

Vulnerability & Attack Injection for Web Applications

José Fonseca1, Marco Vieira2, Henrique Madeira2
1CISUC, University of Coimbra, Polytechnic Institute of Guarda, Portugal

2CISUC, University of Coimbra, Portugal
josefonseca@ipg.pt, mvieira@dei.uc.pt, henrique@dei.uc.pt

Abstract

In this paper we propose a methodology to inject
realistic attacks in web applications. The methodology is
based on the idea that by injecting realistic
vulnerabilities in a web application and attacking them
automatically we can assess existing security
mechanisms. To provide true to life results, this
methodology relies on field studies of a large number of
vulnerabilities in web applications. The paper also
describes a set of tools implementing the proposed
methodology. They allow the automation of the entire
process, including gathering results and analysis. We
used these tools to conduct a set of experiments to
demonstrate the feasibility and effectiveness of the
proposed methodology. The experiments include the
evaluation of coverage and false positives of an Intrusion
Detection System for SQL Injection and the assessment of
the effectiveness of two Web Application Vulnerability
Scanners. Results show that the injection of
vulnerabilities and attacks is an effective way to evaluate
security mechanisms and tools.

1. Introduction

There is an increasing dependency on web applications
nowadays, ranging from individuals to large
organizations. Almost everything is stored, available or
traded on the web. Web applications can be personal web
sites, blogs, news, social networks, webmails, bank
agencies, forums, e-commerce applications, etc. The
omnipresence of web applications in our way of life and
in our economy is so important that they are a natural
target for malicious minds.

Security motivation of web applications should reflect
the magnitude and relevance of the assets they are
supposed to protect. Although there is an increasing
concern about security (often being subject to regulations
from governments and corporations), there are some
significant factors that make securing web applications a
task hard to fulfill:
• The web application market is growing fast, resulting

in a huge proliferation of web applications, largely
fueled by the (apparent) simplicity one can develop

and maintain such applications;
• Web applications are highly exposed to attacks;
• It is common to find developers and administrators of

web applications without the required knowledge or
experience in the area of security.
Not surprisingly, the overall situation of security in

web applications is quite favorable to attacks [1, 2, 3]. In
fact, estimations point to a very large number of web
applications with security vulnerabilities [4, 5] and
consequently, there are numerous reports of successful
security breaches and exploitations [6, 7]. To fight this
scenario we need means to evaluate the security of web
applications and attack counter measure tools.

In this paper we address the security of web
applications by applying a procedure inspired on the fault
injection technique that has been used for decades in the
dependability area. In our case, the “security
vulnerability” + “attack” represents the space of the
“faults” we inject in a web application; and the
“intrusion” is the “error” [8, 9]. To emulate with accuracy
real world web vulnerabilities we rely on results obtained
from a field study on real security vulnerabilities [10] and
use them in a novel Vulnerability Injection tool. This tool
is, in fact, a key instrument that can be used in several
relevant scenarios:
• Building block of a realistic Attack Injector. An

Attack Injector can be a valuable tool to test various
counter measure mechanisms, such as Intrusion
Detection Systems (IDS), Firewalls, Web Application
Vulnerability Scanners, etc. Conceptually, an attack
injection tool consists of the injection of realistic
vulnerabilities that are automatically attacked, and
finally the result of the attack is evaluated. To verify
the success of the attack we need to analyze the flux of
information inside the application by placing probes
strategically, in the least intrusive way. The analysis of
the results of these probes and their synchronism with
the attack are key elements of the Attack Injector;

• Train security teams. By injecting representative
security vulnerabilities in web application code, we
provide a realistic test bed for the training of security
teams that are going to perform code inspection and
penetration testing [11];

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 93

• Evaluate security teams. In a controlled environment,
security teams can be assessed based on the number of
vulnerabilities they are able to find, the number of
false positives reported and the time needed to perform
a set of code inspections and penetration tests;

• Estimate the total number of vulnerabilities still
present in the code. The injection of realistic
vulnerabilities in web code can help decide if the
software is ready to be released or not. The process
consists of injecting vulnerabilities and having a
security team searching for them. The team will most
likely find some of the injected vulnerabilities and
some that already existed in the code. The estimated
number of vulnerabilities still present in the software
can be obtained from the percentage of those injected
that were found and those not injected that were also
found, using an approach similar to the one proposed
by Steve McConnell for software bugs in general [12].
In this paper, we present a Vulnerability Injection

tool and an Attack Injection tool for web applications,
which implement our vulnerability and attack injection
methodology. We have implemented these tools and
tested them with widely used applications in two case
study scenarios. The first goal of our experiments is to
evaluate the effectiveness of the Vulnerability Injection
tool in producing a large number of realistic
vulnerabilities. The second goal is to show how the
Attack Injection tool can exploit injected vulnerabilities
to launch attacks, allowing the evaluation of the
effectiveness of counter measure mechanisms installed in
the target system.

The structure of the paper is as follows. Next section
presents related research. Section 3 introduces the Attack
Injection architecture. Section 4 describes the
experiments and discusses the results. Section 5
concludes the paper.

2. Related work

Fault injection techniques have been largely used to

evaluate fault tolerant systems [13, 14]. The artificial
injection of a large quantity of faults in a system or in a
component of the system speeds up the occurrence of
faults and errors, allowing researchers and engineers to
evaluate the impact of faults on the system and/or
potential error propagation to other systems. Fault
injection also helps in estimating fault tolerant system
measures, such as the fault coverage and error latency
[13].

