CORE

12

Istraživanje aminokiselinskog sastava drače (Paliurus spina-christi Mill.)

ŽELJAN MALEŠ¹, MIŠKO PLAZIBAT², KROATA HAZLER-PILEPIĆ³ i BISERKA CETINA-ČIŽMEK⁴

¹Zavod za farmakognoziju, ³Zavod za farmaceutsku botaniku i ⁴Zavod za analitiku i kontrolu lijekova Farmaceutsko-biokemijskog fakulteta Sveučilišta u Zagrebu, Zagreb i ²Botanički zavod Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu, Zagreb

Investigation of the composition of amino acids in Christ's thorn (*Paliurus spina-christi* Mill.)

S u m m a r y – Paliurus spina-christi Mill. is a deciduous thorny shrub widely spread on dry and rocky places in the Mediterranean region and western Asia, commonly used as a diuretic and against diarrhoea and rheumatism.

Thin-layer chromatographic analysis of amino acids of different plant parts showed the presence of 13 amino acids: leucine, phenylalanine, valine, tyrosine, proline, alanine, threonine, serine, aspartic acid, glutamine, asparagine, lysine and histidine. Valine, serine and asparagine were the main amino acids.

(¹Department of Pharmacognosy, ³Department of Pharmaceutical Botany and ⁴Department of Analytics and Medicines Control, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia, and ²Department of Botany, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia).

UVOD

Paliurus spina-christi Mill. – drača vrlo je bodljikavi listopadni grm iz porodice Rhamnaceae, reda Rhamnales, razreda Magnoliopsida (1, 2). Unutar porodice rod Paliurus Tourn. ex Mill. ima posve izdvojeno mjesto zbog svojih suhih, diskolikih i okriljenih plodova. S obzirom na oblik ploda, bodljikavost te povezivanje s biblijskim prizorom drača, u raznim jezicima ima brojne narodne nazive. Tako je u Francuskoj biljka poznata pod nazivima Arglou, Arnaves, Capeletes, Épine du Christ, Paliure, Porte-chapeaux, a njemački, talijanski i engleski nazivi su: Christusdorn, Jerusalemdorn, Stechdorn, Wegdorn, Zaundorn; Capellini, Marruca, Marruca nera, Soldini, Spino-crocefissi, Spino-gatto, Spino-marocco te Christ^s thorn (3–5).

Osim validnog naziva *Paliurus spina-christi* Mill. često u literaturi nailazimo na sljedeće sinonime i svojte nižeg taksonomskog stupnja: *Paliurus aculeatus* Lam., *P. australis* Gaertn., *P. microcarpus* Wilmott, *P. spina-christi* Mill. var. *inermis* Hausskn. ex Bornmüller, *P. spina-christi* Mill. var. macro-

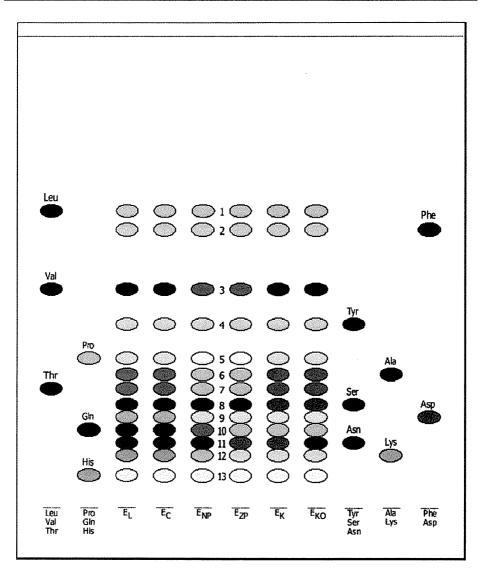
1. Identifikacija biljnog materijala

Identitet ispitivane biljne vrste ob avljen je u Botaničkom zavodu Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu i potvrđen je ispitivanjem vanjske i unutarnje građe skupljenih uzoraka.

