
Online Detection of Malicious Data Access
Using DBMS Auditing

José Fonseca
CISUC, University of Coimbra

Dep. of Informatics Engineering
3030 Coimbra - Portugal

+351 239 790 000

josefonseca@ipg.pt

Marco Vieira
CISUC, University of Coimbra

Dep. of Informatics Engineering
3030 Coimbra - Portugal

+351 239 790 000

mvieira@dei.uc.pt

Henrique Madeira
CISUC, University of Coimbra

Dep. of Informatics Engineering
3030 Coimbra - Portugal

+351 239 790 000

henrique@dei.uc.pt

ABSTRACT
This paper proposes a mechanism that allows concurrent detection
of malicious data access through the online analysis of the Data-
base Management Systems (DBMS) audit trail. The proposed
mechanism uses a directed graph representing the profile of valid
transactions to detect illegal accesses to data, which are seen as
unauthorized sequences of Structured Query Language (SQL)
commands. The paper proposes a generic algorithm that learns the
graph representing the profile of the transactions executed by the
users. This mechanism can be used to protect traditional database
applications from data attacks as well as web based applications
from SQL injection types of attacks. The proposed mechanism is
generic and can be used in most commercial DBMS, adding con-
current detection of malicious data access to classical database
security mechanisms. The paper presents a practical example of
the implementation of the proposed mechanism using Oracle 10g.
The Transaction Processing Performance Council benchmark C
(TPC-C) and a real database installation were used to assess the
detection mechanism and learning algorithm.

Categories and Subject Descriptors
H.2.7 Database Administration: Security, integrity, and protection

General Terms
Management, Security.

Keywords
Intrusion detection, SQL injection, DBMS auditing.

1. INTRODUCTION
A major problem faced by organizations today is the protection of
their data against malicious access or corruption. Traditional da-
tabase security mechanisms offer basic security features such as
authentication, authorization, access control, data encryption, and
auditing. However, these mechanisms do not assure protection
against exploiting database applications bugs and are very limited
in defending data from attacks.

According to a Computer Crime and Security Survey [5] done by
the FBI in 2006, around 32% of the respondents had reported
unauthorized access to information estimating a loss of $
10.617.000 and a loss of $ 6.034.000 due to theft of proprietary
info. Up to 52% of the respondents reported unauthorized use of
computer systems and 10% did not know if they have been at-
tacked. Furthermore, 92% of the correspondents reported more
than 10 web site incidents.

Masquerade attacks where people hide their identity by imperson-
ating other people on the computer are one of the most frequent
forms of security attacks [9, 10, 15, 16], including in the database
domain. Another common database attack is SQL injection in web
applications, where unchecked input is passed to a back-end data-
base for execution. The attacker can perform this by simply
changing the SQL query sent to the server, getting access to sensi-
tive data.

One important security mechanism in Database Management Sys-
tems (DBMS) is auditing [14]. In many database applications
auditing is required by law, in order to assure that any action in
the database can be traced back to an individual user/program if
needed (e.g., hospitals, banking, electronic voting, etc). In less
demanding applications, the audit trail is switched on only when
the Database Administrator (DBA) suspects that the database is
being subjected to anomalous accesses. Of course, the auditing
causes some performance overhead, which is in general not very
relevant unless the server is running close to its loading limits [14,
13, 18].

The audit trail can be used by the DBA to perform a posteriori
analysis of the accesses to the data in order to identify potential
malicious data accesses. However, the analysis of the audit trail is
a difficult (or even impossible in databases with hundreds of users
performing operations simultaneously) and time consuming task.
Furthermore, DBMS lack in intelligent auditing tools able to help
in the audit process [19]. More important, auditing is only useful
for diagnosis or investigation purposes of past security attacks.

The general lack of concurrent detection of malicious data ac-
cesses capabilities in commercial DBMS is an important limita-
tion when it is necessary to assure a strong data security policy. A
practical mechanism for concurrent audit trail analysis in DBMS
will provide an extra layer of security that cannot be assured by
the basic DBMS security mechanism or by operating systems and
networking intrusion detection. It is worth noting that malicious
actions for a database application may not be seen as malicious by
existing intrusion detection mechanisms at the network or the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.
Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

operating system levels, which means that they would not be de-
tected. For example, inside attacks (e.g., a disgruntled employee
that may access and damage critical private data) are particularly
difficult to detect and isolate, as the attacks are carried out by
legitimate users that may have access rights to data and system
resources. Furthermore, daily routine and long established habits
tend to relax many security procedures. Even simple things such
as choosing strong passwords and purging periodically unused
database accounts are often neglected in many organizations [11].

The mechanism for concurrent detection of malicious data access
proposed in this paper adds real-time analysis capabilities to the
auditing mechanisms of DBMS. This way, a data attack can be
detected and stopped in due time (e.g., by killing or isolating the
database session of the attacker) while the mechanism may call
the attention of the DBA (by sending a screen alert, an email or an
SMS message). The DBA does not have to spend time analyzing
the audit records because they are being analyzed on the fly and
the malicious behaviors detected are immediately reported to the
DBA. Additionally, the audit trail analysis mechanism can also be
used to help in the traditional off-line analysis of audit entries.
This mechanism can be easily implemented and used in commer-
cial DBMS, as shown in the examples presented in this paper.

