5 con-
cludes the paper. 

2. BACKGROUND AND PREVIOUS WORK 
General methods for intrusion detection in computer systems are 
based either on pattern recognition or on anomaly detection. Pat-
tern recognition is the search for known attack signatures in the 
commands executed. Anomaly detection is the search for devia-
tions from an historical profile of good commands. 

Schonlau et al [16] evaluated several anomaly detection ap-
proaches and concluded that methods based on the idea that oper-
ating systems commands not previously seen in the training data 
may indicate an intrusion attempted, are among the most powerful 
approaches for intrusion detection. The approach proposed in this 
paper uses this idea, extending it to the detection of malicious data 
accesses based on a set of SQL commands. However, unlike in-
trusion detection approaches used in distributed systems, that 
usually rely on sequences of predefined number of commands 
(normally a small number) or assume the commands are unrelated, 
in our approach, the SQL commands and their order in each data-
base transaction are relevant. 

The main goal of security in DBMS is to protect the system and 
the data from intrusion and unauthorized accesses, even when the 

potential intruder gets access to the machine where the DBMS is 
running. To protect the database from intrusion, the DBA must 
prevent and remove potential attacks and vulnerabilities. The 
system vulnerabilities are an internal factor related to the set of 
security mechanisms available (or not available at all) in the sys-
tem, the correct configuration of those mechanisms (which is a 
responsibility of the DBA), and the hidden flaws on the system 
implementation. Vulnerability prevention consists of guarantying 
that the software used has the minimum vulnerabilities possible 
and this can be achieved by using adequate DBMS software. On 
the other hand, as the effectiveness of the security mechanisms 
depend on their correct configuration and use, the DBA must 
correctly configure the security mechanisms by following admini-
stration best practices. Vulnerability removal consists on reducing 
the vulnerabilities found in the system. The DBA must pay atten-
tion to the new security patches released by software vendors and 
install those patches as soon as possible. Furthermore, any con-
figuration problems detected on the security mechanisms must be 
immediately corrected. 

Security attacks are an external factor that mainly depends on the 
intentionality and capability of humans to maliciously break up 
into the system taking advantage of potential vulnerabilities. The 
prevention against security attacks includes all the measures 
needed to minimize (or eliminate) the potential attacks against the 
system. On the other hand, attack removal is related to the adop-
tion of measures to stop attacks that have occurred before. 

In spite of all the classical security mechanism developed in the 
database area, current DBMS are not well prepared for high-
assurance privacy and confidentiality [2]. A very important com-
ponent for the new generation of security aware DBMS are 
mechanisms able to automatically detect malicious data accesses 
and intrusion [1].  

Recent works have addressed real-time (or concurrent) intrusion 
detection and attack isolation in DBMS, and this issue is clearly 
getting more and more attention. DEMIDS is a misuse detection 
system tailored to relational database systems. It uses audit logs to 
derive user profiles that describe typical behavior of users in the 
DBMS [4]. Chung introduces the notion of distance measure and 
frequent item sets to capture the working scopes of users using a 
data mining algorithm. Although also using audit log, our ap-
proach is different from [4] as it is applied at the very fine grain of 
SQL commands and transactions, instead of group of users’ pro-
files. 

In [3] a real-time intrusion detection mechanism based on the 
profile of user roles is proposed. An intrusion attack and isolation 
mechanism was proposed in [8]. This mechanism uses triggers 
and transaction profiles to keep track of the items read and written 
by transactions isolates attacks by rewriting user SQL statements. 
The use of data dependency relationships and Petri-Nets to model 
normal data update patterns was proposed in [6] to detect mali-
cious database transactions. Using fingerprints for intrusion detec-
tion in databases is addressed in [7]. 

3. TRANSACTIONS LEARNING AND MA-
LICIOUS ACCESS DETECTION 
In a typical database environment transactions are programmed in 
the database application, which means that the set of transactions 
remains stable, as long as the database applications are not 



 

changed. For example, in a banking database application users can 
only perform the operations available at the application interface 
(e.g., withdraw money, balance check account, etc). No other 
operation is available for the end-users. Normally, end-users can-
not execute ad hoc SQL commands. So, it is possible to use trans-
action profiles for the detection of malicious data accesses with a 
reduced risk of false alarms. 

