
Field Studies on Resilience: Measurements and
Repositories

Joao Duraes1, José Fonseca2, Henrique Madeira3 and Marco Vieira3

1 DEI/CISUC, Polytechnic Institute of Coimbra, 3030-290 Coimbra, Portugal
jduraes@isec.pt

2 DEI/CISUC, University of Coimbra /
Polytechnic Institute of Guarda, 3030-290 Coimbra, Portugal

josefonseca@ipg.pt
3 DEI/CISUC, University of Coimbra, 3030-290 Coimbra, Portugal

{henrique, mvieira}@dei.uc.pt

Abstract. This chapter is devoted to field studies and the aspects related to this
kind of measurements. The importance of measurements collected from the
operational scenarios is discussed, and two case studies are presented. Field
measurements are closely tied to data repositories, and this chapter presents an
overview of some field data repositories available to the public.

Keywords: Field measurement, Data Repositories, Software Faults, Security
Vulnerabilities.

1 Introduction

Field measurements refer to observations of systems in the operational phase, i.e.,
systems that are actually in use. The results obtained from these observations have the
very important characteristic of being realistic: the operation conditions and
environment, and the workload are not mere experimental approximations. Very
often, field studies are not representative as there is no guarantee that all possible,
important system configurations have been observed. Nevertheless, field
measurements and field data are a unique and very important source of information
for researchers when studying the resilience properties, such as availability, reliability
and robustness.

There are basically two main driving forces behind the collection of field data:
development and research. The first is committed to the improvement of specific
systems and to solve problems on those specific systems that are discovered during
the operational phase. The second driving force aims to understand the issues related
to systems reliability and dependability and to propose new techniques to increase the
reliability of non-specific (non vendor-specific) systems. A third driving force is a
market-driven one, to promote awareness of a given product (e.g., network providers,
such as sprint and AT&T, publish their performance and dependability data to
promote the company and attract new customers). However, the first two driving
forces are those more relevant to research works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional do Instituto Politécnico da Guarda

https://core.ac.uk/display/148389724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The research driving force, although not tied to specific vendors or industry goals,
is necessarily dependent on the existence of data. These data is mainly that which was
collected by users or operators and is not related to any research goal. Thus, so far, the
main origin of field data is the occurrence of incidents. This fact has an overwhelming
impact on the nature of the available data, which is mainly related to computer
failures and security incidents. To demonstrate the importance of field measurement
and what can be achieved, in this chapter we present two case studies: the first on
software faults and the second related to security vulnerabilities.

The most complex and error prone components of computer-based systems are the
software. Understanding software faults is essential to devise mechanisms to mitigate
faults existing in software. Thus, the first case study presented in this chapter is a field
study on software faults aimed at the characterization of software faults for emulation
and fault injection purposes.

Security issues are currently one of the major concerns surrounding software
systems. Networking is one of the scenarios that most exposes a system to the general
public and potential malicious users and attacks, representing a high relation with
security-related incidents. Web-based systems are currently the basis of the majority
of network-enabled systems. The second case study presented is thus related to
security vulnerabilities.

Although field data (field measurements) are highly relevant to the research
community to understand and improve computer-based systems robustness, reliability
and security, the availability of such data remains hard to guarantee. The few data
available are based on open-source projects and published research works. The
importance of field data is widely recognized among researchers as shown in
workshops such as RAF07: Reliability Analysis of System Failure Data organized by
Microsoft Research in Cambridge and Darmstadt University in 2007. Each open-
source development team or research team presents its own data and its own view.
One important initiative to mitigate the scarcity and fragmented view of field data is
the development of public repositories, to store data and results based on that data
originating from many sources and teams. We include in this chapter a brief overview
of available data repositories.

The outline of the chapter is as follows. Section 2 presents a field study on
software faults. Section 3 presents a field study on security vulnerabilities. An
overview of field data repositories is presented in section 4. Section 5 concludes this
chapter.

2 Case study 1: Field data on software faults

This section presents a field study on real software faults. This case study was
conducted to understand the nature of faults, and to obtain a classification scheme
usable for fault injection. Injecting faults is a time-proved method of validating fault
tolerant mechanisms and assess system robustness. Given the relevance of software
faults, it is very relevant to be able to inject software faults. The usefulness of fault
injection is tied to the representativeness of the faults injected. To that aim, we need
to understand what exactly is a software fault (a clear, but detailed description usable

for automated fault injection), and obtain information on the types of faults that
represent the faults more common in the operational scenario. The case study
presented here is a summarized description of that field study. More details can be
found in [1]. A technique to emulate software faults at the binary executable was
proposed based on the findings of this study (G-SQFIT, see [1]), however, the details
of such technique do not fit in a field study description and it is not presented here.

Section 2.1 presents the source of the software faults used in this case study and
details the methodology used for the classification of the faults. Section 2.2 presents a
first overview of the fault distribution and makes a comparative analysis with the field
study done by Christmansson and Chillarege in [2] using the ODC classification [3,4]
scheme. Section 2.3 presents an overview of the details classification of the collected
faults. Some conclusions about this field study are presented in Section 2.4.

2.1 Sources of real software faults and classification methodology

To address the representativeness issue of our study, we collected a large set of real
software faults from software used in the field. The goal was to improve the
knowledge about the exact nature of faults and their occurrence distribution using
data from the real operational scenario. More specifically, the software faults that are
pertinent to emulate by fault injection are those that originated in the coding phase
and eluded the testing procedures and go with the deployed product.

The information source used in our work was a set of diff/patch files for several
open source programs. The diff/patch files contain source code corrections for faults
discovered after the software was released. By manual inspection of those files we
were able to extract information to understand and classify software faults. From
those diff/patch files, a total of 668 faults were analyzed. Table 1 presents a summary
of the programs used in this study. It is worth noting that these programs encompass a
broad range of program types: both user programs (including interactive and
command line programs) and operating system (Linux kernels) were used.

Table 1 – Source of the field data

P rog ram
s

S ource 	 location Description #	 faults
CDEX http://s ourceforge.net/projects /cdexos / CD	 Digital	 audio	 data	 extractor. 11
Vim http://www.vim.org Improved	 vers ion	 of	 the	 UNIX	 vi	

editor.
249

F reeC iv http://www.freec iv.org Multiplayer	 s trategy	 game.	 53
pdf2h http://s ourceforge.net/projects /pdftohtml/ pdf	 to	 html	 format	 trans lator. 20
GAIM http://s ourceforge.net/projects /gaim/ All-‐in-‐one	 multi-‐protocol	 IM	 c lient. 23
J oe http://s ourceforge.net/projects /joe-‐editor/ Text	 editor	 s imilar	 to	 Words tar® 78
ZS NES http://s ourceforge.net/projects /z s nes / S NE S /S uper	 F amicom	 emulator	

for	 x86.
3

Bash http://cnswww.cns .cwru.edu/~chet/bas h/bas
htop.html

GNU	 P roject's 	 B ourne	 Again	
S Hell.

2
L Kernel http://www.kernel.org L inux	 kernels 	 2.0.39	 and	 2.2.22 93
F irebird http://s ourceforge.net/projects /firebird/ C ros s -‐platform	 RDBMS 	 engine 2
MingW http://www.mingw.org/ Minimalis t	 GNU	 for	 Windows 	 	 	 	 	 60
S cummV
M

http://s ourceforge.net/projects /s cummvm Iterpreter	 for	 adventure	 engines 74
Tota l	 faults	 collec ted 668

The total number of faults collected for each program is dependent on the program
age, maturity and the user community size. Some of the programs (e.g. Bash) are in a
mature phase and have few recent faults; other programs (e.g. VIM) are still in the
maturation phase and have a large user community that provides many fault reports.
The notion of fault requires the notion of correctness. Generally speaking, the
software is correct if it conforms to the user needs, as specified in the software
requirements. However those might be wrong. For the purpose of this work, it was
assumed that the requirements and specification are correct. Thus, a software fault
means that the code is not correct somehow (i.e., it does not implement the
specification in some particular aspect) because the code does not contain the
instructions that should have.