The proposed mechanism, named MDAD – Malicious Data Ac-
cess Detector, includes two phases: learning and detection. The
DBMS must be configured to record the audit entries for basic
data access operations (select, insert, delete and update). This will
feed the learning phase and the result is the graph of the transac-
tion profiles for all the transactions recorded in the audit trail.
These learned graphs are stored and used later on by the detection
engine to detect malicious commands.

The structure of the paper is as follows. Section 2 provides some
background on security in DBMS. Section 3 presents the pro-
posed mechanism of learning the transaction profiles from audit
entries and the corresponding detection mechanism. Section 4
presents the evaluation of the proposed mechanism using the
TPC-C standard benchmark and a real database. Section 5 con-
cludes the paper.

2. BACKGROUND AND PREVIOUS WORK
General methods for intrusion detection in computer systems are
based either on pattern recognition or on anomaly detection. Pat-
tern recognition is the search for known attack signatures in the
commands executed. Anomaly detection is the search for devia-
tions from an historical profile of good commands.

Schonlau et al [16] evaluated several anomaly detection ap-
proaches and concluded that methods based on the idea that oper-
ating systems commands not previously seen in the training data
may indicate an intrusion attempted, are among the most powerful
approaches for intrusion detection. The approach proposed in this
paper uses this idea, extending it to the detection of malicious data
accesses based on a set of SQL commands. However, unlike in-
trusion detection approaches used in distributed systems, that
usually rely on sequences of predefined number of commands
(normally a small number) or assume the commands are unrelated,
in our approach, the SQL commands and their order in each data-
base transaction are relevant.

The main goal of security in DBMS is to protect the system and
the data from intrusion and unauthorized accesses, even when the

potential intruder gets access to the machine where the DBMS is
running. To protect the database from intrusion, the DBA must
prevent and remove potential attacks and vulnerabilities. The
system vulnerabilities are an internal factor related to the set of
security mechanisms available (or not available at all) in the sys-
tem, the correct configuration of those mechanisms (which is a
responsibility of the DBA), and the hidden flaws on the system
implementation. Vulnerability prevention consists of guarantying
that the software used has the minimum vulnerabilities possible
and this can be achieved by using adequate DBMS software. On
the other hand, as the effectiveness of the security mechanisms
depend on their correct configuration and use, the DBA must
correctly configure the security mechanisms by following admini-
stration best practices. Vulnerability removal consists on reducing
the vulnerabilities found in the system. The DBA must pay atten-
tion to the new security patches released by software vendors and
install those patches as soon as possible. Furthermore, any con-
figuration problems detected on the security mechanisms must be
immediately corrected.

Security attacks are an external factor that mainly depends on the
intentionality and capability of humans to maliciously break up
into the system taking advantage of potential vulnerabilities. The
prevention against security attacks includes all the measures
needed to minimize (or eliminate) the potential attacks against the
system. On the other hand, attack removal is related to the adop-
tion of measures to stop attacks that have occurred before.

In spite of all the classical security mechanism developed in the
database area, current DBMS are not well prepared for high-
assurance privacy and confidentiality [2]. A very important com-
ponent for the new generation of security aware DBMS are
mechanisms able to automatically detect malicious data accesses
and intrusion [1].

Recent works have addressed real-time (or concurrent) intrusion
detection and attack isolation in DBMS, and this issue is clearly
getting more and more attention. DEMIDS is a misuse detection
system tailored to relational database systems. It uses audit logs to
derive user profiles that describe typical behavior of users in the
DBMS [4]. Chung introduces the notion of distance measure and
frequent item sets to capture the working scopes of users using a
data mining algorithm. Although also using audit log, our ap-
proach is different from [4] as it is applied at the very fine grain of
SQL commands and transactions, instead of group of users’ pro-
files.

In [3] a real-time intrusion detection mechanism based on the
profile of user roles is proposed. An intrusion attack and isolation
mechanism was proposed in [8]. This mechanism uses triggers
and transaction profiles to keep track of the items read and written
by transactions isolates attacks by rewriting user SQL statements.
The use of data dependency relationships and Petri-Nets to model
normal data update patterns was proposed in [6] to detect mali-
cious database transactions. Using fingerprints for intrusion detec-
tion in databases is addressed in [7].

3. TRANSACTIONS LEARNING AND MA-
LICIOUS ACCESS DETECTION
In a typical database environment transactions are programmed in
the database application, which means that the set of transactions
remains stable, as long as the database applications are not

changed. For example, in a banking database application users can
only perform the operations available at the application interface
(e.g., withdraw money, balance check account, etc). No other
operation is available for the end-users. Normally, end-users can-
not execute ad hoc SQL commands. So, it is possible to use trans-
action profiles for the detection of malicious data accesses with a
reduced risk of false alarms.

