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Abstract 

The aim of this study is to determine the effect of the temperature and reaction time 

variables on the solid yield, increment of heating value and composition of the torrefied 

Dichrostachys cinerea wood by using the factorial experiment design and 

thermogravimetric analysis. The significant factors were identified by means of a Two 

Level Factorial Design (TLFD) type (22), for which the statistical software Design 

Expert Version 10 was used. Torrefaction and thermogravimetric experimental runs 

were carried out in a fixed-bed reactor and thermobalance TGA-DTA, respectively. 

Torrefaction temperature, residence time and their interaction have a significant effect 

on solid yield. Whilst, the effect of the temperature was the only statistically significant 

factor on increment at a high heating value (HHV). The R-Squared values for both 

response variables were greater than 95% in each case. An increase in torrefied biomass 

was achieved at HHV’s of 14.92% and 30.31% to the conditions of 120 min to 250ºC 

and 290 ºC, respectively. Thermogravimetric characterization and DTG – TG curves of 
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the torrefied material suggest that the pre-treated material has been modified chemically 

and structurally. 
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Dichrostachys cinerea, Biomass, Torrefaction, Design of experiment, 

Thermogravimetric analysis. 

 

1. Introduction 

In the search for renewable energy sources, energy from biomass is considered a viable 

choice. The main interest in using biomass as a renewable energy source is within the 

field of climate change. It is generally accepted that biomass is carbon neutral, provides 

energy security and can be a resource that is generated locally. The unique position of 

biomass, as the only renewable source that is a sustainable carbon carrier, makes 

biomass an attractive energy source (Bridgwater 2012).  Biomass is available in a wide 

range of resources such as waste streams, woody and grassy materials and energy crops 

(Van der Stelt, Gerhauser et al. 2011). Woody biomass is preferred over food crops, 

because of many reasons, from energy-related to social factors. Lignocellulosic 

materials contain much more energy than food crops, the amount of fertilisers and 

pesticides necessary for wood is much lower and the production of woody materials is 

much higher than for food crops which means that the amount of land used is lower 

(Van der Stelt, Gerhauser et al. 2011).  

Energy from biomass is based on short-rotation forestry and energy crops that can 

contribute to the energy needs of contemporary society (Bridgwater 2003, Kaygusuz 

2009). During the last few decades, various studies have  been published  that propose 

different woody species for  use as   energy crops, such as: Eucalyptus (Eucalyptus 

spp.),  Pine (Pinus pinea, Pinus halepensis, Pinus brutia, Pinus pinaster ), Poplar 

(Populus spp.), Willow (Salix spp.) and Marabu (Dichrostachys cinerea), (Pérez, 
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Renedo et al. , Pereira 1988, Bridgeman, Jones et al. 2008, Abreu, Foppa et al. 2010, 

Fernández, García-Albalá et al. 2015).  

This study will focus on the last species (Dichrostachys cinerea) as it has great potential 

as an energy crop because it is a type of perennial crop that does not require annual 

reseeding or agricultural inputs (e.g., fertiliser and pesticides). Because of its rapid 

spread in Cuba, it is estimated that there are approximately 1.2 million ha covered by 

this invasive plant (Carmenate Germán, Pérez Montesbravo et al. 2008, Pedroso and 

Kaltschmitt 2012). From the viewpoint of energy, this means a theoretical potential of 

700 x 10 GJ. The elemental and proximate analysis, as well as the main characteristics 

of D. cinerea devolatilisation were previously determined and discussed by Abreu, 

Foppa et al. (2010). The authors demonstrated that this biomass possesses the 

appropriate characteristics to be used as an energy source: it has a caloric value that is 

higher than or equal to 19,100 kJ kg-1, 3.4% of ashes and a melting temperature of 

1,460oC, as well as low contents of chlorine and sulphur. Moreover, they determined the 

main devolatilisation parameters (percentage weight loss, temperatures and 

degradations rates) and compared it to other lignocellulosic materials, such as corn 

stover and sugarcane bagasse. Similar results were obtained by Pedroso and Kaltschmitt 

(2012). This study concluded that D. cinerea wood can be used as a promising solid 

biofuel. The authors compared the D. cinerea properties with other types of biomass: 

Sugarcane bagasse, Germany beech, poplar, wheat straw and rice straw. In addition, 

they found that the combustion of this species releases low emissions. A simultaneous 

modelling of pyrolysis and combustion processes of D. cinerea and the determination of 

the kinetic parameters by means of thermogravimetric analysis was investigate by 

Abreu, Conesa et al. (2012). In a recent study, the opportunities of producing electricity 

from biomass in the sugar industry were investigated in Cienfuegos, Cuba. The authors 
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arrived at the conclusion that the D. cinerea represents the first potential biomass source 

followed by sugar cane bagasse. Three scenarios were considered to extend electricity 

generation from biomass in sugar factories beyond the sugarcane milling season 

(Sagastume Gutiérrez, Cabello Eras et al. 2016). However, the use of torrefied material 

from D. Cinerea not was assessed as a solid fuel. 