2. Ispitivanje prisutnosti aminokiselina tankoslojnom kromatografijom

Ispitivanju su podvrgnuti ekstrakti biljnih organa drače, koji su pripremljeni tako da je 1 g praškasto usitnjenog biljnog materijala ekstrahiran s 10 ml vode 30 minuta na vodenoj kupelji uz povratno hladilo. Bistri filtrat, nakon hlađenja, služio je kao otopina za kromatografsko ispitivanje. Kao poredbene supstancije uporabljene su 0,00001%-tne vodene otopine leucina (Leu), fenilalanina (Phe), valina (Val), tirozina (Tyr), prolina (Pro), alanina (Ala), treonina (Thr), serina (Ser), asparaginske kiseline (Asp), glutamina (Gln), asparagina (Asn), lizina (Lys) i histidina (His) (49).

Ispitivanje prisutnosti aminokiselina provedeno je na tankom sloju celuloze F (»Merck«, Art. 15036) te na sloju celuloze i 5%-tnog ionskog izmjenjivača Dowex 2-X8 (»Schleicher-Schüll«, G 1440/A5) u dvije smjese otapala: n-butanol-aceton-ledena octena kiselina-voda (35:35:10:20 V/V/V/V) i n-butanol-ledena octena kiselina-voda (50:10:40 V/V/V) (49).


Detekcija odijeljenih aminokiselina provedena je nakon prskanja kromatograma ninhidrin reagensom i grijanja 5–10 minuta na 100⁰ C (50).

REZULTATI I RASPRAVA

Vodeni ekstrakti listova, cvjetova, nezrelih i zrelih plodova, kore i korijena drače ispitani su na prisutnost aminokiselina tankoslojnom kromatografijom.

Od dviju uporabljenih nepokretnih faza bolje odjeljivanje postignuto je na tankom sloju celuloze F. Nakon prskanja kromatograma ninhidrin reagensom i grijanja na 100^0 C u ekstraktima su uočene ljubičaste, ljubičastosive, ljubičastosmeđe, žute, ljubičastoružičaste, sivozelene te ružičaste mrlje.

Odjeljivanjem pokretnom fazom n-butanol-aceton-ledena octena kiselina-voda (35:35:10:20 V/V/V) u ispitivanim vodenim ekstraktima uočava se 13 mrlja, koje odgovaraju aminokiselinama (*Slika 2.*). Mrlje 1, 3, 6, 7 i 10 bile su ljubičasto obojene, a usporedbom njihovih R_F vrijednosti s poredbenim supstancijama vidljivo je da odgovaraju leucinu, valinu, alaninu, treoninu i glutaminu. Ljubičastosiva mrlja 2 identificirana je kao fenilalanin, a ljubičastosmeđa mrlja 4 kao tirozin. Mrlja 5 nakon prskanja ninhidrin reagensom obojila se žuto, a prema R_F vrijednosti odgovarala je prolinu. Ljubičastoružičaste mrlje 8 i 9 su odgovarale serinu i asparaginskoj kiselini. U donjem R_F području vidljiva je sivozelena mrlja 11 koja je odgovarala asparaginu, te dvije ružičaste mrlje (mrlje 12 i 13), za koje je utvrđeno da odgovaraju lizinu i histidinu (Tablica 1.).

Slika 2. Kromatogram aminokiselina drače

Nepokretna faza: celuloza F Pokretna faza: n-butanol-aceton-ledena octena kiselina-voda (35: 35:10: 20 V/V/V/V) Detekcija: ninhidrin reagens E_{L} = vodeni ekstrakt listova E_{C} = vodeni ekstrakt cvjetova E_{NP} = vodeni ekstrakt nezrelih plodova E_{ZP} = vodeni ekstrakt zrelih plodova E_{K} = vodeni ekstrakt kore E_{KO} = vodeni ekstrakt korijena Ž. Maleš, M. Plazibat, K. Hazler-Pilepić i B. Cetina-Čiżmek: Istraživanje aminokiselinskog sastava drače (Paliurus spina-christi Mill.), Farm. Glas. 57, 7-8/2001