Typically, there are several groups of users in a database envi-
ronment, according to the transaction profiles they execute. There 
are regular database end-users executing predefined transactions 
by means of a database application, and a small set of exceptional 
users that may belong to decision support, DBA or developers 
that explore data for strategic decisions by executing all kinds of 
ad-hoc SQL commands. The target group of users of our applica-
tion is the regular database clients, which constitute the vast ma-
jority of database users.  

In [18] the authors addressed the detection of malicious DBMS 
transactions was addressed with the assumption that the transac-
tion profiles (graph of the sequence of SQL commands in a trans-
action) was known in advance, and provided manually to the de-
tection mechanism. In our opinion, this requirement is hard to 
fulfill in real and complex database installations. Thus, in this 
paper we propose a new approach based on automatic transaction 
learning.  

The proposed mechanism uses the profile of the transactions im-
plemented by the database applications (authorized transactions) 
to identify user attempts to execute other SQL commands. A data-
base transaction is represented by a directed graph describing the 
different execution paths (sequences of selects, inserts, updates, 
and deletes) from the beginning of the transaction to the commit 
or rollback command. The nodes in the graph represent com-
mands and the arcs represent the valid execution sequences. De-
pending on the data being processed, several execution paths may 
exist for the same transaction and an execution path may include 
cycles representing the repetitive execution of sets of commands 
(a typical example of cycles in a transaction is the insertion of a 
variable number of lines in a customer’s order). The transaction 
ends with a commit or rollback command. 

The mechanism for online detection of malicious data access con-
sists of two main phases (see Figure 1): transactions learning and 
malicious data access detection. Both phases use the database 
audit trail. In the learning phase, the audit trail is used offline to 
generate the graphs representing the valid transactions. In the 
detection phase, the audit trail is used online to obtain the se-
quence of commands (transactions) executed by each user, which 
is compared to the learned graph in order to detect unauthorized 
transactions. 

It is worth noting that learning and detection phases may occur in 
a recurrent manner. In fact, when a new database application is 
deployed the learning phase must be revisited. Furthermore, as it 
is easy to see, the transactions learning depends on the utilization 
profile of the database. In many cases, large database applications 
include functionalities that are only executed from time to time, 
for example at the end of the week or end of the month. Until the 
DBA is not confident with the learned transaction profile the de-
tection may not act drastically on the session (e.g., may not kill 
sessions that are considered as malicious). Instead the DBA 
should analyze those situations first and, possibly add the detected 

transaction to the learned profile. In practice, we expanded the 
detection phase into two phases: Conditional Detection and Regu-
lar Detection (Figure 1). When the DBA considers the conditional 
detection phase is completed then the system goes to the regular 
detection phase. In this phase if a malicious transaction is found a 
more defensive action may be executed. If there is an upgrade of 
the database application then the system should go to the learning 
phase again (including or not simultaneous conditional detection). 

An important aspect is that the nodes in the graph do not represent 
concrete commands as commands may differ among executions. 
For example, consider the following SQL command to select the 
data from a given customer: select name, address, phone from 
customer where name=’John Carter’. The name in the select 
criteria (name=?) depends on the target customer. This way, in-
stead of considering concrete commands we have to represent 
those commands in a generic way. For example, the command to 
select data from a given customer can be represented by the fol-
lowing attributes: command type (select), target object (table cus-
tomer), columns selected (name, address, and phone), and restric-
tion field (name).  

The audit entries must include the following information for each 
audited command: Username, Session ID, Command ID, Transac-
tion ID, Action executed, Object name, Object owner, and Time-
stamp of the action. 

This information corresponds to the information audited in typical 
DBMS, which normally can be configured to store different levels 
of detail of the audited data.  

Although auditing is mandatory in high security database applica-
tions, in many less demanding applications the audit trail is only 
switched on when the DBA suspects that the database is being 
subject to anomalous accesses. In both cases, the proposed 
MDAD mechanism adds on-line analysis to audit trail, which 
helps the DBA in providing a quick response to attacks. In critical 
applications the time between a malicious action and its detection 
is of major importance and every second of delay may represent 
loss of privacy, risk of data destruction, and propagation of cor-
rupted data after the attack. 

