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ABSTRACT 

In this work, we have theoretically studied the electronic properties of a large series of 1,4-

bis(phenylethynyl)benzene derivatives, with the chemical formula Y–C≡C–X–C≡C–Y, being X and Y 

aromatic rings and chosen to act as donor and acceptor moieties. Employing state-of-the-art DFT 

calculations, we have analyzed a set of relevant electronic properties related to the optoelectronic and 

semiconductor character of these systems, namely molecular and energy levels, electron affinity, ionization 

potential, reorganization energy and electronic coupling between neighboring molecules forming dimers, 

obtained after evaluation of binging energy landscapes. The latter energy magnitude needed to disclose 

first the favoured intermolecular interactions (i.e. the lowest binding energy) to concomitantly estimate the 

charge transport rates next. The systematic screening performed allowed us to anticipate the possible use 

of some of these derivatives as p-type, n-type or even ambipolar organic molecular semiconductors.   
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INTRODUCTION 

Conjugated rod-like (i.e quasi one-dimensional) molecules have been widely studied for their use 

in the development of molecular electronic devices such as wires, switches or insulators.1 One of the most 

suscessful candidates is the family of organic compouds derived from 1,4-bis(phenylethynyl)benzene 

(BPEB), which could thus be employed in the field of molecular electronics due to their good luminescence 

and efficient charge transport properties.2-5 These compounds show interesting electronic properties related, 

in part, to the axial symmetry of ethynylene groups, which allow to fine-tune the degree of conjugation 

between adjacent aryl groups at different relative orientations thank to rotational barriers as small as 1 kcal 

mol-1 between the end moieties.4-9 In the last years, different electron-withdrawing and electron-donating 

aromatic rings have been incorporated within the generic BPEB structure to modify their light-emitting 

properties, and improve charge injection and transport efficiency concomitantly.10-20 Moreover, the effect of 

the ethynylene group on electronic properties have also been studied extensively by means of Density 

Functional Theory (DFT) calculations.7,8,21 The information derived from these calculations can be useful to 

guide the chemical synthesis of new BPEB derivatives. 

With this background in mind, the aim of this work is to obtain new insights into the electronic 

properties of BPEB derivatives. To this extent, a set of key energy magnitudes related to semiconducting 

properties were calculated for a very large set of (x100) BPEB derivatives. Diverse electron-withdrawing 

(acceptor, A) and electron-donating (donor, D) aromatic rings were combined to generate a large set of 

compounds connected by a ethylylene moiety, with a generic formula Y–C≡C–X–C≡C–Y, being X and Y 

aromatic rings collected in Chart 1. The internal triple bonds in organic systems such as small compounds 

or polymers, has been widely used to extend the conjugation and hence make more rigid backbones for 

pronounced intrachain interactions. This strategy has been widely employed for instance to design low band 

gap polymers for solar cell applications.22 Therefore, in orden to obtain the most suitable compounds for 

optoelectronic applications, we have selected as central moiety both π-electron defficient rings, such as 

thiazolo[5,4-d]thiazole (2 compounds), s-tetrazine (3 derivetives) and pyridine (4 derivatives), or electron-

donor rings such as thieno[3,2-b]thiophene (1 derivatives) or benzene ring (5 compounds), which have been 

widely used in other opto-electronic devices.23 These groups will be combined with some π-excedent 

heterocycles such as pyrrole, furan or thiophene, some fluorene and carbazole derivatives, and finally 

anthracene and phenanthrene derivatives. To achieve this goal, we present first the theoretical methodology 

to be employed, considering the trade-off between the accuracy of the results and their computational cost, 

and we will show next the study of their semiconductor properties, by changing the D and A groups, thus 

attempting to set up their promising role in the fabrication of devices, acting as p-type, n-type and, possibly, 

as ambipolar semiconducting active materials. 
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1N 2N 3N 4N 5N 

 

1O 2O 3O 4O 5O 

 

1P 2P 3P 4P 5P 

 

1Q 2Q 3Q 4Q 5Q 

 

1R 2R 3R 4R 5R 

 

1S 2S 3S 4S 5S 

 

1T 2T 3T 4T 5T 

Chart 1. Selected BPEB derivatives for this study, showing the bonding pattern, and the notation followed. 

 

II. THEORETICAL FRAMEWORK 

The performance of optoelectronic devices greatly depends on an efficient charge injection and an 

associated high mobility. In typical π-conjugated organic (crystalline) materials with small bandwidths (<< 1 

eV) at room temperature, and strong electron−phonon coupling, charge motion is generally described by a 

hopping mechanism, allowing the self-migration of the charge carriers along the lattice.24-27 The 

corresponding charge transfer rate can be calculated through the Marcus−Levich−Jortner (MLJ) model27-29 

𝑘𝐶𝑇 =    𝑡12
2 √

𝜋

ħ2𝑘𝐵𝑇𝜆e
∑ {𝑒𝑥𝑝(−𝑆𝑒𝑓𝑓)

(𝑆𝑒𝑓𝑓)
𝑛

𝑛!
 𝑒𝑥𝑝 [

−(𝜆e+𝑣ħ𝜔𝑒𝑓𝑓+Δ𝐺0)
2

4𝜆e𝑘𝐵𝑇
]}∞

𝑛=0   (1) 

where kB and ℏ are Boltzmann and Planck constants, respectively; T is the temperature, fixed in the present 

work at 300 K; ΔG0 is the free energy difference between the electronic states involved in the charge transfer 

process (equal to zero for an ideal self-exchange process); while λe and t12 correspond with the classical 

contribution (mostly external) to the reorganization energy21,30-32 and the charge transfer integral, 

respectively.  