Fault injection techniques have traditionally been used
to inject physical (i.e., hardware) faults [13, 14]. In fact,
initial fault injection techniques used hardware-based
approaches such as pin-level injection or heavy-ion
radiation. The increased complexity of systems has lead

to the replacement of hardware-based techniques by
software implemented fault injection (SWIFI), in which
hardware faults are emulated by software. Xception [15]
and NFTAPE [16] are examples of SWIFI tools.

The injection of realistic software faults (i.e., software
bugs) has been absent from fault injection effort for a
long time. First proposals were based on ad-hoc code
mutations [17, 18] but more recent proposals allow the
injection of representative software faults based on
comprehensive field studies on the most common types of
software bugs [19].

The use of fault injection techniques to assess security
is actually a particular case of software fault injection,
focused on the software faults that represent security
vulnerabilities or may cause the system to fail in avoiding
a security problem. Neves et. al. presented a tool
(AJECT) focusing on the discovery of vulnerabilities on
network servers, specifically on IMAP servers [9]. In
their work the fault space is the binomial (attack,
vulnerability) creating an intrusion that will cause an
error and, possibly, a failure of the target system. To
attack the target system they used predefined test classes
of attacks and some sort of fuzzing.

In the industry, fuzzing techniques allied to the
signature of known attacks and vulnerabilities are used to
automate the penetration testing of web applications and
web services. These tools, called Web Application
Vulnerability Scanners, perform security testing and
assessment, producing reports compliant with many
security regulations (Sarbanes-Oxley, Payment Card
Industry Data Security Standard compliance, etc.) that
apply to web applications. Some of the best known are
the HP WebInspect 7.7, the IBM Watchfire AppScan 7.0,
the Acunetix web application security scanner, the
WebSphinx, among others. In spite of their continuous
development, these automated scanners still have some
problems related to the high number of undetected
vulnerabilities and high percentage of false positives [20].

Another contribution to better understand the most
common vulnerabilities in web applications was
presented in a field study that classified 655 Cross Site
Scripting (XSS) and SQL Injection security patches of six
widely used LAMP (Linux, Apache, MySQL and PHP)
web applications [10]. One major conclusion of this study
is that the most common type of vulnerabilities in web
application code is by far, the “Missing Function Call –
extended” (MFCE) that can be expanded into three sub-
types (see Table 1). This fault type represents
vulnerabilities caused by an input variable that should
have been properly sanitized by a specific function
(which the programmer forgot to include in the code).
Table 1 shows that sub-type A, which is originated by
unchecked numeric fields, is the most relevant. This
result is also corroborated by another study, this time
referring only to SQL injection vulnerabilities found in

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 94

BugTraq SecurityFocus and presented by the Open Web
Application Security Project (OWASP) [21]. This study
concludes that about half of the SQL Injection
vulnerabilities come from exploitation of numeric fields.

The methodology proposed in the present paper relies
on the results of the already mentioned field studies [10,
21] to define the types of vulnerabilities to be injected
(fault models), which match the most common types of
vulnerabilities found in web applications in the field.

3. Vulnerability and attack injection
approaches

In this paper we present a methodology that can be

used to test important security mechanisms applied to
web applications. The methodology is based on the
injection of realistic vulnerabilities and subsequent
controlled exploit of the vulnerabilities to attack the
system. This provides a practical environment that can be
used to test counter measure mechanisms (such as IDS,
Web Application Vulnerability Scanners, Firewalls, etc.),
train and evaluate security teams, estimate security
measures (like the number of vulnerabilities present in the
code), among others.

To provide a realistic environment we must deal with
true to life vulnerabilities. As mentioned previously, we
rely on the results from field studies [10, 21], particularly
from the study presented in [10] that classified 655
security patches of six widely used LAMP web
applications. With this data, we are able to define where a
real vulnerability is usually located in the source code,
what is the difference between a vulnerable and a non-
vulnerable piece of code, and sometimes how the
vulnerability manifests itself.

The injection is done by means of an automated tool:
the Vulnerability Injection tool. The second element of
the methodology, the attack of the vulnerability, is done
by the Attack Injection tool. In fact, the Attack Injection
tool also seamlessly integrates the Vulnerability Injection
tool and both tools do their work as one, in an automated
fashion.

The Vulnerability Injection tool is used to inject
vulnerabilities in a web application source code file
(Figure 1). It starts by analyzing the source code of the
target file searching for locations where vulnerabilities
can be injected. It follows the realistic patterns resulting

from the field study [10]. Once it finds a possible
location, it performs a specific code mutation in order to
inject one vulnerability in that particular location. The
change in the code follows the rules derived from [10],
which are described and implemented by a set of
Vulnerability Operators [11]. As a result, we obtain the
original file with a single vulnerability injected. This
procedure can be automatically repeated until all the
locations where realistic vulnerabilities can be injected
are identified and all the corresponding vulnerabilities are
injected, resulting in a set of files, each one with one
possible vulnerability.

