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Abstract

In this work, we carry out a study of the effect of adverse conditions, which

characterize real-world scenes, on the accuracy of a Convolutional Neural Net-

work applied to 3D object class recognition. Firstly, we discuss possible ways

of representing 3D data to feed the network. In addition, we propose a set of

representations to be tested. Those representations consist of a grid-like struc-

ture (fixed and adaptive) and a measure for the occupancy of each cell of the

grid (binary and normalized point density). After that, we propose and imple-

ment a Convolutional Neural Network for 3D object recognition using Caffe. At

last, we carry out an in-depth study of the performance of the network over a

3D CAD model dataset, the Princeton ModelNet project, synthetically simu-

lating occlusions and noise models featured by common RGB-D sensors. The

results show that the volumetric representations for 3D data play a key role on

the recognition process and Convolutional Neural Network can be considerably

robust to noise and occlusions if a proper representation is chosen.
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1. Introduction

Object class recognition is still one of the main challenges for a computer

to achieve a deep understanding of a scene. This line of research has continu-

ously evolved during the last years to the point where robust, scalable, and fast

systems which are being applied in many situations are starting to arise. This5

progress has been enabled mainly by two milestones: the usage of 3D data and

the development of deep learning architectures.

On the one hand, the advent of reliable and affordable RGB-D sensors,

such as the Microsoft Kinect and PrimeSense Carmine, has revolutionized the

field. Those sensors, together with community efforts in terms of software like10

the Point Cloud Library (PCL)[1] project, democratized 3D information, which

is now easy to obtain and process. In this regard, we can feed the prediction

systems with a new dimension of useful information. Because of that, traditional

2D object recognition pipelines have been superseded by 3D-based ones.

On the other hand, the vast majority of object recognition pipelines were15

typically based on manually engineered feature descriptors. Despite the success

and popularity of those methods – specially for recognition in cluttered and oc-

cluded environments – they require considerable domain expertise, engineering

skills, and theoretical foundations (and even if those skills are available, those

systems are far from being perfect and completely robust). In order to over-20

come this problem, the aim of computer vision and machine learning researchers

has been to replace those hand-crafted descriptors with neural networks able

to learn them automatically. This insight gave birth to Convolutional Neural

Networks (CNNs), which were successfully applied to image analysis with this

purpose. This deep learning architecture is designed to process data in form25

of arrays and it has surpassed many existing methods reaching milestones in

recognition tasks – mainly due to the fact that they are easy to train and gener-

alize far better than traditional techniques. In this regard, CNNs have become

the de facto standard to tackle the object class recognition problem, being often

applied and deployed as end-to-end systems thanks to the existing frameworks.30
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However, there is not a clear conclusion about their performance in real-world

situations rather than in standard databases.

In this work, we propose an in-depth study of the effect of adverse conditions

that characterize real-world scenarios – such as noise caused by the sensor and

occlusions due to the positions of the objects in the scene – on the performance35

of CNNs applied to 3D object class recognition. This study will provide us

insight about the behavior of those systems in real-world conditions, as well as

hints on how to improve them to obtain better performance in those situations.

This paper is organized as follows. Section 2 reviews state-of-the-art methods

for 3D object recognition using CNNs. Section 3 discusses possible volumetric40

representations for 3D data. Section 4 presents the CNN architecture that will

be used for our experimentation. Section 5 describes the experimentation itself,

the methodology, the dataset, and the results. At last, 6 draws conclusions and

future works.

2. Related Works45

In this section, we will review the literature to analyze state-of-the-art volu-

metric representations for 3D data and also 2.5D and 3D approaches to CNNs.

Due to the successful applications of CNNs to 2D image analysis, several re-

searchers decided to increase the dimensionality of the input by adding depth

information as an additional channel to conform 2.5D CNNs.50

2.1. Volumetric Representations

In this subsection, we will review the most popular and successful volumet-

ric representations for 3D data that have been used to feed CNNs for object

recognition purposes.

The first step was taken by Wu et al. [2], their work 3DShapeNets was the55

first to apply CNNs to pure 3D representations. Their proposal (shown in Figure

1) represents 3D shapes, from captured depth maps that are later transformed

into point clouds, as 3D voxel grids of size 30 × 30 × 30 voxels – 24 × 24 × 24
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(a) Object model (b) Depth map (c) Voxel grid

Figure 1: 3DShapeNets representation proposed by Wu et al. as shown in their paper [2]. An

object (a) is captured from a certain point of view and a depth map is generated (b) which is

in turn used to generate a point cloud that will be represented as a voxel grid (c) with empty

voxels (in white, not represented), unknown voxels (in blue), and surface or occupied voxels

(red).

data voxels plus 3 extra ones of padding in both directions to reduce convolution

artifacts – which can represent free space, occupied space (the shape itself), and60

unknown or occluded space depending on the point of view. Neither the grid

generation process, nor the leaf size is described but the voxel grid relies on

prior object segmentation.

