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Abstract. In this paper we analyze the impact of distinct distance
metrics in instance-based learning algorithms. In particular, we look at
the well-known 1-Nearest Neighbor (NN) algorithm and the Incremen-
tal Hypersphere Classifier (IHC) algorithm, which proved to be efficient
in large-scale recognition problems and online learning. We provide a
detailed empirical evaluation on fifteen datasets with several sizes and
dimensionality. We then statistically show that the Euclidean and Man-
hattan metrics significantly yield good results in a wide range of prob-
lems. However, grid-search like methods are often desirable to determine
the best matching metric depending on the problem and algorithm.
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1 Introduction

Incremental learning algorithms embody the potential to deal with large scale
datasets and data streams. Rather than requiring access to the complete dataset,
they adjust their models continuously with upcoming data. One of such algo-
rithms, recently proposed, is the Incremental Hypersphere Classifier (IHC), which
possesses desirable characteristics in terms of multi-class support, complexity,
scalability, interpretability and potential to handle concept drifts [8,9]. More-
over, it has been successfully used as an instance selection method for choosing
a representative subset of the data that was later used to derive improved batch
models [7].

Despite these advantages, IHC is a distance based learning method and nat-
urally it is sensitive to the choice of the distance metric. In this context, in this
paper, we analyze the impact of distinct distance metrics in both the 1-NN and
the IHC algorithms. The reason to analyze the effects of the distance metrics
also in the 1-NN is because we can look at IHC as a generalization of the former.

The remainder of this paper is organized as follows. The next section details
the IHC algorithm and Sect. 3 describes the metrics that were analyzed in this
study. Section 4 presents the experimental results and finally, in Sect. 5 the con-
clusions and future work are delineated.
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2 N. Lopes and B. Ribeiro

2 Incremental Hypersphere Classifier (IHC) Algorithm

Let us consider a training dataset, {(xi, yi) : i = 1, . . . , N}, composed by N
samples, each encompassing an input vector, xi ∈ IRD, with D features, and the
associated class label, yi ∈ {1, . . . , C}, where C is the number of classes.

For each training sample, i, IHC defines an hypersphere with center xi and
radius ρi as follows:

ρi =
min(d(xi,xj))

2
, for all j where yj �= yi (1)

where d(xi,xj) is the distance between xi and xj input vectors (see Sect. 3). The
hypersphere’s delineate the regions of influence of the associated samples and
are used to classify new instances. Basically, given a new data point, xk, it is
classified with the class associated to the nearest hypersphere (not the nearest
sample). More precisely, xk is associated to class yi (i.e. yk = yi) provided that:

d(xi,xk) − gaiρi ≤ d(xj,xk) − gajρj , for all j �= i (2)

where g (gravity) controls the extension of the zones of influence, increasing or
shrinking them and ai is the accuracy of sample i when classifying itself and
the forgotten training samples for which i was the nearest sample in memory.
A forgotten sample is one that either has been removed from memory or did
not qualify to enter the memory in the first place. Hence, the accuracy is only
updated when the memory is full. In such a scenario, at each iteration, the
accuracy of a single (nearest) sample is updated, while the accuracy of all the
others remains unchanged. The accuracy is the first mechanism of defense against
outliers, reducing effectively their influence in the model.

Notice that for g = 0 the decision rule of the IHC is exactly the same as
the one of the 1-NN (see Eq. 2). Hence, by fine-tuning g, IHC will always yield
better or equal performance than 1-NN. This is important because Cover and
Hart [3] demonstrated, in the limit N → ∞, that the 1-NN error rate is never
more than twice the minimum achievable error rate of an optimal classifier [2].

A major advantage of the IHC algorithm relies on the possibility of building
models incrementally on a sample-by-sample basis. Figure 1 presents the hyper-
sphere’s generated by IHC and the resulting decision surface, (a) prior to and (b)
after the addition of a new sample, for a toy problem. Notice that the samples
near the decision border have smaller radius than those furthest, providing a
simple method for determining the relevance of each sample. Hence, when the
memory is full, the samples with smaller radius are kept, while those with big-
ger radius are discarded. By doing so, we keep the samples that play the most
significant role in the construction of the decision surface (given the available
memory) while removing those that have less or no impact in the model.

Unfortunately, outliers will most likely have a small radius and end-up occu-
pying our limited memory resources. Thus, although their impact is diminished
by the use of the accuracy in Eq. 2, it is still important to identify and remove
them from memory. To address this problem IHC mimics the process used by the
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x2x1 x2x1

xk

(a) Before adding sample k. (b) After adding a new sample, k.