In the MLJ model, we assume that the reorganization energy, λ, can be calculated as sum of two 

different contributions: the external, λe, and internal, λi, terms, (λ = λi + λe). The normal modes responsible 

for the λe are typically very low frequency modes (ℏωeff << kBT) which can be treated classically.27,33 
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Furthermore, in organic molecular crystals, the outer contribution, λe, is of the order of one tenth of eV,33,34  

contrary to charge transfer in solution, wherein higher values are expected.27,33,35-38 Different values for λe, 

ranging between 0.01 and 0.2 eV, have been proposed and employed in the literature so far.33,39-41 In that 

sense, we prefer to keep that values fixed here at 0.1 eV in order to facilitate the comparison with previous 

rate constants reported before for related compounds.21,30-32 Conversely, the intramolecular high frequency 

vibrational modes responsible for λi are typically quantum modes (ℏωeff >> kBT, where ωeff incorporates, in 

an average way, the effects of all these modes, and it is calculated as 𝜔𝑒𝑓𝑓 =  
∑ 𝜔𝑖𝑆𝑖𝑖

∑ 𝑆𝑖𝑖
, being ωi the 

corresponding vibrational frequency and Si represents the Huang-Rhys factor for i mode). Note that Seff is 

the effective Huang-Rhys factor, which is a measure of the electron-vibrational coupling (calculated as Seff 

= λi/ħωeff).37,42-44 In this work, ℏωeff has been fixed at 0.2 eV, which corresponds to the typical energy of C−C 

and C=C stretching modes.41,45,46 With this approximation, kCT is correspondingly treated at the quantum-

mechanical level via the effective Huang-Rhys factor.44,47,48  

Notwithstanding some limitations inherent to the MLJ model due to the approximations used in the 

determination of kCT, such as t12 << λ, there are two energy magnitudes controlling, from a semiquantitative 

point of view, the charge transport in organic compounds, being both the reorganization energy and the 

charge transfer integral. As mentioned above, the reorganization energy can be divided in two contributions: 

the internal one (which includes only the reorganization energy of the molecules involved in the charge 

transfer) and the external one (which accounts for any environmental relaxation and changes upon charge 

hopping) which is fixed at 0.1 eV. The internal reorganization energy, λi, consists of two terms corresponding 

to the geometry relaxation energies upon going from the neutral-state geometry to the charged state and 

vice versa (also known as Nelsen’s four-point method)49,50  

λi = λ1 + λ2      (2) 

λ1 = E0(G*) – E0(G0)     (3) 

λ2 = E*(G0) – E*(G*)     (4) 

where E0(G0) and E*(G*) are the ground-state energies of the neutral and ionic states, respectively; E0(G*) 

is the energy of the neutral molecule at the optimized ionic geometry and E*(G0) is the energy of the charged 

molecule at the optimized neutral geometry.26,27,37 

The charge-transfer integral, t12, reflects the strength of the electronic coupling between 

neighboring molecules, and therefore critically depends on their relative spatial arrangement and is defined 

by the matrix element 

𝑡12 =  〈𝜓1|Ĥ|𝜓2〉    (5) 

where Ĥ is the electronic Hamiltonian of the whole system and ψ1 and ψ2 are the wavefunctions of both 

initial and final charge localized states.25,26,38 The charge transfer integral has been calculated within the 

fragment approach at the DFT level implemented in the Amsterdam Density Functional (ADF) package.51 In 

this approach, the orbitals of the dimer are expressed as a linear combination of the molecular orbitals (MOs) 

of the individual units, i.e. fragments that are obtained solving the Kohn-Sham equations. Since the fragment 
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orbitals form a non-orthogonal basis set, the corresponding transfer integral depends on the choice of the 

energy origin so that the transfer integral is no longer an invariant. The problem is solved by applying a 

Löwdin transformation to the initial electronic Hamiltonian and the charge transfer integral t12 is finally 

obtained by  

𝑡12 =
𝑡12̃ −

1

2
(𝜀1+ 𝜀2)𝑆12

1− 𝑆12
2        (6) 

where 𝑡̃12, εi and S12 are the transfer integral (〈𝜓1|Ĥ|𝜓2〉), the site energies (〈𝜓𝑖|Ĥ|𝜓𝑖〉) and the overlap 

matrix element (〈𝜓1|𝜓2〉) defined in the non-orthogonal basis set.21  

Once kCT has been calculated, it is possible to estimate the charge hopping mobility, µhop, through 

the Einstein-Smoluchowski relationship. The homogeneous charge diffusion coefficient, D, can be 

previously calculated assuming an n-dimensional and spatially isotropic system as  

𝐷 =  
1

2𝑛
 lim
𝑡 → ∞ 

〈𝑟2〉

𝑡
 ≈  

1

2𝑛
 ∑ 𝑟𝑖

2
𝑖 𝑘𝑖𝑝𝑖     (7) 

where n is the number of dimensions taking account (in that case, only one dimension will be considered 

hereafter) and i runs over all nearest adjacent molecules, whereas ri and ki are the corresponding center-to-

center hopping distance and the electron-transfer rate constant respectively. Finally, pi (𝑝𝑖 =  
𝑘𝑖

∑ 𝑘𝑖𝑖
) is the 

hopping probability,25,52-54 which will be set here to pi = 1 in all cases. Since the crystal structure of the studied 

molecules remains unknown, we will only focus on the study of the charge transport along an ideal one-

dimensional array of molecules with intermolecular distance r (n = 1, pi = 1) and, hence, eq. (7) can be 

simplified to D = (1/2) r2 kCT. In short, in the zero field limit, the charge carrier mobility can be obtained as 

easily as follows:  

    𝜇ℎ𝑜𝑝 =  
𝑒𝐷

𝑘𝐵𝑇
=

𝑒𝑟2𝑘𝐶𝑇

2𝑘𝐵𝑇
    (8) 

where e is now the elementary charge.25,52-54 

Concerning the process of charge injection from an electrode to the organic semiconductor, two 

molecular descriptors are commonly used to evaluate the efficiency of this process: (i) the energy difference 

between the Highest Occupied (HO)MO or Lowest Unoccupied (LU)MO energy levels (EHOMO/ELUMO) of the 

organic semiconductor and the work function (Φm) of the electrode, and (ii) the molecular ionization 

potential/electron affinity (IP/EA). The metal-semiconductor interface is usually treated as a Mott-Schottky 

barrier, where the barrier height is given by the difference between Φm and the semiconductor HOMO or 

LUMO energy level.35,55,56 However, neglecting necessarily interface dipole effects between electrode and 

semiconductor,33,57 we will always compare Φm with EHOMO/ELUMO energy levels of the semiconductor, to find 

out the likeliness of charge injection and the magnitude of the contact resistance. Moreover, the values of 