Typically, there are several groups of users in a database envi-
ronment, according to the transaction profiles they execute. There
are regular database end-users executing predefined transactions
by means of a database application, and a small set of exceptional
users that may belong to decision support, DBA or developers
that explore data for strategic decisions by executing all kinds of
ad-hoc SQL commands. The target group of users of our applica-
tion is the regular database clients, which constitute the vast ma-
jority of database users.

In [18] the authors addressed the detection of malicious DBMS
transactions was addressed with the assumption that the transac-
tion profiles (graph of the sequence of SQL commands in a trans-
action) was known in advance, and provided manually to the de-
tection mechanism. In our opinion, this requirement is hard to
fulfill in real and complex database installations. Thus, in this
paper we propose a new approach based on automatic transaction
learning.

The proposed mechanism uses the profile of the transactions im-
plemented by the database applications (authorized transactions)
to identify user attempts to execute other SQL commands. A data-
base transaction is represented by a directed graph describing the
different execution paths (sequences of selects, inserts, updates,
and deletes) from the beginning of the transaction to the commit
or rollback command. The nodes in the graph represent com-
mands and the arcs represent the valid execution sequences. De-
pending on the data being processed, several execution paths may
exist for the same transaction and an execution path may include
cycles representing the repetitive execution of sets of commands
(a typical example of cycles in a transaction is the insertion of a
variable number of lines in a customer’s order). The transaction
ends with a commit or rollback command.

The mechanism for online detection of malicious data access con-
sists of two main phases (see Figure 1): transactions learning and
malicious data access detection. Both phases use the database
audit trail. In the learning phase, the audit trail is used offline to
generate the graphs representing the valid transactions. In the
detection phase, the audit trail is used online to obtain the se-
quence of commands (transactions) executed by each user, which
is compared to the learned graph in order to detect unauthorized
transactions.

It is worth noting that learning and detection phases may occur in
a recurrent manner. In fact, when a new database application is
deployed the learning phase must be revisited. Furthermore, as it
is easy to see, the transactions learning depends on the utilization
profile of the database. In many cases, large database applications
include functionalities that are only executed from time to time,
for example at the end of the week or end of the month. Until the
DBA is not confident with the learned transaction profile the de-
tection may not act drastically on the session (e.g., may not kill
sessions that are considered as malicious). Instead the DBA
should analyze those situations first and, possibly add the detected

transaction to the learned profile. In practice, we expanded the
detection phase into two phases: Conditional Detection and Regu-
lar Detection (Figure 1). When the DBA considers the conditional
detection phase is completed then the system goes to the regular
detection phase. In this phase if a malicious transaction is found a
more defensive action may be executed. If there is an upgrade of
the database application then the system should go to the learning
phase again (including or not simultaneous conditional detection).

An important aspect is that the nodes in the graph do not represent
concrete commands as commands may differ among executions.
For example, consider the following SQL command to select the
data from a given customer: select name, address, phone from
customer where name=’John Carter’. The name in the select
criteria (name=?) depends on the target customer. This way, in-
stead of considering concrete commands we have to represent
those commands in a generic way. For example, the command to
select data from a given customer can be represented by the fol-
lowing attributes: command type (select), target object (table cus-
tomer), columns selected (name, address, and phone), and restric-
tion field (name).

The audit entries must include the following information for each
audited command: Username, Session ID, Command ID, Transac-
tion ID, Action executed, Object name, Object owner, and Time-
stamp of the action.

This information corresponds to the information audited in typical
DBMS, which normally can be configured to store different levels
of detail of the audited data.

Although auditing is mandatory in high security database applica-
tions, in many less demanding applications the audit trail is only
switched on when the DBA suspects that the database is being
subject to anomalous accesses. In both cases, the proposed
MDAD mechanism adds on-line analysis to audit trail, which
helps the DBA in providing a quick response to attacks. In critical
applications the time between a malicious action and its detection
is of major importance and every second of delay may represent
loss of privacy, risk of data destruction, and propagation of cor-
rupted data after the attack.

As previously mentioned, the proposed detection technique does
not apply to users that execute ad-hoc queries, as there are no
predefined transaction profiles for ad-hoc queries. However, ad-
hoc queries are used in decision support system and are not exe-
cuted in typical database applications, as this type of queries
would ruin the performance of the database system. Furthermore,
it is quite easy to exclude a given user (e.g., a trusted user that
could execute ad-hoc queries even in a traditional database) from
the auditing trails that feed our detection mechanism, avoiding
this way false positive detection alarms.

3.1 Transaction profile learning using audit
entries
Learning transactions consists of identifying the authorized trans-
actions and representing those transactions as a directed graph
specifying the sequences of valid commands, where each node
represents a command and each arc represents a valid execution
sequence. The goal is to automatically learn the transactions pro-
files contained in the audit trail and save them as a directed graph
to be used in the detection phase. Obviously, learning algorithms
must be executed over audit trail collected in controlled condi-

tions that guarantee the system is free of data attacks (which
would potentially lead to the identification of malicious transac-
tions as authorized ones).