The Vulnerability Operators are built upon a pair of
attributes: the Location Pattern and the Vulnerability
Code Change. The Location Pattern defines the
conditions that a specific vulnerability type must comply
with and the Vulnerability Code Change specifies the
actions that must be performed to inject this vulnerability,
depending on the environment where the vulnerability is
going to be injected. In order to clarify the concept of
Vulnerability Operator, let us analyze the following
example [11]. One of the Location Pattern restrictions for
the MFCE - A sub-type, is the search for the “intval()”1
PHP function when the argument is related to an input
value from the outside and the result is going to be used
in a SQL query string. Consider, for example this code:
“$id=intval($_GET[‘id’]);”. If the variable “$id” is going
to be used in a query, then the Vulnerability Code Change
consisted of removing this function from the source code
in order to inject a vulnerability. As can be seen, by
removing the function we get “$id=$_GET [‘id’];”, which
can be vulnerable to an SQL injection attack. For
example, by assigning the value “15 or 1=1” to the “$id”
variable, the SQL query is going to execute without the
effect of the “where” condition, therefore affecting every
row of the query, which was not intended by the
developer of the application.

The automated attack of a web application with one
vulnerability injected is done by the Attack Injection tool,
in two stages. In the first stage, the web application is
interacted (crawled) while both the HTTP and SQL
communications are captured and processed by the tool.
In the second stage (the attack stage, shown in Figure 2),
a new interaction with the web application is performed
but, this time, a collection of attack payloads is also
applied in order to exploit the vulnerability by altering the
SQL query sent to the database server of the web

1 The “intval()” PHP function returns the integer value of the argument.

Table 1. Missing Function Call - extended sub-types [10]
Sub-type SQL (%)* Description

A 64.25 Missing casting to numeric of one
variable

B 4.15 Missing assignment of one variable to
a custom made function

C 4.15 Missing assignment of one variable to
a PHP predefined function

* The values are referred to all the SQL Injection vulnerabilities analyzed in the field study [10]

Figure 1: The Vulnerability Injection tool

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 95

application. The interaction with the web application is
always done from the web client’s point of view (the web
browser) and the payload is applied to the variables (the
text fields, combo boxes, etc, present in the web page
interface). At the end of the attack, the Attack Injection
tool assesses if the attack was successful. This success is
equivalent to the “error” state in a traditional fault
injection technique. We are not looking for the “failure”
that may result from the attack. If an “error” can be
injected it means the attack was effective. Obviously, the
consequences of the attack (the “failure”) are dependent
on the concrete situation and on how valuable is the data
stored in the database. The detection of the success of the
attack is done by searching for changes in the structure of
the SQL query, showing the payload footprint.

To exemplify a possible use of the Attack Injection
tool we can evaluate an SQL Injection IDS. In this case,
the IDS is placed between the DB proxy and the database,
as seen in Figure 2. During the attack stage, when the IDS
inspects the SQL query sent to the database, the Attack
Injection tool also monitors the output of the IDS to
identify if the attack has been detected by the IDS or not.
The entire process is performed automatically, without
human intervention. We just have to collect the final
results of the Attack Injection tool, which also contains,
in this case, the IDS detection output.

In the next subsections, we describe the building
blocks of the Vulnerability Injection and Attack Injection
tools.

3.1 Vulnerability Injection Tool

The injection of vulnerabilities relies on data obtained

by the field studies of vulnerabilities in LAMP web
applications presented in [10, 21] and [11]. They refer to
two of the most important vulnerability types in web
applications, which are XSS and SQL Injection. An SQL
Injection attack consists of tweaking the input fields of
the web page (which can be visible or hidden) in order to

alter the query sent to the backend database. This allows
the attacker to retrieve sensible data or even alter database
records. An SQL Injection attack can even be dormant for
a while and be triggered by a specific event, such as the
periodic execution of some procedures in the database
(e.g., a scheduled database record cleaning function). A
XSS attack consists of injecting HTML and/or a scripting
language (usually Javascript) in a vulnerable web page.
This attack type exploits the confidence a user has on the
web site. The attack can affect other users of the web site,
allowing the attacker to impersonate these users and even
execute other types of attacks such as Cross Site Request
Forgery (CSRF) [22]. The injection of XSS can also be
persistent if the malicious string is stored in the backend
database of the web application.

What both XSS and SQL Injection vulnerability types
have in common is the fact that they are the result of
poorly coded applications that do not check properly their
inputs. There are many possible ways to prevent these
vulnerabilities, but a field study concludes that a large
majority of them (about 3/4) is through the use of a
filtering function [10]. This missing function in a
vulnerable web application was classified into the three
sub-types shown in Table 1.

The list of possible types of vulnerabilities affecting
web applications is enormous, but XSS and SQL
Injection are at the top of that list, accounting for 32% of
the vulnerabilities observed [1, 4]. Furthermore, SQL
Injection is also responsible for some of the more severe
results of attacks to web applications [6, 23, 24].
Nowadays, the most valuable asset of web applications is
their back-end database. This is why the database is one
of the main targets in web application attacks. For this
reason, we have chosen to code first the SQL Injection
type in our tools, although the XSS is quite similar in key
aspects.

Figure 3 shows the main components of the
Vulnerability Injection Tool. It comprises components to
search for included files, analyze variables and finally
inject vulnerabilities.