 Also,  the use of this biomass  as a raw material for the production of activated carbon 

or bioethanol has also been studied (Soudham 2009, Villegas and Prieto 2009). 

However, an analysis of the torrefaction and variations in the main properties of 

untreated and treated D. cinerea wood has not been found in literature. 

Biomass can be transformed into energy mainly via physical, thermochemical and 

biochemical processes. Amongst the various thermochemical conversion methods, 

gasification is the most promising (Van der Stelt, Gerhauser et al. 2011). In the 

utilisation of lignocellulosic materials like biofuel, there is a clear need to upgrade some 

of their properties.  

Woody material presents a low energy density value, high moisture content and often 

the amounts of energy used to obtain small size particles are not inconsiderable. Wood 

and other biomass can be treated  as different ways to provide better properties like fuel 

material (Prins, Ptasinski et al. 2006). 

In this way, torrefaction is gaining attention as an important pre-processing step to 

improve the quality of biomass in terms of physical properties and chemical 

composition (Rousset, Macedo et al. 2012). Torrefaction is a thermal decomposition 

process characterised for its low heating rate, inert atmosphere and a range of 

temperatures between 200 to 300°C. The aim of the biomass torrefaction is to get a 

solid homogeneous product with hydrophobic properties and a higher energy density 

than untreated material. Most of the smoke-producing compounds and other volatiles 
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are removed during torrefaction, which produces a final product that will have a lower 

mass but a higher heating value (Jaya Shankar, Christopher et al. 2011). Various studies 

on the torrefaction of different types of biomass  have been published such as: wheat 

straw (Mei, Che et al. 2016), olive stones (Sánchez and San Miguel 2016) and forest 

residues (spruce and birch) (Bach, Chen et al. 2016). Nevertheless, a study about the D. 

cinerea torrefaction as a biofuel was not found in the revised literature. 

The aim of this study was to contribute to knowledge about biomass in order to obtain a 

better application of the biomass obtained from D. cinerea as a fuel. It was also to 

determine the effect of the temperature and reaction time variables on the solid yield, 

increment of high heating and composition of the torrefied D. cinerea through the 

factorial experiment design and thermogravimetric analysis. 

2. Materials and methods 

2.1. Chemical-physic characterisation 

The raw biomass samples used in this study originated in the central region of Cuba. 

For the preparation of the D. cinerea samples, the norms of the European Committee for 

Standardization (CEN/TS 14780) were used. 

The chemical-physical characterisation of the D. cinerea had been previously analysed 

(Abreu, Foppa et al. 2010). The elemental analysis of torrefied wood was determined in 

accordance to the standard CEN/TS 15104. The equipment model PerkinElmer 2400 

CHNO/S of the Biomass Laboratory of Agricultural, Food and Environmental Sciences 

Department of Polytechnic University of Marche (UNIVPM) was used. The 

determination of the high heating value (HHV) was carried out in a calorimetric bomb 

(IKA WERKER KV 500) and the standard CEN/TS 14918. 

 2.2. Torrefaction experiments in a pilot plant reactor  

2.2.1. Torrefaction experimental procedure 
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It is possible to investigate a number of variables and their effects using a factorial or 

screening design. The significant factors which affected the response were identified by 

means of a Two Level Factorial Design (TLFD) type (22), for which the statistical 

software Design Expert Version 10.0.2 (Stat Ease, USA) was selected, as well as 

ANOVA for the analysis of the results.  Design Expert randomizes the performance 

order of the design of experiments, which contributes to guaranteeing that the model 

meets some statistical assumptions and can also contribute to reducing the effects of 

factors not included in the study. As independent variables, the temperature and 

residence time were selected; and as dependent variables, the percentage of torrefied 

solid yield and increment in high heating value (HHV) were calculated as follows:  

𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝐻𝐻𝑉 =
𝐻𝐻𝑉𝑡𝑜𝑟−𝐻𝐻𝑉𝑟𝑎𝑤

𝐻𝐻𝑉𝑟𝑎𝑤
∗ 100                                                   (eq. 1)                            

𝐻𝐻𝑉𝑟𝑎𝑤  and 𝐻𝐻𝑉𝑡𝑜𝑟  are the high heating values before and after the torrefaction 

process, respectively.   

