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Abstract. Since the 90-ties the Pascal matrix, its generalizations and applications have been
in focus of a great amount of publications. As it is well known, the Pascal matrix, the sym-
metric Pascal matrix and other special matrices of Pascal type play an important role in many
scientific areas, among them Numerical Analysis, Combinatorics, Number Theory, Probabil-
ity, Image processing, Sinal processing, Electrical enginneering, etc. We present a unified ap-
proach to matrix representations of special polynomials in several hypercomplex variables (new
Bernoulli, Euler etc. polynomials), extending results of H. Malonek, G.Tomaz: Bernoulli poly-
nomials and Pascal matrices in the context of Clifford Analysis, Discrete Appl. Math. 157(4)
(2009) 838-847.
The hypercomplex version of a new Pascal matrix with block structure, which resembles the
ordinary one for polynomials of one variable will be discussed in detail.
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1 INTRODUCTION

The role of the Bernoulli and Euler polynomials in several areas of pure and applied math-
ematics is widely known. They appear, for instance, in Differential Topology, Number Theory,
and Numerical Analysis. One of the most well known result that involves Bernoulli numbers is
the Euler-Maclaurin summation formula which allows to accelerate the convergence of series.
The connection between Bernoulli, Euler and other special polynomials with the Pascal matrix
are also well known. This relation has been explored in various publications [1, 4, 6, 7]. The
Pascal matrix stands out when we need to deal with polynomials in a more friendly way, es-
pecially, if we are interested in using them in applications. As a general tool of dealing with
polynomials in several variables and their matrix representation, we introduce a block Pascal
matrix.

2 HYPERCOMPLEX BERNOULLI AND EULER POLYNOMIALS

2.1 (Classical) Bernoulli and Euler polynomials

Let

g(x, t) =
text

et − 1
.

Developing g(x, t) in a formal series of powers of t by

g(x, t) =
∞∑

n=0

Bn(x)
tn

n!
, (1)

the coefficients Bn(x) are called Bernoulli polynomials and g(x, t) is the generating function
for these polynomials.

The Bernoulli numbers are simply the values of Bn(x) in x = 0, i.e.,

Bn := Bn(0), n = 0, 1, . . . .

Let now

h(x, t) =
2ext

et + 1
.

The Euler polynomials are implicitly given by

h(x, t) =
∞∑

n=0

En(x)
tn

n!
. (2)

The Euler numbers, En, are also related to the Euler polynomials by

En = 2nEn(
1

2
).

2.2 Construction of hypercomplex Bernoulli and Euler polynomials

Analyzing the several generalizations of Bernoulli and Euler polynomials which have ap-
peared in the last years, we can realize as common idea the modification of their generating
functions [2, 3, 8]. Following an analogous reasoning, and to overcome the problem of the
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possible loss of monogenicity when forming a quotient of monogenic functions, we start by (1)
written in the form

ext =

(
∞∑

r=0

tr

(r + 1)!

)(
∞∑

k=0

1

k!
Bk(x)t

k

)
. (3)

Considering the hypercomplex structure for Rn+1 , proposed in [5], based on an isomorphism
between this vector space and

Hn = {~z : ~z = (z1, . . . , zn) , zk = xk − x0ek, x0, xk ∈ R, k = 1, . . . , n} ,

we define a hypercomplex exponential function by the formal power series

Exp(~t, ~z) := exp (t1z1 + · · ·+ tnzn) =
∞∑

k=0

1

k!
(t1z1 + · · ·+ tnzn)k.

With this function and founded on (3), we establish the definition of hypercomplex Bernoulli
polynomials [7], Bj1,...,jn(z1, . . . , zn), jk ∈ N0, k = 1, . . . , n, as coefficients of a multiple
power series

Exp(~t, ~z) =

(
∞∑

r=0

1

(r + 1)!
(t1 + · · ·+ tn)r

) ∞∑
|j|=0

1

j!
Bj1,...,jn(z1, . . . , zn)tj11 . . . t

jn
n

 .

Analogously, using the same generating function of the generalized powers, Exp(~t, ~z), and
(2) written in the form

2ext =

(
1 +

∞∑
r=0

tr

r!

)(
∞∑

k=0

1

k!
Ek(x)t

k

)
, (4)

we arrive to the definition of hypercomplex Euler polynomials [6], Ej1,...,jn(z1, . . . , zn), jk ∈
N0, k = 1, . . . , n, as coefficients of a multiple power series

2Exp(~t, ~z) =

(
1 +

∞∑
r=0

1

(r + 1)!
(t1 + · · ·+ tn)r

) ∞∑
|j|=0

1

j!
Ej1,...,jn(z1, . . . , zn)tj11 . . . t

jn
n

 .