As previously mentioned, the proposed detection technique does 
not apply to users that execute ad-hoc queries, as there are no 
predefined transaction profiles for ad-hoc queries. However, ad-
hoc queries are used in decision support system and are not exe-
cuted in typical database applications, as this type of queries 
would ruin the performance of the database system. Furthermore, 
it is quite easy to exclude a given user (e.g., a trusted user that 
could execute ad-hoc queries even in a traditional database) from 
the auditing trails that feed our detection mechanism, avoiding 
this way false positive detection alarms. 

3.1 Transaction profile learning using audit 
entries 
Learning transactions consists of identifying the authorized trans-
actions and representing those transactions as a directed graph 
specifying the sequences of valid commands, where each node 
represents a command and each arc represents a valid execution 
sequence. The goal is to automatically learn the transactions pro-
files contained in the audit trail and save them as a directed graph 
to be used in the detection phase. Obviously, learning algorithms 
must be executed over audit trail collected in controlled condi-



 

tions that guarantee the system is free of data attacks (which 
would potentially lead to the identification of malicious transac-
tions as authorized ones). 

When a user connects to the database and establishes a session, all 
the commands executed by that user are associated to a transac-
tion. Thus, the user cannot escape to the transaction mechanism: 
when one transaction ends a new transaction begins. Two types of 
transactions can be considered: read-only transactions and regular 
(i.e. read and write) transactions. The read-only transactions are 
groups of queries mainly used to show information to the user on 
the screen or printer. Typically, for these transactions there is no 
information in the audit trail about their start or end because noth-
ing is changed in the database. Actually, when developing appli-
cations programmers do not include commits at the end of read-
only transactions because they are not needed.  

One of the key points in the learning phase, and in the detection 
phase as well, is the detection of the first command of a transac-
tion as in many commercial DBMS, such as Oracle 10g 
[12], the commit and rollback commands are not recorded 
in the audit trail. This way, the detection of the first com-
mand of a transaction is done by analyzing the transaction 
ID associated to the commands in the audit trail. This ID is 
normally null at the beginning. It changes to a non null 
value in the first writing command (insert, update, delete) 
and keeps the same value until the transaction ends, even if 
there are read-only commands in the middle or at the end of 
the transaction. In the next transaction the transaction ID 
will be null again until the first writing command is issued 
(typically, read-only commands in the beginning of a trans-
action have a null value associated). An important aspect is 
that the transaction ID values are always different from one 
transaction to another.  

As commit and rollback commands are not recorded in the 
audit trail it is impossible to know if a transaction ends be-
cause of a commit or a rollback. Also, when there is a read 
only transaction (for which commands have a null transac-
tion ID) and the start of the next transaction is a select 
command, the transaction ID maintains its null value and it 
is impossible to detect the start of the second transaction by 
simply reading the transaction ID. To solve these problems 
the Learning phase was split into three steps: First-

Learning, Extraction of Read Only Transactions and Final-
Learning. 

The input of the First-Learning step is the audit trail previously 
collected and its objective is to split the trail into small groups of 
transactions based on the transaction ID information. These 
groups of transactions consist of regular transactions that may 
have one or more read only transactions attached at the beginning 
(see Figure 2). This mixture of several transactions occurs due to 
the fact that the end of read-only transactions is not explicitly 
recorded in the audit trails. Of course, when one regular transac-
tion is preceded by another regular transaction, they are correctly 
identified in this step. 

The result of the First-Learning step is used in the Extraction of 
Read Only Transactions step, where read only transactions are 
isolated by subtracting the groups of transactions from each other. 
The subtraction of the two transactions leads to the identification 
of a read only transaction when the two transactions differ one 
from the other by select commands at the beginning. As shown in 
Figure 2, this set of commands (representing the read-only trans-
action) is the result of the subtraction. The result of this step is the 
read-only transactions (and groups of read-only transactions seen 
as a single read-only transaction).  

The reasoning behind the subtraction of transactions to isolate the 
read-only transactions is the following: as the normal (i.e., writ-
ing) transactions are well-defined by the transaction ID, reading 
commands that form read-only transactions may occur at the be-
ginning of different transactions, which means that the read-only 
portions can be isolated by simple command subtraction. 