EHOMO (ELUMO) must range between -4.8 eV and -5.5 eV (-3.6 eV and -4.5 eV) to ensure and enhance the 

stability of the optoelectronic device.37 On the other hand, IP and EA are also key parameters to predict the 

efficiency of the injection of charges from the electrodes as well as the ease to be reduced or oxidized upon 

air exposure.58 There is a general agreement that materials showing low IP and low AE may act as p-type 

semiconductors, while systems with high EA and high IP may behave as electron-acceptor compounds.59 
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Moreover, it is widely accepted that EA of a semiconductor should be at least 3.0 eV to allow easy electron 

injection, but lower than 4.0 eV because of the negative charges can react with atmospheric oxidants such 

as water or oxygen.35,60-62 However, its stability in ambient conditions could be compromised by other factors 

such as the crystal packing and film morphology.35,63-65 Low IPs facilitate hole injection but too low values 

can produce unintentional doping. The adiabatic and vertical ionization potentials (AIP/VIP) and electron 

affinities (AEA/VEA) were calculated as follows for cationic state 

AIP = E0(G0) − E*(G*)    (9) 

VIP = AIP + λ2     (10) 

and for the anionic state 

AEA = E0(G0) − E*(G*)    (11) 

VEA = AEA + λ2     (12) 

where E0(G0), E*(G*), and λ2 are the same quantities appearing in eqs 3 and 4.  

 

III. COMPUTATIONAL DETAILS 

The B3LYP functional — implemented in Gaussian09 (Revision D.01)66 — along with the basis set 

6-31+G* — especially recommended in calculations involving ionic species67 — was employed to optimize 

the geometry of all the selected compounds and estimate the different energies (EHOMO / ELUMO, IP / EA and 

λi). The nature of the minima was confirmed by means of the eigenvalues (all positive) of the corresponding 

Hessian matrices. Although Koopmans’ theorem is not rigorously applicable to Kohn−Sham orbital energies, 

Perdew proved a connection between IP (EA) and HOMO (LUMO) energy values through Janak’s theorem 

(see, e.g., refs [67] to [69]) and references therein). In this sense, B3LYP has been proven to be accurate 

enough for predicting EAs70,71 and provides theoretical λ values in good quantitative agreement with the 

experimental values obtained from gas-phase ultraviolet photoelectron spectroscopy.72 Note that Zhang and 

Musgrave have also reported lower errors in the LUMO energy of small organic molecules with this method 

compared to other expressions with a higher percentage of exact-like exchange.73 In addition, M06-2X74 

functional and HF75 method, along with B3LYP, were employed to study symmetry-broken effects in ionic 

states. 

 To calculate t12 when the supramolecular structure of an organic crystal is unknown, we suppose 

a π-stacked arrangement since this geometrical arrangement is typically observed in BPEB 

derivatives.5,6,16,17,21 Consequently, to predict the most favorable orientation of molecules within the stack, 

we monitored the binding energy (Eb) as a function of the relative (x,y)-displacement for a dimer built from 

two molecules keeping face-to-face planes and maintaining fixed the 3.5 Å distance along the z-axis, which 

corresponds to a typical π-stacking distance76 (see Figure 1). Binding energy was calculated for each dimer 

as the energy difference between the dimer and the isolated monomers. Accordingly, while the position of 

one of the molecules has been kept fixed, the second one was displaced along x- and y-axes in a grid of 

1.0 Å in both directions (see Figure 1). The M06-2X functional,74 together with the basis set 6-31G*, has 

been used for the calculation of the binding energy. It should be noted that although traditional DFT 
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functionals perform poorly for non-covalent interactions, this functional has been shown to give reasonably 

accurate stacking geometries for a variety of dispersion dominated systems, such as perylenediimides and 

quaterthiophenes,77,78 DNA base pairs71 and some s-tetrazine derivatives,21 with the calculated binding 

energy yielding to similar results to those obtained with other (dispersion-corrected) functionals such as 

PBE0-dDsC/def2-SVP.78 Finally, t12 has been calculated by using the ADF package with the LDA functional 

and the DZ basis set.  

 

 

Figure 1. Example of a representative (4H) dimer in the position x = 0.0, y = 0.0, and z = 3.5 Å, where (x,y,z) 

is the relative displacement between the central ring units along the long (x) and short (y) molecular axes 

and the π-stacking direction (z), respectively.  

 

IV. RESULTS AND DISCUSSION 

 

Charge Injection Properties.  

The charge injection barrier has been defined as the difference between the energy of the frontier 

orbital (HOMO and LUMO) and the work function (Φm) of the metal injecting the charge (hole or electron) 

into the organic layers, and the ionization potential (IP) or electron affinity (EA), depending on the nature of 

the semiconductor, i.e., p-type or n-type semiconductor.33,57 To obtain a complete description of this behavior 

due to the interactions between the metal/organic interface, we should take into account the effect of the 

dipoles derived from either partial charge-transfer metal-semiconductor, the reduction of the Φm by the 

organic layer, or the occupation of the metal-induced density of states in the gap of the organic material.80,81 

However, the comparison between the free metal work function and the (gas-phase) HOMO (LUMO) energy 

levels could give us a qualitative guide for the hole (electron) barrier injection, and may let us to establish 

trends within a set of closely related compounds.21,30-32,46  

Figure 2 shows the shape of HOMO and LUMO orbitals for some selected compounds (for other 

compounds, see Figure S1 in the Electronic Supporting Material, ESI), while Table 1 gathers the energy 

values for HOMO and LUMO orbitals and the corresponding energy difference ΔELUMO-HOMO, respectively. 

Due to the large variety of compounds studied, there are a wide range of energy values for HOMO and 

y

z

x
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LUMO orbitals. The energy values range from -4.28 eV to -6.86 eV for HOMO orbital, and -1.47 to -3.99 eV 

for LUMO orbital. Obviously, these values are comparable to other state-of-the-art molecules such as 

tetracene (-2.09 and -4.87 eV), pentacene (-2.40 and -4.61 eV) or rubrene (-2.09 and -4.69 eV) (see 

reference [82] and references therein) calculated at B3LYP/6-31G** level, or some halogenated rubicene 

derivatives or dibenzorubicene.46  

 

 

Figure 2. Isocontour plots (0.02 au) and energy values of HOMO and LUMO orbitals for 1P, 3P, 4P and 5P 

compounds, calculated at the B3LYP/6-31+G* level, and the work function of the most commonly used 

electrodes in optoelectronic devices.  