The level of the two factors (low and high) in coded and uncoded independent variables 

is shown below in Table 1. 

Table 1. The level of variables chosen for the TLFD 

 

Independent Variable 

Uncoded and coded variable                    

level 

Symbol Low High 

 -1 1 

Torrefaction temperature (oC) A 250 290 

Residence time (min) B 60 120 

 

 2.1.2. Description of equipment 

The torrefaction experiments were performed in the laboratory of the Department of 

Chemical Engineering of the University of Alicante, Spain. This reactor was used in 
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previous thermo-decomposition research (Conesa, Martín-Gullón et al. 2004). A 

scheme of the reactor system is represented in fig. 1. The system is made up of five 

main zones. 

 

1- Hopper (biomass 

reservoir)  

2- Valves 

3- Gas input (nitrogen) 

4-  Perforated plate 

5- Gas & volatile output 

6- Cold zone 

7- Burner 

8- Liquid collection 

9- Furnace 

 

Fig. 1. Schematic of the reactor system. 

Approximately 40g of biomass are fed to the reactor by a two-valve manual system. The 

amount of biomass is placed in the hopper and first passes through the upper valve and, 

after closing it, the lower valve is opened and it passes into the reaction zone. The 

carrier gas is first preheated by circulating vertically. The gas flow rate was 1.5 L min-1. 

In the experimental runs, industrial nitrogen (purity = 99.5%) was used. 

The temperature is controlled by a type-K thermocouple situated in the furnace and 

inside the reactor. The measurements at different positions show a maximum difference 

of 10 C between the furnace and the inner part of the reactor. 
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2.2. Thermogravimetric analysis of the torrefied samples 

TG runs were carried out in a TGA-DTA (STA PT – 1600) instrument, in which a 

sample of approximately 12 mg of torrefied material was used with a heating rate of 10 

°C min-1 from room temperature up to 750 °C in a nitrogen atmosphere. The gas flow 

rate was 150 mL min-1. The nitrogen was purged for 20 min, before starting the heat 

programme in order to establish an inert environment. 

The main thermogravimetric parameters were determined by means of the methodology 

suggested by Gronli, Várhegyi et al. 2002, who state: 

“Tonset temperature [ìs] calculated from the extrapolation of the partial peak of the 

decomposition of the hemicellulose, which marks the beginning of the active zone of 

thermodecomosition.” 

(dw/dT)peak and Tpeak are the maximum overall decomposition rates, mainly associated to 

the cellulose decomposition  and their corresponding temperature, respectively. 

Toffset is the extrapolated temperature of the (dw/dT) curve. This value marks the end of 

the cellulose decomposition. 

wpeak and w700ºC are weight fractions expressed in percentages at the temperatures of 

Tpeak and 700 ºC, respectively. 

3. Results and discussion 

3.1. Torrefaction experiments in pilot plant reactor 

3.1.1. Factors affecting bio-oil yield 

The effect of the studied factors on solid yield and increment in HHV can be observed 

in fig 2. The significant effects fall to the right on this plot. Starting on the right we see 

the largest effects. Temperature, residence time and their interaction have a significant 

effect on solid yield (Fig.  3a), with "p-value" < 0.05. On the other hand, the effect of 
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the temperature was the only statistically significant factor on increment in HHV 

(Fig.3b).   

 

 

 

a b 

  

 

Fig. 2. Half normal vs. effect plots for solid yield (a) and increment in HHV (b). 

The coded equation is useful in quantifying the relative impact of the significant factors 

by comparing the factor coefficients (eq. 1 and 2): 

𝑆𝑜𝑙𝑖𝑑 𝑦𝑖𝑒𝑙𝑑 = 69.07 − 14.89𝐴 − 3.75𝐵 + 1.99𝐴𝐵                                     (eq. 2) 

𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝐻𝐻𝑉 = 19.25 + 8.26𝐴 + 1.12𝐵 − 0.24𝐴𝐵                          (eq. 3) 

The R-squared value provided a measure of how much of the variability in the observed 

response values could be explained by the experimental factors and their interactions. 

For most studies values above 0.9 are considered a good model. This explains most of 

the variation in the response (Anderson and Whitcomb 2015). The R-Squared values for 

both response factors are shown in Table 2 with a high fit, greater than 95% in each 

case. The difference between the “Pre R-Squared” and “Adj R-Squared” values is in 
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reasonable agreement, smaller than 0.2 as suggested by Anderson and Whitcomb 

(2015). 