The last step is the Final-Learning step where the off-line audit 
trail is processed along with the read-only transactions previously 
obtained. Again the audit trail is split into groups of transactions 
and the regular transactions are obtained by subtracting the read-
only transactions from the beginning of those groups. Figure 2 
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Figure 1. MDAD building blocks and workflow. 
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shows a visualization of this process and explanation comments. 

Database transactions fall in one of the following transaction pro-
files that cover all the possibilities: linear (no branches or loops), 
with branches, with loops, with loops inside loops, with loops 
inside branches, and with branches inside loops.  

Except for the last type of transaction profile, all the others are 
easily learned by an algorithm that can learn a linear transaction 
and loops. When a branch exists it is treated as a different transac-
tion. The learning algorithm implements the detection of linear 
transactions and transactions with loops. The transactions with 
branches are split into as many transactions as there are branches.  

3.2 Malicious data access detection 
Having concluded the learning phase, the MDAD is ready to de-
tect malicious data accesses. The audit trail is then used to concur-
rently obtain the sequence of commands executed by each user, 
which is compared to the profile of the authorized transactions to 
identify potential malicious commands. To minimize the storage 
overhead, the audit entries may be deleted as soon as they are 
processed and no malicious data access is detected. If an attack is 
detected the audit entries are kept for future reference.  

An important aspect is that the detection is done at SQL command 
level. That is, it is not necessary to reach the end of the transaction 
in which the suspicious command was found to detect a potential 
attack. All the transactions that have suspicions commands (i.e., 
that deviate from a known authorized profile) are immediately 
considered malicious. 

The detection mechanism can be implemented inside the DBMS, 
outside the DBMS (in the same machine) or even in a different 
computer (to reduce performance overhead). In our current im-
plementation, the whole detection mechanism is implemented 
outside the DBMS and in a different computer.  

If a malicious transaction is detected one or more of the following 
actions may be executed, depending on the DBA choice: notify 
the DBA about the attack, immediately disconnect the user ses-
sion in which the malicious transaction was attempted, or activate 
a damage confinement and repair mechanism [8]. 

As mentioned before, the detection phase may work in Condi-
tional Detection mode where the erroneous transactions are ana-
lyzed and evaluated by the DBA. If they are considered valid 
transactions they should be added to the learned transaction pro-
files. If they are considered suspicious transactions, the DBA 
should investigate why they were executed. If there are new func-
tionalities or reconfiguration of the software, the Regular Detec-
tion mode may be changed to Conditional Detection in order to 
update the transaction profiles collection. 

4. EVALUATION AND RESULTS 
This section demonstrates the use and discusses the evaluation of 
the proposed intrusion detection mechanism. 

4.1 Setup and evaluation scenarios 
We used two different database application scenarios for the 
evaluation experiments:  

– A well-known database performance benchmark, the TPC-C 

[17], which provides us with a controlled database environ-
ment quite adequate for initial evaluation of the learning algo-
rithm and for the evaluation of performance overhead and la-
tency. The coverage and latency of the detection mechanism 
was mainly evaluated using this application scenario (i.e., the 
TPC-C). 

– A real (and large) database application to assess in particular 
the transaction learning curve in a real situation. This allows 
us to assess the need for conditional detection due to false 
positives resulting from incomplete transaction learning. 

The TPC-C performance benchmark [17] is an OLTP workload. It 
is a mixture of read only and update intensive transactions that 
simulate the activities found in complex OLTP application envi-
ronments. The performance metric reported by TPC-C is a "busi-
ness throughput" measuring the number of orders processed per 
minute. Multiple transactions are used to simulate the business 
activity of processing an order, and each transaction is subject to a 
response time constraint. The performance metric for this bench-
mark is expressed in transactions-per-minute-C (tpmC). 

The SCE is an application currently in use in the Central Service 
of Sterilization of a large hospital. The SCE is an administrative 
application used to manage the whole process of the sterilized 
material to and from all services in the hospital. This workflow 
comprises the reception of the material, the selection and the ster-
ilization of the material within a central with vapor autoclaves and 
ethylene oxide, various modes of drying, packaging, sealing, re-
quest and delivery. In every phase of the process the material is 
subject several times to inspections. 