Figure 2: The attack stage of the Attack Injection tool

Figure 3: Architecture of the Vulnerability Injection tool

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 96

The first component of the Vulnerability Injection
Tool is the Dependency Builder. It searches recursively
for the files that are included in the Input File, which is
the target PHP file where we want to inject the
vulnerabilities. In PHP programming, it is common to
include a generic file inside another file, for reutilization
purposes (this is done using one of the following
statements: include(), include_once(), require(),
require_once() [25]), what happens in many other
programming languages. When the web application is
running, the execution of the original file and its included
files is processed by the PHP interpreter as a single block
of code. When searching for possible situations where
vulnerabilities may be injected, one should analyze the
code in the same way the PHP interpreter does, thus the
inclusion of this Dependency Builder component.

The next component is the Variable Analyzer.
Because XSS and SQL Injection vulnerabilities rely on
vulnerable variables to be exploited, we have to analyze
all the variables that influence SQL queries. This
component gathers all the PHP variables from the source
code and builds a mesh of dependencies related to each
other. Then, it searches for PHP variables present in SQL
query strings. Using the mesh created, the component can
also determine all the variables that are indirectly
responsible for the SQL query. Both variables that are
directly and indirectly responsible for SQL Injection (or
XSS, if it were the case) are considered valid. This is
important because one variable may be used only as input
(POST or GET HTTP parameters) and the result is passed
to another variable that is the one that is going to be in the
SQL query string. All the other variables are discarded.

 Finally, the last component is the Vulnerability
Injector. During the execution of this component, every
location where the selected variables are found is tested
with the conditions and restrictions of the Vulnerability
Operators defined in [11], filtering those that are not
applicable. The Vulnerability Injector component uses the
Vulnerability Operator data and the result is the
information about the mutation that has to be made in the
source code in order to inject a particular vulnerability.
Both the original source code and the mutated code
(vulnerability injection code) are stored in the internal
database of the Vulnerability Injection tool for future
consumption (e.g. during the execution of the Attack
Injection tool).

In addition to working as an element of the Attack
Injection tool, the Vulnerability Injection tool can also be
used standalone (e.g. for the training of security teams
[11]) and the immediate generation of the PHP files with
vulnerabilities is also a feature built into this component.

3.2 Attack Injection Tool

We see the Attack Injection tool as an all in one

application: it injects vulnerabilities into a web
application and attacks them in a seamlessly manner.
Therefore, the Attack Injection tool has the Vulnerability
Injection tool integrated as a building block (Figure 4).
The process of attacking an application consists of three
stages: the Preparation, the Injection of Vulnerabilities
and the Attack. The Preparation and the Injection of
vulnerabilities are executed side by side, producing a set
of results that will be used by the last stage, the Attack.

During the Preparation stage, the web application is
executed and the interaction is surveyed by the tool. This
interaction can be made either manually, by someone
executing every web application procedure, or
automatically using an external tool, such as a Web
Application Crawler, for example. During this
interaction the HTTP communication protocol between
the web browser and the web server and all the SQL
communications going to and from the database server
(MySQL in our prototype tool) are intercepted by the
Attack Injection tool.

This interception is accomplished using built in
proxies specifically developed for the HTTP and for the
SQL communications. These proxies send the entire
packets data traversing them through the configured ports
to the Attack Injection tool components HTTP
Communication Analyzer and MySQL
Communication Analyzer. Because these proxies run as
independent processes and threads, they are relatively
autonomous and asynchronous. To guarantee that they are
perfectly synchronized with other components of the
Attack Injection tool, a Sync mechanism was also built in
(Figure 4). This allows, for example, matching the input
interaction with the respective proxies’ results.

Figure 4: Architecture of the Attack Injection tool

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 97

The information gathered by both proxies allows
obtaining the structure of each web page, the associated
input variables, typical values, and the associated SQL
queries. During this interaction, the list of the web
application files that are being run is also sent to the
integrated Vulnerability Injection tool as input files. For
each one, the Vulnerability Injection tool is executed,
delivering the respective group of files with
vulnerabilities already injected. Each of these files has
only one vulnerability injected, i.e. the protection of that
particular variable has been removed from the source
code, following the Vulnerability Operator rules.

Each one of these vulnerable variables must be
attacked and for that purpose, the Attack Payload
Generator creates a collection of attack payloads for
every one of these files, according to characteristics of the
target variable. These payloads intend to inject unwanted
features in the queries sent to the database, therefore
executing SQL Injection. They are based on a collection
of basic attack strings presented in Table 2, but they may
be extended, covering other cases, like those presented by
Halfond et al. [26]. Every attack string is attached to the
vulnerable variable trying to create some sort of text that
can penetrate the breach produced by the injected
vulnerability. Some tweaks are done to the payload
strings, such as encode some parts using a URL encoding
function. An attack footprint is also calculated that is
expected to be seen in the query, if the attacked is
successful. This is the last step of the Preparation stage
and the data generated is prepared to be used by the attack
stage of the Attack Injection tool.

The attack stage receives the files with vulnerabilities
and the attack payloads from the previous stage. During
the attack, every vulnerability is injected into the
corresponding PHP file, one at a time. To prevent bias
from previous attacks, before injecting any vulnerability,
the web application files are copied from a safe location
and the web application database is restored from a clean
backup made before the start of the whole process. Using

the generated attack payload, the web application is
automatically attacked. While the attack is being
performed, once again, the HTTP and SQL
communications are intercepted by the respective proxies
and results are analyzed and stored in the internal
database by the HTTP Communication Analyzer and
MySQL Communication Analyzer, as explained before.