Table 2.  ANOVA adjustment coefficient for yield and increment in HHV 

  Solid Yield Increment in HHV 

R-Squared 0.9994 0.959 

Adj R-Squared 0.9991 0.9437 

Pred R-Squared 0.9986 0.9078 

Adeq Precision 135.91 15.39 

 

The coded model (eq. 2 and 3) was used to generate surface plots (Fig. 3) for the 

analysis of the variable effects on solid yield and increment in HHV. The interaction of 

the studied factors on the dependent variables can be observed in the 3D surface graphs.  

a B 

  

Fig. 3. 3D Surface plots of Residence Time and Temperature Interaction for the 

response variables Solid yield (a) and Increment in HHV (b). 

As can be seen, in both response factors, the temperature had an effect higher than the 

residence time. Obviously, the solid percentage decreased with a rise in torrefaction 

temperature. For torrefaction of lignocellulosic materials, this behaviour is attributed 

mainly to the decomposition of hemicellulose (Uemura, Matsumoto et al. 2015). On the 
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other hand, for torrefied biomass an increment in HHV of 14.92% and 30.31% was 

achieved to the conditions of 120 min to 250 ºC and 290 ºC, respectively.  

Decrease in the solid yield involves an increase in carbon content in the torrefied 

biomass, whereby an increase in the calorific value occurs. To explain this point, a chart 

of HHV vs. solid yield was created as shown in Fig. 4. These two variables show a good 

linear relationship with R-squared equal to 0.92.  

 

Fig. 4. HHV vs. Solid yield. 

3.2. Chemical-physic characterization of torrefied biomass 

In order to characterise the torrefied material obtained and be able to compare the values 

with the untreated material, the elemental analysis of the samples was determined. Table 

3 shows the values. 

Table 3. Elemental analysis of the D. cinerea and torrefied material 

Samples 
C H N O 

(%) daf 

D. cinerea* 51.16 6.34 0.82 41.69 

250(60) 56.41 6.71 1.74 35.14 

250(120) 55.57 6.38 1.70 36.36 
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290(60) 66.09 6.09 2.04 25.78 

290(120) 67.51 5.69 2.02 24.79 

Note: daf (dry ash free basis). *(Abreu, Foppa et al. 2010) 

 

For the experimental conditions of higher temperature, the nitrogen and carbon 

percentage in the solid product increased, whilst the content of oxygen and hydrogen 

diminished. The results are in correspondence with those reported to biochar obtained at 

different temperatures for pine, poplar and willow sawdust (Calvelo Pereira, Kaal et al.). 

This behaviour in the variations of oxygen and hydrogen contents can be explained by 

the fact that at this temperature, one part reacts to form water, which can be up to 70%  

of the composition of the gases released (Tumuluru, Sokhansanj et al. 2010). 

The change in elemental analysis values from biomass to coal can be displayed using a 

diagram developed by Van Krevelen (1993). Fig. 6 shows the change in the atomic 

ratios H/C and O/C from D. cinerea to torrefied biomass, peat, lignite, and coal. As can 

be observed in this figure, the D. cinerea contains higher H:C and O:C ratios compared 

to other materials.  

There is a tendency of the torrefied material to become similar to coal with regard to its 

elemental composition, in proportion to temperature increase. So, for the experiments 

carried out at 290oC, the elemental composition of treated biomass possesses 

characteristics that are halfway between lignite and peat, with an advantage over the 

latter whose humidity values are lower. This therefore provides certain energetic 

benefits. 
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Fig. 5. Van Krevelen diagram for the D. cinerea and torrefied biomass, peat (Cummins, 

McDonnell et al. 2006), lignite (Pipatmanomai, Fungtammasan et al. 2009) and coal 

(Schaffel, Mancini et al. 2009) at different conditions. 

Meanwhile, in fig. 3 it is observed that the biomass loses more oxygen and hydrogen 

than carbon. The main consequence of this phenomenon is the rise of the calorific 

capacity from 7.8 to 27.3% of their values regarding the untreated biomass. The HHV’s 

for 290(60) and 290(120) are higher than that of peat (22.94 MJ kg-1), similar to that of 

lignite (24.63 MJ kg-1) but lower than that of coal (33.8 MJ kg-1). HHV’s for the coal, 

lignite and peat were estimated by the Channiwala method (1992). The elemental 

analysis was reported by Cummins et al. (2006), Pipatmanomai et al.  (2009) and 

Schaffe et al. (2009), respectively. 