3 BLOCK PASCAL MATRIX

3.1 (Classical) Pascal matrix

The (classical) Pascal matrix of order n+ 1, P , has the following structure:

P =


1
1
1
· · ·(
n
0

)
0
1
2
· · ·(
n
1

)
0
0
1
· · ·(
n
2

)
· · ·
· · ·
· · ·
· · ·
· · ·

0
0
0
· · ·(
n
n

)

 ,
that is, P = [Pij], where

Pij =

{ (i
j

)
, i ≥ j

0 , otherwise, i, j = 0, . . . , n.
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In the literature we can find a large number of modifications and generalizations of the clas-
sical Pascal matrix according to the applications. One of those is the matrix P [x] = [Pij[x]],
where

Pij[x] =

{ (i
j

)
xi−j , i ≥ j

0 , otherwise, i, j = 0, . . . , n.

This matrix appears involved in the solution of the initial value problem{
d
dx
y(x) = Hy(x)

y(0) = y0,

being H = [Hij] such that

Hij =

{
i , i = j + 1
0 , otherwise, i, j = 0, . . . , n,

called creation matrix. As it is well known, the unique solution of this problem is y(x) = eHxy0

and P [x] := eHx, i.e.,

P [x] =
∞∑

k=0

(Hx)k

k!

(cf.[1, 4]). Actually, the sum can be written

P [x] =
n∑

k=0

(Hx)k

k!

because Hn = 0, k > n.
Obviously, if x = 1 we obtain P := eH =

∑n
k=0

Hk

k!
, that is, the classical Pascal matrix can

be regarded as an exponential matrix.
The generalized matrix, P [x], is also related to the Bernoulli polynomial matrix B(x) =

[Bij(x)]:

Bij(x) =

{ (i
j

)
Bi−j(x) , i ≥ j

0 , otherwise, i, j = 0, . . . , n,

through
B(x) = P [x]B

(cf. [10]).

3.2 Pascal matrix with a block structure

As a general tool of dealing with polynomials in several variables and their matrix represen-
tation, we introduce a block Pascal matrix, P . The global structure of this matrix simulates the
structure of the classical Pascal matrix. In fact we consider P = [Psr]:

Psr =

{ (
s
r

)
P , s ≥ r

O , otherwise, s, r = 0, . . . , n,
(5)

( O is the null matrix of order n+ 1).
Analogously we define the block creation matrix H = [Hsr] by:

Hsr =


H , s = r
sI , s = r + 1
O , otherwise, s, r = 0, . . . , n,
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(I is the identity matrix of order n+ 1).
This matrix possesses similar properties of those of H , namely,

Hk = O, k > 2n.

Similarly to the classical case the block Pascal matrix can be viewed as an exponential ma-
trix:

P = eH, i.e.,P =
2n∑

k=0

Hk

k!
. (6)

4 APPLICATIONS OF HYPERCOMPLEX MATRICES

In this section we restrict our study to the 3-dimensional real Euclidean space, which implies
the use of two hypercomplex variables.

First of all, we will see how to transform a vector of hypercomplex Bernoulli polynomials
into a vector of multiple powers of z1 and z2. Secondly, taking into account this result we’ll
use it to transform the Taylor expansion of a function of two hypercomplex variables into an
expansion in terms of hypercomplex Bernoulli polynomials.

The hypercomplex Pascal matrix, P(z1, z2) = [Psr(z1, z2)], was introduced in [7]. It is such
that

(P(z1, z2))sr =

{ (
s
r

)
P (z1)× zs−r

2 , s ≥ r
0 , otherwise, s, r = 0, . . . , n,

where

(P (z1))ij =

{ (i
j

)
zi−j
1 , i ≥ j

0 , otherwise, i, j = 0, . . . , n.

The notation P (z1) × zs−r
2 means that we use the symmetric ” × ”-product, introduced in

[5], between each entry of the matrix P (z1) and zs−r
2 .

Notice that P(1, 1) = P .
In order to establish the mentioned results, let us introduce the following definitions similar

to the ordinary but now suitable in the Clifford Analysis context:

Definition 4.1 The Kronecker ”× ”-product of two matrices, A and B, of type m×n and p× q,
respectively, is the mp× nq matrix defined as

A~B =


A11 ×B A12 ×B · · · A1n ×B
A21 ×B A22 ×B · · · A2n ×B
· · · · · · · · · · · ·

Am1 ×B Am2 ×B · · · Amn ×B

 ,
where

Aij ×B =


Aij ×B11 Aij ×B12 · · · Aij ×B1q

Aij ×B21 Aij ×B22 · · · Aij ×B2q

· · · · · · · · · · · ·
Aij ×Bp1 Aij ×Bp2 · · · Aij ×Bpq

 .
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Definition 4.2 The Hadamard ”× ”-product of two matrices, A and B, both of order m× n, is
the m× n matrix defined as

A�B =


A11 ×B11 A12 ×B12 · · · A1n ×B1n

A21 ×B21 A22 ×B22 · · · A2n ×B2n

· · · · · · · · · · · ·
Am1 ×Bm1 Am2 ×Bm2 · · · Amn ×Bmn

 .
For our purpose we also use the vectorization of matrices that, like usually in matrix calculus,

is a linear transformation which converts an m× n matrix A into an mn× 1 column vector by
stacking the columns of A on the top of each other, and it is denoted by vec(A).