After the end of the attack, it is necessary to verify if it
was successful or not. This is done by the Attack Success
Detector component. The attack is successful if, as a
result of the execution of the payload, the structure of the
SQL query is altered [27]. This occurs when the payload
footprint shows up in the query in specific conditions. We
do not consider the cases where the payload footprint is
placed inside a string variable of the SQL query, because
usually a string can convey any combination of
characters, numbers and signs. In the other cases, if it is
possible to alter the structure of the query, then we have a
successful SQL Injection attack.

There is, however, one situation that can be
misinterpreted by the Attack Injection tool. It occurs
when the vulnerable variable value is processed by the
web application code before being included in the SQL
query. For example, if the input value is the full name of
a person and the web application splits it into the name
and surname; then the name and surname are going to be
used in the SQL query in two different columns. This
kind of processing cannot be detected correctly by the
current implementation of the algorithm of the Attack
Injection tool, therefore the attack payload footprint
generated will be void. On the other hand, if the full name
was used in the same query column the payload footprint
will be fine. For this type of processing of the input
variable, we have only implemented the situation where
the processing done to the variable is changing the
typesetter case of the value. Other common situations
such as word separation, last name detection, etc, could
also be easily implemented and added.

One final remark about the Attack Injection tool is that
it does not try to exploit the vulnerability in the sense of
obtaining sensible information from the web application
database. It only tries to evaluate whether some particular
instance of the web application (depending on the
vulnerability injected) is vulnerable to such attacks or not.
The Attack Injection tool also makes the attacker SQL
query string and the specific vulnerability exploited
available. The output information given by the Attack
Injection tool is the most important outcome and it is also
the most relevant data for enterprises. This allows
developers of the tools under assessment to upgrade them
and correct the weaknesses discovered.

4. Experimental results

To evaluate the Attack Injection tool (and the

Table 2. Basic attack payload string examples
Attack Payload

Strings Expected result of the attack

‘ Change in the structure of the query. The
query result is an error

or 1=1 Change in the structure of the query. The
query result is the override of the query
restrictions

‘ or ‘a’=’a Change in the structure of the query. The
query result is the override of the query
restrictions

+connection_id()
-connection_id() Change in the query. The query result is 0

+1-1 Change in the query. The query result is 0
+67-ASCII('A') Change in the query. The query result is 0
+51-ASCII(1) Change in the query. The query result is 0

… …

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 98

integrated Vulnerability Injection tool) we have made
three groups of experiments. In the first group, we
injected vulnerabilities into three web applications to
verify the quality of the vulnerabilities injected and the
attack performance. In the second group, we tested an
IDS for databases. The goal was to evaluate the efficiency
of the IDS in detecting the attacks injected by the Attack
Injection tool. In the final group of experiments, we
evaluated two commercial Web Application Vulnerability
Scanners regarding the detection of vulnerabilities that
may be exploited for ad-hoc SQL Injection. In this
situation, we tested the scanners with the vulnerabilities
that could be attacked by the Attack Injector tool.

For the evaluation experiments, we used LAMP
(Linux, Apache, Mysql and PHP) web applications. The
server runs Linux and the web server is Apache. This
server hosts a PHP developed web application using a
Mysql database. This topology of Operating System and
software was chosen because it represents one of the most
common technologies used to build custom web
applications nowadays.

We used three web applications as setup for the
experiments. The first is the groupware/content
management system TikiWiki [28]. It allows building
wiki (a web site allowing users to contribute to it by
adding and modifying its contents). It is widely used for
building sites, such as the Official Firefox Support site
and the KDE wiki. It was one of the finalists of the
sourceforge.net 2007 for the most collaborative project
award.

The second web application used is the phpBB. It is a
well-known LAMP web application and it has become
the most widely used Open Source forum solution [29]. It
is used by millions of users worldwide and won the
sourceforge.net 2007 community choice awards for best
project for communications. It is also the forum module
that is integrated into the phpNuke content management
and portal web application. For these two applications
(TikiWiki and phpBB), in order to limit the quantity of
data that we had to analyze, we bounded the attack
surface only to the public sections.

The last web application used is custom made and is
called MyReferences. It consists of 13 PHP files and it is
used to manage publications: it allows the storage of PDF
documents, and some information about them such as the
title, the conference, the year of publication, the
document type, the relevance, and the authors. The
information may be edited, queried and displayed.

4.1 Vulnerabilities and attacks injected

For this first experiment, we want to validate the

ability of the Attack Injection tool in injecting
vulnerabilities and also in exploiting them to attack web
applications. Although this process is mostly automatic, it

consists of the Preparation Stage, Vulnerability Injection
Stage and Attack Stage. The Vulnerability Injection Stage
is executed during the Preparation Stage (Figure 5).

Step 3 of the process can be manual or use a web
crawler. During the development of the Attack Injection
tool we started by executing this stage interacting
manually with the web application for internal testing and
debugging purposes. However, in order to keep the same
conditions for all the applications analyzed we did all the
tests using a web crawler. There are several of them [30],
but only some are able to insert values in the web
application fields such as the WebSphinx. For this
purpose, we can also use the crawlers built in the Web
Application Vulnerability Scanners, which are usually
very good in performing this task of web site exploration.