(a) Object (b) Point cloud (c) TSDF grid

Figure 2: TSDF representation proposed by Song and Xiao as shown in their paper [3]. An

object (a) is captured by a range sensor as a point cloud (b) and then a TSDF grid is generated

(red indicates the voxel is in front of surfaces and blue indicates the voxel is behind the surface;

the intensity of the color represents the TSDF value).
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Song and Xiao [3] proposed to adopt a directional TSDF encoding which

takes a depth map as input and outputs a volumetric representation. They65

divide a 3D space using an equally spaced voxel grid in which each cell holds

a three-dimensional vector that records the shortest distance between the voxel

center and the three-dimensional surface in three directions. In addition, the

value is clipped by 2δ, being δ the grid size in each dimension. A 30× 30× 30

voxels grid is fitted to a previously segmented object candidate. Figure 2 shows70

a graphical representation of this approach.

Maturana and Scherer [4] use occupancy grids in VoxNet to maintain a

probabilistic estimate of the occupancy of each voxel to represent a 3D shape.

This estimate is a function of the sensor data and prior knowledge. They propose

three different occupancy models: binary, density, and hit. The binary and75

density models make use of raytracing to compute the number of hits and pass-

throughs for each voxel. The former one assumes that each voxel has a binary

state, occupied or unoccupied. The latter one assumes that each voxel has a

continuous density, based on the probability it will block a sensor beam. The

hit grid ignores the difference between unknown and free space, only considering80

hits; it discards information but does not require the use of raytracing so it is

highly efficient in comparison with the other methods. They also propose two

different grids for LIDAR and RGB-D sensor data. For the RGB-D case, they

(a) LIDAR data (b) Voxnet grid (c) RGBD data (d) Voxnet grid

Figure 3: Volumetric occupancy grid representation used by VoxNet as shown in their paper

[4]. For LIDAR data (a) a voxel size of 0.1m3 is used to create a 32 × 32 × 32 grid (b). For

RGB-D data (c), the resolution is chosen so the object occupies a subvolume of 24× 24× 24

voxels in a 32× 32× 32 grid (d).
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use a fixed occupancy grid of 32× 32× 32 voxels, making the object of interest

– obtained by a segmentation algorithm or given by a sliding box – occupy a85

subvolume of 24 × 24 × 24 voxels. The z axis of the grid is aligned with the

direction of gravity. Figure 3 shows the occupancy grids used by VoxNet.

2.2. Convolutional Neural Networks

In this subsection, we will review state-of-the-art 2.5D and 3D CNNs which

are applied to object recognition using 3D data.90

Socher et al. [5] introduced a model based on a combination of CNNs and

Recursive Neural Networks (RNNs) to learn features and classify RGB-D im-

ages. That model aims to learn low-level and translation invariant features with

the CNN layers, those features are then given as inputs to fixed-tree RNNs to

compose higher order features. Alexandre et al. [6] explore the possibility of95

transferring knowledge [7][8] between CNNs to improve accuracy and reducing

training time when classifying RGB-D data. Hoeft et al. [9] proposed a four-

stage CNN architecture, derived from the work of Schulz and Behnke [10], to

semantically segment RGB-D scenes, providing the depth channel as feature

maps representing components of a simplified histogram of oriented depth oper-100

ator. Wang et al. [11] combined a CNN, to extract representative image features

from RGB-D, with a Support Vector Machine (SVM) to classify objects in those

images. Schwarz et al. [12] went one step beyond. They presented a system

for object recognition and pose estimation using RGB-D images and transfer

learning between a pre-trained CNN for image categorization and another CNN105

to classify colorized depth images. The features are then classified into instances

and categories by SVMs and the pose is estimated via using another RBF kernel

SVM.

In spite of the fact that those methods extend the traditional CNN, they do

not employ a pure volumetric representation and therefore they do not make110

full use of the geometric information in the data. What is more, they do not

use 3D convolutions. This is why they fall in the 2.5D CNNs category. In order

to improve 2.5D CNNs, several authors proposed pure volumetric approaches
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or the so called 3D CNNs. These architectures apply spatially 3D convolutions

fully utilizing geometric data.115

The seminal work of Wu et al. [2] introduced a system that supports joint

object recognition and shape completion from 2.5D depth maps that are trans-

formed into a 3D shape representation which consists of a probability distri-

bution of binary values on a 3D voxel grid. A Convolutional Deep Belief Net-

work (CDBN) is used to recognize categories, complete 3D shapes, and predict120

next best views if the recognition is uncertain. Maturana and Scherer [4] pro-

posed a 3D CNN for landing zone detection from LIDAR data. In that work,

they also introduced a volumetric representation for that data using a density

occupancy grid. Later, they extended that work creating VoxNet [13] a 3D CNN

architecture for real-time object classification using volumetric occupancy grids125

to represent point clouds.

Other remarkable works are the multi-view system by Su et al. [14], the

panoramic network by Shi et al. [15], and the orientation-based voxel nets by

Sedaghat et al. [16].

3. Volumetric Representations130

As is clear from the previous sections, a volumetric representation to be fed

to a 2.5D or 3DCNN must encode the 3D shape of an object as a 3D tensor of

binary or real values. This is due to the fact that raw 3D data is sparse, i.e., a

3D shape is only defined on its surface, and CNNs are not engineered for this

kind of data.135

In this regard, our proposal for the study is twofold. First, we implemented

two different ways of generating the structure of the tensor – position, grid size,

and leaf size – using a fixed grid and an adaptive one. Second, we developed

two possible occupancy measures for the volumetric elements of the tensor.

