
The Web Attacker Perspective – A Field Study

José Fonseca
CISUC, University of Coimbra /

Polytechnic Institute of Guarda, Portugal
josefonseca@ipg.pt

Marco Vieira, Henrique Madeira
CISUC, University of Coimbra

Coimbra, Portugal
mvieira@dei.uc.pt, henrique@dei.uc.pt

Abstract—Web applications are a fundamental pillar of today’s
globalized world. Society depends and relies on them for
business and daily life. However, web applications are under
constant attack by hackers that exploit their vulnerabilities to
access valuable assets and disrupt business. Many studies and
reports on web application security problems analyze the
victim’s perspective by detailing the vulnerabilities publicly
disclosed. In this paper we present a field study on the
attacker’s perspective by looking at over 300 real exploits used
by hackers to attack web applications. Results show that SQL
injection and Remote File Inclusion are the two most
frequently used exploits and that hackers prefer easier rather
than complicated attack techniques. Exploit and vulnerability
data are also correlated to show that, although there are many
types of vulnerabilities out there, only few are interesting
enough for attackers to obtain what they want the most: root
shell access and admin passwords.

Keywords- Security; Exploit; Vulnerability; Web application;
Field study

I. INTRODUCTION
In less than two decades, the World Wide Web was able

to radically change the way people communicate and do
business. From individuals to large organizations, everyone
uses the web. In fact, web applications quickly spread all
over the world in the form of personal web sites, blogs,
news, social networks, webmails, forums, e-commerce
applications, among others. In developed countries, even
critical infrastructures like water supply, power supply,
banking, insurance, stock market, retail, communications,
defense, etc. rely on networks, on the web and on
applications that run in these distributed environments.

As the importance of the assets accessed and managed by
web applications increases, so does the natural interest of
malicious minds in exploiting this new streak. Frequently,
web applications developed with a strong focus on
functionality and usability find themselves under heavy
attack by hackers and organized crime, exploiting their
weaknesses and vulnerabilities [1, 2, 3, 4]. The pressure to
take advantage of web application assets is huge, thus it is
not a surprise to see numerous reports of successful security
breaches and exploitations [5, 6, 7].

After years of uncontrolled software development
processes and practices, we now face the challenge of
securing millions of existing web applications and
developing new ones with good security embedded. The high
number of regulations put into place by governments and

corporations in recent years reflects the increasing concern
top managers now have about web security. However, there
are some significant factors that still make securing web
applications a task hard to fulfill. Some examples are the fast
growing market, their high exposure to attacks and the
general lack of knowledge or experience in the area of
security from those who develop and manage these
applications.

In spite of all security-related efforts, web applications
are typically deployed with security vulnerabilities that make
them vulnerable to attacks. This suggests that web
developers and researchers still need to know more about
vulnerabilities and attacks to mitigate them more effectively.
Web application vulnerability analysis has been addressed by
recent studies from several points of view [1, 4, 8, 9, 10, 11].
The attacker’s perspective has also been of some focus in the
literature ([12, 13, 14, 15], among others), but mainly from
empirical data gathered by the authors highlighting social
networking and what could be obtained from attacking
specific vulnerabilities. Some studies analyze the attack from
the victim's perspective, like the proposal of a taxonomy to
classify attacks based on their similarities [16] and the
analysis of the attack traces from HoneyPots to separate the
attack types [17]. There is, however, a lack of knowledge
about existing exploits and their correlation with the targeted
vulnerabilities.

Important aspects that help understand web application
attacks are what vulnerabilities are exploited, what assets
hackers usually target, how these attacks are performed and
the techniques actually used to execute them. This valuable
data can be obtained by analyzing real attacks on web
applications and the tools used to execute these attacks. In
this paper we address the security of web applications
focusing on the attacker’s perspective. To have a broader
view of the attacker panorama we analyzed over three
hundred real exploits targeting vulnerabilities of six widely
used LAMP (Linux, Apache, Mysql and PHP) web
applications. These exploits are publicly available in a
hacker related site [18] and they have been downloaded over
three million times from that site by potential attackers.
Some of the exploits have also been adapted as modules of
the Metasploit framework, widely used for generic
penetration testing and vulnerability exploitation [19].

In this field study, exploits are analyzed from various
dimensions to understand what types of vulnerabilities
attackers prefer, what the goals of attacks are and how they
are performed. The exploit data is also compared with
vulnerability data of web applications to help unveil some

2010 21st International Symposium on Software Reliability Engineering

1071-9458/10 $26.00 © 2010 IEEE

DOI 10.1109/ISSRE.2010.21

299

2010 IEEE 21st International Symposium on Software Reliability Engineering

1071-9458/10 $26.00 © 2010 IEEE

DOI 10.1109/ISSRE.2010.21

299

behaviors, like whether the most common vulnerabilities are
the ones that hackers prefer to attack.

The information resulting from this study can be used in
security related scenarios, to help directing security
practitioners to the most common attack types, to better
protect the assets and to properly configure their
environment. In fact, results confirm and enforce that some
well-known security measures can prevent some real
devastating attacks. For example, implementing policies like
giving the lowest privilege to Operating System (OS) users
that own network services, using strong passwords or cease
using the register_globals = 1 PHP directive can prevent
many exploits from achieving their goal. Finally, field study
data can be valuable to improve security mechanisms, like
the payload generator of a web application attack injector
[20], the training of penetration testers and the procedures
they use in the process.

The outline of this paper is as follows. Next section
presents the target web applications and the field study
methodology. Section III details the types of exploits found.
Section IV analyses the field data and discusses the results.
Section V concludes the paper.

II. FIELD STUDY ON WEB APPLICATION EXPLOITS
A vulnerability is a weakness (an internal software bug)

that may be exploited to cause harm, although its presence
does not cause harm by itself [21]. However, a vulnerability
is a precondition for an attack (a malicious external fault) to
cause an error and possibly subsequent failures [22]. The
exploit is the piece of code that is used to maliciously take
advantage of a given vulnerability.