The approach used to analyze and classify the faults was the following:
1. First we classified the faults according to the Orthogonal Defect

Classification scheme (ODC) [3,4]. The use of general and well accepted
fault classification is the best way to make our results available for the
research community and it allows us to compare our results with previous
field studies.

2. In a second step we grouped the faults in each ODC class according to the
nature of the defect, defined from a building block programming point of
view. That is, for each ODC class a software fault is further characterized
by one or more programming language constructs that is either missing,
wrong or in excess. Programming language constructs may be statements,
expressions, function calls, etc. A fault may then fall in one of three
possible types: Missing construct, Wrong construct, and Extraneous
construct. This is very relevant to fault emulation/injection since
emulating an omission (missing construct) is substantially different from
emulating a wrong construct (e.g., erroneous expression).

3. In a last step, faults were further described and grouped into specific
types. Each type is defined according to the language construct and
program context surrounding the fault location. This description
refinement is also particularly relevant for fault injection purposes since it
helps a) the identification of suitable locations in the target code, and b)
the code modifications necessary to emulate a given fault type.

The resulting final classification can be viewed as an extension to ODC and is used
to define fault emulation operators (each operator emulates one specific type of
faults).

2.2 ODC classification and general analysis

According to the Orthogonal Defect Classification, a software fault is characterized
by the change in the code that is necessary to correct it, i.e., to put the code consistent
with the specification, which is assumed to be correct in our case. From the list of
ODC types, the following are directly related to the code and relevant to our work:

• Assignment: value(s) assigned incorrectly or not assigned at all.

• Checking: missing or incorrect validation of data and conditional statements,
wherever these checks and conditions may appear (e.g., an incorrect loop
condition).

• Interface: errors in the interaction among components, modules, device
drivers, functions calls, and similar.

• Timing/serialization: missing or incorrect serialization of shared resources.
• Algorithm: incorrect or missing implementation that can be fixed only by

(re)implementing an algorithm or data structure without the need of a design
change.

• Function: affects a sizeable amount of code and refers to capability that is
either implemented incorrectly or not implemented at all.

As field data available to us did not include any information on timing or
serialization properties, we did not consider the Timing/serialization ODC type. The
mapping of the faults into one of the remaining ODC types was straightforward with
the exception of the Function type which required a more detailed analysis of the code
in order to figure out whether the correction of the fault has required a design change
or not. Due to the decentralized nature of the software development methodology of
open source projects, we didn’t have direct information on redesign decisions, which
forced us to a more detailed analysis of the faults identified as candidates for the
Function ODC type. Table 2 presents the distribution of faults across the five ODC
fault types addressed in this work.

One interesting topic to both the theme of field-based works and to the theme of
software faults is the comparison of our results with other available field studies that
also used ODC to classify field-discovered faults. We compared our fault distribution
with the one presented in [2] as that work is the one most closely related to our own.
Because that work included Time/Serialization faults, we removed that particular type
from the comparison and normalize all the percentages leaving so that a direct
comparison could be made. Table 2 presents this comparison (values shown in
parenthesis are those from [2] after normalization.

Table 2 – Fault distribution across ODC types.
ODC 	 type #	 faults
As s ignment 143 21.4 (21.98)
C hecking 167 25.0 	 (17.48)
Interface 49 7.3 (8.17)
A lgorithm 268 40.1 	 (43.41)
F unction 41 6.1 	 (8.74)

ODC 	 distribution	 (%)

It is relevant that both our data and that presented in [2] show the same trend in the

fault distribution across ODC fault types: Assignment faults have approximately the
same weight as Checking faults; Interface and Function faults are clearly the less
frequent ones; and Algorithm are the dominant faults. All ODC classes have
approximately the same weight in both works. The fact that independent research
works obtained a similar fault distribution suggests that this distribution is
representative of programs in general and gives us confidence in our results. Also, the

programs analyzed in [2] (large database and operating system code) were quite
different from the ones used in our study, suggesting that this fault distribution across
ODC types is reasonably independent from the nature of the program. Although more
field studies should be conducted to consolidate this conclusion, these results suggest
that fault injection experiments should take this fault distribution trend into
consideration to improve representativeness.

Table 3 presents the fault distribution observed for each individual program used in
this study. To observe a trend in fault distribution across programs, only those
programs with a significant number of faults should be considered (the number of
faults is presented in the first row). Nevertheless, we decided to show the results for
all the programs. We observed that the programs with a higher number of faults show
a similar ODC fault distribution; the only observed deviation was presented by "Joe"
program, which had more checking faults than the global trend. This trend existing
across programs reinforces the suggestion that software faults do follow a clear
pattern of distribution across ODC types.

Table 3 – Fault distribution across ODC types by individual programs

CDEX Vim FC iv Pdf2h GAIM J oe ZS NES Bas h L Kernel FireBird MingW
S c umV

M Tota l
11 249 53 20 23 78 3 2 93 2 60 74 668

As s ignment 18.2	 % 	 21.3	 % 	 11.3	 % 	 55	 % 	 4.3	 % 	 25.6	 % 	 66.7	 % 	 100	 % 	 22.6	 % 	 50	 % 	 10	 	 	 	 % 	 24.3	 % 	 21.4	 % 	
C hecking 18.2	 % 	 22.5	 % 	 13.2	 % 	 5	 % 	 52.2	 % 	 44.9	 % 	 0	 	 	 	 % 	 0	 % 	 25.8	 % 	 50	 % 	 38.3	 % 	 8.1	 % 	 25	 	 	 	 % 	
Interface 54.5	 % 	 6.4	 % 	 7.5	 % 	 0	 % 	 4.3	 % 	 14.1	 % 	 0	 	 	 	 % 	 0	 % 	 5.4	 % 	 0	 % 	 5	 	 	 	 % 	 4.1	 % 	 7.3	 % 	
Algorithm 9.1	 % 	 44.6	 % 	 52.8	 % 	 40	 % 	 26.1	 % 	 15.4	 % 	 33.3	 % 	 0	 % 	 33.3	 % 	 0	 % 	 46.6	 % 	 56.8	 % 	 40.1	 % 	
F unction 0	 	 	 	 % 	 5.2	 % 	 15.1	 % 	 0	 % 	 13	 	 	 	 % 	 0	 	 	 	 % 	 0	 	 	 	 % 	 0	 % 	 12.9	 % 	 0	 % 	 0	 	 	 	 % 	 6.8	 % 	 6.1	 % 	

O
D
C
	 ty

pe

P rog rams	 ►
#	 faults	 ►

2.3 Extended classification and discussion

For the purpose of fault injection the fault types provided by ODC are not practical
as they are too broad, meaning that many different faults fall in the same type and the
types themselves lack the fine details required by an automated tool to be able to
reproduce the fault in the target code. Clearly, further refining is needed, not in the
sense of an alternative classification but as an additional detail layer to ODC. As
explained in section 2.1, we propose to achieve this extra layer by analyzing faults
from the point of view of the (program) context in which fault occur and relate the
faults with programming language constructs. Using this notion, a defect is then one
or more programming language constructs that are either missing, wrong or in excess.
A construct is any building block of the traditional programming languages:
statements, expressions, function calls, etc. Following this idea, we classified each
fault according to its nature which can be one of these: Missing construct, Wrong
construct, or Extraneous construct. Although this classification is orthogonal to ODC
and can be used alone (as is in Table 4), we used it as an extension to ODC fault types
to provide a refined view of the faults specifically aimed at emulation by fault
injection.