3.1. Tensor Generation140

Providing that the input to our network consists of point clouds generated

from the information provided by RGB-D sensors, we need to generate a dis-
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(a) Front (b) Side
(c) Perspective

Figure 4: A fixed occupancy grid (8× 8× 8 voxels) with 40 units leaf size and 320 units grid

size in all dimensions. The grid origin is placed at the minimum x, y, and z values of the

point cloud. Front (a), side (b), and perspective (c) views of the grid over a partial view of a

segmented table object are shown.

cretized representation of the unbounded 3D data to feed the network. Each

cloud will be represented as a 3D tensor. For that purpose, we need to spawn

a grid to subdivide the space occupied by the point clouds. Two types are145

proposed: one with fixed leaf and grid sizes, and another one which will adapt

those sizes to fit the data.

3.1.1. Fixed

This kind of grid sets its origin at the minimum x, y, and z values of the

point cloud. Then the grid is spawned, with fixed and predefined sizes for both150

grid and voxels. After that, the cloud is scaled up or down to fit the grid. The

scale factor is computed with respect to the dimension of maximum difference

between the cloud and the grid. The cloud is scaled with that factor in all axes

to maintain the original ratios. As a result, a cubic grid is generated as shown

in Figure 4.155

3.1.2. Adaptive

The adaptive grid also sets its origin at the minimum x, y, and z values of

the point cloud. Next, the grid size is adapted to the cloud dimensions. The

leaf size is also computed in function of the grid size. Knowing both parameters,
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(a) Front (b) Side (c) Perspective

Figure 5: An adaptive occupancy grid (8 × 8 × 8 voxels) with adapted leaf and grid sizes in

all dimensions to fit the data. The grid origin is placed at the minimum x, y, and z values of

the point cloud. Front (a), side (b), and perspective (c) views of the grid over a partial view

of a segmented table object are shown. Notice that the point clouds for the three views are

exactly the same for this figure and Figure 4, but the grids do change. There is a noticeable

difference in the front view. In Figure 4, using fixed grids, all voxels are cubic and the point

cloud does not fit the grid completely (leftmost column in Figure 4a), whilst in this figure,

with adaptive grids, the grid is fitted to the cloud.

the grid is spawned, fitting the point cloud data. As a result, a non-cubic grid160

is generated. As shown in Figure 5, all voxels have the same size, but they are

not necessarily cubic.

It is important to remark that, in both cases (fixed and adaptive), the num-

ber of voxels in the grid is fixed. Figures 4 and 5 show examples for both types

using 8× 8× 8 voxels for the sake of a better visualization.165

It is also important to notice that each representation serves a purpose. The

fixed grid will not always fit the data perfectly so it might end up having sparse

zones with no information at all (as seen in Figure 4a on the first column).

However, it can be used right away for sliding box detection. On the contrary,

the adaptive grid fits the data to achieve a better representation. Nonetheless,170

it relies on a proper segmentation of the object to spawn the grid.
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(a) Front (b) Side (c) Perspective

Figure 6: Occupied voxels in an adaptive 8 × 8 × 8 grid generated over a partial view point

cloud. Those voxels with points inside are shown in a wireframe representation. Empty voxels

are omitted. Occupied voxels must be filled with values which represent the contained shape.

3.2. Occupancy Computation

After spawning the grid to generate a discrete space, we need to determine

the values for each cell or voxel of the 3D tensor. In order to do that, we

must encode the geometric information of the point cloud into each occupied175

cell (see Figure 6). In other words, we have to summarize as a single value,

the information of all points which lie inside a certain voxel. One way to do

that is using occupancy measures. For that purpose, we propose two different

alternatives: binary occupancy, normalized density.

3.2.1. Binary180

The binary tensor is the simplest representation that can be conceived to

encode the shape. Voxels will hold binary values, they will be considered oc-

cupied if at least a point lies inside, and empty otherwise. Figure 7 shows an

example of this tensor.
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3.2.2. Normalized Density185

Binary representations are simple and require low computational power.

However, complex shapes may get oversimplified so useful shape information

gets lost. This representation can be improved by taking into account more

shape information. A possible alternative consists of computing the point den-

sity inside each voxel, i.e., counting the number of points that fall within each190

cell.

It is important to notice that point density directly depends on the cloud

resolution which in turn depends on many factors involving the camera and

the scene, e.g., it is common for RGB-D to generate denser shapes in closer

surfaces. To alleviate this problem, we can normalize the density inside each195

voxel dividing each value by the maximum density over the whole tensor. An

example of normalized density tensor is shown in Figure 8.

4. Convolutional Neural Network

In this section, we will describe the main layers that compose the CNN that

will be used for the study. Figure 9 shows a diagram of the chosen architecture.200

It is highly inspired by Voxnet [4] and PointNet [17]. The network was imple-

(a) Front (b) Side (c) Perspective

Figure 7: Binary tensor computed over a point cloud of a partial view of an object (shown

in Figure 6). Occupied voxels are shown in blue, empty voxels are omitted for the sake of

simplicity.
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(a) Front (b) Side (c) Perspective

Figure 8: Normalized density tensor over a point cloud of a partial view of an object (shown

in Figure 6). Denser voxels are darker and sparse ones are shown in light blue. Empty voxels

were removed for visualization purposes.

mented using Caffe. It features 2D convolutions and takes full 3D object model

point clouds as input (more details about this input are provided in Section

5.1).