A web application exploit may be as simple as a specially
crafted URL or as complex as an automated program with
hundreds of lines of code that can be compiled and executed.
Failures may occur due to attacks performed on a weakness
in the security (vulnerability) of the application, which
allows a malicious user to bypass security attributes like
Authentication, Integrity, Non-repudiation, Confidentiality,
Availability and Authorization [12]. This malicious action
allows the attacker to gain access and to tamper with
inappropriate resources and assets within the web application
or the server computer: unauthorized access to data like
credit card numbers and passwords, use privileged database
accounts, impersonate another user (such as the
administrator), mimic web applications, deface web pages,
obtain access to the web server as the root user, install
malicious programs and backdoors, etc.

In this section we present the target web applications
used in the field study and the methodology followed to
analyze the exploits of their vulnerabilities.

A. Web Applications
This field study analyses the exploits of six widely used

and well-known web applications: PHP-Nuke (phpnuke.org),
Drupal (drupal.org), PHP-Fusion (php-fusion.co.uk),
WordPress (wordpress.org), phpMyAdmin
(phpmyadmin.net) and phpBB (phpbb.com). Drupal, PHP-
Fusion and phpBB are Web Content Management Systems
(CMS). CMS is an application that allows an individual or a

community of users to easily create and administer web sites
that publish a variety of contents. PHP-Nuke is a well-known
web based news automation system built as a community
portal. News can be submitted by registered users and
commented by the community. WordPress is a personal blog
publishing platform that also supports the creation of easy to
administer web sites. phpMyAdmin is a web based MySQL
administration tool. It is one of the most popular PHP
applications and has a huge deployment base.

The web applications considered have a large community
of users and belong to a class of applications that has a large
spectrum of adoption. They have also won several prizes
(some are Sourceforge and Open Source CMS finalists and
winners [23, 24]) and are considered among the best in their
class. All these web applications are developed using LAMP
(Linux, Apache, Mysql and PHP), which is a combination of
the most common technologies used by web applications
around the world. Linux is mostly used as the chosen OS for
servers, MySQL is the world’s most popular database,
Apache is a leader in web servers and PHP web sites have
about 1/3 of the worldwide market share [25].

These same web applications were also previously used
in a field study on security vulnerabilities [8], in which the
authors analyzed the classes of vulnerabilities that are the
most frequent in web applications. Using the same web
applications makes it possible to correlate exploit results
with information about the vulnerabilities that are being
exploited. This can be done at least for XSS and SQL
Injection vulnerabilities, which are the two most common
vulnerabilities in web applications [1] and were the focus of
the field study presented in [8].

B. Field Study Methodology
The field study consisted in the analysis of pieces of code

developed to take advantage of vulnerabilities in web
applications. These are the kind of exploits used by hackers
and script kiddies to attack widely spread web applications,
like the ones considered in this work. As the goal is to
examine the inner workings of the exploits, for the analysis
we need their source code. This may seem a big constraint,
but it is quite common to find web application exploits
available in their source code version. One reason for this is
because they are usually developed in scripting languages,
like PERL, PHP or HTML. Another reason seems to be the
developers’ will to raise their rank within the hacker
community for their accomplishments, which may justify the
presence of the source code of exploits developed using
compiled languages, like C, C# or ASP.

The web application exploits were obtained from the
Milw0rm web site [18]. This is a hacker related site
containing around ten thousand exploits and whose
contributors belong to several hacking groups. It is one of the
most popular exploit databases and it is the largest that we
are aware of. The site has a collection of exploits of
vulnerabilities already fixed, but has also some 0 day
vulnerabilities, for which no solution is available yet. Many
of the exploits present in the Milw0rm site are also
distributed by other hacker and security related sites, like the
RedOracle (redoracle.com), SecurityReason

300300

(securityreason.com), SecurityFocus (securityfocus.com) and
osvdb (osvdb.org). Some Milw0rm exploits are available as
modules of the Metasploit framework [19], which is widely
used by hackers and security practitioners for penetration
testing and vulnerability detection.

In order to have a coherent data set, we gathered all the
exploits (for the target web applications) from the Milw0rm
database at the same time, so that no exploit was added after
we started our analysis. Although we were also comparing
the exploits with the vulnerabilities of the field study
presented in [8], we did not restrict our search to XSS and
SQL Injection, as our goal was to have a holistic view of the
distribution of all types of exploits. We also did not restrict
the exploit release date in order to be able to get a picture of
the variation of the exploits over time.

All the exploits collected were manually analyzed in
detail. This allowed us to obtain inside information about
how they were built, including: the language used, the
vulnerable variables attacked, the attack entry point, etc. This
also helped us to confirm whether the exploit type
classification referred by the Milw0rm site is correct.

By analyzing the source code we can accurately classify
each exploit. In the files downloaded, we found cases in
which several exploits were depicted together. These cases
are usually (but not always) differentiated from the others by
having the text “Multiple Vulnerabilities” somewhere in
their names. When each of these exploits attacks different
vulnerabilities in its own specific way (XSS, SQL Injection,
etc.), we considered them as representing different exploits.
On the other side, when we found in the same exploit file
similar ways to exploit the same vulnerability we accounted
them as a single exploit. As an example let us consider a
SQL Injection vulnerability that allows the attacker to get
access to a list of user names using a specific attack string.
Let us also assume that this vulnerability can be exploited to
obtain the list of passwords just by replacing the query’s user
name field with the password field in the same attack string.
We accounted situations like these as a single exploit and we
classified the level of damage as the most damaging (in this
case, the disclosure of both user names and passwords). This
decision also makes sense if we think about some complex
exploits (that account as a single exploit), like blind SQL
Injection, where the attack is done in several stages
exploiting the same vulnerable variable in a loop over and
over until all the valuable field data is finally obtained.