Table 4 – Fault distribution by fault nature.
F ault	 nature CDEX Vim FCiv Pdf2h GAIM Joe ZSNES Bash LKernelFirebirdMingW ScumVM Total (%)
Mis s ing	 cons truct 3 157 35 11 17 34 1 0 63 2 45 61 429 (64.2	 	 %)
Wrong	 cons truct 8 85 18 9 6 41 2 2 24 0 14 12 221 (33.1	 	 %)
E xtraneous 	 cons truct 0 7 0 0 0 3 0 0 6 0 1 1 18 (2.7	 	 %)

As we can see in Table 4, faults of the extraneous nature are clearly less frequent

than the other two. This was an expected result, as programmers are more prone to
forget to put something in the program, or to put it in a wrong way, than to insert
surplus code. We can also see that missing programming constructs seem to be the
dominant type of software fault. From the point of view of representativeness for fault
injection experiments, this information is valuable.

Table 5 presents the total number of missing, wrong or extraneous faults for each
of the five ODC fault types addressed in this study. We also provide some examples
of fault to help the reader understand what kind of fault is included in each type (this
will be detailed further on). As we can see from Table 5, there are once again trends
that we can use to achieve representativeness in the injection of software faults, e.g.,
for the assignment and interface types, missing program construct faults are less
frequent than the wrong construct faults.

Table 5 – Fault nature totals across ODC types.

ODC 	
type

Nature Ex amples #	 faults %	 of	 tota l

Mis s ing A variable was not as s igned a value, a variable was not initializ ed,
etc

62 9.3	 	 %

Wrong A	 wrong	 value	 (or	 expres s ion	 res ult,	 etc)	 was 	 as s igned	 to	 a	 variable	 70 10.5	 	 %

E xtraneous A	 variable	 s hould	 not	 have	 been	 s ubject	 of	 an	 as s ignment 11 1.6	 	 %

Mis s ing An "if" cons truct is mis s ing, part of a logical condition is mis s ing,
etc

113 16.9	 	 %

Wrong Wrong logical expres s ion us ed in a condition in brach and loop
ons truct	 (if,	 while,	 etc .)

53 7.9	 	 %

E xtraneous An	 "if"	 cons truct	 is 	 s uperfluous 	 and	 s hould	 not	 be	 pres ent 1 0.1	 	 %

Mis s ing A parameter in a function call was mis s ing; incomplete expres s ion
was 	 us ed	 as 	 param.

11 1.6	 	 %

Wrong Wrong information was pas s ed to a function call (value, expres s ion
res ult	 etc)

38 5.7	 	 %

E xtraneous S urplus data is pas s ed to a function (e.g. one parameter too many
in	 function	 call)

0 0	 	 	 	 	 %

Mis s ing S ome part of the algorithm is mis s ing (e.g. function call, a iteration
cons truct,	 etc)

222 33.2	 	 %

Wrong Algorithm	 is 	 wrongly	 coded	 or	 ill-‐formed 40 6	 	 	 	 	 %

E xtraneous The	 algorithm	 has 	 s urplus 	 s teps ;	 A 	 function	 was 	 being	 called	 6 0.9	 	 %

Mis s ing New	 program	 modules 	 were	 required	 21 3.1	 	 %

Wrong The	 code	 s tructure	 has 	 to	 be	 redefined	 to	 correct	 functionality 20 3	 	 	 	 	 %

E xtraneous P ortions 	 of	 code	 were	 completely	 s uperfluous 0 0	 	 	 	 	 %

A
ss

ig
nm

.
C
he

ck
in
g

A
lg
or
ith

m
Fu

nc
tio

n
In
te
rfa

ce

We then further detailed the description of faults describing exactly what

constructs were missing, wrong or extraneous. We did this for all ODC types and
obtained a reasonable small list of fault types (for each ODC type). This is an
interesting result, as we do not want a small list of generically-described faults where
many faults fit and for which no practical tool can emulate those faults due to lack of
details, and we also do not want a long list of over-detailed description where each
fault fits into and only into its own type, rendering any effort of representativeness
useless. The complete list of fault types for all ODC types is outside the goal of this

section and chapter. We present here in table 6 the list of faults for the ODC type
algorithm and refer the user to [1] for a detailed description of this work.

Table 6 – Detailed analysis of algorithm faults.
F ault	
nature

F ault	 spec ific 	 types

	 C
D
E
X

	 V
im

	 F
C
iv

	 p
df
2h

	 G
A
IM

	 J
oe

	 Z
S
N
E
S

	 B
as

h

	 L
K
er
ne

l

Fi
re
B
ir
d

M
in
G
W

S
cu

m
V
M

	 T
ot
al

Mis s ing	 function	 call	 (MFC) 28 7 1 1 5 4 2 23 71
Mis s ing	 If 	 cons truct	 plus 	 s tatements 	 (MIF S) 27 10 1 15 15 12 80
Mis s ing	 if-‐els e	 cons truct	 plus 	 s tatements 	 (MIES) 4 3 7
Mis s ing 	 if 	 cons truct	 plus 	 s tatements 	 plus 	 els e	 before	 s tatements 	 (MIEB) 1 10 4 2 1 18
Mis s ing 	 if 	 cons truct	 plus 	 else 	 plus 	 s tatements 	 around	 s tatements 	 (MIEA) 2 1 3
Mis s ing	 iteration	 cons truct	 around	 s tatement(s)	 (MCA) 1 1
Mis s ing	 cas e:	 s tatement(s)	 ins ide	 a	 switch	 cons truct	 (MCS) 1 1
Mis s ing	 break	 in	 cas e	 (MBC) 3 1 4
Mis s ing	 small	 and	 localiz ed	 part	 of	 the	 algorithm	 (ML PA) 9 4 2 1 1 5 1 23
Mis s ing	 s pars ely	 s paced	 parts 	 of	 the	 algorithm	 (ML PS) 5 1 6
Mis s ing	 large	 part	 of	 the	 algorithm	 (ML P L) 3 1 1 3 8
Wrong	 function	 called	 with	 s ame	 parameters 	 (WFCS) 1 2 6 9
Wrong	 function	 called	 with	 different	 parameters 	 (WFCD) 9 1 3 13
Wrong	 branch	 cons truct	 -‐	 goto	 ins tead	 break	 (WBC1) 1 1 2
Wrong	 algorithm	 -‐	 small	 s pars e	 modifications 	 (WAL D) 4 1 1 6
Wrong	 algorithm	 -‐	 code	 was 	 mis placed(WAL R) 5 3 1 9
Wrong	 conditional	 compilation	 definitions 	 (WS UC) 1 1

Extraneo
us

construct

E xtraneous 	 function	 call	 (EF C) 4 2 6

1 ## 28 8 6 12 1 0 31 0 28 42 268

Missing
construct

Wrong
construct

Tota l	 faults	 found

The faults listed in Table 6 are now described with a level of detail that is useful
for practical fault injection. For example, the type MFC – missing function call refers
to the omission of a call to a routine in the program. This is an easy understandable
description that can be easily emulated into the target code. Another important issue is
the identification of suitable location where a given fault can be injected. Using the
MFC fault type again, it is relatively easily to identify occurrences of function call in
the target, even in the binary code. It is worth noting that this study was part of an
effort to devise and implement a fault injection technique able to inject realistic
software fault directly into the binary code of the target, without requiring source
code (goal that was achieved). This scenario is relevant because many fault injection
applications involve common-of-the-shelf components for which there is no source
code available.

To help readers understand the level of details that is now used to describe faults,
we use another example from table 6. Fault MIFS – Missing if construct plus
statements. This fault refers to the omission of a conditional statement deciding if a
givel (small) block of statements is executed. In C language it is something like

If (cond) { statement1; statement2; …. }

Once again the identification of this type of construct is easily identifiable in the

target code and easily emulated through modification in said code. One very
important aspect of the information in Table 6 is the number of occurrences for each

fault type. The two fault types described here are much more common than other
types (e.g., MIEA). This is a very important information to build representative
faultloads for fault injection experiments. Table 7 presents a global view of all the
occurrences for all fault types (all ODC types and programs).