The input layer is a custom data layer implemented in Caffe which takes ob-205

ject point clouds as inputs and generates the corresponding discrete volumetric

representation as discussed in the previous section.

Next, we can find a convolution layer or C(m,n, d). This layer applies m

filters of size n×n and a stride of d×d voxels. In our case, this first convolution

layer learns 48 3 × 3 filters using a stride of 1 × 1 voxels. This convolution210

layer is followed by a Rectified Linear Unit (ReLU) activation to introduce non-

linearities to the model.

After that, another convolution layer is found. In this case, it will learn 128

5× 5 filters with a stride of 1 × 1 voxels again. This layer is also followed by a

ReLU activation one.215

A pooling layer or P (n, d) takes place after those blocks. It performs a max-

pooling process to summarize the input data, taking the maximum value of a

fixed local spatial region of n× n which is slided across the input volume using

a stride of d × d voxels. In this case, a pooling region of 2 × 2 voxels with the

same stride was chosen.220
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At last, we can find an inner product layer or IP (n). It is just a fully

connected layer, a traditional neural network architecture which consists of n

neurons (1024 in this case). It is followed by a ReLU activation and a dropout

layer [18] or DP (r). The function of the dropout layer is to avoid overfitting,

randomly dropping connections with a probability r (0.5 in our case). In the225

end, another fully connected layer represents the output of the network, with

as many output neurons as classes has our classification problem. Since our

dataset has 10 classes (see Section 5.1) this layer has 10 neurons.

We use the term 2.5D to refer to this network due to the fact that it processes

3D data using 2D convolutions. This means that, in the end, its convolutions230

do not fully take into account the depth spatial dimension of the input as if we

were using pure 3D convolution filters. It is intuitive to think that a 3D CNN

would yield better results due to that extra spatial dimension. However, a 3D

CNN has some disadvantages that made us consider using a 2.5D CNN instead

for the experimentation: (1) higher computational cost, (2) memory footprint is235

also much higher, (3) more parameters thus harder training. For those reasons,

the main body of the experiments were carried out using the 2.5D approach.

Data Layer C(48, 3, 1) ReLU C(128, 5, 1) ReLU P(2,2) IP(1024) ReLU DP(0.5) IP(10)

Figure 9: 2.5D Convolutional Neural Network architecture used for the experiments. This

network is an extension of the one presented in PointNet [17]. It consists of a convolution

layer – 48 filters, 3 × 3 filter with stride 1 –, a ReLU activation, another convolution layer –

128 filters, 5× 5 filters with stride 1 –, followed by a ReLU activation, a pooling layer – 2× 2

max. pooling with stride 2 –, a fully connected or inner product layer with 1024 neurons and

ReLU activation, a dropout layer – 0.5 rate –, and an inner product layer with 10 neurons as

output. The network accepts 3D tensors as input.
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5. Experimentation

In order to assess the performance of the proposed model-based CNN we

carried out an extensive experimentation to determine the accuracy of the model240

and its robustness against occlusions and noise – situations that often occur in

real-world scenes. For that purpose we started using the normalized density

grids since they offer a good balance between efficiency and representation. We

also investigated the effect of both fixed and adaptive grids using different sizes.

Further experimentation was performed to compare the normalized density grids245

with the binary ones. We also carried out a brief experiment using a 3D CNN

to compare its performance with the 2.5D counterpart.

The networks were trained for a maximum of 5000 iterations – weights were

snapshotted every 100 iterations so in the end we selected the best sets of them

as if we were early stopping – using Adadelta as optimizer with δ = 1 · 10−8.250

The regularization term or weight decay in Caffe was set to 5 · 10−3. A batch

size of 32 training samples was chosen.

Results were obtained using the following test setup: Intel Core i7-5820K

with 32 GiB of Kingston HyperX 2666MHz and CL13 DDR4 RAM on an Asus

X99-A motherboard (Intel X99 chipset). Additionally, the system included an255

NVIDIA Tesla K40c GPU used for training and inference. The framework of

choice was Caffe RC2 running on Ubuntu 14.04.02. It was compiled using CMake

2.8.7, g++ 4.8.2, CUDA 7.5, and cuDNN v3.

5.1. Dataset

Deep neural network architectures are usually composed by many layers260

which in turn mean many weights to be learned. Because of that, there is a

strong need of large-scale datasets to train those networks in order to avoid

overfitting the model to the input data. Nowadays, large-scale databases of

real-world 3D objects are scarce, some of them do not have that high number

of objects [19][20][21], or were incomplete by the time this work was performed265

[22]. A possible workaround to this problem consists of using Computer Aided
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Design (CAD) model databases – which are virtually unlimited – and processing

those models to simulate real-world data.

The Princeton ModelNet project is one of the most popular large-scale 3D

object dataset. Its goal, as their authors state, is to provide researchers with270

a comprehensive clean collection of 3D CAD models for objects, which were

obtained via online search engines. Employees from the Amazon Mechanical

Turk (AMT) service were hired to classify over 150 000 models into 662 different

categories.

At the moment, there are two versions of this dataset publicly available275

for download1: ModelNet-10 and ModelNet-40. Those are subsets of the orig-

inal dataset which only provide the 10 and 40 most popular object categories

respectively. These subsets are specially clean versions of the complete dataset.

