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Abstract: Spatial environmental processes often exhibit dependence in their large values. In order to model

such processes their dependence properties must be characterized and quantified. In this paper we introduce a

regions-madogram, νF (A,B), that evaluates the dependence among extreme observations located in two separated

regions, A and B, of Z
2. We compute the range of this new dependence measure and compare it with extremal

coefficients, finding generalizations of the known relations in pairwise approach. The results are illustrated in two

max-stable processes: the Schlather’s and the Geometric Gaussian models.

1 Introduction

Quantifying dependence is a central issue when leading with spatial observations. In conventional
geostatistics, the degree of pairwise spatial dependence in observations from a max-stable random field
X = {Xt}t∈Z2 is determined by the variogram

γ(i, j) =
1

2
E (Xi − Xj)

2
.

If finite, γ(i, j) captures some of the spatial structure, capturing it completely if the field is Gaussian.
However, it is not possible to ensure that γ(i, j) is finite for fields of maxima, so this second-order statistic
may not be well-adapted for extremes. To ensure that the moment quantities are finite, Naveau et al.
(2005) introduced the following type of first-order variograms,

νF (i, j) =
1

2
E |F (Xi) − F (Xj)| ,

where F is the common distribution function of Xi, i ∈ Z
2.

More recently, Cooley et al. (2006) investigated the basic properties of first-order variograms, also
called madograms, for spatial extreme fields. In particular, they derived a few relationships between the
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normalized madogram, νF , and the extremal coefficient defined in Schlather (2002) and Schlather and
Tawn (2003) as

P (max(Xi, Xj) ≤ u) = F ε(i,j)(u).

The normalized madogram fully characterizes the extremal coefficient since we have

ε(i, j) =
1 + 2νF (i, j)

1 − 2νF (i, j)
, (1.1)

or equivalently

νF (i, j) =
1

2
− 1

ε(i, j) + 1
. (1.2)

Despite that, in practice, the pairwise dependence measures seem to be the most useful and easily
understandable, we shall introduce a regions-madogram, that evaluates the dependence among extreme
observations located in two separated regions, A and B, of Z

2.
We illustrate our results with the Geometric Gaussian and the Schlater´s models for random fields.

2 Measuring spatial dependence for maxima over separated regions

We define a normalized madogram to assess dependence among extreme observations located in two
separated regions A and B of Z

2, as follows.

Definition 2.1 Let X be a max-stable random field and A and B two separated regions of Z
2. The

regions-madogram, νF (A,B), is defined as

νF (A,B) =
1

2 |A| |B|
∑

i∈A

∑

j∈B

E |F (Xi) − F (Xj)| ,

or equivalently

νF (A,B) =
1

|A| |B|
∑

i∈A

∑

j∈B

νF (i, j)

Remark 2.1 To measure the dependence among the variables Xi and Xj, j ∈ V
(n)(i), where

V
(n)(i) =

{

j ∈ Z
2 : max{|is − js| : s = 1, 2} = n

}

,

we can consider the sequence
h(n) = νF (i, n) = νF (i, V(n)(i)).

Remark 2.2 The regions-madogram, νF (A,B), take values in
[

0, 1
6

]

.
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From the definition of regions-madogram we can establish the following properties.

Proposition 2.1 Suppose that X is a max-stable random field.

1. Let A ⊆ Z
2 and A + s = {i + s : i ∈ A}, s ∈ Z

2. If X is stationary, then

νF (A + s,B + s) = νF (A,B)

.

2. Let Ai, i = 1, . . . , p, be disjoint subsets of Z
2. Then

νF

(

p
⋃

i=1

Ai,B

)

=

p
∑

i=1

αiν(Ai,B),

with αi = |Ai|
|⋃p

i=1
Ai| .

In particular,

νF (A,B) =
∑

i∈A

1

|A|νF ({i},B).

The normalized regions-madogram is related to the pairwise extremal coefficients ε(i, j), i ∈ A, j ∈ B,
through

νF (A,B) =
1

2
− 1

|A| |B|
∑

i∈A

∑

j∈B

1

ε(i, j) + 1
.

In the following, we define a new dependence measure, ε∗(A,B), that preserves relation (1.1).

Definition 2.2 Let X be a max-stable random field and A,B ⊆ Z
2. The coefficient ε∗(A,B) is defined

as

ε∗(A,B) =
1

1
|A||B|

∑

i∈A

∑

j∈B
1

ε(i,j)+1

− 1. (2.1)

We have ε∗(A,B) = 1+2νF (A,B)
1−2νF (A,B) .

Remark 2.3 The coefficient ε∗(A,B) take values in [1, 2]. When ε∗(A,B)=1, we have the complete
dependence for each pair of variables (Xi, Xj), i ∈ A, j ∈ B, and conversely. For each i ∈ A and j ∈ B,
the variables Xi and Xj are independent if and only if ε∗(A,B) = 2.
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3 Applications

In this section we illustrate our results in well known max-stable processes: the Schlather’s model and
the Geometric Gaussian model.

Example 3.1 (Schalather’s model) In Schlather (2002), a new class of bivariate marginal distribu-
tions is defined, by the extremal Gaussian process, in the following way

P (Xi ≤ x, Xj ≤ y) = exp

[

−1

2

(

1

x
+

1

y

)

(

1 +

√

1 − 2 (ρ(‖i − j‖) + 1) xy

(x + y)2

)]

, x, y ∈ R,

where ρ(.) is the covariance function of the underlying Gaussian process.
We will consider that ρ(‖i − j‖) = exp(−(‖i − j‖)).
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Figure 3.1. Schlather’s model with ρ(‖i − j|) = exp(−(‖i − j‖))

The extremal coefficient is given by

ε(i, j) = 1 +

√

1 − ρ(‖i − j‖)
2

and the amount of dependence among Xi and the variables Xj, j ∈ V
(n)(i), is given by

h(n) = νF

(

i, V(n)(i)
)

=
1

2
− 1

8n





4

2 +

√

1−exp(−n
√

2)
2

+
4

2 +

√

1−exp(−n)
2

+
n−1
∑

i=1

8

2 +

√

1−exp(−
√

n2+i2)
2



 .
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Figure 3.2. Quantifying dependence between the regions {i} and V
(n)(i) in the Schlather’s model

Example 3.2 (Geometric Gaussian model) Let X be a Geometric Gaussian random field. The bi-
variate distribution is given by

P (Xi ≤ x, Xj ≤ y) = exp

(

−1

x
Φ

(

a

2
+

1

a
log

y

x

)

− 1

y
Φ

(

a

2
+

1

a
log

x

y

))

, x, y ∈ R,

where Φ is the standard normal distribution function and

a2 = 2σ2 (1 − ρ(‖i − j‖)) ,

where ρ(.) is the covariance function of the Gaussian process. Let us consider σ = 1, A = {i, j} and
B = {i + (s, 0), j + (s, 0)}, s ∈ N.

We have

ε(i, j) = 2Φ





√

1 − ρ(
√

(i1 − j1)2 + (i2 − j2)2)

2





and

νF (A,B) =
1

2
− 1

4









1

1 + Φ

(

√

1−ρ(|s|)
2

) +
1

1 + 2Φ

(√

1−ρ(
√

(−j1+i1+s)2+(i2−j2)2)

2

)

+
1

1 + 2Φ

(√

1−ρ(
√

(j1−i1+s)2+(i2−j2)2)

2

)









.
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