C. Field Study Remarks
Using the guidelines presented above, we collected 312

single exploits that overall had been downloaded, at the time
of this study 3,249,484 times. The quantity of exploits used
is certainly a subset of all the exploits developed for the
target web applications. Moreover, we are also aware that
there may be some other exploits outside the Milw0rm site.
However, using exploits from a single repository does not
mean that they come from a restricted elite of hackers. In
fact, anyone can upload an exploit to the Milw0rm site and
the data analyzed came from 118 different authors.

As final remarks of our methodology, we should
emphasize that we assume the number of downloads of the

exploits shown in the Milw0rm site to be merely indicative.
We cannot nor intend to assure that it represents the strict
number of times the exploits were used, or even downloaded
from the web. We know that some downloads were not used
to attack any site (like we did); some attackers can download
the same exploit from other sites (like those sites referred
earlier); the exploits can be shared by other channels like the
IRC (highly used by hackers) or email; and they can also be
used in specific attack tools, like the Metasploit [19].

Despite these remarks, that are unavoidable and
omnipresent in every web related study, the data used is real
and the field study results are repeatable. They are not easily
generalized, at least for web applications not using the
LAMP technology. More data should be analyzed to have a
broader knowledge of how attacks are being performed on
other web applications we use every day. However, our
results do contribute to improve web application security,
because they unveil how some vulnerabilities are really
being exploited, which by itself should be enough to trigger
the awareness for new security procedures.

III. FIELD STUDY VULNERABILITIES AND EXPLOITS
The Open Web Application Security Project Foundation

(OWASP) released a report on the ten most critical web
application security risks [10], based on the vulnerability
data provided by Mitre Corporation. In this section we
present the seven types of exploits we found in our field
study and how they relate to the OWASP Top 10 list of web
application risks. We shall see that most of the attacks also
exploit the most common vulnerabilities.

1) Bruteforce/Dictionary
These exploits attack the third most common web

application risk of the OWASP top ten 2010 list [10]:
“Broken Authentication and Session Management”. We
found only one exploit of this nature, developed by DarkFig
[18], and it attacks the weaknesses in the passwords typically
used in web applications [26] and the application logic. In
fact, it is common to find applications that allow users to try
endless passwords without any sort of counter measures, like
maximum number of attempts, response delay on error or
using a two-factor authentication (a password and an
additional authentication item like a token) [27].

The exploit we found gives the attacker the option of
choosing to use a brute force or a dictionary attack:

• The brute force attack can be further configured to
use lower case or upper case alphabetic characters or
even numeric characters. The starting length of the
password to be guessed is also configurable. The
exploit does simple iterations until it guesses the
correct password of the victim whose user name in
the application must be known previously. In spite of
being able to crack any user’s password it is,
obviously, widely used to try to obtain the
administrator password, which is usually associated
to typical usernames like admin, root, webmaster,
webadmin, administrator, among others.

• The dictionary attack uses a file of common
passwords (including common application shipped

301301

default ones) to try to check if any one of them is the
correct one. This is certainly the quickest method, if
the dictionary is well chosen [26].

2) Admin Takeover
These exploits attack the eighth most common web

application risk of the OWASP top ten 2010 list [10]:
“Failure to Restrict URL Access”. They attack a bug in the
application logic that allows unauthenticated or normal users
to execute a function that should only be accessible to
administrators. We found three exploits like this that allow
any registered user to create a new administrator account.

For example, the “PHP-Nuke v7.4 admin exploit (old
exploit)”, by Silentium [18], uses the following C code as
parameters of the admin.php page:

add_aid=%s&add_name=morte&add_pwd=%s&S
ubmit=Create+Admin

This C code, whose %s parts are replaced by the name
and password provided by the attacker, makes PHP-Nuke
create a new administrator account. Afterwards, the attacker
can log in using this new account and take complete control
of the web application. A regular user should not have
access to the admin.php page. To prevent these kinds of
problem, developers should check every web page for proper
authentication and authorization.

3) SQL Injection
These exploits attack the most common web application

risk of the OWASP top ten 2010 list [10]: “Injection”.
Except the exploits described previously, all the other
exploits we analyzed take advantage of unchecked input
fields at user interface.

In the case of SQL Injection, the exploit alters the SQL
query that is sent to the back-end database to manipulate
sensible data. We found that nearly 2/3 of the 102 SQL
Injection exploits analyzed use the SQL UNION clause to
obtain database data. The idea of this particular attack is to
append a second query to an already existing one for which
the results will be displayed by the web browser.

For example, the “PHP-Fusion Mod TI (id) Remote SQL
Injection Vulnerability”, by IRCRASH [18] is an exploit for
the PHP-Fusion application. This web application has a
function that is used to show in the browser the blog that has
the identification number given by the input GET variable id.
This variable is vulnerable to SQL Injection and the exploit
attacks the variable like this:

id=-9999
+union+select+0,1,2,user_name,
user_password,5+from+fusion_users/*

The + signs are just the replacements of the SPACE
character which cannot be used in a URL. In some other
exploits the %20 is also used, which corresponds to the
hexadecimal of the ASCII value of the SPACE character.

This is a typical SQL Injection attack where a negative
number is passed to the vulnerable variable so that the first
query does not return any row. Next, the exploit adds the
SQL UNION clause and the malicious select that allows
obtaining the list of user names and respective passwords.

The last part of the malicious string is the /*, which is the
indication of the start of a comment in the MySQL language
(also used in many other databases). This comment sign
disables the rest of the original SQL query so that the parser
does not raise any error, therefore rejecting the attack.

