
Research Article
Gait Analysis Using Computer Vision Based on Cloud
Platform and Mobile Device

Mario Nieto-Hidalgo , FranciscoJavier Ferrández-Pastor, Rafael J. Valdivieso-Sarabia ,
Jerónimo Mora-Pascual, and Juan Manuel Garcı́a-Chamizo

Department of Computing Technology, University of Alicante, Campus San Vicente del Raspeig, Alicante, Spain

Correspondence should be addressed to Mario Nieto-Hidalgo; mnieto@dtic.ua.es

Received 30 June 2017; Revised 31 October 2017; Accepted 12 November 2017; Published 14 January 2018

Academic Editor: Pino Caballero-Gil

Copyright © 2018 Mario Nieto-Hidalgo et al. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Frailty and senility are syndromes that a1ect elderly people. +e ageing process involves a decay of cognitive and motor functions which
often produce an impact on the quality of life of elderly people. Some studies have linked this deterioration of cognitive andmotor function
to gait patterns.+us, gait analysis can be a powerful tool to assess frailty and senility syndromes. In this paper, we propose a vision-based
gait analysis approach performed on a smartphone with cloud computing assistance. Gait sequences recorded by a smartphone camera are
processed by the smartphone itself to obtain spatiotemporal features. +ese features are uploaded onto the cloud in order to analyse and
compare them to a stored database to render a diagnostic.+e feature extractionmethod presented can work with both frontal and sagittal
gait sequences although the sagittal view provides a better classi7cation since an accuracy of 95% can be obtained.

1. Introduction

+is work is part of a project called Gait-A whose main ob-
jective is the early detection of frailty and senility syndromes
using gait analysis. Physical activity is one of the main com-
ponents involved in frailty syndrome evaluation [1, 2]. Gait is
identi7ed as a high cognitive task in which attention, planning,
memory, and other cognitive processes are involved [3, 4].

+rough gait analysis, quanti7cation of measurable in-
formation of gait, and its interpretation [5], frailty and de-
mentia syndromes can be diagnosed. +is process is carried
out by specialists and is based on estimations through visual
inspection of gait.

In this work, we propose a computer vision approach
that could aid the specialists providing them with objective
measurements of gait and, thus, gain in objectivity of the gait
analyses performed.

We propose the use of smartphone cameras to record the
subject’s gait and also provide computer vision algorithms
able to analyse those sequences to extract spatiotemporal gait
parameters.+ese parameters are then sent to the cloud to be
analysed by a classi7er for the purpose of determining
whether abnormalities are present or not.

A lot of works dealing with gait analysis using computer
vision are found in the literature. However, most of them
focus on gait biometrics for human identi7cation, and few of
them address gait analysis for detection of abnormalities.

+e main goal of this study is to provide a nonexpensive
and easy-to-deploy solution to obtain the spatiotemporal
parameters of gait, which will be fed to classi7cation algo-
rithms that will discriminate between normal and abnormal
gait. It needs to be mentioned that the process of obtaining
spatiotemporal parameters for abnormal gait compounds
the task as the number of assumptions that can be made over
gait patterns is drastically reduced. In such cases, neither
cyclic patterns nor the totality of the gait phases can be
assumed to be present. In this work, for study purposes,
Parkinsonian gait, knee pain, and foot dragging among other
patterns that deviate from what we consider normal gait will
be taken as abnormal gait.

A set of di1erent gait features is analysed in [6] for person
identi7cation. +e process starts by extracting the silhouette
with a background subtraction technique to then obtain the
contour. After the contour is obtained, they extract four time-
series features: width/height ratio, bounding box width, sil-
houette area, and center of gravity (COG).+ese four features
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follow a cyclic pattern thatmatch the gait cycle and are used to
identify a person through deterministic learning.

Xu et al. examined the suitability of the Kinect sensor to
measure gait parameters while walking on a treadmill in
frontal view [7]. +ey compared the heel strike (HS) and toe
o1 (TO) they obtained with those obtained using a motion
tracking system. HS showed less error than TO because it
happens closer to the sensor.