When a user connects to the database and establishes a session, all
the commands executed by that user are associated to a transac-
tion. Thus, the user cannot escape to the transaction mechanism:
when one transaction ends a new transaction begins. Two types of
transactions can be considered: read-only transactions and regular
(i.e. read and write) transactions. The read-only transactions are
groups of queries mainly used to show information to the user on
the screen or printer. Typically, for these transactions there is no
information in the audit trail about their start or end because noth-
ing is changed in the database. Actually, when developing appli-
cations programmers do not include commits at the end of read-
only transactions because they are not needed.

One of the key points in the learning phase, and in the detection
phase as well, is the detection of the first command of a transac-
tion as in many commercial DBMS, such as Oracle 10g
[12], the commit and rollback commands are not recorded
in the audit trail. This way, the detection of the first com-
mand of a transaction is done by analyzing the transaction
ID associated to the commands in the audit trail. This ID is
normally null at the beginning. It changes to a non null
value in the first writing command (insert, update, delete)
and keeps the same value until the transaction ends, even if
there are read-only commands in the middle or at the end of
the transaction. In the next transaction the transaction ID
will be null again until the first writing command is issued
(typically, read-only commands in the beginning of a trans-
action have a null value associated). An important aspect is
that the transaction ID values are always different from one
transaction to another.

As commit and rollback commands are not recorded in the
audit trail it is impossible to know if a transaction ends be-
cause of a commit or a rollback. Also, when there is a read
only transaction (for which commands have a null transac-
tion ID) and the start of the next transaction is a select
command, the transaction ID maintains its null value and it
is impossible to detect the start of the second transaction by
simply reading the transaction ID. To solve these problems
the Learning phase was split into three steps: First-

Learning, Extraction of Read Only Transactions and Final-
Learning.

The input of the First-Learning step is the audit trail previously
collected and its objective is to split the trail into small groups of
transactions based on the transaction ID information. These
groups of transactions consist of regular transactions that may
have one or more read only transactions attached at the beginning
(see Figure 2). This mixture of several transactions occurs due to
the fact that the end of read-only transactions is not explicitly
recorded in the audit trails. Of course, when one regular transac-
tion is preceded by another regular transaction, they are correctly
identified in this step.

The result of the First-Learning step is used in the Extraction of
Read Only Transactions step, where read only transactions are
isolated by subtracting the groups of transactions from each other.
The subtraction of the two transactions leads to the identification
of a read only transaction when the two transactions differ one
from the other by select commands at the beginning. As shown in
Figure 2, this set of commands (representing the read-only trans-
action) is the result of the subtraction. The result of this step is the
read-only transactions (and groups of read-only transactions seen
as a single read-only transaction).

The reasoning behind the subtraction of transactions to isolate the
read-only transactions is the following: as the normal (i.e., writ-
ing) transactions are well-defined by the transaction ID, reading
commands that form read-only transactions may occur at the be-
ginning of different transactions, which means that the read-only
portions can be isolated by simple command subtraction.

The last step is the Final-Learning step where the off-line audit
trail is processed along with the read-only transactions previously
obtained. Again the audit trail is split into groups of transactions
and the regular transactions are obtained by subtracting the read-
only transactions from the beginning of those groups. Figure 2

D

et
ec

tio
n

Le
ar

ni
ng

Conditional
Detection

Profile
Learning

Online Audit
Trails

Transactions
Profiles

Offline Audit
Tralis

Sessions and
Users

Actions

Regular
Detection

Figure 1. MDAD building blocks and workflow.

W2RO2W1RO2W2W1RO2RO1

W1RO2RO1 W2 W1RO2 W2RO2

W1RO2RO1 W1RO2 W2RO2 W2

RO1 RO2

W2RO2W1RO2W2W1RO2RO1

RO1 RO2 W1 W2

RO1 RO2 RO2RO2

First
Learning

Extraction of
Read Only

Transactions

Final
Learning

- -

Trans.
ID

Trans.
ID

Trans.
ID

Trans.
ID

Trans.
ID

Trans.
ID

Trans.
ID

Trans.
ID

Offline audit trail... ...

Offline audit trail... ...

write transactions
and write transactions
with read only
transactions appended

Subtraction of
the groups of
transactions

Resulting read
only transactions

Read only transactions
from the Extraction of
Read Only
Transactions
Resulting read only
transactions and regular
transactions obtained by
subtraction

- - - -

ROx WyRead Only transaction x Write transaction yLegend:

Figure 2. Learning phase in detail.

shows a visualization of this process and explanation comments.

Database transactions fall in one of the following transaction pro-
files that cover all the possibilities: linear (no branches or loops),
with branches, with loops, with loops inside loops, with loops
inside branches, and with branches inside loops.

Except for the last type of transaction profile, all the others are
easily learned by an algorithm that can learn a linear transaction
and loops. When a branch exists it is treated as a different transac-
tion. The learning algorithm implements the detection of linear
transactions and transactions with loops. The transactions with
branches are split into as many transactions as there are branches.

3.2 Malicious data access detection
Having concluded the learning phase, the MDAD is ready to de-
tect malicious data accesses. The audit trail is then used to concur-
rently obtain the sequence of commands executed by each user,
which is compared to the profile of the authorized transactions to
identify potential malicious commands. To minimize the storage
overhead, the audit entries may be deleted as soon as they are
processed and no malicious data access is detected. If an attack is
detected the audit entries are kept for future reference.