Although the passwords displayed may be encrypted
with the MD5 or SHA1 hashes, most times they can be
cracked using a dictionary attack [26, 28], and rainbow
tables (pre-generated data set of hashes) to speed up the
attack. SQL Injection is a very important threat, but it is
easily defended using parameterized interfaces in the web
application program, through prepared statements and stored
database procedures [10, 12, 27].

4) Cross Site Scripting (XSS)
These exploits attack the second most common web

application risk of the OWASP top ten 2010 list [10]: “Cross
Site Scripting (XSS)”. We found 16 exploits and although
we did not find it as frequently as the SQL Injection, XSS
vulnerability is usually reported as being more common [1,
10]. To attack a XSS vulnerability, the exploit tweaks the
vulnerable input variable with a text containing a special
crafted HTML or scripting language (usually JavaScript).

XSS exploitation may allow the attacker to do web site
defacement, steal application cookies allowing the
impersonation of the victim in the vulnerable web site, etc.
However, most of XSS exploits analyzed target a more
dangerous issue: the remote execution of OS commands in
the web server machine as the root user, if the web server is
not properly configured (which is usually the case, given the
huge number of attacks like this).

An example of this type of attack for the Drupal
application is the “Drupal < 5.1 (post comments) Remote
Command Execution Exploit v2”, by str0ke (who is also one
of the members of the Milw0rm hacking group) [18]. It
exploits the possibility of posting comments about a given
blog message, which is a common feature in CMS
applications. The problem here is that previews of these
comments are not validated, and they are sent directly to the
PHP interpreter that executes them and displays the result in
the attacker web browser. The exploit uses the ability to
input arbitrary characters in the comment variable to inject a
PHP malicious string, like this:

comment=<?passthru('.$byte.');?>

The passthru() PHP function, similar to the exec() or
system() functions, or even the ` (backtick operator),
executes an external command on behalf of the web server
OS user. The functions passthru() and exec() even allow the
execution of multiple commands split with semi-colons. The
$byte is the PHP variable that contains the external command
the attacker wants to execute. With this exploit the attacker
can freely manipulate the web server as if he was the owner.

5) Remote File Inclusion (RFI)
We found 171 RFI exploits, making them the most

common type. They attack the third most common
vulnerability of the OWASP top ten 2007 list [9]: “Malicious
File Execution”. Like some of the most dangerous XSS

302302

exploits analyzed, the RFI allows arbitrary code execution on
the server. This is considered one of the methods used by
hackers to create botnets and serve malware worldwide [7].

To exemplify how this exploit operates, let us consider
the “phpBB Spider Friendly Module <= 1.3.10 File Include
Exploit”, by Kacper [18]. This attack exploits the vulnerable
variable phpbb_root_path. The phpBB uses this variable
extensively in the source code in sentences like this:

require($phpbb_root_path . 'config.' .
$phpEx);

Besides the require(), RFI exploits can use all PHP file
and stream functions: include(), include_once(), require(),
require_once(), fopen(), imagecreatefromXXX(), file(),
file_get_contents(), copy(), delete(), unlink(),
upload_tmp_dir(), $_FILES and move_uploaded_file() [9].

In a normal execution of the application, the file
represented by the $phpbb_root_path is concatenated with
config.php ($phpEx variabe is php by default) to be parsed
and executed by the PHP interpreter. Although not intended
by the normal use of the phpBB, it is possible to assign to the
$phpbb_root_path variable something like
http://www.evilsite.com/shell.txt. Using this in the require()
function makes the PHP interpreter try to execute the file
http://www.evilsite.com/shell.txtconfig.php (which is not the
final goal of the attacker). To overcome the concatenation of
the config.php to the malicious input, the exploit appends at
the end the %00 character. This technique is called null byte
injection (because the %00 character marks the end of the
string) and it makes the PHP interpreter discard what comes
next in the string. In this example, the file shell.txt can be a
simple PHP file stored in the site http://www.evilsite.com
controlled by the attacker, with the following code:

<?passthru($_GET["cmd"]);die;?>

This file executes in the victim’s server computer the
command that is passed by the GET parameter cmd. So, to
exploit this vulnerability the attacker can use in the URL of
the phpBB application something like this:

phpbb_root_path=http://www.evilsite.co
m/shell.txt?ls%20-las%00

In this example, the ls -las UNIX command is executed
and the result is sent to the web browser of the attacker.
However the payload could be any other command, like the
netcat (commonly referred to as the Swiss army knife of
networking), a program that can make the server listen to a
particular port and run a program like the UNIX shell. This
way, the attacker can, at any time, connect remotely to the
server computer through that port.

Before 2007, the exploitation of this vulnerability type
was very common in PHP web applications due to
weaknesses in the default configuration shipped with PHP.
Nowadays PHP default configuration is much safer than it
was back in 2007 and critical configuration variables are
now deprecated, not available or they have safer default
values (e.g. allow_url_fopen, allow_url_include,
register_globals). The support of remote file access for some
functions used by hackers to perform RFI is also restricted
[29, 13]. These PHP improvements may explain the decrease

of the current importance of RFI vulnerabilities and their
removal from the OWASP top ten 2010 list [10].

6) Local File Inclusion (LFI)
We found 18 of these exploits and they attack the fourth

most common web application risk of the OWASP top ten
2010 list [10]: “Insecure Direct Object Reference”. The LFI
allows the attacker to obtain the contents of files stored in the
server. This is usually achieved by maliciously altering the
value of a vulnerable variable containing the path of the
target file. For example, the exploit “Wordpress Plugin Page
Flip Image Gallery <= 0.2.2 Remote FD Vuln”, by GoLd_M
[18], is able to obtain the server passwd file (the file with the
user name and password hashes of the Linux server
machine). This is done assigning to the vulnerable book_id
variable the relative path of the target file. For example:

book_id=../../../../etc/passwd%00123

At the end of the malicious string there is, once again, the
null byte injection (using the %00). This attack bypasses the
naïve use of string concatenation to protect from malicious
injection, as explained previously. Obviously, if the web
server is correctly configured then it is not possible to obtain
files from unwanted locations in the file system. However,
even in these situations it is usually possible to get valuable
information from the root of the web application, like source
code files, configuration files, backup files, etc. If the access
is not correctly restricted and the application is not well
managed, the information that can be obtained may be
enough for the attacker to access critical information (e.g.,
web application user names and passwords that are
sometimes stored in a XML file in the web server).