Table 7 – The “Top-N” fault in this study by occurrence frequency.

The information summarized in Table 7 is very relevant. It offers two conclusions

about software faults:
• There is a relatively small set of fault types that is responsible for a large

portion of all the fault occurrences. The 12 fault types in Table 7 put together
are responsible for 50% of all the faults discovered in this field study.

• There are faults that are clearly more frequent than others, and this
information is important to build representative faultloads for fault injection
scenarios.

The results of this field study are very interesting for research on software faults
and for the injection of software faults. It offers insight on fault details aimed at the
realistic emulation of faults, it offers information about the distribution of the most
common type of faults in the operational scenario aimed at generating representative
faultloads, and is the basis of the G-SWFIT technique for fault injection. These results
and this technique have been used on several research works (e.g., [5,6,7]), and the
classification scheme is used as basis for different application areas (still related to
software faults), such as security (e.g., relate vulnerabilities with its root cause faults).

To conclude the presentation of this field study we present here one example of a
software fault as classified and described in this field study (Figure 1), and one
example of a fault emulation operator of the G-SWFIT fault injection technique

Fault
types

Description %. observed ODC classes

MIFS Missing "If (cond) { statement(s) }" 9.96 % Algorithm
MFC Missing function call 8.64 % Algorithm

MLAC Missing "AND EXPR" in expression used as branch
condition 7.89 % Checking

MIA Missing "if (cond)" surrounding statement(s) 4.32 % Checking
MLPC Missing small and localized part of the algorithm 3.19 % Algorithm

MVAE Missing variable assignment using an expression 3.00 % Assignment

WLEC Wrong logical expression used as branch condition 3.00 % Checking
WVAV Wrong value assigned to a value 2.44 % Assignment
MVI Missing variable initialization 2.25 % Assignment

MVAV Missing variable assignment using a value 2.25 % Assignment

WAEP Wrong arithmetic expression used in parameter of
function call 2.25 % Interface

WPFV Wrong variable used in parameter of function call 1.50 % Interface
 Total faults coverage 50.69 %

developed in the sequence of this field study (Figure 2). We refer the reader to [1] for
more details.

Figure 1 – Example of a diff/patch file (excerpt). In this example, the patch applies a

“&& !eap->skip” that was missing. The fault type is MLAC - Missing "AND EXPR" in
expression used as branch cond.

*** 4858,4864 ****

for (p=name; isalpha(*p) || isdigit(*p) || *p == '_'; ++p)
;

! if (p == name)
{

EMSG("Function name required");
return;

}
--- 4858,4864 ----

name = eap->arg;
for (p=name; isalpha(*p) || isdigit(*p) || *p == '_'; ++p)

;
! if (p == name && !eap->skip)

{
EMSG("Function name required");
return;

}

Was missing

Figure 2 – Operator to emulate a fault OMIEB - missing if construct and the

statements surrounded by it plus an else statement. It is not one of the most common
fault types, but it serves to illustrate the changes at the high level code and its related
modification at low level to emulate the fault, as well as search pattern used to
identify suitable fault locations.

	 Operator Example Example	 with	 fault Search	 pattern Code	 change

OMIEB

if	 (expression)
{
	 	 statements-‐IF
}
else
{
	 	 statements-‐ELSE
}

… 	 remaining	 code

if	 (expression)
{
	 	 statements-‐IF
}
else
{
	 	 statements-‐ELSE
}

… 	 remaining	 code

flag-‐affecting	 instr.
jcond 	 elsecode
… 	 instrs	 	 (IF)

jmp	 after
elsecode:
… 	 instrs	 	 (ELSE)

after:
… 	 remaining	 code

-‐	 All	 the	 conditional	
jumps	 to	 the	 address	
loc01	 are	 changed	
into	 unconditional	
jumps
-‐	 Call	 instructions	 and	
stores	 to	 memory	
existing	 between	 the	
cond	 jumps	 are	
removed

Notes
There	 may	 be	 several	 cond.	 jumps	 to	 elsecode 	 if	 expressions	 is	 composed	 of	 several	 sub-‐expressions
The	 side-‐effects	 (if	 any)	 of	 the	 first	 sub-‐expression	 are	 not	 ommited

2.4 Considerations on the case study

In this case study a large number of software faults were analyzed to improve the
knowledge about the nature of software faults: its nature, the frequency of its
occurrence frequency by fault types, and how they can be emulated through fault
injection. The contributions of this case study were a fault classification scheme
allowing practical injection of software faults and the knowledge about the fault
distribution across fault type as they occur in the operational scenario. The source of
the data was a set of open-source programs, without which this study would have
been much harder if not impossible: in closed-source projects, the information
regarding faults and their correction is kept within the development team. As the
correction of faults (patch code) was directly used to conduct this field study, we
stress the importance of having data available for research purposes, even in closed-
source projects. This data can hardly be used for commercial purposes, and, excepting
issues related to security, a concerted effort should be made by academia to try and
obtain data such as the one used for this study. This effort should be articulated with
the creation of data repositories to help spreading the data and results of field data
studies.

3 Case Study 2: Field data on Security Vulnerabilities

In this section we present the results of a field study on the most common
vulnerabilities, which provides a truthful body of knowledge on real security
vulnerabilities that accurately emulate real world security problems. The data was
obtained by analyzing past versions of representative web applications with known
vulnerabilities that have already been corrected. The main idea is to compare the
piece of defective code with the corrections made to secure it. This code change (or
the lack of it in the vulnerable application) can be viewed as the reason for the
presence of the vulnerability. Note that this methodology can generically be used in
other field studies to obtain the characterization and distribution of the source code
defects that originate vulnerabilities in web applications.

The field study uses data from 655 SQL Injection and XSS security patches of six
widely used web applications. The detailed analysis of the code of the patches shows
that web application vulnerabilities result from software bugs affecting only a
restricted collection of statements, which greatly facilitates the emulation of
vulnerabilities through fault injection, as the effort can be concentrated on the
emulation of vulnerabilities in a small number of types of statements.

Section 3.1 and 3.2 describe the methodology used to collect the field data in this
field study. Section 3.3 presents the systems addressed in the study, and the
vulnerabilities addressed are presented in Section 3.4. Section 3.5 details the
information gathered in the study and the results are presented in Section 3.6. Section
3.7 summarizes this case study.

3.1 Vulnerability analysis and classification methodology

When web application vulnerabilities are discovered, software developers correct the
problem releasing application updates or patches. In our study, we used these patches
to understand which code is responsible for security problems in web applications.
With this approach, we can classify the code structures that cause real security flaws
and identify the most frequent types of vulnerabilities observed in the web
applications considered in our field study.

For each web application under test, the methodology to classify the security
patches is the following:

1. Verification of the patch to obtain the right version of the web application
where it applies. We need to confirm the availability of the specific version of
the web application and obtain it for the rest of the process. It is mandatory to
have both the patch and the vulnerable source code to be able to analyze what
code was fixed and how, unless the patch file has all this information (which
we found to be unusual).

2. Analysis of the code with the vulnerability and compare it with the code after
being patched. The difference between the vulnerable and the secure piece of
code is what is needed to correct the vulnerability. This is what the software
developer should have done when he first wrote the program and this is what
we have to classify.

3. Classification of each code fix that is found in the patch. The absence of the
actions programmed in the patch represents what causes the vulnerability. For
example, if the patch replaces the variable $id with intval($id)1, we
consider that the vulnerability is caused by the absence of the intval
function in the original code. To be accurate, we followed the patch code
analysis guidelines described in the next section.