Simultaneously, in the torrefaction process, the biomass is dried, so the humidity 

content of the torrefied product is generally too small (around 3.5%) and also has 

hydrophobic properties. The main explanation for this new trait is that during the 
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dehydration reactions, the OH groups of the biomass are destroyed, and the torrefied 

product loses its capacity for forming hydrogen bridges with water. Similarly, other 

unsaturated structures are formed in the process, which are non-polar and hydrophobic 

to a certain extent. At the same time, given this new characteristic, a new more stable 

material is formed, which can be preserved for longer periods with few variations in its 

traits (Sadaka and Negi 2009). 

3.3. Thermogravimetric characterisation of torrefied biomass 

The torrefied materials were submitted to a thermogravimetric study in an inert 

atmosphere and their main devolatilisation characteristics were determined with the 

objective of understanding the decomposition process of the new materials obtained 

regarding the original biomass. The main mass loss process occurred in the range of 220 

to 550 oC, with peaks of maximum devolatilisation rate between approximately 270 and 

350 oC. This is mainly attributed to the decomposition of hemicellulose, cellulose and 

lignin (Yang, Yan et al. 2007). Table 4 shows the results of the main thermogravimetric 

characteristics according to Gronli, Várhegyi et al. (2002) for the D. cinerea and 

torrefied material at 250 and 290 oC. 

Table 4.  Main characteristics of the devolatilisation of untreated and treated D. cinerea 

at a heating rate of 10 oC min-1 

 

Tonset Tpeak (dw/dT) peak wpeak w700ºC 

Material (oC) (oC) ( oC-1) (%) (%) 

D.cinerea 229 332 -0.0080 62.3 26.2 

250(60) 265 346 -0.0080 68.8 27.2 

290(60) 290 336 -0.0048 85.8 41.1 

 

As expected, the initial temperature of degradation (Tonset) is higher for torrefied 

materials and its value is close to the temperature of those previously treated, because at 

lower temperatures a part of the original biomass has been devolatilised. The 
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temperature value where the maximum conversion values are obtained (Tpeak) does not 

vary significantly for the three materials. For the treated biomass at 250 oC the variation 

of the value of (dw/dT) peak is lower than that of the material that has been exposed to 

more severe temperature conditions, as compared to D. cinerea. The conversion 

percentages obtained are inversely proportional to the torrefaction temperature, which is 

explained by the fact that a part of the volatile material was already degraded in such a 

process. 
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Fig. 6. DTG-TG curves of untreated and treated D. cinerea obtained at 250 y 290 oC by 

60 min, at heating rate 10 oC min-1 inert atmosphere. 

As previously mentioned, the degradation process of the lignocellulosic materials is 

characterised by presenting three zones or peaks of decomposition, which are generally 

identified with their main pseudo-components hemicellulose, cellulose and lignin in that 

order (Caballero, Conesa et al. 1997, Orfão, Antunes et al. 1999, Gronli, Várhegyi et al. 

2002, Yang, Yan et al. 2007). The peaks attributed to the pseudo-components can be 
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observed in Fig. 6 for the DTG curve corresponding to D. cinerea. However, the 

devolatilisation curves of the torrefied materials are shown in the same figure, whose 

characteristic is the absence of the first decomposition peak present in the degradation 

of the untreated biomass. This suggests that at the temperatures at which the materials 

have been exposed, a great part of the hemicellulose present in D. cinerea has reacted 

(Yang, Yan et al. 2007). Furthermore, a slight increase in the range of the second 

conversion zone is noticed for the material obtained at 250 oC, presumably because the 

torrefaction temperature has only modified the structure of cellulose and lignin to a 

lower extent. On the other hand,  for the torrefied biomass at 290 oC, the change of the 

second and third degradation zones is noticeable, mainly for the peak associated to 

lignin, where a higher reactivity of can be appreciated. The increase in the third peak 

can be attributed to a higher decomposition reactivity of the lignin as a consequence of 

modifications to its molecular structure and the thermo-decomposition of the carbon 

material formed from the thermo-decomposition mainly of hemicellulose in the 

torrefaction process at 290 oC. 

4. Conclusions 

According to the results obtained in design of experiment 22, it was concluded that the 

temperature, reaction time and their interaction were significant but the highest effect 

was associated to temperature on solid percentage in the torrefaction process. 

Meanwhile, the temperature factor only had a significant effect when the increment of 

HHV as a dependent variable was considered. A good linear relationship between the 

analyse variables was found. In the results of the elemental analysis performance on the 

torrefied product, it was appreciated that the   most diminished element was oxygen. 

This brings about an increase in energy density. Thermogravimetric characterisation and 
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DTG – TG curves of the torrefied material suggest that the pre-treated material has been 

modified chemically and structurally. 
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