The results of the attack injection in our target web
applications are depicted in Table 3. The vulnerabilities
injected represent all the MFCE SQL Injection type of
vulnerabilities that can realistically be injected into the
files used in the experiments. We must recall that these
vulnerabilities must comply with a restrictive set of rules
in order to be considered realistic. On average, the tool
could inject one vulnerability for every 129 lines of PHP
code. Given the small number of web applications
analyzed, this number is merely informative and cannot
be generalized. The tool took about 11 minutes in the
attack stage of the TikiWiki web application, 12 minutes
for the phpBB and 4 minutes for the MyReferences.

For each vulnerability, we used several attack payloads
and 38% of these attacks were successful. This measure
of success comes from the presence of the payload
footprint in the SQL queries sent to the database. For

A
ttack Stage

9. Start the execution of the inspection daemons (the
HTTP and MySQL proxies are deployed)
10. Inject a vulnerability
11. Start attack by sending every payload
12. Reset the MySQL database
13. Restore PHP files
14. Repeat the attack stage until every vulnerabilities
have been injected
15. Calculate the attack success
16. Store attack results

Preparation
Stage

1. Reset the MySQL database
2. Start the execution of the inspection daemons (the
HTTP and MySQL proxies are deployed)
3. Execute the web application (either manual or using an
automatic crawler)
4. Stop inspection
5. Process and store the information generated during the
execution of the web application

(*) Vulnerability Injection Stage

7. Reset the MySQL database
8. Generate attack payloads

(*)6. Inject the vulnerabilities executing the integrated
Vulnerability Injection tool

Figure 5: Execution stages of the Attack Injection tool

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 99

future work, we intend to deeply analyze the distribution
of the attack payloads in the success of the attacks. We
also want to test with other payload strings not yet
included in Table 2 (see [26]), in order to improve the
attack success rate. However, the current attack payloads
were successful in 80% of the vulnerabilities injected.

We analyzed, one by one, each injected vulnerability
that was not successfully attacked, in order to understand
the reason why the attack was not successful. In five
situations of the edit_authors.php file belonging to the
MyReferences web application the vulnerability is
injected by removing an “intval()” PHP function. By
removing this function it is expected that the variable
could be attacked injecting string values, such as “ or
1=1” (see Table 2 for more examples). However, the
affected variables are used inside strings formatted with
the “%d” format, which filters non-numeric variables.
Therefore, this string formatting gives another level of
protection preventing the attack through the target
variable. In these situations, when the tool injects one
vulnerability (by removing the code responsible for the
sanitation of the variable) it leaves the other pieces of
code still preventing the variable to be exploited. Recall
that, even if multiple vulnerabilities can be injected in a
file, we used only a single vulnerability injected at a time.
This means that one variable with multiple overlapping
checks cannot be attacked if one of the checks is missing,
because the others are still active. It could be possible,
however to inject more than one vulnerability at the same
time in the same file, but we have no field study data that
supports this kind of setup.

All the other situations where it was not possible to
attack the vulnerability, including those that affect the
tiki-login.php of the TikiWiki web application, are the

result of a mistake made by the Attack
Injection tool. By coincidentally, the
same variable used in a query is also
used as a GET parameter in a form to
send some information to the following
web page. The Attack Injection tool was
tricked by this second use of the
variable and tried to inject a
vulnerability in this latter place, which
is of no effect to the SQL query (placed
before in the source code sequence).

The vulnerabilities that did not
produce any successful attack represent
only 11% of all the vulnerabilities
injected. Except for the particular cases
explained before, the results show that
the tools are effective in providing a
sufficient number of realistic
vulnerabilities in a web application and
that these vulnerabilities can be
exploited to launch successful attacks.

4.2 Case study 1: IDS evaluation

One possible use for the Attack Injection tool is the

evaluation of security counter measures, such as an IDS.
In this situation, the IDS must be integrated with the
Attack Injection tool, because the IDS output must be
closely monitored during the attack stage, as was
explained in Section 3.

 For this case study, we used an IDS for databases
[31]. It can deal with Oracle and MySQL databases, but
we only needed the latter. This IDS implements the
anomaly detection approach having itself a learning phase
and a detection phase. Before the Attack Injection tool is
initiated, we have to train the IDS with the target web
application. For this phase, we used a web crawler to
execute the web application functions.

After the training phase of the IDS the Attack Injection
tool can be configured to monitor the IDS output and
operate with it.

The results of these experiments for the three web
applications are shown in Table 4. In this table, the most
important columns are the last two: Successful Attacks
and Detected IDS Attacks. As can be seen, this IDS could
detect almost 99% of the attacks injected. Only five of
them were not detected. We can also observe that, allied
to the high detection rate of the IDS, there is also a high
false positive rate.