RF vijednosti odijeljenih an	inokiselin	a na tankom sio	ju celuloze F
Aminokiselina	Pokretna faza		
		I	11
1 Leucin	(Leu)	0,61	0,63
2 Fenilalanin	(Phe)	0,54	0,59
3 Valin	(Val)	0,45	0,46
4 Tirozin	(Tyr)	0,37	0,39
5 Prolin	(Pro)	0,30	0,30
6 Alanin	(Ala) (Thr)	0,24	0,26
7 Treonin		0,21	0,23
8 Serin	(Ser)	0,15	0,18
9 Asparaginska kiselina	(Asp)	0,14	0,17
10 Glutamin	(Gln)	0,13	0,16
11 Asparagin	(Asn)	0,09	0,15
12 Lizin	(Lys)	0,07	0,13
13 Histidin	(His)	0,06	80,0

 Tablica 1.

 RF vrijednosti odijeljenih aminokiselina na tankom sloju celuloze F

 I – n-butanol-aceton-ledena octena kiselina-voda (35:35:10:20 V/V/V/V)

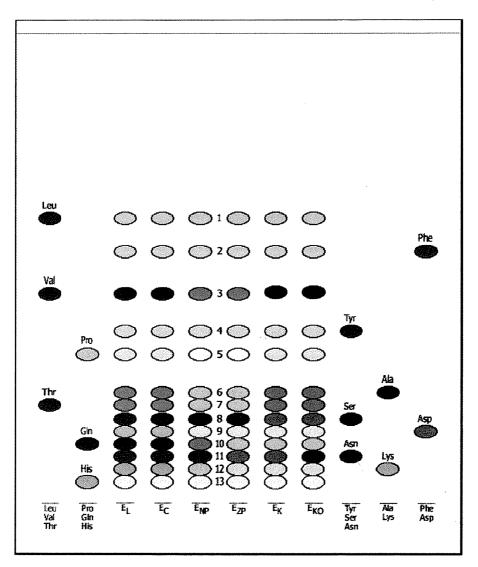
II - n-butanol-ledena octena kiselina-voda (50:10:40 V/V/V)

Slična kromatografska slika, ali slabije odjeljivanje dobiveno je u pokretnoj fazi n-butanol-ledena octena kiselina-voda (50:10:40 V/V/V) (*Slika 3.*, Tablica 1.).

Iz dobivenih kromatograma prema intenzitetu obojenja mrlja uočavaju se sličnosti i razlike u zastupljenosti aminokiselina među biljnim organima. S obzirom na taj intenzitet valin, serin i asparagin su najzastupljenije aminokiseline u svim ekstraktima. Najveći intenzitet svih mrlja uočen je u ekstraktima listova i cvjetova drače (Tablica 2.).

Tablica 2

Zastupljenost pojedinih aminokiselina u ekstraktima drače									
Aminokiselina	EL	Ec	E _{NP}	Ezp	Eκ	E _{ko}			
Leucin	÷	4	+	+	+	+			
Fenilalanin	+	+	+	+	+	+			
Valin	+++	+++	++	++	+++	+++			
Tirozin	+	+	+	+	+	+			
Prolin	++	++	+	+	++	++			
Alanin	++	++	+	+	++	++			
Treonin	++	++	+	+	++	++			
Serin	+++	+++	+++	+++	++	++			
Asparaginska kiselina	++	++	+	+	+	+			
Glutamin	+++	+++	++	+	+	+			
Asparagin	+++	+++	+++	++	++	+++			
Lizin	+++	+++	++	+	+	+			
Histidin	+	+	+	+	+	+			


EL = vodeni ekstrakt listova, Ec = vodeni ekstrakt cvjetova,

E_{NP} = vodeni ekstrakt nezrelih plodova, E_{ZP} = vodeni ekstrakt zrelih plodova,

E_K = vodeni ekstrakt kore, E_{KO} = vodeni ekstrakt korijena;

+++ = jaki intenzitet mrlje, ++ = srednji intenzitet mrlje,

+ = slabi intenzitet mrlje.