Choudhury and Tjahjadi [8] proposed a method com-
posed of three modules: silhouette extraction, subject classi-
7cation using Procrustes shape analysis (PSA) and elliptic
Fourier descriptor (EFD), and combination of both results. For
silhouette extraction, they use background subtraction and
morphologic operations to remove noise. PSA module ana-
lyses a group of shapes usingmatching of geometrical locations
of a silhouette. +e stride length is computed using the width
of the bounding box. Finally, EFD allows to characterize the
contour of the subject in key points of a gait phase.

Leu et al. proposed a method to extract skeleton joints
from sagittal and frontal views [9].+emethod proposed uses
the horizontal and vertical projection of the silhouette pixels
to obtain the neck joint.+en they apply an anatomical model
to obtain hip, knees, and ankles. Yoo and Nixon [10] also
extract skeleton joints using an anatomical model to segment
the silhouette but they obtain the mean points of each seg-
ment and then apply linear regression to obtain a line that
represents the bones. During double support gait phase, they
applymotion tracking to estimate the location of the occluded
points. Khan et al. [11], similarly obtain the skeleton by
computing the mean points of each body segment. +ey
obtain leg movement and posture inclination and compare it
with a normal gait model to recognise Parkinsonian gait.

In addition, we 7nd the following proposals for classifying
gait patterns. In Wang [12], the method is based on optical
Kow that calculates a histogram of silhouette Kows to which an
eigenspace transformation applies. +e data obtained are
compared with a normal gait template to calculate deviation.
In Bauckhage et al. [13], homeomorphisms apply between 2D
lattices and binary shapes to obtain a vector space in which the
silhouette is encoded. +ey performed several silhouette
bounding box splittings to obtain di1erent lattices that are
then classi7ed using support vector machine (SVM).

Apparently, most of the vision-based gait analysis pro-
posals use sagittal view for the reason that it provides more
information with which to work. However, there are ob-
tainable bene7ts out of a frontal gait analysis. According to
Whittle [14], more gait abnormalities can be observed from
a sagittal view than from a frontal view. However, we do also
undertake frontal gait analysis for the following reasons:

(i) Some abnormalities can only be observed from
a frontal point of view. Whittle [14] mentions that
circumduction gait, hip hiking, abnormal foot
contact, and rotation among others are better ob-
served from a frontal view.

(ii) In terms of the physical space necessary for re-
cording, sagittal gait sequences require much more
than those of frontal gait, for which only a small hall
or corridor will serve.

A way to reduce the space needed for sagittal view re-
cording is to use a treadmill, but it could alter gait patterns,
especially with frail people. Another workaround is to use
a motorised camera that follows the subject, but it is ex-
pensive and could complicate the background subtraction as
it is moving as well. Both workarounds complicate the ac-
quisition of gait sequences making it diNcult to be processed
by a smartphone.

Sagittal images show a clear view of feet displacement
and enough information to locate heel and toe of each foot.
In frontal view, on the other hand, it is not easy to determine
where the heel and toe are located in each foot. +erefore,
a di1erent approach is required for frontal sequences.

In sagittal view, the size of the subject’s silhouette is
maintained along the whole of its trajectory. However, in
frontal view, the size of the silhouette increases along its
trajectory, so a normalization might be required.

+e paper is organized as follows. Section 2 describes the
sagittal and frontal methods to obtain spatiotemporal param-
eters of gait, their implementation in a smartphone, and the
classi7cation of normal and abnormal gait in a cloud platform.
Section 3 shows the results in which the spatiotemporal gait
parameters are subjected to normal and abnormal gait classi-
7cation. Finally, Section 4 provides the conclusion of this work.

2. Methods

In this paper, we present a platform for gait analysis using
computer vision where a smartphone records and processes
a gait sequence to obtain spatiotemporal parameters to be sent to
the cloud for a classi7cation between normal and abnormal gait.
+e layout of the platform is shown in Figure 1. In the following
subsections, each module of the platform will be described.

2.1. Sagittal Approach. +e sagittal approach takes gait se-
quences recorded from the side as input. +e method
presents four phases: preprocessing, feet location, feature
extraction, and skeleton extraction. Figure 2 shows the di-
agram of the sagittal approach. +e classi7cation phase is
performed in the cloud.