4. Loop through the previous steps until all available patches of the web
application have been analyzed.

3.2 Patch code analysis guidelines

Web applications are developed using different coding practices and during the
classification of the security patches we face different scenarios and have to make
some decisions that need to be clarified. To avoid classification mistakes and
misinterpretations the following guidelines are followed:

1. We assume that the information publicly disclosed in specialized sites is
accurate and that the fix developed by the programmer of the patch and made
available by the company that supports the web application solved the stated
problem. We do not test the presence of the vulnerability nor confirm its
correction.

2. To correct a single vulnerability several code changes may be necessary. This
way, each code change was considered as a singular fix. For example, suppose
that two functions are needed to properly sanitize a variable. Missing any of

1 The intval is a PHP function that returns the numeric value of a variable, or 0 on error.

these functions makes the application vulnerable, so both of them must be
taken into account. In this case, if we want to simulate the vulnerability, we
may remove any of the singular fault type fixes.

3. When a patch can fix several vulnerability types simultaneously, each one is
accounted separately. This occurred naturally because we analyzed each
vulnerability independently, as if we were doing several unrelated analyses,
one for each vulnerability type. For example, this occurs when a not properly
sanitized variable is used in a query (e.g. allowing SQL Injection) and later on
is displayed on the screen (e.g. allowing XSS). When this variable is properly
sanitized, both vulnerabilities are mitigated simultaneously, however this
situation accounts for the statistics of both XSS and SQL Injection
vulnerabilities.

4. When a particular code change corrects several vulnerabilities of the same
type, each one is considered as a singular fix. For example, suppose that the
value assigned to a specific variable comes from two sources of external
inputs; and the variable is displayed in one place without ever being sanitized.
We consider that the application has two security vulnerabilities because it can
be attacked from two different inputs. However, to correct the problem all that
is needed is to sanitize the variable just before it is displayed. In this example
we consider that two security problems have been fixed, although only one
code change was needed.

5. A security vulnerability may affect several versions of the application. This
happens when the code is not changed for a long time, but it is vulnerable. The
patch to fix the problem is the same for all versions, and therefore it is
considered to be only one fix.

By following the previous guidelines, it was possible to classify almost all the code
fixes analyzed. However, in some situations, patching one or more vulnerabilities
may involve so many changes, including the creation of new functions or a change in
the structure of the overall piece of code, that it is too difficult to classify it properly.
These situations are usually associated with major code changes involving
simultaneously security and other bug fixes related to functional aspects. These
occurrences were quite marginal (5.4%) and were not considered in our study because
they are too complex and difficult to analyze due to the lack of source code
documentation.

3.3 Web applications analyzed

One mandatory condition for our field study is to have access to the source code of
the web applications under analysis. The code of previous versions and the associated
security patches must also be accessible. The other mandatory condition is the
availability of information correlating the security fix and the specific version of the
web application.

The goal is to be sure that it is possible to access the source code (including the
code of older versions) in order to be able to analyze and understand the security
vulnerability and how it was fixed. Actually, the way a given vulnerability is fixed is
a key aspect in the classification of the fault type originating the vulnerability.

For the present study we have selected six LAMP (Linux, Apache, MySQL and
PHP) web applications: PHP-Nuke [8], Drupal [9], PHP-Fusion [10], WordPress [11],
phpMyAdmin [12] and phpBB [13]. These are open source web applications that
represent a large community of users and, fortunately, there is enough information
available about them to be researched. Additionally, they represent a large slice of the
web application market and have a large community of users:
• Drupal (winner of the first place at the 2007 and 2008 Open Source CMS

Award), PHP-Fusion (one of the five winner finalists at the 2007 Open Source
CMS Award) and phpBB (the most widely used Open Source forum solution
and the winner of the 2007 SourceForge Community Choice Awards for Best
Project for Communications) are Web Content Management Systems (CMS).
A CMS is an application that allows an individual or a community of users to
easily create and administrate web sites that publish a variety of contents.

• PHP-Nuke is a well-known web based news automation system built as a
community portal. PHP-Nuke is one of the most notorious CMS and it has
been downloaded from the official site over 8 and half million times.

• WordPress is a personal blog publishing platform that also supports the
creation of easy to administrate web sites. It is one of the most used blog
platforms in the World.

• phpMyAdmin is a web based MySQL administration tool. It is one of the most
popular PHP applications, is included in many Linux distributions, and was
the winner of the 2007 SourceForge Community Choice Awards for Best Tool
or Utility for SysAdmins.

The six web applications analyzed are so broadly used since several years ago that
they have a large number of vulnerabilities disclosed from previous versions, which
were the subject of analysis of the field study. It is important to emphasize that a
single vulnerability opens a door for hackers to successfully attack any of the millions
of web sites developed with a specific version of the web application. Furthermore, it
is common to find a single vulnerability in a specific version that also affects a large
number of previous versions. The overall situation is even worse because web site
administrators do not always update the software in due time when new patches and
releases are available.

3.4 Security vulnerabilities studied

In the present work we focus on two of the most critical vulnerabilities in web
applications: XSS and SQL Injection. A Cross Site scripting (XSS, but also known as
CSS) vulnerability allows the attacker to inject HTML and/or a scripting language
(usually JavaScript) into a vulnerable web page [14]. A SQL Injection vulnerability
allows the attacker to tweak the input fields of the web page in order to alter the query
sent to the back-end database [15].
Exploits of these vulnerabilities take advantage of unchecked input fields at user
interface, which allows the attacker to change the SQL commands that are sent to the
database server (SQL Injection), or allows the attacker to input HTML and a scripting
language (XSS). Two main points account for the popularity of these attacks:

• The easiness in finding and exploiting such vulnerabilities. They are very
common in web applications and within a web browser the attacker can probe
for these vulnerabilities tweaking GET and POST variables that are available
in the HTML page. The building of an exploit for fun or profit can be a bit
more time consuming, but there are plenty information and guides on how to
do it (e.g. look at [16, 17] for XSS and [16,18,19] for SQL Injection, just to
mention a few).

• The importance of the assets they can disclose and the level of damage they
may inflict. In fact, SQL Injection and XSS allow attackers to access
unauthorized data (read, insert, change or delete), gain access to privileged
database accounts, impersonate another user (such as the administrator),
mimicry web applications, deface web pages, get access to the web server,
malware injection, etc. [20].

3.5 Patch code sources

For all the applications analyzed, we collected the source code of both the
vulnerable and the patched versions. By comparing these two versions, we could
understand the characteristics of the vulnerability and classify what code was changed
to correct it.

Software houses and developers follow their own policies in what concerns the
public availability of older versions of the software, particularly when they have
security problems. In some cases, they can be hard to find and even the access to the
past collection of vulnerability patches can be a cumbersome task. Furthermore, most
security announcements publicly available are so vague that it is too difficult (or even
impossible) to know which source files of the application are affected by a particular
vulnerability. Moreover, some of the disclosed information about security problems is
too generic and groups together several types of security vulnerabilities (e.g., using
the same document to refer to directory traversal, remote file inclusion and COOKIE
poisoning vulnerabilities), which makes it more difficult to map our target
vulnerabilities to the code fixing them.

In order to gather the actual code of security patches, we have to use several
sources of data, such as mirror web sites, other sites that provide the source code
(mainly on blogs or forums), online reviews, news sites, sites related to security,
hacker sites, change log files of the application, the version control system repository,
etc.

For the purpose of this study, we just need the changes made to the code of the
application correcting the vulnerability problem (i.e., the source code of the entire
application is not required). However, as there is no standard way of providing the
data about the security vulnerability fix, different sources of information have to be
considered, each one following its own specific format. The four main source types
used in the current work are the following:

1. Security patch files with information about the target version of the
application. In this case, we have the reference to the buggy version of the web
application and to the patch file that must be applied to mitigate the target
vulnerability.

2. Updated version of the web application. Actually, this is a completely new
version of the application containing new features and bug fixes (including
security ones). This is the most common source of information we have found,
but it is also the one that needs more exploration work to be done.