As shown in Figure 3, the setup used in the evaluation experi-
ments with TPC-C includes three computers connected through a 
100 Mbit LAN Ethernet broadband router/switch. The database 
server is a desktop AMD Athlon XP 2800+ with 1GB RAM, one 
180GB SATA hard disk, running the Oracle 10g R2 DBMS over 
the Mandriva Linux 2006 operating system. The machine used for 
the malicious data access detection is a 1.6 GHz notebook Pen-
tium 4, with 256MB RAM, one 30GB hard disk, running the 
Windows XP SP2 operating system and Oracle 10g R2 client 
installed. The machine emulating the TPC-C terminals is 3 GHz 
desktop Pentium 4, with 480MB RAM, one 80GB hard disk, run-
ning the Windows XP SP2 operating system and Oracle 10g R2 
client installed. Note that the hardware features of the different 
machines do not have particular impact on the experimental re-
sults and are mentioned for the sake of completeness. 

4.2 Evaluation of the learning algorithm 
The learning algorithm was first evaluated using the TPC-C 
benchmark. TPC-C has five transaction profiles called Delivery, 
NewOrder, OrderStatus, Payment and Stock-Level. OrderStatus 
and StockLevel are read-only transactions. For the evaluation of 
the learning algorithm an audit trail was generated corresponding 
to one hour execution of the benchmark. This trail comprised 
989,540 commands corresponding to the execution of 96,585 
transactions from 50 sessions. As a result we obtained 42 different 
transactions in the first step (First Learning step; see section 3.1). 
In the second step of the algorithm (Extraction of Read Only 
Transactions) we obtained two read only transactions of TPC-C 
(OrderStatus and StockLevel), one transaction for the login, and 
another transaction representing the merge of the OrderStatus and 
StockLevel. The login transaction is learned because the TPC-C 



 

terminal emulation executes several commands after the login. 
The merged transaction appears because the last command of the 
OrderStatus (select order line table) is equal to the first command 
of the StockLevel (this is filtered in the next step). After the third 
step (Final-Learning) we obtained the results shown in Table 1, 
ordered by the number of times each transaction was identified in 
the audit trail. 

Because TPC-C specifies that the NewOrder may not complete 
due to a rollback an extra transaction is learned based on the in-
complete NewOrder. We call the extra transaction as NewOrder 
with rollback. Additionally, the TPC-C Payment transaction also 
leads to two learned transaction profiles (PaymentByName and 
PaymentByID). This is because the Payment transaction has a 
condition right at the beginning resulting in a branch and, as we 
mentioned previously, each branch is learned as a separate trans-
action.  However, these small differences in the learned profiles 
when compared to the real TPC-C transaction profiles have no 
impact at all in the detection algorithm. 

Table 1. Learned transaction profiles for TPC-C. 
Transaction # Count % total TPC-C Transaction 

6 43,255 44.784 NewOrder 
5 24,950 25.832 PaymentByName 
4 16,323 16.900 PaymentByID 
7 3,884 4.021 Delivery 
1 3,881 4.018 OrderStatus 
2 3,809 3.944 StockLevel 
8 433 0.448 NewOrder with rollback 
3 50 0.052 Login 

Total 96,585 100.000  
 
In the next step we evaluated the learning algorithm in a real da-
tabase scenario. The main goal was to assess the learning transac-
tion curve and estimate false positives caused by incomplete 
learning and leading to extra transactions that have to be added to 
the graph later on. 

We started with the audit log of one working day of real utiliza-
tion of the database of the SCE, having 8,750 commands from 
609 sessions and accesses 17 tables. This log was applied to the 
First-Learning step resulting in 33 different transactions. In the 
Extraction of Read Only Transactions, two of them were learned 
and the Final-Learning step showed 31 different transactions. 

Figure 4 shows the learning transaction curve. As we can see, 
most of the transactions (27 out of 31) were learned very quickly, 
during the first 1,000 commands (858 commands actually, as seen 
in Table 2). It is also quite evident that two new groups of data-
base functionalities (and corresponding transactions) were exe-
cuted around the command number 4,000 and command number 
6,500, corresponding to the two steps in the learning curve. In a 
real situation in which the learning phase stopped after the initial 

858 commands, these two moments would correspond to condi-
tional detection. In this case the DBA would have to analyze the 
new transactions and add them to the graph. Table 2 shows details 
(commands executed so far, transactions, etc) at these two mo-
ments when conditional detection would appear. A total of 4 
transactions would have to be validated manually by the DBA. 