The Attack Injection tool does not only provide the
results show in the Table 4. It can also show the exact
HTTP attack code, the payload used, the query sent to the
database, etc. With all this information developers and
security managers can improve their tools and
procedures. In this case study, a defective function in the

Table 3. Web applications attack injection results

Web
Apps Files Attacked

Source
Code
Lines

Vuln.
Injected Attacks Successful

Attacks

Vuln.
Attacked

Successfully

TikiWiki

tiki-editpage.php 904 3 84 34 3
tiki-index.php 648 1 7 6 1
tiki-login.php 305 3 21 0 0

Total 1857 7 112 40 4

phpBB

search.php 1405 3 42 42 3
login.php 224 1 21 21 1

viewforum.php 694 1 7 7 1
viewtopic.php 1210 5 84 84 5
posting.php 1106 4 112 112 4

Total 4639 14 266 266 14

MyRefs
edit_paper.php 310 27 525 61 20

edit_authors.php 169 6 196 46 5
Total 479 33 721 107 25

 Grand total 6975 54 1099 413 43

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 100

IDS could easily be identified as responsible for the
missing detections. In this function, there was one
particular situation in processing the query structure that
was not covered correctly.

4.3 Case study 2: Web Application Vulnerability
Scanners evaluation

In this case study, we evaluate another type of security

tool: Web Application Vulnerability Scanners. Web
Application Vulnerability Scanners are commercial
applications used to audit the web application security
from the attacker’s point of view: they try to penetrate the
web application as a black box, without having
access to the source code. These scanners provide
an easy and automatic way to search for
vulnerabilities, avoiding the repetitive and tedious
task of doing hundreds or even thousands of tests
by hand for each vulnerability type. They can
assess a myriad of security aspects such as XSS,
SQL Injection, path traversal, file disclosure, web
server vulnerabilities, etc. They use signatures of
identified attacks to known web applications (and
web application versions), but they can also test
for ad-hoc XSS and SQL Injection. It is their
ability to discover unreported SQL Injection
vulnerabilities in web applications that we are
going to test in this case study.

We used the HP WebInspect 7.7 [32] and the
IBM Watchfire AppScan 7.0 [33] scanners, which
we randomly named them Scanner 1 and Scanner
2. We have decided to keep the brand of the web
vulnerability scanners anonymous to assure
neutrality and because commercial licenses do not

allow, in general, the publication of tool
evaluation results.

 The way the experiments are
executed with the scanners is different
from the IDS. In this case, we executed
the Attack Injection tool in advance for
the three target web applications so we
can inject the collection of
vulnerabilities that can be attacked
successfully. Then, for each one of these
vulnerabilities, we tested with both
scanners (one at a time) and collected
the results. Before every execution of
the scanners, we reset the web
application database to prevent bias
from previous experiments.

The results of the scanners test are
shown in Table 5. The number of SQL
Injection vulnerabilities detected by the
scanners is minimal. They could only
detect about 9% and 7% for the scanners

1 and 2, respectively. Scanners heavily rely on the output
of the web application (what the web browser sees) to
detect a vulnerability, but the way web applications are
built nowadays allows them to hide most of their error
messages, making the task to identify this type of
vulnerabilities really difficult for these scanners. As a
result, we cannot rely only on these tools to assess the
security of an ad-hoc web application.

Although we did not test for XSS, we believe that the
results would have been better, because many XSS issues
are manifested in the client browser, where the scanner
has access. However, for the second order type of XSS,
where the attack string is stored in the database for latter

Table 4. IDS evaluation results

Web
Apps Files Attacked Vuln.

Injected Attacks Successful
Attacks

Detected
IDS

Attacks

IDS
False

Positives

TikiWiki

tiki-editpage.php 3 84 34 34 49
tiki-index.php 1 7 6 6 1
tiki-login.php 3 21 0 0 21

Total 7 112 40 40 71

phpBB

search.php 3 42 42 42 0
login.php 1 21 21 21 0

viewforum.php 1 7 7 7 0
viewtopic.php 5 84 84 84 0
posting.php 4 112 112 112 0

Total 14 266 266 266 0

MyRefs
edit_paper.php 27 525 61 61 294

edit_authors.php 6 196 46 41 28
Total 33 721 107 102 322

 Grand total 54 1099 413 408 393

Table 5. Web application vulnerability scanners results

Web
Apps Files Attacked Vuln.

Injected

Vuln.
Attacked

Successfully

Vuln.
Scanner

1

Vuln.
Scanner

2

TikiWiki

tiki-editpage.php 3 3 1 0
tiki-index.php 1 1 0 0
tiki-login.php 3 0 0 0

Total 7 4 1 0

phpBB

search.php 3 3 0 1
login.php 1 1 0 0

viewforum.php 1 1 1 0
viewtopic.php 5 5 1 1
posting.php 4 4 0 0

Total 14 14 2 2

MyRefs
edit_paper.php 27 20 1 0

edit_authors.php 6 5 0 1
Total 33 25 1 1

 Grand total 54 43 4 3

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 101

deployment, the detection rate should also be along with
the SQL Injection results.

To improve the detection rate for the SQL Injection
vulnerabilities, the scanners could use a similar approach
to ours with the Attack Injection tool, using a probe in the
SQL communication path to gather useful data.

5. Conclusion

In this paper, we propose a method to automatically

inject realistic vulnerabilities and attacks in web
applications, and present a set of tools that implement the
proposed approach. Our approach provides an effective
way to assess and improve security mechanisms related to
web applications.

We used a set of real-world case-studies to show the
effectiveness of the tools to successfully inject and attack
web applications, to test an IDS for SQL and to assess
two commercial Web Application Vulnerability Scanners.
The results show the effectiveness of the tools executing
these assessment tasks. Furthermore, the results also lead
to interesting conclusions about the mechanisms and tools
under evaluation, showing that the tested IDS can detect
practically all the attacks but with a high rate of false
positives and that the vulnerability scanners do have
difficulties in detecting most of the vulnerabilities
injected.