3. Available security diff file. In this case, there is a diff file, which is a file
containing only the code differences between two other files with information
about what lines of the original file have been removed, added or changed. It
has, therefore, the precise code changes needed to fix a referenced
vulnerability.

4. Version control system repository. Almost all relevant open source
applications are developed using a version control system to administer the
contributions of the large community of developers from around the world.
This is the most complete source of information we can have about the
application, although it may be difficult to find what we are looking for in
such a vast collection of files and versions.

Once the vulnerable code and the respective patch are obtained using one of the
previous sources of information, a differential analysis is performed to identify the
locations in the code where the defects are fixed. This operation is done mainly
through the use of diff utility. The Unix diff utility is a file comparison tool that
highlights the differences between two files using the algorithm to solve the longest
common subsequence problem [21]. A manual analysis of the code can be also
performed when the output of the diff utility is too complex due to a large number of
changes between the two versions of the source code, or when many corrections are
done in the same file. The manual analysis also helps grouping several security
corrections and discarding the code changes not related to security issues.

3.6 Field study results and discussion

In the field study we classified 655 XSS and SQL Injection security fixes found in the
six web applications analyzed (PHP-Nuke, Drupal, PHP-Fusion, WordPress,
phpMyAdmin and phpBB). We followed a classification scheme based on the
software fault classification proposed in [1] and adapted the fault types specific to
XSS/SQL injection (e.g., MFC to MFCext).

The overall distribution of the fault types found in the six web applications
analyzed is shown in Table 8. In this table we can see the individual results for each
fault type allowing us to understand how they are distributed along the web
applications analyzed.

Table 8 - Detailed results of the field study on the most common software faults
generating vulnerabilities.

Web
app.

PHP-
Nuke Drupal PHP-

Fusion WordPress phpMyAdmin phpBB

Fault
type

S
Q
L

X
S
S

S
Q
L

X
S
S

S
Q
L

X
S
S

S
Q
L

X
S
S

S
Q
L

X
S
S

S
Q
L

X
S
S

%

MFCext. 120 133 4 39 6 13 6 94 1 51 3 27 76%

WPFV 31 3 2 5 4 1 7%

MIFS 5 2 2 7 6 10 2 5%

WVAV 2 3 2 4 17 4%

EFC 1 1 4 1%

WFCS 3 1 1 13 3%

MVIV 1 1 3 4 1%

MLAC 1 2 4 2 1%

MFC 2 1 1 1%
MIA 1 1 0%

MLOC 1 0%
ELOC 1 0%
Total

Faults 158 137 4 55 21 33 6 109 1 73 3 55 100%

A common belief is that vulnerabilities related to input validation are mainly due to

missing if constructs or even missing conditions in the if construct. However, our
field study shows that this is not the case, as the overall “missing IF…” fault types
(MIFS and MIA: see Table 8) only have a weight of 5.5%. As for the “missing
<condition>…” fault types (MLAC and MLOC), they represent only 1.52% of all the
fault types. This suggests that programmers typically do not use if constructs to
validate the input data, and this may occur due to the complexity of the validation
procedures needed to avoid XSS and SQL Injection.

The typical approach we found in the field is the use of a function to clean the
input data and let it go through, instead of stopping the program and raise an
exception (or show an error page). This may be understood as a design goal trying to
prevent the disruption of the interaction of users to the least possible. In what
concerns security, it would be better to allow only inputs known as correct (white list)
as this prevents any input with suspicious characters to go any further and is more
secure than just cleaning the input from malicious characters and let the operation
continue normally.

Analyzing the global distribution of web applications vulnerabilities we found
70.53% of XSS and 29.47% of SQL Injection showing that XSS is the most frequent
type by far. As shown, all the fault types account for XSS vulnerabilities but only
eight fault types report to SQL Injection, which might help justify the fact that XSS is
more prevalent than SQL Injection, confirming the results of the IBM X-Force® 2008
Trend & Risk Report [22]. This trend is also confirmed by vulnerability reports
disclosed in CVE [23, 24]. However, the four fault types that do not contribute to
SQL Injection (MFC, MIA, MLOC and ELOC) only account for 1.22% of all the

fault types. Obviously, we do not have enough sample values to conclude that SQL
Injection may not be derived from one of these fault types. We can only say that we
did not find them in our field study.

There are several factors that contribute to the prevalence of XSS. XSS is easier to
discover because it manifests directly in the tester web browser window. Every input
variable of the application is a potential attack entry point for XSS, which is not the
case for SQL Injection, where only variables used in SQL queries matter. Another
factor that contributes to the prevalence of XSS is that SQL Injection alters the
database records and this cannot be always seen in the interface, at least so explicitly
as XSS. Moreover, the knowledge needed to test for XSS [16, 17] is not as complex
as for SQL Injection, for which the attacker needs to have deep knowledge about the
SQL language. Although the SQL language is usually based on the SQL-92 standard
[25], every database management system (DBMS) has its own extensions and
particularities [16, 18,19], that need to be taken into account when searching for SQL
Injection.

The most representative and widespread fault type is the “Missing function call
extended (MFCext.)”. It represents 75.87% (140 SQL Injection + 357 XSS out of 655
vulnerabilities studied) of all the fault types found. The high value observed for the
MFCext fault type comes from the massive use of specific functions to validate or
clean data that comes from the outside of the application (user inputs, database
records, files, etc.). In many cases, functions are also used to cast a variable to a
numeric value, therefore preventing string injection in numeric fields.

The next three most common fault types are “wrong variable used in parameter of
function call (WPFV)”, “missing IF construct plus statements (MIFS)”, and “wrong
value assigned to variable (WVAV)”.

A recurring problem is that, looking at several versions of the same program, we
frequently found the same regex string being slightly updated as new attacks are
discovered. These situations were found in WPFV and WVAV faults.

Excluding the faults types already discussed (MFCext., WPFV, MIFS and
WVAV), the remaining fault types correspond to only 7.63% of the security
vulnerabilities found. These fault types are EFC, WFCS, MVIV, MLAC, MFC, MIA,
MLOC and ELOC.

3.7 Considerations on the case study

In this case study we presented a methodology for characterizing the most frequent
fault types associated with the most common web application vulnerabilities based on
a field study. We focused on XSS and SQL Injection vulnerabilities of six widely
used web applications, using 655 security fixes as the field data. Results show that
only a small subset of 12 generic software faults is responsible for all the XSS and
SQL Injection vulnerabilities analyzed.

One relevant outcome of the field study performed is referred to the distribution of
vulnerabilities by a reduced number of fault types. In fact, we observed that a single
fault type, the MFCext. (missing the function responsible for cleaning the input
variable), is responsible for about 76% of all the security problems analyzed. Previous
studies on software fault types [1,2] also show this large dependency on a few bug

types. Furthermore, this trend is not new in the security area: Microsoft has already
stated that fixing the top 20% of the reported bugs eliminates around 80% of errors
[26] and the Gartner Group reported that 20% of security test rules uncover 80% of
errors [27]. This concentration of the responsibility of most vulnerabilities on just a
few fault types can be very important to address the web applications security and
makes it feasible to emulate vulnerabilities by means of fault injection, which has
already been started to be addressed by the research community [28,29,30,31,32].

4 Overview of data repositories

Data repositories are an excellent resource to store and share information for research
purposes. One type of valuable information that can be shared through data
repositories is the result from field data studies. Although data repositories to store
failure data and dependability experiments results are relatively rare (especially
considering the huge value of real failure data to help designers in improving
computer systems), several initiatives have been proposed and are currently available.