An important aspect is that the detection is done at SQL command
level. That is, it is not necessary to reach the end of the transaction
in which the suspicious command was found to detect a potential
attack. All the transactions that have suspicions commands (i.e.,
that deviate from a known authorized profile) are immediately
considered malicious.

The detection mechanism can be implemented inside the DBMS,
outside the DBMS (in the same machine) or even in a different
computer (to reduce performance overhead). In our current im-
plementation, the whole detection mechanism is implemented
outside the DBMS and in a different computer.

If a malicious transaction is detected one or more of the following
actions may be executed, depending on the DBA choice: notify
the DBA about the attack, immediately disconnect the user ses-
sion in which the malicious transaction was attempted, or activate
a damage confinement and repair mechanism [8].

As mentioned before, the detection phase may work in Condi-
tional Detection mode where the erroneous transactions are ana-
lyzed and evaluated by the DBA. If they are considered valid
transactions they should be added to the learned transaction pro-
files. If they are considered suspicious transactions, the DBA
should investigate why they were executed. If there are new func-
tionalities or reconfiguration of the software, the Regular Detec-
tion mode may be changed to Conditional Detection in order to
update the transaction profiles collection.

4. EVALUATION AND RESULTS
This section demonstrates the use and discusses the evaluation of
the proposed intrusion detection mechanism.

4.1 Setup and evaluation scenarios
We used two different database application scenarios for the
evaluation experiments:

– A well-known database performance benchmark, the TPC-C

[17], which provides us with a controlled database environ-
ment quite adequate for initial evaluation of the learning algo-
rithm and for the evaluation of performance overhead and la-
tency. The coverage and latency of the detection mechanism
was mainly evaluated using this application scenario (i.e., the
TPC-C).

– A real (and large) database application to assess in particular
the transaction learning curve in a real situation. This allows
us to assess the need for conditional detection due to false
positives resulting from incomplete transaction learning.

The TPC-C performance benchmark [17] is an OLTP workload. It
is a mixture of read only and update intensive transactions that
simulate the activities found in complex OLTP application envi-
ronments. The performance metric reported by TPC-C is a "busi-
ness throughput" measuring the number of orders processed per
minute. Multiple transactions are used to simulate the business
activity of processing an order, and each transaction is subject to a
response time constraint. The performance metric for this bench-
mark is expressed in transactions-per-minute-C (tpmC).

The SCE is an application currently in use in the Central Service
of Sterilization of a large hospital. The SCE is an administrative
application used to manage the whole process of the sterilized
material to and from all services in the hospital. This workflow
comprises the reception of the material, the selection and the ster-
ilization of the material within a central with vapor autoclaves and
ethylene oxide, various modes of drying, packaging, sealing, re-
quest and delivery. In every phase of the process the material is
subject several times to inspections.

As shown in Figure 3, the setup used in the evaluation experi-
ments with TPC-C includes three computers connected through a
100 Mbit LAN Ethernet broadband router/switch. The database
server is a desktop AMD Athlon XP 2800+ with 1GB RAM, one
180GB SATA hard disk, running the Oracle 10g R2 DBMS over
the Mandriva Linux 2006 operating system. The machine used for
the malicious data access detection is a 1.6 GHz notebook Pen-
tium 4, with 256MB RAM, one 30GB hard disk, running the
Windows XP SP2 operating system and Oracle 10g R2 client
installed. The machine emulating the TPC-C terminals is 3 GHz
desktop Pentium 4, with 480MB RAM, one 80GB hard disk, run-
ning the Windows XP SP2 operating system and Oracle 10g R2
client installed. Note that the hardware features of the different
machines do not have particular impact on the experimental re-
sults and are mentioned for the sake of completeness.

4.2 Evaluation of the learning algorithm
The learning algorithm was first evaluated using the TPC-C
benchmark. TPC-C has five transaction profiles called Delivery,
NewOrder, OrderStatus, Payment and Stock-Level. OrderStatus
and StockLevel are read-only transactions. For the evaluation of
the learning algorithm an audit trail was generated corresponding
to one hour execution of the benchmark. This trail comprised
989,540 commands corresponding to the execution of 96,585
transactions from 50 sessions. As a result we obtained 42 different
transactions in the first step (First Learning step; see section 3.1).
In the second step of the algorithm (Extraction of Read Only
Transactions) we obtained two read only transactions of TPC-C
(OrderStatus and StockLevel), one transaction for the login, and
another transaction representing the merge of the OrderStatus and
StockLevel. The login transaction is learned because the TPC-C

terminal emulation executes several commands after the login.
The merged transaction appears because the last command of the
OrderStatus (select order line table) is equal to the first command
of the StockLevel (this is filtered in the next step). After the third
step (Final-Learning) we obtained the results shown in Table 1,
ordered by the number of times each transaction was identified in
the audit trail.