On the one hand, ModelNet-10 is composed of a collection of over 5000

models classified into 10 categories and divided into training and test splits. In280

addition, the orientation of all CAD models of the dataset was manually aligned.

On the other hand, ModelNet-40 features over 9800 models classified into 40

categories, also including training and test sets. However, the orientations of its

models are not aligned as they are in ModelNet-10.

For this work, we will use of the ModelNet-10 subset, which contains a285

reasonable amount of models for both training and validation, mainly because

this dataset was completely cleaned and the orientation of the models were

manually aligned. Figure 10 shows some model examples from ModelNet-10.

The CAD models are provided in Object File Format (OFF). Firstly, we

converted all OFF models into Polygon File Format (PLY) to ease the usage of290

the dataset with the PCL. As we already mentioned, the input for PointNet are

point clouds, but the dataset provides CAD models specifying vertices and faces.

In this regard, we converted the PLY models into Point Cloud Data (PCD)

clouds by raytracing them. A 3D sphere is tessellated and a virtual camera

is placed in each vertex of that truncated icosahedron – pointing to the origin295

1http://modelnet.cs.princeton.edu/
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Figure 10: ModelNet10 samples.

of the model – then multiple snapshots are rendered using raytracing and the

z-buffer data, which contains the depth information, is used to generate point

clouds from each point of view. After all points of view have been processed,

the point clouds are merged. A voxel grid filter is applied to downsample the

clouds after the raytracing operation.300

Figure 11: From CADmodels to point clouds. The object is placed in the center of a tessellated

sphere, views are rendered placing a virtual camera in each vertex of the icosahedron, the z-

buffer data of those views is used to generate point clouds. At last, the point clouds are

transformed and merged.
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(a) σ = 0 (b) σ = 0.1 (c) σ = 1

Figure 12: Different levels of noise (σ = 0 (a), σ = 0.1 (b), and σ = 1 (c)) applied to the

z-axis of every point of a table partial view.

5.2. Noise Simulation

The partial views generated using the previously described process are not a

good simulation of the result that we would obtain by using a low-cost RGB-D

sensor. Those systems are noisy, so the point clouds produced by them are not

a perfect representation of the real-world objects.305

In order to properly simulate the behavior of a sensor, a model is needed.

In our case, we are dealing with low-cost RGB-D sensors such as Microsoft

Kinect and Primesense Carmine. A complete noise model for those sensors,

specifically for the Kinect device, must take into account occlusion boundaries

due to distance between the Infrarred (IR) projector and the IR camera, 8-bit310

quantization, 9 × 9 pixel correlation window smoothing, and z-axis or depth

Gaussian noise [23].

We will make use of a simplification of this model, only taking into account

the Gaussian noise since it is the most significant one for the generated partial

views. In this regard, the synthetic views are augmented by adding Gaussian315

noise to the z dimension of the point clouds with mean µ = 0 and different

values for the standard deviation σ to quantify the noise magnitude. Figure 12

shows the effect of this noise over a synthetic partial view of one object of the

dataset.
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(a) ψ = 0% (b) ψ = 25% (c) ψ = 50%

Figure 13: Different levels of occlusion (ψ = 0% (a), ψ = 25% (b), and ψ = 50% (c)) applied

randomly to a table partial view.

5.3. Occlusion Simulation320

In addition to modelling the sensor to improve our synthetic data, it is

important to also take the environment into account. In a real-world scenario,

objects are not usually perfectly isolated and easily segmented; in fact, it is

common for them to be occluded by other elements of the scene.

The occlusion simulation process consists of picking a random point of the325

cloud with a uniform probability distribution. Then, a number of closest neigh-

bors to that point are picked. At last, both the neighbors and the point are

considered occluded surface and removed from the point cloud. The number of

neighbors to pick depends on the amount of occlusion ψ we want to simulate.

For instance, for an occlusion ψ = 25% we will remove neighbors until the rest330

of the cloud contains a 75% of the original amount of points, i.e., we will remove

a 25% of the original cloud. Figure 13 shows the effect of the random occlusion

process with different occlusion factors ψ over a synthetic partial view of a table

object of the dataset.

It is important to notice the randomness of the occlusion process. This335

means that even with a high ψ it is possible not to remove any important surface

information and vice versa. In other words, it is possible for some objects to

remove a 50% of their points and still be recognizable because the removed

region was not significant at all, e.g., a completely flat surface. However it is

18



possible to render an object unrecognizable by removing a small portion of its340

points if the randomly picked surface is significant for its geometry. This remark

is specially important when testing the robustness of the system. In order

to guarantee that an appropriate measure of the robustness against missing

information is obtained, a significant amount of testing sets must be generated

and their results averaged so that it is highly probable to test against objects345

which have been occluded all over their surface across the whole testing set.

5.4. Results

After describing the experimentation setup, the dataset that was used to

train and test the networks, and the ways of simulating noise and occlusion for

the test sets, we will present and discuss the results of the experiments. Firstly,350

the normalized density tensor results – using the 2.5D CNN – will be presented.