The Data & Analysis Center for Software (DACS) is a Department of the US
Defense Information Center supporting research on software reliability and quality. It
serves as centralized source for data related to software metrics. The DACS maintains
the Software Life Cycle Experience Database (SLED). This repository is intended to
support the improvement of the software development process. The SLED is
organized into nine data sets covering all phases and aspects of the software lifecycle
([33] and [34]). Examples of these datasets are:

• The DACS Productivity Dataset (collected from government and private
industry sources). This dataset consists of data on over 500 software
projects and is mainly oriented to software cost modelling and productivity
analysis [35]. The data represents software from early 60s to early 80s and
includes software projects ranging from avionics to off-the-shelf packages.
The information in this dataset includes the following: size of project,
effort, language, schedule, errors.

• The NASA/SEL Dataset (contributed by the Software Engineering
Laboratory (SEL) at NASA Goddard Space Flight Center). This repository
maintains data on avionic applications since 1976. The dataset is available
by request on disk and it can be accessed through web browser. Using the
latter, users have access to analytical summaries including linear regression,
scatter plots and histograms. The analytical results are created dynamically
per request during the HTTP session and served to the user browser. The
repository information is stored in a relational database and the link
between the data repository and the web server is supported through Perl
applications.

• The Software Reliability Dataset (collected at Bell Laboratories) [36]. This
repository describes failures in a wide range of application domains
including real time, control, office, and military applications. This dataset
was primarily aimed at the validation of software reliability models and to
assist software managers to monitor and predict software tests. As in the

NASA/SEL dataset, the information can be obtained by request, and it can
also be accessed through web interface.

The Metrics Data Program (MDP) Repository is a database maintained by the
NASA Independent Verification and Validation facility [37]. The repository is aimed
at the dissemination of non-specific data to the software community and it is made
available to the general public at no cost. All the data available in the repository are
sanitized by the projects representatives, and all the necessary clearances are
provided. Users of the repository are free to analyze the data for their specific
research goals.

The MDP repository is part of the MDP on-going effort to improve the ability to
predict error in software by improving the quality of the problem data related to
software (e.g., improve the quality of the information about the relationship of the
error and the development phase). To this effort, the MDP recruits the participations
of private-sector and public-sector projects. Recruited projects maintain complete
control of data release and the level of participation in the program. The effort
required by the participating projects is minimal. The repository contains data on the
software projects that were collected and validated by the MDP program, spanning
more than 8 years and including more than 2700 error reports. The information stored
in the repository consists of error data, software metrics data, and error data at the
function/method level. The dataset enables data associations between products,
metrics, and errors classified according to the Orthogonal Defect Classification
(ODC) [3].

The Software Reference Fault and Failure Data Project [38] is maintained by the
National Institute of Standards & Technology and is aimed at the development of
metrology, taxonomy and repository for reference data for software assurance. The
project maintains a repository on software fault data specifically aimed at helping
industry protect against releasing software systems with faults and to help assess
software systems quality by providing statistical methods and tools. The repository is
available to the public upon request. The access to the information online allows users
to view data and execute simple queries. Analytical and statistical use of the data is
possible through a program developed within the project and available to the public
(the EFFTool).

The Computer Failure Data Repository (CFDR) is a public repository on computer
failure data ([39] and [40]) supported by USENIX. The repository is aimed at the
acceleration of the research on system reliability with the ultimate goal of reducing or
avoiding downtime in computer systems. To this goal, the CDFR hopes to remove the
main difficulty faced by researchers, which is the lack of reliable and precise
information about computer failures. The CDFR repository is open to both obtaining
and contributing data. The repository comprises nine independent data-sets focusing
mainly on very large storage systems. The repository information covers many
aspects, including: software failures, hardware failures, operator errors, network
failures, and operational environment problems. The raw data are available to the
public [40] through web interface. The project does not offer online capability for
analytic and statistical data-processing.

The AMBER Raw Data Repository [41] is a repository of field data and raw results
from resilience assessment experiments. Its goal is to grant both the research and IT
industry communities with an infrastructure to gather, analyze and share field data

resulting from resilience assessments of systems and services, stimulating a better
coordination of high quality research in the area, and contributing to the promotion of
a standardization of resilience measurement, which will in turn have a positive impact
in the industry. While experimental and field data repositories are recognizably
fundamental for supporting the advance of research and the dissemination of
knowledge, the research community still seems somewhat reluctant in embracing such
enterprises. This repository aims to encourage acceptance from the community to
share its data and promote the research involving several partners sharing data..

Publicly available vulnerability databases currently play a very important role in
making the information on vulnerabilities available to researchers and have
completely reshaped the way software vulnerabilities are reported and disseminated in
recent years. Examples of popular vulnerability databases are the National
Vulnerability Database [42] and The Open Source Vulnerability Database [43], which
provide comprehensive reports about discovered software vulnerabilities including
the nature of a vulnerability (its type, the component where it was located, the list of
vulnerable system versions, its discovery date, and so on) and include examples on
how to exploit it, as well as the patch or the workaround provided by system vendor
to fix it (when available). Additionally, to alert users about the severity and security
risk of reported vulnerabilities, these databases typically provide vulnerability impact
and exploitability levels assigned by security advisors. These databases also provide a
web-based interface that enables users to search vulnerabilities and browse a list of
the vulnerabilities reported for a given system.

5 Conclusion

The case studies presented in the chapter allow drawing some conclusions on field
measurements and field data studies. Although the focus of the chapter is software
faults and security vulnerabilities, these conclusions apply to any type of
measurement obtainable in the field. Important aspects that are self-evident are the
representativeness of the measurements and results, the classification used to describe
them and manipulate data, and the mechanisms to make data and results available to
the research community and general public.

Concerning data on the robustness of the computer-based systems, field data is
mostly obtained from reports (bug reports, incident reports, security logs, and so on,
depending on the nature of the incident). These reports are filed by the users and
operators and are typically used by the system developers to solve the incidents and
improve the system.

Observations made in closed-source, proprietary systems are typically not available
to the public. Observations originating from open-source systems are normally made
available to the community (e.g., stored in a repository). However, these repositories
are normally not oriented to a systematic storage and classification of the discovered
faults and remedies. Instead they are the result of the accumulation of solution to
problems resulting in a kind of logfile-like information about which problems were
discovered (bug reports, many times repeated), and how were solved. The exception
to this are the repositories maintained by researchers in the context of long-term

research in large companies, such as IBM. These are good initiatives, but typically are
very different from one another. It would be of great value to the research community
to have information on software faults available in a systematized and uniform way.
Repositories like the ones described in the chapter are good initiatives in that
direction.

Concerning security, the information pertinent to research is even harder to find
than those about software faults. It is not the case of data availability (as it is for faults
in closed-source systems). On the contrary, there is plenty of information. The major
problem is that there is too much information, scattered and mostly repeated, and
classified using different schemes. A given security issue may have been classified
according to in scheme and given one value of severity, for instance, and in another
repository, the same vulnerability may appear with a different description and
different characterization.

The usefulness of public repositories to the research communities is demonstrated
by the existence of studies based on the information stored in publicly available
repositories (e.g. [41]). Nevertheless, and in spite of the different repository initiatives
already available, the raw data from the vast majority of research works on
experimental dependability evaluation and on field failure data, among other
examples, is not available in any repository. Hundreds of papers have been published
but the raw data that have led to the final results presented in those papers is not
available. Data repositories do seem a very promising initiative to provide the means
to have a uniform description of raw data and results and make this information
available to the public, and perhaps some more concerted effort should be placed
towards creating and maintaining said repositories. One example among several is the
AMBER repository, which was built specifically to share data among different teams.

Bibliography

1. Duraes, J. and Madeira, J, “Emulation of Software Faults: a Field Data Study and a
Practical Approach”, in Transactions on Software Engineering, Volume: 32 Issue:11, pp.
849 – 867, Nov. 2006.

2. Christmansson, J. and Chillarege, R., “Generation of an Error Set that Emulates Software
Faults”, Proceedings of the 26th IEEE Fault Tolerant Computing Symposium, FTCS-26,
Sendai, Japan, pp. 304-313, June 1996.