7) HTTP Response Splitting (HTTP-Splitting)
These exploits were never present in the OWASP top 10

lists. In the Mitre definition, they are referred as [1]: “CRLF
(Carriage Return and Line Feed) injection”. The HTTP-
Splitting attacks web applications in places where there is a
failure to sanitize HTTP headers for CRLF (%0D%0A or
\r\n) sequences. We found only a single attack of this type.

Using this technique, it is possible to force the server to
consider that the web browser output consists of two
different HTTP responses, where the latter is the attack [30].
To accomplish this objective, the attacker alters the HTTP
response, for example by adding a Content-Length: 0 to one
of the HTTP header or POST parameters. Although this is a
normal HTTP header parameter, using it in this way forces
the premature end the current HTTP response. Then, the
attacker places another HTTP response (the malicious one)
containing a new header and a defaced HTML page that may
trigger the victim into thinking he was browsing the original
web application while he is, for example, interacting with the
attacker’s web page (page hijacking). The user may be then
tricked to supply sensitive data, like passwords or credit card
information.

303303

IV. RESULTS AND ANALYSIS
In this section, we present and discuss the results of the

field study from different points of view, so that we can get a
profile of the attacker’s perspective.

A. Exploit Distribution
Table 1 shows the overall distribution of the exploits

analyzed across the web applications considered in the study.
As shown, the four most common vulnerabilities exploited
are RFI, SQL Injection, LFI and XSS. RFI and SQL
Injection are undoubtedly the most important in the scenario
we evaluated as they were found in five out of the six web
applications analyzed and they contributed to 88% of all
exploits. We also observe that SQL Injection and RFI are the
most wanted by the attackers, as they account for 83% of the
downloads, according to Fig. 1, that shows the overall
number of downloads for each exploit type. This is
understandable, as RFI exploits typically provide remote
access to the server through a root shell [7] and SQL
Injection is almost the only way to get a direct access to the
back-end database (which may enable disclosure of user
names and passwords). However, from Fig. 1, we see that
SQL Injection exploits are slightly preferred over RFI. These
SQL Injection attacks give hackers what they want (access to
data) and there are plenty of vulnerabilities allowing this
type of attacks on the target web applications [8].

In the lower end of the hacker’s usage we have Admin
Takeover, HTTP-Splitting and Bruteforce/Dictionary. In
spite of the lower number of exploits released, they have a
high download rate, as can be seen in Fig. 2. For example,
the single Bruteforce/Dictionary exploit found in our study
was downloaded over 45 thousand times. It is a PERL
program aimed to attack the user password using a brute

force or a dictionary attack. Although it is meant to exploit
the phpBB application, it can be easily adapted to other
applications where a password cracking technique is needed,
and this may justify part of the interest in downloading it.
However, the most downloaded exploit (56 thousand times)
was a SQL Injection one also affecting phpBB.

The exploits analyzed have an evolution over time, from
2003 to 2009 with its top at 2006, which can be seen in Fig.
3. It seems that exploits for the web applications analyzed
started losing momentum after 2006. This also applies to the
number of downloads of the exploits, which started very low
in 2003, reached its peak in 2006 and since then they have
been decreasing. In the case of SQL Injection exploits, for
example, they have been increasing until 2008, which was
the best year with 45 exploits, but that number also
decreased in 2009 to 12 exploits, which is lower than the 20
exploits back in 2007.

Analyzing the spike seen in 2006 we found that 91% is
due to the 123 RFI exploits that were developed in that year.
Strangely, 2006 was the first year where RFI exploits were
observed and the development of these types of exploits
quickly decreased over the years, reaching only 5 in 2009.
Some researchers believe that changes introduced in the PHP
language are the reason for this trend [10] and they may well
be, because they clearly addressed these types of problems.
This observation shows the importance of the programming
language in the security of the application.

To attack the application the hacker uses its weakest
point, like plug-ins that are usually not so well developed or
tested as the main application. We found that nearly 58% of
exploits target external modules (Fig. 4). This exploitation
can even be found in plug-ins that are supposed to bring a
higher level of security to the web application. For example,
we found security plug-ins phpBB_Security and phpBB

TABLE I. EXPLOIT DISTRIBUTION OVER SIX WIDELY USED WEB APPLICATIONS

 XSS SQL Injection RFI LFI Admin Takeover HTTP-Splitting Bruteforce/Dictionary Total

Drupal 4 0 1 0 0 0 0 5

PHP-Fusion 1 23 0 1 0 0 0 25

PHP-Nuke 1 29 22 5 1 0 0 58

phpBB 5 18 129 8 0 0 1 161

phpMyAdmin 0 2 2 1 0 0 0 5

Wordpress 5 30 17 3 2 1 0 58

Total 16 102 171 18 3 1 1 312

Figure 1. Exploits downloads Figure 2. Average number of downloads per exploit

304304

Security Suite to have RFI vulnerabilities that were
exploited, allowing an attacker to execute code in the context
of the web server process. These are paradox situations
where it is the presence of the security plug-in that
compromises the whole system they were supposed to
protect, in a cascading manner.