Because TPC-C specifies that the NewOrder may not complete
due to a rollback an extra transaction is learned based on the in-
complete NewOrder. We call the extra transaction as NewOrder
with rollback. Additionally, the TPC-C Payment transaction also
leads to two learned transaction profiles (PaymentByName and
PaymentByID). This is because the Payment transaction has a
condition right at the beginning resulting in a branch and, as we
mentioned previously, each branch is learned as a separate trans-
action. However, these small differences in the learned profiles
when compared to the real TPC-C transaction profiles have no
impact at all in the detection algorithm.

Table 1. Learned transaction profiles for TPC-C.
Transaction # Count % total TPC-C Transaction

6 43,255 44.784 NewOrder
5 24,950 25.832 PaymentByName
4 16,323 16.900 PaymentByID
7 3,884 4.021 Delivery
1 3,881 4.018 OrderStatus
2 3,809 3.944 StockLevel
8 433 0.448 NewOrder with rollback
3 50 0.052 Login

Total 96,585 100.000

In the next step we evaluated the learning algorithm in a real da-
tabase scenario. The main goal was to assess the learning transac-
tion curve and estimate false positives caused by incomplete
learning and leading to extra transactions that have to be added to
the graph later on.

We started with the audit log of one working day of real utiliza-
tion of the database of the SCE, having 8,750 commands from
609 sessions and accesses 17 tables. This log was applied to the
First-Learning step resulting in 33 different transactions. In the
Extraction of Read Only Transactions, two of them were learned
and the Final-Learning step showed 31 different transactions.

Figure 4 shows the learning transaction curve. As we can see,
most of the transactions (27 out of 31) were learned very quickly,
during the first 1,000 commands (858 commands actually, as seen
in Table 2). It is also quite evident that two new groups of data-
base functionalities (and corresponding transactions) were exe-
cuted around the command number 4,000 and command number
6,500, corresponding to the two steps in the learning curve. In a
real situation in which the learning phase stopped after the initial

858 commands, these two moments would correspond to condi-
tional detection. In this case the DBA would have to analyze the
new transactions and add them to the graph. Table 2 shows details
(commands executed so far, transactions, etc) at these two mo-
ments when conditional detection would appear. A total of 4
transactions would have to be validated manually by the DBA.

For this SCE application we can conclude that there are 27 trans-
actions regularly executed during the day and 4 transactions that
are executed after a certain hour in the day. This kind of behavior
may appear during a wider window of time with different groups
of transactions being executed only in one particular day of week
or month, for instance. Thus, we decided to analyze the audit
logs for an entire week. The audit log of one week of the SCE
application had 65,340 commands from 4,187 sessions and ac-
cesses 22 tables. This log was applied to the First-Learning step

resulting in 56 different transactions learned out of 13,763. In the
Extraction of Read Only Transactions step, 5 extra transactions
were learned. The introduction of these read only transactions and
the audit log in the Final-Learning step resulted in the learning of
57 different transactions, from a total of 16,097 executed transac-
tions.

Table 2. Three different log situations compared.

 Complete
Log

Partial
Log1

Partial
Log2

Commands 8,750 858 3,726
Sessions 609 107 381
Number Transactions 1,954 228 1,455
Tables 17 16 16
First-Learning step Transactions 33 24 24
Read Only Transactions 2 0 0
Final-Learning Transactions 31 27 27

Figure 5 shows the entire learning profile curve. As we can see in
the chart new transactions were executed during the whole week,
showing that this (real) application would required at least an
entire week to allow complete transaction learning (although most
of the transactions have been learned in the first two days).

In some cases the learning process may take a considerable time
to learn all the transactions if the transactions are evenly spread in
a large period of time. In practice, the conditional detection mode
has to be kept active for enough time to assure a complete learn-
ing. It is worth noting that even in this mode, the proposed algo-

Fast Ethernet Network

Database Server :
* Oracle 10G R2 DBMS
* Linux

Load Emulator :
* TPC-C workload
* Windows XP

Intrusion Detector :
* DTLID
* Windows XP

Figure 3. Experimental setup.

SCE one day

0

5

10

15

20

25

30

35

10 37
0

73
0

10
90

14
50

18
10

21
70

25
30

28
90

32
50

36
10

39
70

43
30

46
90

50
50

54
10

57
70

61
30

64
90

68
50

72
10

75
70

79
30

82
90

86
50

Commands

Le
ar

ne
d

Tr
an

sa
ct

io
ns

partial log 1 partial log 2

Figure 4. Evolution of the transactions during one day in the
SCE application.

MDAD

rithm does its job of adding concurrent malicious data access
detection to audit trail. The only overhead the learning phase in-
troduces to the system is the audit itself, because the learning may
be executed in another computer.

SCE one week

0

10

20

30

40

50

60

10
0

33
00

65
00

97
00

12
90

0

16
10

0
19

30
0

22
50

0

25
70

0
28

90
0

32
10

0
35

30
0

38
50

0
41

70
0

44
90

0
48

10
0

51
30

0
54

50
0

57
70

0
60

90
0

64
10

0

Commands

Le
ar

ne
d

Tr
an

sa
ct

io
ns

one day

SCE one week

0

10

20

30

40

50

60

10
0

33
00

65
00

97
00

12
90

0

16
10

0
19

30
0

22
50

0

25
70

0
28

90
0

32
10

0
35

30
0

38
50

0
41

70
0

44
90

0
48

10
0

51
30

0
54

50
0

57
70

0
60

90
0

64
10

0

Commands

Le
ar

ne
d

Tr
an

sa
ct

io
ns

one day

Figure 5. Evolution of the transactions during one week in the
SCE application.