Fig. 1. Hypersphere’s and decision surface generated by IHC (g = 1) for a toy problem.

IB3 algorithm [1,11], which consists of removing all samples that are believed to
be noisy by employing a significance test.

A more detailed description of the IHC can be found elsewhere [8,9] and
a working version of the algorithm, including its source code, can be found at
http://sourceforge.net/projects/ihclassifier/.

3 Distance Metrics

A distance metric is a function that measures the similarity between two vectors,
xi = [xi1, xi2, . . . , xiD] and xj = [xj1, xj2, . . . , xjD], yielding a non-negative real
number, representing the degree of discrepancy between the two data points.

Although a large number of distance metrics have been proposed in the liter-
ature, the most widely used and well known metric is still the Euclidean distance,
stated by Euclid more than two thousand years ago. Another extensively used
metric, is the Manhattan, also known as the city-block distance [6].

Table 1 presents the distance metrics used in this study. For the Minkowsky
metric, p was set to the number of features, D, in order to give more weight to
the individual distance components as the space dimensionality increases [5].

4 Experimental Results

Our goal consists of analyzing the impact of distinct distance metrics in both
the 1-NN and the IHC algorithms. With that purpose in mind, we carried out
extensive experiments on fifteen UCI databases [4] with distinct characteristics
(number of samples, features and classes). For statistical significance, each exper-
iment was executed using repeated 5-fold stratified cross-validation. Altogether
30 different random cross-validation partitions were created, accounting for a
total of 150 runs per benchmark and algorithm settings. The experiments were
conducted using the 1-NN and the IHC algorithm with both g = 1 and g = 2
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Table 1. Distance metrics’ formulas.

Metric Formula

Euclidean d(xi,xj) =

(
D∑

k=1

(xik − xjk)2
) 1

2

Manhattan d(xi,xj) =
D∑

k=1

|xik − xjk|

Canberra d(xi,xj) =
D∑

k=1

|xik−xjk|
|xik|+|xjk|

Chebychev d(xi,xj) = max(|xik − xjk|)

Minkowsky d(xi,xj) =

(
D∑

k=1

|xik − xjk|p
) 1

p

Table 2. Best distance metric depending on the database and chosen algorithm.

Database Samples Inputs Classes 1-NN IHC (g = 1) IHC (g = 2)

Balance 500 4 3 Chebychev Chebychev Canberra

Breast cancer 569 30 2 Manhattan Manhattan Euclidean

Ecoli 336 7 8 Euclidean Minkowsky Minkowsky

German 1000 59 2 Euclidean Canberra Manhattan

Glass 214 9 6 Manhattan Manhattan Manhattan

Haberman 306 3 2 Minkowsky Euclidean Euclidean

Heart-statlog 270 20 2 Canberra Canberra Canberra

Ionosphere 351 34 2 Manhattan Chebychev Chebychev

Iris 150 4 3 Chebychev Minkowsky Chebychev

Pima 768 8 2 Euclidean Minkowsky Euclidean

Sonar 208 60 2 Manhattan Manhattan Euclidean

Tic-tac-toe 958 9 2 Canberra Euclidean Minkowsky

Vehicle 946 18 4 Euclidean Euclidean Euclidean

Wine 178 13 3 Manhattan Manhattan Manhattan

Yeast 1484 8 10 Manhattan Euclidean Euclidean

settings. Table 2 presents the main characteristics of the experimental databases
as well as the best distance metric for each algorithm. Moreover, Fig. 2 presents
the results for the 1-NN and Figs. 3 and 4 the results for the IHC algorithm,
using respectively g = 1 and g = 2 settings. In addition, Fig. 5 reports the aver-
age F-score results for each distance metric. Note that, with the exception of the
Iris problem, the best results were obtained with the IHC algorithm.