B. Exploit Technologies
Although hackers may need skilled resources to find

vulnerabilities in web applications, they do not have to know
much about programming languages to build a common
exploit. Regarding the technologies used to develop the
exploits we found that a simple maliciously crafted URL is
all that it is needed in more than half the times (Fig. 5). In
particular, GET variables are easier to probe for
vulnerabilities and to write exploits than POST variables,
because all it usually takes is to place the malicious string as
the input of the vulnerable variable directly in the URL. By
altering the URL, the attacker can control GET variables in a
low security environment. This usually seems to be the case,
as we found that unchecked GET variables account for 64%
of the vulnerabilities exploited. On the other hand, POST
variables need some sort of programming language that can
build HTTP requests in order to be exploited in an automated
fashion, which adds extra complexity.

For more elaborate exploits that show the result of the
attack in a user-friendly manner, both GET and POST
related vulnerabilities are similar in complexity. Other times,
a programming language is really needed to actually perform
and automate the attack. This is common in cases where the
exploit includes counter measures against security
protections built into the web application or due to the
specific nature of the vulnerability. For example, in typical
blind SQL Injection attacks, exploits try to discover every
character of the user password, one at a time, and the final

result is shown to the attacker only at the end.
PERL and PHP are the most chosen programming

languages to develop the exploits analyzed (Fig. 5). These
are powerful scripting languages that can be easily used in
different operating systems, without cross-compilation
issues. We found that most of the exploits developed with a
programming language have the code well commented, with
usage notes and they try to be as user friendly as possible.
This makes them well suited for the occasional hacker and
script kiddies.

Six of the exploits analyzed are already part of the
collection of exploits of the Metasploit framework [19].
These exploits can, therefore, also be executed by every user
of the Metasploit framework, which can be freely
downloaded and is present in some Linux distributions
devoted for security testing, like the BackTrack and the
Whoppix. From the Milw0rm site only, these six exploits are
responsible for more than 126 thousand downloads.

C. Severity Analysis
The main reason to develop an exploit is the benefit that

can be achieved by using it against the vulnerable web
application. This characterizes the severity of the exploit,
viewed from the web application perspective. It represents
the level of damage the exploit can inflict to their victims. To
classify the exploit severity we used the Payment Card
Industry Data Security Standard (PCI-DSS) taxonomy [27],
which is one of the security standards most used nowadays,
mainly in e-business and e-commerce applications. This
standard classifies vulnerabilities in 5 levels, from 1 to 5.
The high-level vulnerabilities are designated 5, 4 or 3, in
decreasing order. To be compliant with the PCI-DSS
standard the application cannot have any one of these high-
level vulnerabilities. The following points present a brief
description of the PCI-DSS severity levels, in line with our
interpretation of the level of damage that may be obtained
with the exploits analyzed:

• Level 5 - Allows the attacker to get read and write
access to the remote computer as an administrator or
to the web application database as a DBA.

• Level 4 - Allows the attacker to get read and write
access as a regular user (a user that is not an
administrator nor a DBA) to the remote computer or
to the web application database.

Figure 3. Exploits over time

Figure 4. Exploits in main application vs. external plugins

Figure 5. Technologies used in the development of the exploits

305305

• Level 3 – Allows the access to remote assets without
permission to change contents. The attacker may see
remote data (like security settings), files or browsing
the directory tree.

• Level 2 - Exposes sensitive information about the
running programs and services on the server side.

• Level 1 - Exposes data like server’s open ports.

In Fig. 6 we present the details of the classification of the
exploits analyzed according to their PCI-DSS severity. We
see that 97% of the exploits attack the web application or the
server in the most damaging way. The number of exploits
that are classified in a level less than 5 is merely residual.

Analyzing in detail the exploits classified with level 5
severity, we found that 97% of them could have been
classified with level 4, with little system configuration
change. In fact, even without altering the application code,
configuration and policy decisions of the administrator of the
remote server or web application can make the difference
between level 5 and level 4 or lower for the vast majority of
exploits. The two most relevant of these best practices issues
that we found, which are also extensively discussed in
security literature [12, 27], are the following:

• Running the web server process with the lowest
privilege needed - if the web server OS user has
root privileges, when the account is compromised,
the attacker can also deploy a remote shell as root.
We found this in 61% of level 5 severity issues. An
OS user with the same responsibilities, but having
only the least amount of privileges needed to
perform his job conveys a level 4 severity, as he
would not run as the root user. Preventing the
execution of external commands from the web
application completely eliminates the root shell
problem. Further configuration improvements, like
restricting the access to the OS file system, reduces
to level 4 or below even more 5% of level 5 issues.

• Using a strong administrator account password -
a weak password may be easily cracked, while a
strong password may be impossible to obtain using
current state of the art technologies. Passwords are
really wanted by hackers, and we found 31% of level
5 cases due to the exploitation of vulnerabilities that
expose database passwords. Normally, users do not
provide strong passwords when they register in
online web applications. This is a well-known

security concern and has been discussed over the
years. Recent results of the whitepaper on consumer
passwords from Imperva confirm this generalized
idea [26]. The authors analyzed the largest password
breach ever, containing around 32 million real
passwords leaked from the RockYou social network
application maker. The study shows that users tend
to choose very weak passwords and it estimates that
an automated attack can crack one password every
second, corresponding to 111 attempts, if using a
carefully chosen dictionary. This may also justify the
high number of downloads of the
Bruteforce/Dictionary exploit described earlier.

D. Vulnerability and Exploit Correlation for XSS and SQL
Injection
XSS and SQL Injection are the two most common

vulnerabilities in web applications [1, 10] and they are also
very relevant in the exploits analyzed. Fig. 7 shows the
comparison between XSS and SQL Injection in web
applications. The leftmost bar presents the distribution of the
occurrences of XSS and SQL injection in the exploits we
analyzed; the center bar shows the vulnerabilities from the
field study presented in [8] for the same target applications;
and in the rightmost bar presents the vulnerabilities
disclosed in the MITRE report [1, 4].