4.3 Evaluation of detection coverage and la-
tency
We have also evaluated detection coverage and latency in two
different experiments with the TPC-C setup: automatic injection
of random transactions and human attempts to break the mecha-
nism and access or damage the database without being detected.

The coverage represents the percentage of malicious transactions
detected. A first evaluation of the coverage of the proposed
mechanism was done by submitting random transactions while the
system was executing the TPC-C transactions. A total of 653 ran-
dom (extraneous) transactions have been submitted, correspond-
ing to the execution of 2,558 SQL commands. MDAD mechanism
has detected 648 of these injected transactions, resulting in a de-
tection coverage of 99.23%, which is a quite good result. The
small number of undetected transactions (five transactions) was
caused by random transactions that mimic exactly the smaller
transactions of TPC-C. In this experiment, all the TPC-C transac-
tions have been correctly and completely learned, resulting in zero
false positives.

The percentage of undetected transactions (0.77%) can be reduced
by adding more information on the fixed structure of SQL com-
mands, usually available in the audit trail. This would make much
more difficult to mimic the correct SQL command.

The latency represents the time between the execution of a mali-
cious command and its detection. Experiments showed that the
latency varies between 1 second and 1.6 seconds. The lower
bound of the latency (1 second) is because the MDAD checks the
audit log every second. Obviously, if the frequency of checking
the audit trail for malicious transactions were higher the average
latency would decrease (but the performance impact would be
higher). Note that the users take some time between executions of
commands, which means that a latency of less than 2 seconds is
extremely good.

The number of valid transactions executed between the moment a
malicious transaction is submitted and the moment it is detected is
also important. Typically, this number ranges between 20 and 70
transactions depending on the system load. Note, however, that
the system is executing at a rate of thousands of transactions per

minute, which makes this number insignificant.

The use of simple random generated transactions is acceptable for
a very first evaluation of the coverage of the mechanism (and to
provide a good evaluation of latency), but it is not enough to gain
confidence in the mechanism. We decided to go for a test with
real (human) users. The human users were volunteers (several
students and a professional DBA) that have accepted the chal-
lenge of trying to beat our detection mechanism.

For these tests with humans an Oracle server was used within a
LAN. The TPC-C database was installed and several triggers were
created to record changes in the database. A web front-end was
built to let the users enter SQL commands from any computer
inside the LAN. This web front-end also had a background task to
record the history of all the commands executed for latter analysis.
A short document was distributed to the testers explaining the
objectives, including also the database schema giving insider
knowledge to the attackers.

The volunteers started 142 sessions and submitted 691 com-
mands. All the sessions were detected as malicious, leading to
100% detection coverage. However, five sessions (3.5% of the
total) were able to introduce changes in the data just before being
detected as malicious in the next command executed. Note that,
before being able to change the data, the users tried several times
(from 8 to 36 times) and, in all those attempts, the sessions were
detected as malicious and killed, giving the DBA enough warn-
ings of something that deserved inspection.

Analyzing these five sessions we conclude that three correctly
executed the initial commands of a correct transaction and then
committed the changes to the database. This corresponds to a
commit made at the middle of a transaction. The other two mali-
cious sessions were able to made unauthorized changes in the
database by sending the commands inside a PL/SQL anonymous
block. However, they were almost immediately detected and the
session was killed before they could execute another command.
Because the detection is based on the audit trail, the detection of a
suspicious write command (as was the case) can only be per-
formed after its execution. In these two cases the user (the expert
user) has sent two commands in a PL/SQL anonymous block,
which correspond to the worst case concerning latency, as the two
commands are executed almost at the same time. Although in
theses cases the detection is done after the unauthorized change in
the database, it would be possible to avoid damage by using dam-
age confinement mechanisms [8].

4.4 Impact on database server performance
To measure the impact of detection on the server performance we
used the TPC-C setup to emulate 10 online session terminals in-
putting transactions with variable throughput. Three configura-
tions have been considered representing the server without the
audit activated, with the audit activated (but no malicious data
access detection) and with the detection mechanism (Figure 6).

As we can see, with 100% load the audit reduces in 25% the
maximum number of transactions while the detection reduces
additional 6%. This is the worse scenario possible, as the server
was with 100% load. With 60% load the audit reduces only about
3% the maximum number of transactions while the detection re-
duces 3%. Below this load the influence of both the audit and the
detection is quite small. The only overhead the learning phase

introduces to the system is the audit itself, because the learning
may be executed in another computer.