 

Regarding electron injection and the possible behavior of these compounds as n-type organic 

semiconductor, a good ohmic contact is generally expected when |Φm − ELUMO| < 0.3 eV.25 In general, all 

compounds, except 5A, 5I, 5J and 5K, satisfy the condition of an ohmic contact with one of the typically 

used electrodes, such as cesium (Cs, Φm = -2.1 eV), sodium (Na, Φm = -2.6 eV), calcium (Ca, Φm = -2.9 

eV), magnesium (Mg, Φm = -3.7 eV) or aluminum (Al, Φm = -4.3 eV). 35,83 However, only the molecules with 

a thieno[2,3-f][1]benzothiophene-4,8-dione substituent (P) in Y-position satisfy the range of accepted energy 

values for LUMO orbital in order to improve the stability of optoelectronic devices.37 These compounds, with 

the P substituent in Y-position, show the lowest ELUMO values (from -3.7 to -4.0 eV) and an ohmic contact 

could be possibly formed with Mg electrodes (Φm = -3.7 eV).35,83 Considering the substituent in X-position, 

low ELUMO values (≤ -3.0 eV) were, in general, calculated for s-tetrazine derivatives 

(3C/3G/3H/3M/3N/3O/3P/3R). Consequently, the lowest ELUMO value was observed for the compound 

involving both previously mentioned rings, i.e. 3P. 

In the case of hole injection, all compounds satisfy the ohmic contact condition, i.e. |Φm – EHOMO| ≤ 

0.3 eV, with some of the traditional cathode electrodes, such as Indium Tin Oxide (ITO, Φm = -4.7 eV),84 

gold electrode (Au, Φm = -5.1 eV),83,84  or some metal oxides such as WO3 (Φm = -6.8 eV), MoO3 (Φm = -6.8 

eV), NiO (Φm = -6.3 eV), CuO (Φm = -5.9 eV) or MoO2 (Φm = -5.9 eV).85,86 We have found that the highest 
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EHOMO values were generally observed for the compounds which incorporate I, L, and, especially S and T 

substituents in Y-position, where energy values EHOMO ≥ -4.9 eV were obtained for all the I, S and T 

derivatives, along with the compounds 1L and 5L, being 5S the compound with highest EHOMO (EHOMO = -4.28 

eV). On the other hand, the lower energy values for the HOMO orbital have been obtained for compounds 

with s-tetrazine in X-position, which range from -4.5 eV (for 3S) to -6.9 eV (for 3P). These values are similar 

to some halogenated ethynylene-s-tetrazine derivatives studied previously, with EHOMO values in the -6.22 

eV to -7.12 eV range.21 

Despite the fact that ITO and Au electrodes are typically employed in ambipolar devices, the HOMO 

and LUMO energy values are not sufficiently well-balanced for both electron and hole charge injection, with 

the majority of the studied molecules herein. A more optimal charge injection would be obtained with a 

narrower band gap (ΔELUMO-HOMO), which in turn would suggest their potential use in ambipolar devices. 

However, the calculated ΔELUMO-HOMO does not seem to guarantee that both ohmic hole and electron injection 

could be produced with the same electrode. Only in the case of compounds with S and T moieties in Y-

positions, with ΔELUMO-HOMO ≤ 2.0 eV (see Table 1), it is possible to predict a certain ambipolar character. 

Interestingly, the shapes of LUMOs showed in Figures 2 and S1 suggest that symmetry-broken 

effects could occur in the anionic state of some compounds such as the combinations of 1 and 5 rings with 

P, S and T substituents. Some of them could be mixed-valence compounds, containing two redox centers 

in different oxidation states. Nevertheless, this effect could not be observed due to an overestimation of the 

charge delocalization in B3LYP calculations.87,88 For this reason, the anionic state of a model compound 

(1S) was investigated combining the hybrid functionals B3LYP (20% HF exchange) and M06-2X (54% HF 

exchange), and the HF method. Figure 3 shows the symmetry-broken geometry calculated for 1S at the 

HF/6-31+G* level in which the charge excess is localized in a part of the molecule. On the contrary, α-SOMO 

(single occupied molecular orbital) is spread out over both sides of the molecule in the geometries calculated 

with DFT functionals (please, consult the references [87,88] for a more detailed study on this effect). The 

symmetry-broken effect were not observed for the cationic state of 1S.  

 

 

 

 

 

 LUMO α-SOMO β-SOMO 

B3LYP 

   

M06-2X 
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HF 
   

Figure 3. Isocontour plots (0.02 au) of LUMO and SOMO orbitals calculated for compound 1S in neutral 

and anionic sates at the B3LYP/6-31+G*, M06-2X/6-31+G* and HF/6-31+G* levels of theory. 
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Table 1. Energy values for HOMO and LUMO orbitals and their difference ΔELUMO-HOMO (in eV) for all the studied compounds, calculated at B3LYP/6-31+G* level.  