3. Chillarege, R., “Orthogonal Defect Classification”, Chapter 9 of Handbook of Software
Reliability Engineerin”, Michael R. Lyu Ed., IEEE Computer Society Press, McGraw-
Hill, 1995.

4. Chillarege, R., Bhandari, I. S., Chaar, J. K., Halliday M. J., Moebus, D. , Ray, B. , and
Wong, M., “Orthogonal Defect Classification – A Concept for In-Process Measurement”,
IEEE Transactions on Software Engineering, vol. 18, no. 11, pp. 943-956, November
1992.

5. Durães, J., Vieira, M., Madeira, H., “Dependability Benchmarking of Web-Servers” In
Proceedings of the 30th International Conference on Computer Safety, Reliability and
Security - SAFECOMP 2004, Berlin, Germany, pp 297-310.

6. Moraes, R, Barbosa, R., Durães, J., Mendes, N., Martins, E., and Madeira, H.,”Injection of
faults at component interfaces and inside the component code: are they equivalent?” in

Proceedings of the Sixth European Dependable Computing Conference, EDCC 2006,
Coimbra, Portugal, 18-20 October 2006. EDCC 2006, pp.53-64.

7. Moraes R., Durães J., Barbosa R, Martins, E., and Madeira H., “Experimental Risk
Assessment and Comparison Using Software Fault Injection” in Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2007, Edinburg, UK, pp. 512-521.

8. PHPNuke.org (2010), PHP-Nuke, PHP-Nuke. [online] Available from: http://phpnuke.org/
(Accessed 10 November 2010)

9. Drupal (2009), Drupal, Drupal. [online] Available from: http://drupal.org/ (Accessed 10
March 2009)

10. Jones, N. (2009), PHP-Fusion, PHP-Fusion. [online] Available from: http://php-
fusion.co.uk/news.php (Accessed 15 March 2009)

11. WordPress.org (2009), WordPress, WordPress.org. [online] Available from:
http://wordpress.org/ (Accessed 5 October 2010)

12. phpMyAdmin (2009), phpMyAdmin, phpMyAdmin. [online] Available from:
http://www.phpmyadmin.net/home_page/index.php (Accessed 10 November 2010)

13. phpBB Group (2009), phpBB, phpBB. [online] Available from: http://www.phpbb.com/
(Accessed 10 November 2010)

14. OWASP Foundation (2009a), Cross-site Scripting (XSS), [online] Available from:
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS) (Accessed 13 February
2009)

15. OWASP Foundation (2008b), SQL Injection, [online] Available from:
http://www.owasp.org/index.php/SQL_injection (Accessed 13 February 2009)

16. OWASP Foundation (2008a), OWASP Testing Guide V3, OWASP Foundation. [online]
Available from: http://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf

17. Hansen, R. (2009), XSS (Cross Site Scripting) Cheat Sheet, [online] Available from:
http://ha.ckers.org/xss.html (Accessed 7 April 2009)

18. Hansen, R. (2006), SQL Injection cheat sheet, [online] Available from:
http://ha.ckers.org/sqlinjection/

19. pentestmonkey.net (2009), pentestmonkey.net, [online] Available from:
http://pentestmonkey.net/cheat-sheets/ (Accessed 7 April 2009)

20. Fossi, M., E. Johnson, D. Turner, T. Mack, J. Blackbird, D. McKinney, M. K. Low, T.
Adams, M. P. Laucht, and J. Gough (2008), Symantec Report on the Underground
Economy, Symantec Security Response.

21. Hunt, J. W., and M. D. McIlroy (1976), An Algorithm for Differential File Comparison, in
Bell Laboratories Computing Science Technical Report #41. [online] Available from:
http://www.cs.dartmouth.edu/~doug/diff.ps

22. IBM Global Technology Services (2009), IBM Internet Security Systems X-Force® 2008
Trend & Risk Report, IBM Corporation. [online] Available from: http://www-
935.ibm.com/services/us/iss/xforce/trendreports/xforce-2008-annual-report.pdf

23. OWASP Foundation (2007), OWASP Top 10 - 2007, OWASP Foundation. [online]
Available from: http://www.owasp.org/index.php/Top_10_2007

24. MITRE Corporation (2009a), Common Vulnerabilities and Exposures, [online] Available
from: http://cve.mitre.org/

25. Digital Equipment Corporation (1992), Database Language SQL.

26. Rooney, P. (2002), Microsoft's CEO: 80-20 Rule Applies To Bugs, Not Just Features,
ChannelWeb. [online] Available from: http://www.crn.com/security/18821726 (Accessed
5 November 2009)

27. Lanowitz, T. (2005), Now Is the Time for Security at the Application Level, Gartner
Group. [online] Available from:
http://www.sela.co.il/_Uploads/dbsAttachedFiles/GartnerNowIsTheTimeForSecurity.pdf

28. Fonseca, J., M. Vieira, and H. Madeira (2008b), Training Security Assurance Teams
Using Vulnerability Injection, in 14th IEEE Pacific Rim International Symposium on
Dependable Computing, 2008. PRDC '08, pp. 297-304.

29. Fonseca, J., M. Vieira, and H. Madeira (2009), Vulnerability & Attack Injection for Web
Applications, in IEEE International Conference on Dependable Systems and Networks
with FTCS and DCC, 2009. DSN 2009.

30. Fonseca, J., M. Vieira, and H. Madeira (2010), The Web Attacker Perspective - A Field
Study, in Proceedings of the 2010 21st International Symposium on Software Reliability
Engineering, IEEE Computer Society.

31. Seixas, N., J. Fonseca, M. Vieira, and H. Madeira (2009), Looking at Web Security
Vulnerabilities from the Programming Language Perspective: A Field Study, in
Proceedings of the 2009 20th International Symposium on Software Reliability
Engineering, pp. 129-135, IEEE Computer Society.

32. Elia, I., J. Fonseca, and M. Vieira (2010), Comparing SQL Injection Detection Tools
Using Attack Injection: An Experimental Study, in Proceedings of the 2010 21st
International Symposium on Software Reliability Engineering, IEEE Computer Society.

33. DACS, Software Reliability Dataset, available from
https://www.thedacs.com/databases/sled/swrel.php; Internet; accessed 15 March 2008.

34. J. Delude, R. Vienneau, “Analyzing Quantitative Data Through the Web”, Proceedings of
the 6th Annual Dual Use Technologies & Applications Conference, June 1995.

35. R. Nelson, “Software Data Collection and Analysis”, Rome Air Development Center,
Rome, NY, September 1978.

36. J. D. Musa, “Software Reliability Data”, Data & Analysis Center for Software, January,
1980.

37. NASA/WVU IV&V Facility, Metrics Data Program, available from
http://mdp.ivv.nasa.gov; Internet; accessed 15 March 2008.

38. Error, Fault, and Failure Data Collection and Analysis, available from
http://hissa.nist.gov/project/eff.html; Internet; accessed 15 March 2008.

39. B. Schroeder, G. A. Gibson, “The Computer Failure Data Repository (CFDR)”, Workshop
on Reliability Analysis of System Failure Data (RAF'07), MSR Cambridge, UK, March
2007.

40. The computer failure data repository (CFDR), available from http://cfdr.usenix.org/;
Internet, accessed 25 March 2008

41. Almeida, R., Mendes, N., and Madeira, H. (2010), Sharing Experimental and Field Data:
The AMBER Raw Data Repository Experience, in Proceedings of the 30th IEEE
International Conference on Distributed Computing Systems Workshops (ICDCSW),
2010, Genova, Italy.

42. NVD (2010), National Vulnerability Database [online] Available from: http://nvd.nist.gov/
(Accessed in Oct 2010)

43. OSVDB (2010), Open Source Vulnerability Database [online] Available from:
http://osvdb.org/ (Accessed in Oct. 2010)