After that, we will proceed with the binary tensor ones. Furthermore, we will

report the experiments which produced the best results with a pure 3D CNN

with fully 3D convolutions. At last, we will perform a comparison with

the state of the art.355

5.4.1. Density Tensor

Figure 14 shows the accuracy results of the network for both grid types and

increasing sizes. The peak accuracies for the fixed grids are ≈ 0.75, ≈ 0.76, and

≈ 0.73 for sizes 32, 48, and 64 respectively. In the case of the adaptive one,

the peak accuracies are ≈ 0.77, ≈ 0.78, and ≈ 0.79 for the sizes 32, 48, and 64360

respectively.

Taking those facts into account, we can extract two conclusions. First, the

adaptive grid is able to achieve a slightly better peak accuracy in all cases;

however, the fixed grid takes less iterations to reach accuracy values close to the

peak in all cases. Second, there is no significant difference in using a bigger grid365

size of 64 voxels instead of a smaller one of 32.

The most important fact that can be observed in the aforementioned figures

is that there is a considerable gap between training and validation accuracy in

19



all situations. As we can observe, all networks reach maximum accuracy for the

training set whilst the validation one hits a glass ceiling at approximately 0.80.370

We hypothesize that the network suffers overfitting even when we thoroughly

applied measures to avoid that. The most probable cause for that problem is the

reduced number of training examples. In the case of ModelNet10 the training

set consists of only 3991 models. Considering the complexity of the CNN, it is

reasonable to think that the lack of a richer training set is causing overfitting.375

Concerning the robustness against occlusion, we took the best networks after

training and tested them using the same validation sets as before but introducing

occlusions in them (up to a 30%). Figure 15 shows the accuracy of both grid

types with different sizes as the amount of occlusion in the validation model

increases. As we can observe, occlusion has a significant and negative impact380

on the fixed grid – bigger grid sizes are less affected – going down from ≈ 0.75

accuracy to 0.40 − 0.50 approximately in the worst and best case respectively

when a 30% of the model is occluded. On the contrary, the adaptive grid does
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Figure 14: Evolution of training and validation accuracy of the model-based CNN using both

fixed (a) and adaptive (b) normalized density grids. Different grid sizes (32, 48, and 64) were

tested.
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not suffer that much – it goes down from ≈ 0.78 to ≈ 0.60 in the worst case

– and there is no significant difference between grid sizes. In conclusion, the385

adaptive grid is considerably more robust to occlusion than the fixed one.

Regarding the resilience to noise, we also tested the best networks obtained

from the aforementioned training process using validation sets with different

levels of noise (ranging from σ = 1 · 10−2 to σ = 1 · 101). Figure 16b shows

the results of those experiments. It can be observed that adding noise has a390

significant impact on the fixed grid, even small quantities, reducing the accuracy

from≈ 0.75 to ≈ 0.60,≈ 0.4, and≈ 0.2 for σ = 1·10−1, σ = 1·100, and σ = 1·101

respectively. On the other hand, the adaptive one shows remarkable robustness

against low levels of noise (up to σ = 1 · 10−1), barely diminishing its accuracy.

In the end, both grids suffer huge penalties in accuracy when noise levels395

higher than σ = 1 · 10−1 are introduced, being the adaptive one less affected.

The grid size has little to no effect in both cases, only in the fixed grid bigger

sizes are slightly more robust when intermediate to high levels of noise are

0 10 20 30

0

0.2

0.4

0.6

0.8

1

Occlusion (%)

A
cc
u
ra
cy

g32

g48

g64

(a) Fixed Grid

0 10 20 30

0

0.2

0.4

0.6

0.8

1

Occlusion (%)

A
cc
u
ra
cy

g32

g48

g64

(b) Adaptive Grid

Figure 15: Evolution of validation accuracy of the model-based CNN using both fixed (a) and

adaptive (b) normalized density grids as the amount of occlusion in the validation models

increases from 0% to 30%. Three grid sizes were tested (32, 48, and 64).
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introduced. In conclusion, the adaptive grid is significantly more resilient to

low levels of noise, and slightly outperforms the fixed one when dealing with400

intermediate to high ones.

5.4.2. Binary Tensor

After testing the performance of the normalized density grid, we also trained

and assessed the accuracy of the binary one in the same scenarios. This test in-

tended to show whether there is any gain in using representations which include405

more information about the shape – at a small penalty to execution time.

For this experimentation we picked the best performer in the previous sec-

tions: the adaptive grid. We also discarded the intermediate size (48 voxels)

since there was no significant difference between it and the others. Figure 17a

shows the accuracy results of the network trained using binary grids. As we can410

observe, there is no significant difference between grid sizes neither. However,
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Figure 16: Evolution of validation accuracy of the model-based CNN using both fixed (a)

and adaptive (b) normalized density grids as the standard deviation of the Gaussian noise

introduced in the z-axis of the views increases from 0.001 to 10. The common grid sizes were

tested (32, 48, and 64).
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using this representation we achieved a peak accuracy of approximately 0.85,

using 64 voxels grids, which is better to some extent than the normalized density

one shown in Figure 14.
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Figure 17: Evolution of training and validation accuracy of the model-based CNN using

adaptive binary grids (a). Evolution of validation accuracy for the best network weights after

training as the amount of occlusion in the validation set increases (b) and different levels of

noise are introduced (c).
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Occlusion and noise tolerance (shown in Figures 17b and 17c respectively)415

is mostly similar to the robustness shown by the normalized density adaptive

grid (see Figures 15b and 16b) except from a small offset caused by the higher

accuracy of the binary grid network.