 EHOMO 
/ eV 

ELUMO 
/ eV 

ΔELUMO-

HOMO / 
eV 

  EHOMO 
/ eV 

ELUMO 
/ eV 

ΔELUMO-

HOMO / 
eV 

  EHOMO 
/ eV 

ELUMO 
/ eV 

ΔELUMO-

HOMO / 
eV 

  EHOMO 
/ eV 

ELUMO 
/ eV 

ΔELUMO-

HOMO / 
eV 

  EHOMO 
/ eV 

ELUMO 
/ eV 

ΔELUMO-

HOMO / 
eV 

1A -5.056 -2.011 3.046  2A -5.394 -2.401 2.992  3A -5.830 -2.780 3.050  4A -5.472 -2.259 3.212  5A -5.195 -1.755 3.440 
1B -5.348 -2.293 3.055  2B -5.710 -2.691 3.020  3B -6.247 -2.991 3.256  4B -5.850 -2.567 3.283  5B -5.539 -2.081 3.457 
1C -5.363 -2.368 2.995  2C -5.722 -2.737 2.985  3C -6.276 -3.011 3.265  4C -5.880 -2.618 3.263  5C -5.574 -2.185 3.388 
2D -5.260 -2.291 2.968  2D -5.571 -2.623 2.948  3D -5.975 -2.862 3.113  4D -5.687 -2.505 3.181  5D -5.441 -2.120 3.320 
1E -5.233 -2.247 2.986  2E -5.542 -2.580 2.962  3E -5.944 -2.820 3.124  4E -5.655 -2.459 3.196  5E -5.412 -2.070 3.342 
1F -5.401 -2.416 2.986  2F -5.727 -2.746 2.981  3F -6.185 -2.995 3.189  4F -5.874 -2.639 3.235  5F -5.610 -2.259 3.352 
1G -5.420 -2.429 2.991  2G -5.744 -2.755 2.989  3G -6.208 -3.005 3.203  4G -5.898 -2.651 3.247  5G -5.634 -2.273 3.361 
1H -5.120 -2.664 2.456  2H -5.343 -2.909 2.434  3H -5.564 -3.095 2.469  4H -5.374 -2.825 2.549  5H -5.216 -2.571 2.645 
1I -4.930 -1.935 2.994  2I -4.827 -1.966 2.861  3I -4.963 -2.550 2.412  4I -4.784 -1.819 2.965  5I -4.529 -1.360 3.169 
1J -5.332 -2.132 3.200  2J -5.113 -2.142 2.971  3J -5.367 -2.771 2.596  4J -5.126 -2.028 3.098  5J -4.939 -1.547 3.391 
1K -5.561 -2.061 3.500  2K -5.324 -2.148 3.176  3K -5.573 -2.758 2.815  4K -5.334 -1.992 3.342  5K -5.107 -1.464 3.643 
1L -4.868 -2.217 2.652  2L -5.074 -2.553 2.522  3L -5.231 -2.784 2.447  4L -5.058 -2.437 2.621  5L -4.907 -2.022 2.884 
1M -5.343 -2.572 2.771  2M -5.613 -2.907 2.706  3M -5.927 -3.171 2.756  4M -5.680 -2.810 2.870  5M -5.474 -2.415 3.058 
1N -5.361 -2.603 2.759  2N -5.619 -2.916 2.704  3N -5.882 -3.162 2.720  4N -5.679 -2.823 2.857  5N -5.495 -2.464 3.031 
1O -5.154 -2.484 2.670  2O -5.355 -2.789 2.566  3O -5.502 -3.022 2.480  4O -5.356 -2.691 2.665  5O -5.219 -2.342 2.877 
1P -5.931 -3.711 2.220  2P -6.263 -3.856 2.407  3P -6.863 -3.993 2.870  4P -6.493 -3.827 2.666  5P -6.203 -3.697 2.506 
1Qa -5.394 -2.366 3.028  2Q -5.725 -2.701 3.024  3Q -6.193 -2.949 3.244  4Q -5.875 -2.585 3.291  5Q -5.611 -2.202 3.410 
1R -5.653 -2.645 3.008  2R -6.005 -2.962 3.043  3R -6.603 -3.227 3.376  4R -6.227 -2.869 3.358  5R -5.926 -2.515 3.411 
1S -4.307 -2.303 2.004  2S -4.446 -2.473 1.974  3S -4.518 -2.669 1.849  4S -4.388 -2.383 2.005  5S -4.280 -2.253 2.027 
1T -4.501 -2.492 2.009  2T -4.621 -2.692 1.929  3T -4.687 -2.894 1.793  4T -4.575 -2.605 1.970  5T -4.480 -2.442 2.038 

a The optimization of this compound has been carried out after fixing the opt=loose convergence thresholds.  
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We analyze now EA (the energy released when one electron is added to the system in the gaseous 

state) and IP (the energy released when one electron is removed to the system in gaseous state) descriptors 

for the charge injection efficiency. Table 2 collects both, adiabatic and vertical, EAs and IPs obtained for 

some chosen compounds (the complete set of values in shown in Table S1 of ESI). We must remark that in 

order to efficiently inject an electron into the LUMO orbital, the EA must be high enough to ensure the 

efficient charge injection and improve the environmental stability of the material; while IP must be low 

enough to allow an efficient hole injection into the HOMO orbital. Taking into account that the difference 

between the vertical and adiabatic values is small, this result indicates that the relaxation upon charge 

injection is too small. Studying the EA values as a function of substituents in Y-positions, the compounds 

incorporating the substituent P in this position generally showed highlighted values of EA, in consistency 

with the calculated ELUMO values. For instance, the AEAs estimated for 2P, 4P and, especially, 3P are within 

the 3.0 − 4.0 eV range proposed by Newman et al. for n-type organic semiconductors.35 Taking into account 

the central moiety, i.e. the ring in X-position, we have observed that the compounds with s-tetrazine 

(compounds 3) in their formulations show the highest values of EAs. On the other hand, the lowest AIP 

values (≤ 5.5 eV) have been calculated for 2,9-dihydropyrano[3,2-h]chromene (S) and 2,9-

dihydrothiopyrano[3,2-h]thiochromene (T) derivatives as well as for the compound 1I. Regarding the 

substituent in Y-position, the lowest AIPs were normally obtained for the compounds which having a 

thieno[3,2-b]thiophene (1) ring, more precisely the 1S. 

Once the values of ELUMO (EHOMO) and AEA (AIP) were analyzed in great detail, we can conclude 

that the most favorable electron (hole) charge injection could be expected for the compounds with P (I, S 

and T) moiety (moieties) in its (their) structure(s), being 3P (1S) the most favorable. However, a favorable 

electron injection cannot be discarded for some compounds having a s-tetrazine ring in X-position such as 

3M/3N/3R and, again, 3P. 

 

Charge Transport Properties. As previously stated, the charge mobility depends on two key properties, 

i.e. the reorganization energy and the electronic coupling. Table 2 gathers also the internal reorganization 

energies (λi) values for the studied compounds, for which one of the reorganization energy (electron or hole) 

satisfy the imposed condition of λi ≤ 0.15 eV (all values are collected in Table S1). The set of compounds 

satisfying this condition (λi
‒ ≤ 0.15 eV) for electron transport generally include substituents H, P and T 

moieties in Y-position, obtaining the lowest for T fragment in 1 and 5 compounds, which central bodies are 

thieno[3,2-b]thiophene and benzene rings, respectively. Generally speaking, the presence of nitrogen atoms 

in the substituents of Y-position seems to have a negative effect on the reorganization energies, increasing 

them, i.e. I, J and K moieties in Y-position; while the absence of heteroatoms or the presence of atoms with 

low electronegativity such as sulfur atoms in Y-positions yield the lowest values for reorganization energy. 