Using the Wilcoxon signed rank test, the null hypothesis of the 1-NN having
an equal or better F-score than the IHC (considering g = 1) is rejected at a sig-
nificance level of 0.005 for the Euclidean, Manhattan, Canberra and Minkowsky
distance metrics and rejected at a significance level of 0.01 for the Chebychev
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Fig. 2. Benchmark results for the 1-NN, according to the distance metric used.
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Fig. 3. Benchmark results for the IHC (g = 1), according to the distance metric used.
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Fig. 4. Benchmark results for the IHC (g = 2), according to the distance metric used.
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Fig. 5. Average performance for the 1-NN and IHC algorithms, according to the dis-
tance metric used.
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metric. The same holds true when setting g = 2, except for the Canberra metric.
Thus, these results corroborate the ones in Lopes and Ribeiro [8] and strongly
evidence that the IHC significantly outperforms the 1-NN independently of the
distance metric used (see Figs. 2, 3, 4 and 5). On average the Chebychev distance
metric yielded the poorest results, both for the 1-NN and for the IHC algorithms
(see Fig. 5). In particular, concerning the Tic-tac-toe problem, its performance is
very poor (25.74 %) for all of the algorithms analyzed. However, considering the
Ionosphere and Iris databases, this metric actually performed better than the
remaining ones in most of the cases (see Table 2 and Figs. 2, 3 and 4). Exclud-
ing the Chebychev metric, in general Canberra yielded, on average, the worst
results as compared to the remaining metrics (see Fig. 5). Nevertheless, it con-
sistently yielded the best results for the Heart-statlog problem (see Table 2, and
Figs. 2, 3 and 4). Minkowsky performs, on average, better than the Chebychev
and Canberra and therefore it appears to be a better choice than these distance
metrics (see Fig. 5), although there is no compelling statistical evidence to sup-
port this decision. This metric performed particularly well on the Ecoli problem
(see Table 2 and Figs. 2, 3 and 4). The average performance of Manhattan and
Euclidean is similar, with slightly advantage for the Manhattan distance metric,
concerning the 1-NN and IHC with g = 2 (respectively +0.37 % and +0.16 %)
and slightly advantage for the Euclidean metric, considering the IHC algorithm
with g = 1. In the case of the NN algorithm, the results confirm the findings
of Salzberg [10], which suggested that the differences between these two metrics
were not significant, from the point of view of the NN algorithm. Notwithstand-
ing, the Manhattan performs particularly well on the Glass problem regardless
of the algorithm and settings considered (see Figs. 2, 3 and 4). Overall, the per-
formance of these two distance metrics is usually superior to the remaining ones.
In fact, in general, there is statistical evidence compelling the choice of the Man-
hattan and Euclidean distance metrics over the other ones. Using the Wilcoxon
signed rank test, the null hypothesis of Chebychev having an equal or better
F-score than the Euclidean metric is rejected at a significance level of 0.025
for the 1-NN and at a significance level of 0.05 for the IHC algorithm. More-
over, the null hypothesis of Chebychev having an equal or better F-score than
Manhattan is rejected at a significance level of 0.025 for the 1-NN. Concerning
the Canberra distance metric, the null hypothesis of Canberra having an equal
or better F-score than the Euclidean is rejected at a significance level of 0.025
for the IHC algorithm. In addition the null hypothesis of Canberra having an
equal or better F-score than Manhattan is rejected at a significance level of
0.01 both for the NN and IHC algorithms (0.005 for g = 1). Finally, concern-
ing the Minkowsky distance metric, the null hypothesis of Minkowsky having
an equal or better F-score than Euclidean is rejected at a significance level of
0.025 for the 1-NN algorithm and respectively at a significance level of 0.025
and 0.05 for the IHC algorithm using g = 1 and g = 2 settings. Moreover, the
null hypothesis of Minkowsky having an equal or better F-score than Manhattan
is rejected at a significance level of 0.05 for the 1-NN algorithm. Nevertheless,
the No-Free-Lunch theorem [12] still applies and using the appropriate distance
metric is fundamental for improving the generalization capabilities of distance
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8 N. Lopes and B. Ribeiro

based Machine Learning (ML) algorithms. Therefore, performing a grid search
with the distance metric and g parameters (in the case of the IHC), using the
training data, is vital to enhance the algorithms’ generalization capabilities.

5 Conclusions and Future Work

The distance metric is a pivotal parameter of distance based ML algorithms and
models. The empirical results, obtained in this paper, evidence that the best met-
ric depends on the problems’ data distribution (see Table 2) and therefore grid-
search like methods are crucial to potentially determine the most-advantageous
metric for a given problem and algorithm. This study also demonstrates that
the Euclidean and Manhattan, two of the most commonly used distance met-
rics, which consistently yield good results over a wide range of problems (see
Figs. 2, 3 and 4), are probably the best choices for distance based learning meth-
ods when performing a grid-search method is not a viable option. In this scenario,
the Manhattan distance is preferred, in particular for large datasets, since it is
computationally less demanding. Future work will analyze combining different
distance metrics as well as building ensembles using distinct distance metrics.
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