Analyzing Fig. 7 we can see that web applications are
more likely to have XSS than SQL Injection vulnerabilities.
However, when we look at the number of exploits
developed, less than 14% are for XSS. It seems that,
although it is easier to find XSS, hackers prefer to exploit
SQL Injection. We also obtained 17% of XSS downloads
and 83% of SQL Injection (Fig. 1), when comparing only
these two exploits.

Fig. 8 compares the XSS and SQL Injection exploits
found for each web application with the number of
vulnerabilities analyzed in [8]. Values are expressed in
percentages so that we can easily compare and discuss the
relative distribution of exploits and vulnerabilities. We see
little relation between the distribution of vulnerabilities and
the respective developed exploits. We do not have further
data that can help justify this observation, but we can present

Figure 6. PCI severity level of the exploits analyzed Figure 7. XSS vs. SQL Injection vulnerabilities and exploits

306306

some thoughts on this matter:
• Some of the reported vulnerabilities may be too hard

to be exploited or not be exploitable at all as the web
application may have other protection schemes or
the originating bug may have been mistakenly
reported as a vulnerability.

• Some of the vulnerabilities found may only be
exploited in a manner that does not give attackers
access to the resources they want.

• When hackers have many vulnerabilities at their
disposal, they do not have to exploit all of them, as
their goal may be achieved by exploiting only a
subset of those vulnerabilities.

• Some web applications are more interesting to
exploit than others. For example, phpMyAdmin
exploits are usually only available to those who have
privileges to administer MySQL databases. If a
vulnerability can only be exploited after having
granted access to the admin pages, only the admin
can benefit from it. However, the phpMyAdmin
admin already has full access to the databases,
making the use of the exploit pointless.

• Some web applications have a larger market share
than others. From a cost/benefit ratio, it is more
interesting to invest time and money exploiting those
who give a better perspective of success in a wider
number of possible victims.

E. Analysis of the Attacker Perspective
As expected, we observed that an attacker typically tries

to exploit vulnerabilities that can empower him with an
administrator account, whether it is an OS root shell or a
DBA database password. However, it was a surprise that this
accounted for so many exploits (97%, as seen in Fig. 6).
There are vulnerabilities that may provide a path to assets
more sensitive than others and these are clearly what hackers
are looking for to develop their exploits. This demand for
high-damaging exploits may help justify why the number of
vulnerabilities and exploits do not always have a direct
relationship (Fig. 8). By comparing XSS with SQL Injection
we see that the attacker normally prefers SQL Injection (Fig.
1), although XSS is typically easier to find: apparently, the
access to the database records pays off the extra effort.

Our results show that in a vast majority of vulnerable
web applications, the attacker can get access to the server,

exploiting LFI and RFI vulnerabilities. Besides good
configuration practices [12, 27, 29, 13], security practitioners
are advised to build a combination of web application,
network and OS defense layers. This is known as Defense In
Depth [31].

Although there are some complex exploits written in a
programming language, surprisingly the attacker can achieve
its objectives nearly half of the time with simple resources,
like a crafted URL (Fig. 5). We also observed the search for
simplicity reflected by the higher number of GET variables
attacked when compared with POST variables.

To improve the attack success ratio, hackers not only
want to increase the ability to access important assets, but
also to decrease the chance of getting caught. They want to
attack their victims remaining hidden behind another identity
or by executing the attack stealthy. To achieve this, they can
use public computers (from schools, libraries, cyber cafés,
etc.), computers from botnets they own (they remotely
control) or even use anonymizer proxy server solutions, like
Tor (torproject.org) and UltraSurf (ultrareach.com). An
anonymizer proxy does not transmit the client IP information
and does not store any information about the client when he
is surfing the web. When using these kinds of proxies in a
web attack, there are no traces that can help identify the
attacker. It allows the attacker to stay anonymous, even when
digital forensics is in place. The possibility to configure the
use of proxies in the attack is available in some more
elaborated exploits, which shows the concern of hackers
about this matter.

During our analysis, it was possible to observe the
consecutive exploitation of the same vulnerable variable over
and over again. For example, in the phpBB web application,
we found exploits of the phpbb_root_path variable from
February 2006 to April 2007. During this period, 110
exploits were developed to attack that same variable (this is
the reason for the high number of RFI exploits in 2006).
Many of these exploits targeted different external modules of
the phpBB application, which also raises the question about
the quality of external plug-ins and components, which may
compromise the security of the whole application. In fact, to
achieve higher security, software developers should perform
a thorough analysis and have a holistic thinking of the
problem. These 110 RFI exploits target a vulnerable variable
with the same name, but in different source code files. It
seems that the PHP in these files was written reutilizing
common code, maybe using copy & paste. The discovery of
a vulnerability should trigger the developers into searching
for problems in other locations too.

We also found in many situations that, after the fix, a
slight change in the old exploit is all that is needed to bypass
the new counter-measures and build a new exploit. This
suggests that developers should revise the review procedures
used during the correction of the vulnerabilities [12, 27, 32].
For the attackers, the weak actions done by the developers
are welcomed. They only have to tweak the exploit and
probe for the same vulnerabilities in all the places where the
target variables are in use.

Figure 8. Vulnerabilities and exploits across web applications

307307

V. CONCLUSION
This paper analyzes over three hundred exploits, of six

widely used LAMP web applications, which were
downloaded by possible attackers over three million times.
The exploit code and metadata was manually reviewed
focusing on aspects that contribute to profile typical
operations and the hacker perspective. Results provide
insights that can be used to improve web application security
from software developer to administrator actions.