In that sense, low λi
‒ values (≤ 0.15 eV) were calculated for the compounds 1H, 1P, 1T, 2P, 3H, 4H, 4T, 

5H, 5P, 5S and 5T, where 1T and 5T stand out among the rest, with values of λi
‒ = 0.12 and 0.11 eV, 

respectively. These energies are lower than those reported for typical aromatic compounds investigated as 
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n-type semiconductors such as pentacene and perfluoropentacene (0.24 and 0.13 eV, respectively, 

calculated at the B3LYP/6-31+G* level),36 arene diimides (0.22 − 0.35 eV, calculated at the B3LYP/6-

31++G** level),53 fluoroarene-oligothiophenes (0.22 − 0.34 eV, calculated at the B3LYP/6-31G** level),89 

rubrenes (0.17 − 0.42 eV, calculated at the B3LYP/6-311G** level)90 and most recently some rubicene or 

rubicene derivatives (0.12 − 0.31 eV, calculated at the B3LYP/6-31+G* level)46 or some novel 

cycloparaphenylenes (0.23 − 0.38 eV, calculated at  the B3LYP/6-31+G* level).91 The values calculated for 

λi
+ are in general smaller than their counterparts, i.e. λi

‒. For instance, values of λi
+ ≤ 0.10 eV were calculated 

for the compounds 3H, 3J, 4J and 5I, with 1T, 2T, 3N, 3T, 4H, 4T, 5H and 5T displaying also close results. 

In general, in the case of hole transport, the lowest values were obtained for H, J, T moieties in Y-position, 

and exceptionally for 5I. It should be highlighted the particularly low reorganization energies computed for 

3H/3J and 4J (≤ 0.09 eV). These energies are comparable to those reported for common p-type 

semiconductors such as pentacene (0.090 eV, calculated at the B3LYP/6-31++G** level),36 some 

tetrathiofulvenes (0.071 − 0.234 eV, calculated at the B3LYP/6-31G** level)92, oligoacenes and 

oligothiopenes (0.077 − 0.182 eV, calculated at the B3LYP/6-31G** level)93 and dibenzo-thieno-dithiophene 

(0.096 eV, calculated at the B3LYP/6-31+G* level).94 It must also be highlighted that some compounds show 

low and balanced λi
‒ and λi

+ values. For instance, in the case of that both reorganization energies are ≤ 0.16 

eV and | λi
‒ ‒ λi

+| ≤ 0.03 eV. These conditions are obtained for 1H/1T, 2H/2T, 5H/5S/5T. Compounds 1T 

and 5T show particularly low and balanced reorganization energies (λi ≤ 0.12 eV and | λi
‒ ‒ λi

+| ≤ 0.01 eV).  

 As a general summary (see Table S1 in ESI), the presence of non-fused rings in the Y-position 

(such as pyrrole, furan or thiophene) yields high values of reorganization energies, independently of the 

nature of the central rings. Studying the evolution of reorganization energy as a function of connected rings 

in Y-position, the carbazole derivatives yield reorganization energy values close to 0.2 eV for both hole and 

electron charge carriers. However, the highest values for electron reorganization energies have been 

obtained for anthracene derivatives, with λi
- ≥ 0.8 eV, except for H moiety in Y-position. This fact is related 

to the somewhat localized character of LUMOs on the central rings, despite the large number of fused rings 

of the anthracene derivatives (see Figure S1). Regarding the central ring, we have observed that λi ≤ 0.2 

eV has been mostly obtained for non-fused rings, i.e. s-tetrazine (compounds 3), pyrazine (compounds 4) 

and benzene (compounds 5), as central rings. We have noted that the introduction of ethynylene moiety in 

s-tetrazine derivatives reduces significantly the values of λi
‒, especially for furan or thiophene rings; 

however, for hole transport, this reduction is not significant.21  
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Table 2. Calculated Ionization Potential (AIP and VIP), Electron Affinity (AEA and VEA), and Reorganization 

Energy (λi
+ and λi

-) values for some selected compounds after the screening performed, where the 

reorganization energy is low or equal to 0.15 eV. All the parameters have been calculated at the B3LYP/6-

31+G* level.  

Compounds 
Holes  Electrons 

AIP (eV) VIP (eV) λi+ (eV)  AEA (eV) VEA (eV) λi- (eV) 
1H 5.986 6.058 0.148  1.820 1.748 0.149 
1P 6.843 6.957 0.230  2.886 2.812 0.148 
1S 5.150 5.209 0.119  1.536 1.459 0.172 
1T 5.319 5.370 0.106  1.733 1.677 0.116 
2H 6.208 6.279 0.150  2.047 1.974 0.159 
2J 6.025 6.094 0.147  1.492 1.055 1.022 
2O 6.174 6.246 0.148  1.944 1.834 0.223 
2P 7.165 7.296 0.268  3.033 2.956 0.154 
2S 5.298 5.357 0.124  1.739 1.634 0.252 
2T 5.442 5.498 0.111  1.933 1.858 0.162 
3D 6.876 6.947 0.146  1.863 1.772 0.181 
3E 6.844 6.918 0.152  1.821 1.728 0.186 
3F 7.100 7.174 0.151  1.997 1.902 0.190 
3G 7.104 7.178 0.153  2.021 1.926 0.188 
3H 6.491 6.534 0.088  2.157 2.088 0.137 
3J 6.339 6.374 0.071  1.662 1.268 0.793 
3L 6.151 6.209 0.122  1.783 1.693 0.179 
3N 6.776 6.830 0.113  2.205 2.113 0.187 
3O 6.377 6.439 0.125  2.085 1.986 0.199 
3Q 7.087 7.155 0.139  1.963 1.869 0.189 
3S 5.405 5.476 0.126  1.849 1.719 0.259 
3T 5.542 5.598 0.111  2.051 1.965 0.180 
4H 6.291 6.313 0.107  1.919 1.846 0.146 
4J 6.094 6.136 0.086  1.159 0.864 0.995 
4L 5.964 6.030 0.138  1.463 1.365 0.195 
4N 6.557 6.625 0.142  1.907 1.805 0.205 
4O 6.218 6.284 0.132  1.797 1.690 0.218 
4S 5.272 5.335 0.124  1.609 1.509 0.228 
4T 5.427 5.482 0.110  1.913 1.745 0.144 
5H 6.130 6.186 0.114  1.684 1.619 0.134 
5I 5.474 5.514 0.082  0.379 0.321 0.160 
5L 5.802 5.875 0.149  1.093 0.995 0.197 
5N 6.371 6.445 0.152  1.589 1.489 0.203 
5O 6.074 6.142 0.137  1.431 1.386 0.217 
5P 7.154 7.260 0.218  2.839 2.763 0.153 
5S 5.161 5.221 0.120  1.430 1.363 0.141 
5T 5.329 5.382 0.107  1.643 1.587 0.111 