In conclusion, the less-is-better effect applies in this situation and turns

out that the simplification introduced by the binary representation helps the420

network during the learning process. It is pending to check if this statement is

still valid if the validation accuracy is not bounded by network overfitting.

5.4.3. 3D CNN

At last, we tested the best configuration – binary adaptive grids – with a 3D

CNN architecture with pure 3D convolutions. We kept the same architecture425

we introduced in Section 4, but extended its convolution and pooling layers to

three dimensions. We then trained the network using adaptive binary grids as

the volumetric representation of choice and monitored validation and training

errors. Due to memory limitations on the GPU we could only experiment with

grids of 32× 32× 32 voxels.430
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Figure 18: Evolution of training and validation accuracy of the 3D CNN using adaptive binary

grids with size 32× 32× 32.
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Figure 18 shows the results of this experiment. As we can observe, we trained

the network for five times more iterations than before and even then we couldn’t

achieve a proper convergence. The training set accuracy kept increasing slowly

up to approximately 0.65 whilst the validation one got stuck around 0.40 for

the whole experiment.435

In conclusion, porting the 2.5D network directly to 3D just by extending its

convolution and pooling layers to slide along the depth axis did not produce

good results using the same dataset and setup that produced a significantly

good outcome with the 2.5D architecture. We hypothesize various causes for

this problem.440

On the one hand, the data representation might not be adequate for such

fine-grained convolutions. It is presumable that bigger grids, e.g., 64× 64× 64,

would yield better results. However, given the size of the model, they could not

be tested in the available GPU.

On the other hand, the complexity of the network increased considerably445

after including that extra dimension in convolution and pooling layers. This

means that the number of parameters of the network gets increased significantly,

making it harder to train with so few samples due to overfitting. This hypothesis

is backed up by the fact that training accuracy kept increasing slowly while

validation one got stuck. This would eventually lead to a perfect fit on the450

training set but low accuracy on the validation split.

5.4.4. Comparison with State-of-the-art Methods

In order to assess the validity of our proposal and conclusions,

we analyzed the state of the art to find other methods which deal

with 3D point clouds directly. We found out that the best method,455

in ModelNet-40, which provided an implementation that could be

reproduced was PointNet [24]. PointNet’s approach is particularly

interesting since they do not rely on any traditional CNN-style archi-

tecture. Instead, their deep network is mainly composed by Multi-

Layer Perceptrons (MLPs).460

25



In order to test PointNet under fair conditions, we regenerated all

training and testing data using their pipeline for mesh sampling (with

2048 points and leaf size 0.005) and unit sphere normalization. After
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Figure 19: Evolution of training and validation accuracy of PointNet (a). Evolution

of validation accuracy for the best network weights after training as the amount

of occlusion in the validation set increases (b) and different levels of noise are

introduced (c).
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generating ModelNet-10 this way, we applied noise and occlusions

as described before. Then we trained PointNet using ModelNet-10’s465

training and validation partitions. Finally, we tested that trained

model for occlusion and noise resilience.

Figure 19 shows the results of this experiments. The network was

trained for 250 epochs using a batch size of 32. The decay rate was

set to 0.7, the decay step to 200000, and the learning rate to 0.001.470

In the end, the best set of weights achieved a validation accuracy of

approximately 0.90 while the training accuracy kept increasing until

0.97, thus showing clear signs of overfitting. The most remarkable fact

to notice is the extremely negative impact that occlusion has in this

architecture (see Figure 19b). As we can observe, accuracy drops to475

0.20 with 10% occlusion and ends at 0.11 with 30% of points occluded.

On the one hand, PointNet is clearly outperformed by our previous

approaches by a large margin in any occlusion level. On the other

hand, PointNet exhibits a much stabler behavior when dealing with

noise, being able to keep accuracy without any significant drop until480

σ = 1 · 101. With a relatively high level of noise such as σ = 1 · 100,

accuracy is still way over 0.80; however, when noise gets to σ = 1 · 101

it drops significantly to 0.23.

5.5. Discussion

To sum up, we determined that the adaptive grid slightly outperforms the485

fixed one in normal conditions. The same happens with the grid size, obtaining

marginally better results with bigger sizes. However, when it comes down to

noise and occlusion robustness, the adaptive grid exceeds the accuracy of the

fixed grid by a large margin for low levels of occlusion and noise, whilst for

intermediate and high levels the impact on both grids is somewhat similar. In490

other words, the adaptive grid is better than the fixed one and it is preferable

to use a bigger grid size if the performance impact can be afforded.

It is important to remark that the binary occupancy measure performed
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better than the normalized density one, both using adaptive grids, while main-

taining similar resilience against noise and occlusions. The best network trained495

with normalized density grids reached a peak accuracy of approximately 0.79

while the best binary one achieved approximately a 0.85 accuracy on the vali-

dation set.

Another remarkable fact was that all networks exhibited a considerable

amount of overfitting, i.e., training accuracy was almost perfect whilst vali-500

dation was far away from it by a considerable margin. We hypothesize that

this was due to the fact that the dataset has few training examples considering

the complexity of the network. Besides, we also inspected the confusion matrix

shown in Table 1 to gain insight about the behavior of our network. As we

can observe, there are many misclassified samples of classes that are similar. If505

we take a closer look at some of the misclassified samples (see Figures 20, 21,

and 22) it is reasonable to think that the network is not able to classify them

properly because they are extremely similar. In this regard, the dataset must

be augmented introducing noise, translations, rotations, and variations of the

models to avoid overfitting and learn better those models that can be easily510

misclassified.