Slika 3. Kromatogram aminokiselina drače

Nepokretna faza: celuloza F Pokčetna faza: n-butanol-ledena octena kiselina-voda (50:10: 40 V/V/V) Detekcija: ninhidrin reagens E_L = vodeni ekstrakt listova E_C = vodeni ekstrakt cvjetova E_{NP} = vodeni ekstrakt nezrelih plodova E_{ZP} = vodeni ekstrakt zrelih plodova E_K = vodeni ekstrakt kore E_{KO} = vodeni ekstrakt korijena

ZAKLJUČAK

Metodom tankoslojne kromatografije dokazano je da svi biljni organi drače – *Paliurus spina-christi* Mill. sadrže ove aminokiseline: leucin, fenilalanin, valin, tirozin, prolin, alanin, treonin, serin, asparaginsku kiselinu, glutamin, asparagin, lizin i histidin. Najzastupljenije aminokiseline u svim organima bile su valin, serin i asparagin.

Rezultati kromatografske analize upućuju na zaključak da aminokiselinski sastav, a i količina aminokiselina ovise o biljnom organu.

Literatura – References

- 1. R. F. Thorne, Bot. Rev. 58 (1992) 258, 267.
- A. Weberbauer, Rhamnaceae. In A. Engler et K. Prantl Eds., Die natürlichen Pflanzenfamilien, Vol. 3 (5), Verlag von Wilhelm Engelmann, Leipzig 1896, 393-427.
- 3. G. Bonnier, Flore complète illustrée en couleurs de France, Suisse et Belgique, comprenant la plupart des plantes d'Europe, Tome II, Librairie Générale d l'Enseignement, Paris 1913, 113.
- 4. G. *Hegi*, Illustrierte Flora von Mitteleuropa, Band V, Teil 1, A. Pichler's Witwe et Sohn, Wien 1925, 326.
- 5. S. Pignatti, Flora d'Italia, Volume 2, Edagricole, Bologna 1982, 76.
- 6. P. Miller, The Gardeners Dictionary, Ed. 8, London 1768, Figs. 1a-b, 5 e-h.
- 7. J. B. de Lamarck, Encyclopédie méthodique, Botanique, Vol. 4, Paris et Liège 1798, 697.
- 8. J. Gaertner, De fructibus et seminibus plantarum, Vol. 1, Stuttgardiae 1788, 203.
- 9. A. J. Wilmott, J. Bot. 56 (1918) 145.
- 10. G. Beck, Repert. Spec. Nov. Regni Veg. 17 (1921) 451.
- 11. J. Bornmüller, Beih. Bot. Centralbl. 27 (1910) 324.
- 12. C. Moench, Methodus Plantas Horti botanici et Agri marburgensis a Staminum Situ describendi, Marburgi Cattorum 1794, 73.
- 13. C. von Linné, Species Plantarum, Ed. 1, Holmiae 1753, 194.
- 14. C. L. Willdenow, Species Plantarum, Vol. 1(2), Berolini 1798, 1102.
- 15. C. Schirarend, M. N. Olabi, Bot. Jahrb. Syst. 116 (1994) 333.
- 16. G. Krüssmann, Handbuch der Laubgehölze, Band II, E-PRO, 2. Aufl., Verlag Paul Parey, Berlin und Hamburg 1977, 367.
- 17. Č. Šilić, Atlas drveća i grmlja, 3. izd., Svjetlost, Sarajevo 1988, 147.
- T. G. Tutin, V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters, D. A. Webb Eds., Flora Europaca, Vol. 2, Cambridge University Press, Cambridge 1968, 243.
- 19. S. R. Martinez, Anales Real Acad. Farm. 5 (1962) 363.
- 20. L. Adamović, Bot. Jahrb. Syst. 31 (1901) 1-29.
- 21. P. Dieleman, Proc. Kon. Ned. Akad. Wetensch. Ser. C 73 (1970) 250.
- 22. I. Horvat, Vegetation Südosteuropas, Gustav Fischer Verlag, Stuttgart 1974, 139, 200.
- 23. I. Tuech, G. Roux, Naturalia Monspel. Sér. Bot. 12 (1960) 85.
- 24. G. Castiglia, Naturalista Sicil. 2 (3-4) (1978) 149.
- 25. A. Brunescu, Natura Ser. Biol. 15 (4) (1963) 69.
- 26. D. Ivan, Ann. Univ. Bucaresti, Biol. Veg. 20 (1971) 89.
- 27. K. H. Rechinger, Ark. Bot. Ser. 2, 5 (1959) 287.
- 28. F. Nabelek, Spisy Prir. Fak. Masarykovy Univ. 35 (1923) 63.
- 29. K. Browicz, Ann. Naturhist. Mus. Wien 75 (1971) 27.
- 30. B. Safui, J. Bombay Nat. Hist. Soc. 80 (1983) 250.
- 31. D. Kuštrak, Ž. Maleš, A. Brantner, I. Pitarević, Acta Pharm. Jugosl. 40 (1990) 551.
- 32. A. Brantner, Ž. Maleš, Planta Med. 56 (1990) 582.
- 33. D. Kuštrak, Ž. Maleš, I. Pitarević, Farm. Glas. 48 (1992) 101.
- 34. Ž. Maleš, M. Medić-Šarić, D. Kuštrak, Acta Pharm. 44 (1994) 183.