 

The electronic coupling is the second key parameter to be calculated. It strongly depends on the 

electronic interactions between neighboring molecules and, in turn, on the relative solid-state spatial 

arrangement. As previously stated, the binding energy (Eb) —defined as the energy difference between the 

dimer and the isolated molecules— was calculated for different stacking dimers and plotted as a function of 

the relative (x,y)-displacement between both molecules. Then, the charge transfer integrals were computed 

for the arrangements with the lowest binding energy. Again, it should be noted that the exploration of the 

energy landscapes was performed for a set of compounds displaying low reorganization energies (i.e. the 

threshold value was established as λi ≤ 0.15 eV). Figure 4 shows the results obtained in the calculations of 
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Eb for some studied compounds (Figure S2 collects the landscape for all the studied compounds), while 

Table 3 gathers the binding energy (Eb, in eV) for all the studied compounds. It is noteworthy that the lowest 

binding energy values are observed slightly displaced from a perfectly cofacial disposition, i.e., x = y = 0 Å, 

suggesting that the interplay between attractive and repulsive non-covalent interactions dominate the 

binding energy landscape in the region. For the selected compounds, a broad minimum mostly appears for 

x- and y-displacements lower than 3 Å, expect for 3T, in which appears at x = 4 Å, being the most common 

position x = y = 1 Å and yielding values for binding energies ranging from -0.84 to -1.28 eV.  

 

a) 

 

b) 

 

c) 

 

 

d) 

 

e) 
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Figure 4. Binding energy values for a) 1H; b) 2H; c) 3H; d) 4H and e) 5H dimers as a function of the relative 

(x,y)-displacement between both interacting molecules, keeping fixed z = 3.5 Å 

 

 Table 3 also shows the calculated t12 values for the arrangements with the lowest binding energies, 

for both hole and electron charge carriers, with results ranging from 9 to 149 meV (12 to 149 meV) for holes 

(electrons). In both cases, and due to their large range, the obtained values are close to the some previous 

estimates for hole transfer such as dimethylquaterthiophene (20 meV, calculated at the B3LYP/6-31G* 

level),95 tetrafluootetracyanoquinodimethane derivatives (28 – 41 meV, at the B3LYP/6-31G* level),95 

antharacenepyromellitic dianhydride (-128 meV, at the B3LYP/6-31G* level),95 quaterthiophene and 

sexithiophene (from 0.68 to 39.95 meV and 0.38 to 36 meV, respectively, at the PW91/6-31G* level),96 

pentacene derivatives with the trialkylsilylethynyl groups (from 1.48 to 82.13 meV, at the PW91/TZ2P 

level),97 or perfluoroarene-modified oligothiophenes (26 – 53 meV, at the PW91/TZP level)89 in the case of 

hole t12;  while the obtained values for electron transfer are similar to those calculated for pentacene (131 

meV at  the B3LYP/TVP level)51 and for pentacene trialkylsilylethynyl derivatives (with values ranging from 

1.27 meV to 128.83 meV, at the PW91/TZ2P level),97 for dimethylquaterthiophene (65 meV, at the B3LYP/6-

31G* level),97 for tetrafluorotetracyanoquinodimethane derivatives (72 – 75 meV, at the B3LYP/6-31G* 

level),97 for antharacenepyromellitic dianhydride (86 meV, at the B3LYP/6-31G* level),97 for perfluoroarene-

modified oligothiophenes (13 – 62 meV, at the PW91/TZP level),89 for the perylene derivatives (26 – 64 

meV, at the PW91PW91/6-31G* level),98 and for diimides derivatives studied by Chen et al. (21.6 – 87.5 

meV, at the PW91PW91/6-31G* level)53 and by Di Donato et al. (74 – 96 meV, calculated at the B3LYP/3-

21G level).99  

 

Table 3. Lowest Binding Energies (Eb) and the corresponding relative (x,y)-positions of the molecules within 

stacked dimers of the studied compounds, together with the charge integral transfer (t12) and their 

corresponding charge transfer rate (kCT) for both hole and electron.  

 (x.y) Coordinantes / Å  
Eb / eV 
 

Hole  Electrons  
t12 / meV  kCT / s-1  t12 / meV  kCT / s-1 kCT

rel- 
1H (1,1) -1.28 92 8.09 × 1013  43 1.78 × 1013 4.54 
1P (3,0) -1.28 132 1.67 × 1014  66 2.78 × 1013 6.01 
1S (1,1) -1.17 60 3.07 × 1013  61 4.13 × 1013 0.74 
1T (1,1) -1.36 84 7.57 × 1013  50 2.96 × 1013 2.56 
2H (1,1) -1.20 52 2.46 × 1013  49 2.28 × 1013 1.08 
2J (1,1) -1.20 38 1.76 × 1011  31 9.28 × 1012 0.02 
2O (3,0) -1.28 111 8.56 × 1013  82 6.46 × 1013 1.33 
2P (3,-1) -1.28 54 2.72 × 1013  48 1.26 × 1013 2.16 
2S (3,1) -1.20 22 2.77 × 1012  12 1.56 × 1012 1.78 
2T (0,2) -1.36 9 7.26 × 1011  149 2.57 × 1014 0.00 
3D (3,0) -0.98 13 1.37 × 1012  59 3.34 × 1013 0.04 
3E (3,0) -0.90 13 1.34 × 1012  58 3.17 × 1013 0.04 
3F (3,0) -0.95 15 1.75 × 1012  57 3.08 × 1013 0.06 
3G (3,0) -1.09 13 1.33 × 1012  58 3.15 × 1013 0.04 
3H (1,1) -1.12 14 1.99 × 1012  35 2.37 × 1013 0.08 
3J (1,0) -1.03 139 7.39 × 1012  63 5.60 × 1013 0.13 
3L (1,1) -0.87 12 1.18 × 1012  38 1.58 × 1013 0.07 
3N (1,1) -1.01 14 1.55 × 1012  37 1.57 × 1013 0.10 
3O (1,1) -1.09 14 1.49 × 1012  38 1.40 × 1013 0.11 
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3Q (0,3) -1.09 13 1.32 × 1012  58 3.38 × 1013 0.04 
3X (2,0) -1.06 12 7.95 × 1011  57 3.49 × 1013 0.02 
3T (4,0) -1.22 11 9.91 × 1011  27 8.43 × 1012 0.12 
4H (1,1) -1.12 100 9.71 × 1013  45 2.39 × 1013 4.06 
4J (1,1) -1.09 47 3.08 × 1011  30 1.18 × 1013 0.03 
4L (1,1) -0.84 132 1.32 × 1014  26 6.83 × 1012 19.33 
4N (1,1) -1.06 149 1.60 × 1014  28 7.76 × 1012 20.62 
4O (3,0) -1.14 115 8.96 × 1013  66 4.53 × 1013 1.98 
4S (2,0) -1.09 14 1.26 × 1012  80 6.93 × 1013 0.02 
4T (1,1) -1.25 98 9.41 × 1013  58 3.91 × 1013 2.41 
5H (1,1) -1.14 88 7.98 × 1013  39 1.73 × 1013 4.61 
5I (1,1) -1.06 48 2.09 × 1013  61 4.97 × 1013 0.42 
5L (1,1) -0.84 138 1.43 × 1014  38 1.38 × 1013 10.36 
5N (1,1) -1.06 140 1.43 × 1014  38 1.36 × 1013 10.51 
5O (1,1) -1.17 54 1.99 × 1013  42 1.79 × 1013 1.11 
5P (1,1) -1.14 58 3.15 × 1013  44 1.31 × 1013 2.40 
5S (2,0) -1.06 18 3.22 × 1012  94 9.77 × 1013 0.03 
5T (1,1) -1.22 90 9.37 × 1013  68 5.45 × 1013 1.72 