For this SCE application we can conclude that there are 27 trans-
actions regularly executed during the day and 4 transactions that 
are executed after a certain hour in the day. This kind of behavior 
may appear during a wider window of time with different groups 
of transactions being executed only in one particular day of week 
or month, for instance.  Thus, we decided to analyze the audit 
logs for an entire week. The audit log of one week of the SCE 
application had 65,340 commands from 4,187 sessions and ac-
cesses 22 tables. This log was applied to the First-Learning step 

resulting in 56 different transactions learned out of 13,763. In the 
Extraction of Read Only Transactions step, 5 extra transactions 
were learned. The introduction of these read only transactions and 
the audit log in the Final-Learning step resulted in the learning of 
57 different transactions, from a total of 16,097 executed transac-
tions. 

Table 2. Three different log situations compared. 

 Complete 
Log 

Partial
Log1 

Partial
Log2 

Commands 8,750 858 3,726 
Sessions 609 107 381 
Number Transactions 1,954 228 1,455 
Tables 17 16 16 
First-Learning step Transactions 33 24 24 
Read Only Transactions 2 0 0 
Final-Learning Transactions 31 27 27 

 
Figure 5 shows the entire learning profile curve. As we can see in 
the chart new transactions were executed during the whole week, 
showing that this (real) application would required at least an 
entire week to allow complete transaction learning (although most 
of the transactions have been learned in the first two days). 

In some cases the learning process may take a considerable time 
to learn all the transactions if the transactions are evenly spread in 
a large period of time. In practice, the conditional detection mode 
has to be kept active for enough time to assure a complete learn-
ing. It is worth noting that even in this mode, the proposed algo-
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Figure 3. Experimental setup. 
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Figure 4. Evolution of the transactions during one day in the 
SCE application. 

MDAD
 



 

rithm does its job of adding concurrent malicious data access 
detection to audit trail. The only overhead the learning phase in-
troduces to the system is the audit itself, because the learning may 
be executed in another computer. 
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Figure 5. Evolution of the transactions during one week in the 
SCE application. 

4.3 Evaluation of detection coverage and la-
tency 
We have also evaluated detection coverage and latency in two 
different experiments with the TPC-C setup: automatic injection 
of random transactions and human attempts to break the mecha-
nism and access or damage the database without being detected.  

The coverage represents the percentage of malicious transactions 
detected. A first evaluation of the coverage of the proposed 
mechanism was done by submitting random transactions while the 
system was executing the TPC-C transactions. A total of 653 ran-
dom (extraneous) transactions have been submitted, correspond-
ing to the execution of 2,558 SQL commands. MDAD mechanism 
has detected 648 of these injected transactions, resulting in a de-
tection coverage of 99.23%, which is a quite good result. The 
small number of undetected transactions (five transactions) was 
caused by random transactions that mimic exactly the smaller 
transactions of TPC-C. In this experiment, all the TPC-C transac-
tions have been correctly and completely learned, resulting in zero 
false positives.  

The percentage of undetected transactions (0.77%) can be reduced 
by adding more information on the fixed structure of SQL com-
mands, usually available in the audit trail. This would make much 
more difficult to mimic the correct SQL command. 

The latency represents the time between the execution of a mali-
cious command and its detection. Experiments showed that the 
latency varies between 1 second and 1.6 seconds. The lower 
bound of the latency (1 second) is because the MDAD checks the 
audit log every second. Obviously, if the frequency of checking 
the audit trail for malicious transactions were higher the average 
latency would decrease (but the performance impact would be 
higher). Note that the users take some time between executions of 
commands, which means that a latency of less than 2 seconds is 
extremely good. 

The number of valid transactions executed between the moment a 
malicious transaction is submitted and the moment it is detected is 
also important. Typically, this number ranges between 20 and 70 
transactions depending on the system load. Note, however, that 
the system is executing at a rate of thousands of transactions per 

minute, which makes this number insignificant. 

The use of simple random generated transactions is acceptable for 
a very first evaluation of the coverage of the mechanism (and to 
provide a good evaluation of latency), but it is not enough to gain 
confidence in the mechanism. We decided to go for a test with 
real (human) users. The human users were volunteers (several 
students and a professional DBA) that have accepted the chal-
lenge of trying to beat our detection mechanism. 