Desk Table Nstand Bed Toil. Dresser Bath. Sofa Moni. Chair

52 9 1 4 0 5 1 5 0 9

25 69 0 1 0 0 0 0 1 4

1 2 60 1 4 8 0 0 2 8

4 0 0 80 0 0 3 11 1 1

1 0 3 1 84 0 1 3 2 5

3 0 14 0 0 61 0 1 6 1

0 1 0 3 0 0 34 8 3 1

1 0 1 4 1 2 0 88 1 2

1 1 1 1 0 5 1 1 87 2

1 2 1 2 1 1 0 1 1 90

Table 1: Confusion matrix of the validation results achieved by the best set of weights for the

2.5D CNN with binary adaptive grids with a grid size of 64 voxels. Darker cells indicate more

predictions while lighter ones indicate less.
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Figure 20: A desk class sample together with a table class one.

Figure 21: A night stand class sample together with a dresser one.

Figure 22: A sofa class sample together with a bed class one.

In addition, we trained the 3D CNN as before using adaptive binary grids.

The results were negative in the sense that overfitting was accentuated due to

the increased complexity of the network.
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Grid Size Fixed Density 2.5D Adaptive Density 2.5D Adaptive Binary 2.5D Adaptive Binary 3D

32× 32× 32 0.75 0.77 0.80 0.43

48× 48× 48 0.76 0.78 N/A N/A

64× 64× 64 0.73 0.79 0.85 N/A

Table 2: Summary of the experimentation results.

Occlusion (%) PointNet 2048 2.5D Adaptive Binary (64) Noise (σ) PointNet 2048 2.5D Adaptive Binary (64)

0 0.90 0.85 10−2 0.88 0.84

10 0.20 0.78 10−1 0.87 0.82

20 0.11 0.74 100 0.80 0.57

30 0.11 0.67 101 0.23 0.18

Table 3: Summary of the comparison of our best approach (2.5D Adaptive Binary with

64× 64× 64 grids) versus PointNet 2048.

At last, we compared our approaches with the best state-of-the-515

art method in the challenge which provided an implementation and

enough information to reproduce their results: PointNet. That archi-

tecture, based on MLPs, achieved a slightly better base accuracy on

ModelNet-10’s test set (0.90 against 0.85). It also showed a remarkable

robustness against noise (better for high levels of noise (σ = 100) than520

our best approach but on par for low ones (σ = 10−2 and σ = 10−1).

However, it is extremely sensitive to occlusions in comparison with

our approaches (while our best adaptive binary grid keeps accuracy

above 0.65 even for 30% occlusion, PointNet’s accuracy drops below

0.20 even with just 10% occlusion).525

A summary of the experimentation results with the top accuracies for each

configuration is shown in Table 2. In addition, Table 3 shows a summary of our

best configuration against PointNet.

6. Conclusion

In this paper we have presented a study of the effect of adverse conditions530

on the accuracy of CNNs trained for 3D object class recognition. Before the

study, state-of-the-art volumetric representations for 3D data and already ex-

isting CNNs for this purpose were reviewed. A set of representations were
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proposed to conduct this study, as well as a new architecture (inspired by the

success of the existing and reviewed ones). The networks were trained using the535

ModelNet-10 dataset, whose models were adapted to our representations, and

also augmented to simulate the aforementioned adverse conditions of real-world

scenes, e.g., noise and occlusions.

As a result of the experimentation we can draw the following main conclu-

sion: the volumetric representation itself has a huge impact on the performance540

of the network in terms of accuracy. On the one hand, the adaptive tensor

exhibited not only better accuracy results than the fixed one, but it also intro-

duced occlusion and noise robustness to some extent. On the other hand, the

binary occupancy measure outperformed the normalized density one, fostering

the less-is-better principle. In conclusion, this study provides a reasonable in-545

sight about the effect of 3D data representation in this kind of networks. In

addition, it proves that taking into account real-world conditions is a matter of

utmost importance when training these networks with synthetic datasets.

Furthermore, we compared our approaches with a state-of-the-art

method: PointNet, which features a different approach for object550

recognition, using a deep network based on MLPs instead of convo-

lutions. We found out that PointNet’s approach achieves better base

accuracy and noise resilience; however, it is outperformed by CNN-

based approaches when dealing with occlusions. It is important to

remark that occlusions are one of the main problems of real-world555

scenes.

Following on this work, we plan to improve the study by including more vol-

umetric representations and improving the existing ones. For instance, applying

orientation estimation methods to the adaptive grid in order to better fit the

input cloud and find a consistent alignment throughout the models would prob-560

ably yield an improvement. Another possible addition could be extending the

occupancy computation to take into account the actual surface of the object,

i.e., triangulating the point cloud and computing the amount of surface which

intersects each voxel. Furthermore, this study has not taken into account the
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efficiency. In this regard, it could be extended by analyzing the performance in565

terms of runtime of both representations and networks.

The source code used to generate the results claimed in this manuscript can

be downloaded from the corresponding GitHub 2 repository.
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