 

 

 After all the systematic screening performed, the calculated λi and t12 values can be consequently 

introduced in eq (1) to calculate the corresponding kCT. Table 3 shows the values for both hole and electron 

kCT, togheter with the 𝑘𝐶𝑇
𝑟𝑒𝑙, obtained from the ratio between both kCT, i.e. kCT

+/ kCT
-. It can be seen that the 

highest kCT value for hole hopping was obtained for 1P while the counterpart for electron hopping 

corresponds to 2T. The most of the kCT values collected in the table lie within the range of 1012 to 1014 s-1, 

which are high in comparison to those calculated, through the MLJ formalism in previous works, for the main 

charge hopping pathyways in crystalline organic molecules such as 1,4-benzoquinone derivatives (kCT
- = 1 

– 10 × 1011 s-1, calculated at the B3LYP/6-31G* level), perylene bisimide derivatives (kCT
- = 0.03 – 23 × 1011 

s-1, calculated at the B3LYP/3-21G level), dibenzo-thieno-dithiophene (kCT
+ = 1 – 21 × 1012 s-1, calculated at 

the B3LYP/6-31G* level).94,99,100 Analyzing the results of Table 3 as a function of their central rings, we have 

observed that: i) a balanced transport is found for derivatives 1, with kCT ≈ 1013 s-1 for both hole and electron 

charge transfer rates, and even higher for 1P compound where kCT
+ ≈ 1014 s-1; ii) a high electron transfer 

rate for 2S (kCT
- ≈ 1014 s-1) is obtained among compounds 2; iii) derivatives 3 only show significant electron 

transfer rate in agreement with previous papers;21,31,99,100 iv) an ambipolar transport could be produced for 

4H, 4O and 4T compounds, being mostly hole (electron) transport for 4L and 4N (5J and 4S) compounds; 

and v) derivatives 5 also show a quasi-ambipolar transport for 5H, 5I, 5O, 5P and 5T compounds, being 

however predominant the hole transport path in the case of 5L and 5N compounds.  

 

CONCLUSIONS 

 In this work, we have theoretically studied the electronic properties of a large series of 1,4-

bis(phenylethynyl)benzene derivatives, employing state-of-the-art DFT calculations, and analyzed their 

charge injection and charge transport behavior. Regarding charge injection, almost all compounds satisfied 

the ohmic contact conditions with some of the most widely used electrodes such as Mg, ITO or Au. However 

the stability conditions imposed by the electron affinity were only satisfied for some derivatives containing 

the P moiety as substituent, being ideally 3P the compounds with better properties in the case of electron 
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injection. In the case of hole injection, the derivatives 1 with S and T moieties in X-position in their structure 

showed the lower lowest values for ionization potential, with 1S the compound exhibiting the lowest one. 

Generally speaking, we have focused on compounds with reorganization energies equal or lower than 0.15 

eV to determine the binding energy and the charge transfer integral, in a further step. In that sense, we 

found a great variety of properties: i) some compounds presented an ambipolar transport behavior such as 

derivatives 1 and some 4 and 5 compounds as 4H, 4O, 4T, 5H, 5I, 5O and 5T; ii) other compounds showed 

a marked electron transport behavior such as systems 3 and 2T, 4J and 4T; iii) a few compounds exhibited 

a pronounced hole transport character as 4L, 4N, 5L and 5N derivatives. Merging both charge injection and 

transport behavior, we could anticipate 1P or 1T compounds as efficient p-semiconductors (hole transport); 

while we could propose 2T or 5P as possible n-type semiconductor (electron transport) 

 

SUPPORTING INFORMATION 

Supplementary Table S1 collects ionization potentials, electron affinities and reoganizations energies 

calculated values for all studied compounds.  

Supplementary Figure S1 shows the shape of HOMOs and LUMOs of some selected compounds. Some 

selected binding energy lansdcapes appear in Figure S2. 
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[34] Martinelli, N. G.; Idé, J.; Sánchez-Carrera, R. S.; Coropceanu, V.; Brédas, J. L.; Ducasse, L.; 

Castet, F.; Cornil, J.; Beljonne, D. Influence of Structural Dynamics on Polarization Energies in Anthracene 

Single Crystals. J. Phys. Chem. C, 2010, 114, 20678−20685. 

 

[35]  Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Brédas, J. L.; Ewbank, P. C.; Mann, K. R. 

Introduction of Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors. Chem. 

Mater., 2004, 16, 4436−4451. 

 

[36] Chen, H. Y.; Chao, I. Effect of Perfluorination on the Charge-Transport Properties of 

Semiconductors: Density Functional Theory Study of Perfluorinated Pentacene and Sexithiophene. Chem. 

Phys. Lett., 2005, 401, 539−545. 

 

[37] Brédas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Charge-Transfer and Energy-Transfer 

Process in π-Conjugated Oligomers and Polymers: A Molecular Picture. Chem. Rev., 2004, 104, 

4971−5004. 
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