For these tests with humans an Oracle server was used within a 
LAN. The TPC-C database was installed and several triggers were 
created to record changes in the database. A web front-end was 
built to let the users enter SQL commands from any computer 
inside the LAN. This web front-end also had a background task to 
record the history of all the commands executed for latter analysis. 
A short document was distributed to the testers explaining the 
objectives, including also the database schema giving insider 
knowledge to the attackers.  

The volunteers started 142 sessions and submitted 691 com-
mands. All the sessions were detected as malicious, leading to 
100% detection coverage. However, five sessions (3.5% of the 
total) were able to introduce changes in the data just before being 
detected as malicious in the next command executed. Note that, 
before being able to change the data, the users tried several times 
(from 8 to 36 times) and, in all those attempts, the sessions were 
detected as malicious and killed, giving the DBA enough warn-
ings of something that deserved inspection. 

Analyzing these five sessions we conclude that three correctly 
executed the initial commands of a correct transaction and then 
committed the changes to the database. This corresponds to a 
commit made at the middle of a transaction. The other two mali-
cious sessions were able to made unauthorized changes in the 
database by sending the commands inside a PL/SQL anonymous 
block. However, they were almost immediately detected and the 
session was killed before they could execute another command. 
Because the detection is based on the audit trail, the detection of a 
suspicious write command (as was the case) can only be per-
formed after its execution. In these two cases the user (the expert 
user) has sent two commands in a PL/SQL anonymous block, 
which correspond to the worst case concerning latency, as the two 
commands are executed almost at the same time. Although in 
theses cases the detection is done after the unauthorized change in 
the database, it would be possible to avoid damage by using dam-
age confinement mechanisms [8]. 

4.4 Impact on database server performance 
To measure the impact of detection on the server performance we 
used the TPC-C setup to emulate 10 online session terminals in-
putting transactions with variable throughput. Three configura-
tions have been considered representing the server without the 
audit activated, with the audit activated (but no malicious data 
access detection) and with the detection mechanism (Figure 6).  

As we can see, with 100% load the audit reduces in 25% the 
maximum number of transactions while the detection reduces 
additional 6%. This is the worse scenario possible, as the server 
was with 100% load. With 60% load the audit reduces only about 
3% the maximum number of transactions while the detection re-
duces 3%. Below this load the influence of both the audit and the 
detection is quite small. The only overhead the learning phase 



 

introduces to the system is the audit itself, because the learning 
may be executed in another computer. 

5. CONCLUSION 
This paper proposes new malicious data access detection mecha-
nism for DBMS. This method adds concurrent analysis to auditing 
mechanisms presented in most of the commercial DBMS. It has 
one phase devoted to the learning of transaction profiles and an-
other phase where the detection of malicious users is made. In the 
learning phase a graph is built having the sequence of commands 
that compose each valid transaction. In the detection phase the 
mechanism catches malicious users by detecting the transactions 
that fall outside the learned profile. Then the DBA is warned 
while the malicious session is killed. During the initial period of 
detection time the system may work in a warning only mode al-
lowing the DBA to take the appropriate actions towards the sus-
pected session. If the wrong transaction happens to be a good 
transaction not yet learned, the DBA may add it to the profile. 

The paper presented an implementation of the proposed system 
using the Oracle 10g R2 DBMS and it has been evaluated using 
the standard benchmark for database systems (TPC-C) and a pro-
duction database (SCE) used by a large hospital. The detection 
coverage observed for random transactions was above 99%. The 
small percentage of undetected transactions corresponds to very 
small TPC-C transactions whose commands were occasionally 
mimicked by the random transaction injector. However, in all 
cases the attack was immediately detected in the following com-
mand. In reality, the detection coverage was 100%, if we consider 
the sequence of commands inside the transaction.  

Concerning the tests with human users, the attacks have been 
detected in all cases. In 5 sessions, the user managed to introduce 
changes in the database, but they were spotted as intruder in the 
subsequent command. The detection latency is consistently low, 
ranging from 1 to 1.6 seconds. The performance penalty in normal 
load conditions is 6% or less. In heavy load conditions, perform-
ance overhead raises up to 25%. 
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Figure 6. Performance for the three configurations considered. 