Considering the shift matrix [4], K = [Kij], with

Kij =

{
1 , i = j + 1
0 , otherwise, i, j = 0, . . . , n,

we constructed the auxiliary block matrix M = [Msr] as follows:

Msr =


z1K , s = r
z2I , s = r + 1
O , otherwise, s, r = 0, . . . , n.

Using this matrix it is possible conclude that the hypercomplex Pascal matrix is also an expo-
nential matrix:

P(z1, z2) = e(M�H), i.e.,P(z1, z2) =
2n∑

k=0

(M �H)k

k!
. (7)

It is worth noting that, the matrix M �H = [(M �H)sr] is such that

(M �H)sr =


z1H , s = r
sz2I , s = r + 1
O , otherwise, s, r = 0, . . . , n

and taking z1 = z2 = 1 in (7) we obtain (6).
The final goal of our paper is to find a matrix that allows to transform the Taylor expansion

of a function into an expansion containing Bernoulli polynomials.
With this intention, we recall that the hypercomplex polynomial Bernoulli matrix is defined

as the (n+ 1)× (n+ 1)-block matrix, B(z1, z2) = [Bsr
ij (z1, z2)], such that

Bsr
ij (z1, z2) =

{ (i
j

)(
s
r

)
Bi−j,s−r(z1, z2) , i ≥ j ∧ s ≥ r

0 , otherwise, i, j, s, r = 0, . . . , n,

( Bi−j,s−r(z1, z2) are hypercomplex Bernoulli polynomials). The matrix B := B(0, 0) is called
Bernoulli matrix (cf. [7]).

Hypercomplex Bernoulli polynomials have many properties similar to the ordinary (real and
complex) case [7]. One of them is

Bj1,j2(1, 1) = (−1)|j|Bj1,j2 , jk ∈ N0, k = 1, 2,

using the notation Bj1,j2 := Bj1,j2(0, 0) for the values of the generalized Bernoulli polynomials
in the origin. This property can be written in the matrix form by

B(1, 1)− B = H. (8)

6



Theorem 4.1
(P − I)B = H.

Proof

By the known result B(z1, z2) = P(z1, z2)B (Theorem 3.2 [7]) and (8) becomes

(P − I)B = PB − B = B(1, 1)− B = H. 2

In accordance with this Theorem and since B is invertible, we have

P − I = HB−1.

Since,

P − I =
2n∑

k=1

Hk

k!
=

2n∑
k=0

Hk+1

(k + 1)!
= H

2n∑
k=0

Hk

(k + 1)!

we conclude that

B−1 =
2n∑

k=0

Hk

(k + 1)!
.

In [1, 4] the problem of the expression of the Taylor series of real functions in terms of series
involving Bernoulli polynomials was studied. There it was achieved the matrix,

L =
n∑

k=0

Hk

(k + 1)!

satisfying Lb(x) = ξ(x), x ∈ R, where b(x) = (B0(x) B1(x) · · · Bn(x))T and ξ(x) =
(1 x . . . xn)T , i.e., L is the transformation matrix between the Taylor expansion and an
expansion in terms of Bernoulli polynomials. Like in those papers, we shortly represent B−1 by
L, and due to B(z1, z2) = P(z1, z2)B, we arrive to

LB(z1, z2) = LBP(z1, z2) = P(z1, z2).

Thus, the matrix L transforms the hypercomplex polynomial Bernoulli matrix, B(z1, z2), into
the hypercomplex Pascal matrix, P(z1, z2).

Assigning by b(z1, z2) the first column of B(z1, z2) and by p(z1, z2) the first column of
P(z1, z2), we have

Lb(z1, z2) = p(z1, z2).

Let the vector ξ(zi) = (1 zi · · · zn
i )T , i = 1, 2 and F = [fij]i,j=0,...,n the matrix

containing the coefficients of the Taylor expansion of the function f(z1, z2), in this way, fij is
the coefficient of zi

1 × z
j
2.

Suppose that the Taylor expansion of the function f(z1, z2) is

f(z1, z2) = (vec(F ))Tvec(ξ(z1) ~ ξ(z2)
T ) + · · · .

The vector vec(ξ(z1) ~ ξ(z2)
T ) is the first column of the hypercomplex Pascal matrix, i.e.,

vec(ξ(z1) ~ ξ(z2)
T ) = p(z1, z2).
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Using the matrix L, it is possible to transform the Taylor expansion of f(z1, z2) into the
Bernoulli expansion, that is, into the expansion in terms of hypercomplex Bernoulli polynomi-
als:

f(z1, z2) = (vec(F ))Tp(z1, z2) + · · ·
= (vec(F ))T Lb(z1, z2) + · · · .

5 CONCLUSION AND ACKNOWLEDGEMENT

In this paper we have mainly referred to results concerning hypercomplex Bernoulli polyno-
mials, nevertheless, a similar approach can be discussed for hypercomplex Euler polynomials.

We have seen that block matrices can be useful to work with polynomials in several variables
and, taking into account the last result, it can be an important tool to achieve an interpolation
formula for functions in several variables similarly to that obtained by Tauber [9].
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