References

[1] Christey, S., Martin, R., ”Vulnerability Type Distributions

in CVE”, Mitre report, May, 2007
[2] Zanero, S., Carettoni, L., Zanchetta, M., “Automatic

Detection of Web Application Security Flaws”, Black Hat
Briefings, 2005

[3] Jovanovic, N., Kruegel, C., Kirda, E., “Precise Alias
Analysis for Static Detection of Web Application
Vulnerabilities”, IEEE Symp. on Security and Privacy, 2006

[4] Stock, A., Williams, J., Wichers, D., “OWASP top 10”,
OWASP Foundation, July, 2007

[5] Christey, S., “Unforgivable Vulnerabilities”, The MITRE
Corporation, Black Hat Briefings, August 2007

[6] Vnunet, August, 2007,
http://www.vnunet.com/vnunet/news/2197408/monster-
keptbreach-secret-five

[7] NTA, May, 2007, http://www.nta-
monitor.com/posts/2007/05/annualsecurityreport.html

[8] Powell, D., Stroud, R., “Conceptual Model and
Architecture of MAFTIA”, Project MAFTIA, deliverable
D21, 2003

[9] Neves, N., Antunes, J., Correia, M., Veríssimo, P., Neves
R., “Using Attack Injection to Discover New
Vulnerabilities”, IEEE/IFIP International Conference on
Dependable Systems and Networks, 2006

[10] Fonseca, J., Vieira, M., “Mapping Software Faults with
Web Security Vulnerabilities”, IEEE/IFIP Int. Conference
on Dependable Systems and Networks, June 2008

[11] Fonseca, J., Vieira, M., Madeira, H., “Training Security
Assurance Teams using Vulnerability Injection”, IEEE
Pacific Rim Dependable Computing conference, December
2008

[12] McConnell, S., “Gauging Software Readiness with Defect
Tracking”. Software, IEEE, 1997

[13] Arlat, J., Costes, A., Crouzet, Y., Laprie, J.-C., Powell, D.,
“Fault injection and dependability evaluation of fault-
tolerant systems”, IEEE Trans. on Computers,
42(8):913.923, August, 1993

[14] Iyer, R., “Experimental Evaluation”, Special Issue FTCS-
25 Silver Jubilee, IEEE Symp. on Fault Tolerant
Computing, pp. 115-132, 1995

[15] Carreira, J., Madeira, H., Silva, J. G., “Xception: Software
Fault Injection and Monitoring in Processor Functional
Units”, IEEE Trans. on Software Engineering, vol. 24, no.
2, February 1998

[16] Stott, D.T., Floering, B., Burke, D., Kalbarczpk, Z., Iyer,
R.K., “NFTAPE: a framework for assessing dependability
in distributed systems with lightweight fault injectors”,
Computer Performance and Dependability Symp., 2000

[17] Christmansson, J., Chillarege, R. “Generation of an Error
Set that Emulates Software Faults”. IEEE Fault Tolerant
Computing Symp. – FCTS-26, 1996

[18] Madeira, H. Vieira, M., Costa, D. “On the Emulation of
Software Faults by Software Fault Injection.”, IEEE/IFIP
Int. Conf. on Dependable System and Networks, 2000

[19] Durães, J., Madeira, H., “Emulation of Software Faults: A
Field Data Study and a Practical Approach”, IEEE Trans. on
Software Engineering, Vol. 32, No. 11, November 2006

[20] Fonseca, J., Vieira, M., Madeira, H., “Testing and
comparing web vulnerability scanning tools for SQL
injection and XSS attacks”, IEEE Pacific Rim International
Symposium on Dependable Computing, December 2007

[21] Sam NG. CISA, CISSP. SQLBlock.com,
www.owasp.org/images/7/7d/Advanced_Topics_on_SQL_I
njection_Protection.ppt, 2006

[22] Cgisecurity.net, December 2008,
http://www.cgisecurity.com/articles/csrf-faq.shtml#whatis

[23] SANS Institute, January, 2008,
http://isc.sans.org/diary.html?storyid=3823

[24] Web Application Security Consortium, August, 2008,
http://www.webappsec.org/lists/websecurity/archive/2008-
08/msg00084.html

[25] The PHP Group, December, 2007, http://pt.php.net/
[26] Halfond, W., Viegas, J., Orso, A., “A Classification of

SQL Injection Attacks and Countermeasures”, Int. Symp.
on Secure Software Engineering, 2006

[27] Buehrer, G., Weide, B., Sivilotti, P., “Using Parse Tree
Validation to Prevent SQL Injection Attacks”, International
Workshop on Software Egineering and Middleware, 2005

[28] TikiWiki, December, 2008, http://tikiwiki.org/
[29] phpBB, December, 2008, http://www.phpbb.com/
[30] Java-source.net, 2008, http://java-source.net/open-

source/crawlers
[31] Fonseca, J., Vieira, M., Madeira, H., “Detecting Malicious

SQL”, Int. Conference on Trust, Privacy & Security in
Digital Business, September, 2007

[32] SPI Dynamics Inc., May, 2008,
http://www.spydynamics.com/products/webinspect/

[33] Watchfire Corporation, 2008, http://www.watchfire.com

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 102