5. CONCLUSION
This paper proposes new malicious data access detection mecha-
nism for DBMS. This method adds concurrent analysis to auditing
mechanisms presented in most of the commercial DBMS. It has
one phase devoted to the learning of transaction profiles and an-
other phase where the detection of malicious users is made. In the
learning phase a graph is built having the sequence of commands
that compose each valid transaction. In the detection phase the
mechanism catches malicious users by detecting the transactions
that fall outside the learned profile. Then the DBA is warned
while the malicious session is killed. During the initial period of
detection time the system may work in a warning only mode al-
lowing the DBA to take the appropriate actions towards the sus-
pected session. If the wrong transaction happens to be a good
transaction not yet learned, the DBA may add it to the profile.

The paper presented an implementation of the proposed system
using the Oracle 10g R2 DBMS and it has been evaluated using
the standard benchmark for database systems (TPC-C) and a pro-
duction database (SCE) used by a large hospital. The detection
coverage observed for random transactions was above 99%. The
small percentage of undetected transactions corresponds to very
small TPC-C transactions whose commands were occasionally
mimicked by the random transaction injector. However, in all
cases the attack was immediately detected in the following com-
mand. In reality, the detection coverage was 100%, if we consider
the sequence of commands inside the transaction.

Concerning the tests with human users, the attacks have been
detected in all cases. In 5 sessions, the user managed to introduce
changes in the database, but they were spotted as intruder in the
subsequent command. The detection latency is consistently low,
ranging from 1 to 1.6 seconds. The performance penalty in normal
load conditions is 6% or less. In heavy load conditions, perform-
ance overhead raises up to 25%.

6. REFERENCES
[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Hippocratic

databases”, 28th international conference on Very Large
Data Bases (VLDB), Morgan-Kaufmann, 2002.

[2] A. Anton, E.Bertino, N.Li, and T.Yu, “A roadmap for com-
prehensive online privacy policies”, In CERIAS Technical
Report, 2004-47, 2004.

[3] Elisa Bertino, Ashish Kamra, Evimaria Terzi, Athena Vakali,
“Intrusion detection in RBAC-administered databases”, 21st
Annual Comp. Security App. Conference (ACSAC) 2005.

 [4] Christina Yip Chung, Michael Gertz, Karl Levitt, “DEMIDS:
A Misuse Detection System for Database Systems”, Third In-
ternational IFIP TC-11 WG11.5 Working Conference on In-
tegrity and Internal Control in Information Systems, Kluwer
Academic Publishers, 1999, 159 – 178.

[5] Lawrence A. Gordon, Martin P. Loeb, William Lucyshyn
and Robert Richardson, Computer Security Institute. Com-
puter crime and security survey, 2006.

[6] Y. Hu and B. Panda, “Identification of malicious transactions
in database systems”, International Database Engineering
and Applications Symposium (IDEAS), 2003.

[7] Sin Yeung Lee, Wai Lup Low, Pei Yuen Wong, “Learning
Fingerprints for a Database Intrusion Detection System”, 7th
European Symposium on Research in Computer Security
(ESORICS 2002).

[8] Peng Liu, “DAIS: A Real-time Data Attack Isolation System
for Commercial Database Applications”, 17th Annual Com-
puter Security Applications Conference, 2001.

[9] Maxion, Roy A. and Townsend, Tahlia N. "Masquerade
Detection Using Truncated Command Lines." International
Conference on Dependable Systems and Networks (DSN-
02), Washington, D.C. 23-26 June 2002.

[10] Roy A. Maxion, “Masquerade Detection Using Enriched
Command Lines”, Intl Conf on Dependable Systems & Net-
works (DSN-03), San Francisco, California, 2003.

[11] Andrew Conry-Murray, “The Threat From
Within”,http://www.itarchitect.com/shared/article/showArticl
e.jhtml?articleId=166400792, 2005

[12] Oracle Corporation, “Oracle® Database Concepts 10g Re-
lease 1 (10.1)”, 2003.

[13] Pen Test Limited, “Oracle security white paper series ex-
ploiting and protecting oracle”, 2001.

[14] R. Ramakrishnan, J. Gehrke, “Database Management Sys-
tems” 3rd Ed., McGraw Hill, ISBN 0072465638, 2002.

[15] M. Schonlau, M. Theus, "Detecting Masquerades in Intru-
sion Detection Based on Unpopular Commands," Informa-
tion Processing Letters, 76, 33-38, 2000.

[16] M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr, M.
Theus, and Y. Vardi, “Computer intrusion: Detecting mas-
querades”, Statistical Science, 16(1):58–74, February 2001.

[17] Transaction Processing Performance Council, “TPC Bench-
mark C, Standard Specification, Version 5.4”, 2005, avail-
able at: http://www.tpc.org/tpcc/.

[18] Marco Vieira, Henrique Madeira, "Detection of malicious
transactions in DBMS", The 11th IEEE Intl Symposium Pa-
cific Rim Dependable Computing, PRDC2005, Changsha,
Hunan, China, December-2005.

[19] Noel Yuhanna, “Comprehensive Database Security Requires
Native DBMS Features and Third-Party Tools”, Market
overview, Forrester Research Inc., May 2005

.

0

200

400

600

800

1000

1200

1400

1600

100%80%60%40%20%10%

Baseline
Audit
I. Detection

tp
m

C

Load

Figure 6. Performance for the three configurations considered.