We can see that attackers benefit from poorly developed
web applications and weak server and application
configurations. Most of the exploits analyzed are just crafted
URLs or simple scripts in PERL or PHP that allow even non-
experts to deploy them easily. However, their critical damage
can also be mitigated using common security best practices,
such as using the latest software versions (e.g. newer PHP
releases address some critical security problems), using
strong passwords and deploying services with low privileges.

We found that attackers typically use only a restricted
subset of the existing vulnerabilities as RFI and SQL
Injection account for almost 90% of exploits analyzed. In
fact, by applying a limited set of procedures that exploits the
most common vulnerabilities, hackers target the most
important assets of web applications, which are administrator
accounts and remote shell access to servers. This is inline
with other studies that concluded that only a small
percentage of software bug types accounted for the vast
majority of web application vulnerabilities.

Observations show that security procedures executed
when an exploit is found are far from being effective, and
they must be urgently addressed. Results can also be useful
for those interested in understanding what web attackers
want and how they operate. This helps to improve security
related mechanisms, like attack simulators, penetration
testing tools, procedures and training.

As future work this seminal study should be extended to
capture the relationship between exploit sites, cover web
applications developed with other technologies and correlate
them to see if attackers follow a common pattern.

REFERENCES
[1] Steve Christey, Robert Martin, “Vulnerability type distributions in

CVE”, Mitre report, May, 2007
[2] Stefano Zanero, Luca Carettoni, Manuel Zanchetta, “Automatic

detection of web application security flaws”, Black Hat Briefings,
2005

[3] Nenad Jovanovic, Christopher Kruegel, Engin Kirda, “Precise alias
analysis for static detection of web application vulnerabilities”, IEEE
Symposium on Security and Privacy, pp. 27-36, Ottawa, Ontario,
Canada, 2006

[4] Steve Christey, “Unforgivable vulnerabilities”, The MITRE
Corporation, Black Hat Briefings, August 2007

[5] Vnunet, August, 2007,
http://www.vnunet.com/vnunet/news/2197408/monster-keptbreach-
secret-five

[6] NTA, May, 2007, http://www.nta-
monitor.com/posts/2007/05/annualsecurityreport.html

[7] Gadi Evron, Kfir Damari, Noam Rathaus, “Web server botnets and
hosting farms as attack platforms”, Virus Bulletin, 2007

[8] José Fonseca, Marco Vieira, “Mapping software faults with web
security vulnerabilities”, International Conference on Dependable
Systems and Networks, pp. 257-266, Anchorage, USA, 2008

[9] Andrew Stock, Jeff Williams, Dave Wichers, “OWASP top 10”,
OWASP Foundation, July, 2007

[10] Jeff Williams, Dave Wichers, “OWASP top 10 – 2010”, OWASP
Foundation, April, 2010

[11] Prasanth Anbalagan, Mladen Vouk, “Towards a Unifying Approach
in Understanding Security Problems”, International Symposium on
Software Reliability Engineering, pp. 136-145, Mysuru, India, 2009

[12] Michael Howard, David LeBlanc, “Writing secure code”, Microsoft
Press, 2003

[13] Shaun Clowes, “A study in scarlet, exploiting common vulnerabilities
in PHP applications”, Blackhat Briefings Asia, 2001

[14] Kevin Mitnick, William Simon, “The art of deception: controlling the
human element of security”, 1st ed., Wiley, 2002

[15] Seth Fogie, Jeremiah Grossman, Robert Hansen, Anton Rageattacks,
“XSS attacks: cross site scripting exploits and defense”, Syngress,
2007

[16] Gonzalo Álvarez, Slobodan Petrovic. “A new taxonomy of web
attacks suitable for efficient encoding”. Computers and Security, vol.
22, issue 5, pp. 435-449, July 2003

[17] Michel Cukier, Robin Berthier, Susmit Panjwani, Stephanie Tan, “A
statistical analysis of attack data to separate attacks”. International
Conference on Dependable Systems and Networks, pp. 383-392,
Philadelphia, USA, 2006

[18] Milw0rm, April, 2010, http://www.milw0rm.com
[19] David Maynor, “Metasploit Toolkit for Penetration Testing, Exploit

Development, and Vulnerability Research”, Syngress, 2007
[20] José Fonseca, Marco Vieira, Henrique Madeira, “Vulnerability &

attack injection for web applications”, International Conference on
Dependable Systems and Networks, pp. 93-102, Lisbon, Portugal,
2009

[21] Ivan Victor Krsul, “Software vulnerability analysis”, PhD Thesis,
Purdue University, 1998

[22] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, Carl
Landwehr, “Basic concepts and taxonomy of dependable and secure
computing”, IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11-33, Jan.-Mar. 2004

[23] Packt Publishing Ltd, December, 2007, http://www.packtpub.com
[24] sourceforge, December, 2007,

http://sourceforge.net/community/index.php/2007/08/01/community-
choice-awards-winners/

[25] Nexen.net, October, 2008,
http://www.nexen.net/chiffres_cles/phpversion/18824-
php_statistics_for_october_2008.php

[26] Imperva Application Defense Center, “Consumer password worst
practices”, 2010

[27] PCI Security Standards Council, “Payment card industry (PCI) data
security standard, Requirements and Security Assessment
Procedures”, version 1.2, 2008

[28] Openwall Project, John the Ripper password cracker, April, 2010
http://www.openwall.com/john

[29] PHP runtime configuration, April, 2010,
http://php.net/manual/en/filesystem.configuration.php

[30] Common Weaknesses Enumeration Definitions, April, 2010,
http://cwe.mitre.org/data/definitions/113.html

[31] NSA, “Defense in depth”,
http://www.nsa.gov/ia/_files/support/defenseindepth.pdf, 2004

[32] José Fonseca, Marco Vieira, Henrique Madeira, “Training security
assurance teams using vulnerability injection", Pacific Rim
Dependable Computing Conference, pp. 297-304, Taipei, Taiwan,
2008

308308