- Ž. Maleš, Strukturna karakterizacija izoliranih flavonoida drače Paliurus spina-christi Mill., Doktorska disertacija, Farmaceutsko-biokemijski fakultet, Sveučilište u Zagrebu, Zagreb 1995.
- 36. M. Medić-Šarić, Ž. Maleš, S. Šarić, A. Brantner, Croat. Chem. Acta 69 (1996) 1603.
- 37. A. H. Brantner, Ž. Maleš, J. Ethnopharmacol. 66 (1999) 175.
- 38. D. Kuštrak, Ž. Maleš, I. Pitarević, Farm. Glas. 49 (1993) 105.
- 39. V. P. Bogdanova, Izv. Akad. Nauk SSSR 28 (1963) 605.
- 40. F. Pellissier, F. Buson, P. Regli, C. Venot, Bull. Soc. Pharm. 18 (1969) 35.
- 41. M. P. Velcheva, Fitoterapia 64 (1993) 284.
- 42. Ts. M. Dalakishvili, S. D. Gusakova, N. J. Chachanidze, K. G. Kuparadze, E. P. Kemertelidze, Khim. Prir. Soedin. 3 (1985) 322.
- 43. M. P. Velcheva, Riv. Ital. Sostanze Grasse 63 (1986) 213.
- 44. Z. Šušnić-Fliker, Lijekovi narodnih ljekaruša u Hrvatskoj XVII i XVIII stoljeća, Magistarski rad, Interdisciplinarni centar poslijediplomskih studija, Sveučilište u Zagrebu, Dubrovnik 1984.
- 45. A. D. Ronchèse, C. Fiquet, Ann. Pharm. Franc. 10 (1952) 676.
- 46. E. Yesilada, E. Sezik, Planta Med. 56 (1990) 659.
- 47. J. L. Hartwell, Lloydia 34 (1971) 126.
- 48. A. Brantner, Ž. Maleš, S. Pepeljnjak, A. Antolić J. Ethnopharmacol. 52 (1996) 119.
- 49. H. Wagner, S. Bladt, E. M. Zgainski, Drogenanalyse, Springer Verlag, Berlin 1983, 288.
- 50. H. K. Berry, C. Leonard, H. Peters, M. Granger, N. Chunekahira, Clin. Chem. 14 (1968) 1033.

Primljeno 23. IV. 2001.