2.1.1. Preprocessing. In this phase, a background subtraction
is performed to obtain the silhouette of the subject using
mixture of Gaussians [15] background subtraction. After
that, a morphology operator is applied to remove noise.
Finally, the bounding box of the remaining silhouette is
extracted by computing the x, y positions using (1), and then
those points are made to correspond to a rectangle
(x, y,width, height) using (2).

minx � arg min
x,y
∀x,y ∈ silhouette : x 

maxx � arg max
x,y
∀x,y ∈ silhouette : x 

miny � arg min
x,y
∀x,y ∈ silhouette : y 

maxy � arg max
x,y
∀x,y ∈ silhouette : y ,

(1)
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Bounding box �(minx,miny,max x−min x,maxy−miny).
(2)

2.1.2. Feet Location. +e silhouette obtained by background
subtraction is then enclosed in its bounding box and split into
four regions, namely, head (13% of bounding box height), torso
(34%), upper legs (24%), and lower legs (29%), according to an
anthropometric model [16] as shown in Figure 3. +e lower
leg region is then brought to focus. We search the silhouette
pixel with maximum X component to obtain the toe of the
front foot (FF) using (3) and the pixel with minimum X to
obtain the heel of the back foot (BF) using (4).+en, the lower

leg region is split into halves vertically to separate each foot. In
the BF half, we search for the lower right pixel (assuming
displacement from left to right) to obtain the BF toe. In the FF
half, we search for the lower left pixel to obtain the heel. +e
7nal result is shown in Figure 3.

arg max
x,y
∀x,y ∈ silhouette : x , (3)

arg min
x,y
∀x,y ∈ silhouette : x . (4)

2.1.3. Feature Extraction. For each frame of the sequence,
the position of the heel and toe of both feet was obtained in
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Figure 2: Diagram of the sagittal gait approach.
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Figure 1: Diagram of the proposed platform. Extraction of gait features is performed on a smartphone and classi7cation in the cloud.
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the previous phase. To these time series, we applied gra-
dient analysis of the X component to obtain heel strike (HS)
when the mean point gradient between FF heel and FF toe
goes from greater than zero to zero (foot stops moving as
shown in (5)) and the toe o1 (TO) when the mean point
gradient between BF heel and BF toe goes from zero to
greater than zero (foot starts moving as shown in (6)).
Applying the gradient directly over the position time series
produces a lot of false positives due to some noise. To 7lter
the noise, we apply a threshold where any gradient value
less than that is set to zero.+is threshold can remove small
oscillations due to an error in the process of getting the
silhouette and locating toes and heels. It follows that
a Gaussian smoothing is applied, and isolated values
greater than zero or equal to zero are removed using (7).

heel strike(i)→ grad(x)i ≤ 0∧grad(x)i−1 > 0, (5)

toe off(i)→ grad(x)i > 0∧grad(x)i−1 � 0, (6)

v′i �
ifvi � 0∧vi−1 ≠ 0∧vi+1 ≠ 0→

vi−1 + vi+1( 

2

ifvi ≠ 0∧vi−1 � 0∧vi+1 � 0→ 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

2.1.4. Skeleton Extraction. +e skeleton extraction phase
provides a fast way of obtaining an approximation of the
locations of the head, neck, hip, knees, and feet. It uses the

four regions of the silhouette described in the feet lo-
cation phase. +e head and torso regions are divided in
half horizontally, and the COG of each half is computed.
+e COG of the upper region is moved to the top, and the
COG of the lower region is moved to the bottom. +en,
the head lower COG and the torso upper COG are av-
eraged to obtain a common point which is the neck. +e
head location corresponds to the upper COG of the head
region.

+e upper leg region is also split horizontally in half, and
both COGs are obtained. In addition, a vertical split is also
performed, and another two COGs are obtained. +e upper
COG is moved to top and averaged with the lower torso COG
to obtain the hip location. Lower COG is discarded.+en right
and left COGs aremoved to bottom, those two points being the
location of the knees. +e knees are adjusted to simulate
bending. +e process to adjust the knees consists in tracing
three circles: one with center at the hip and thigh length radius
(which is the height of the upper leg segment) and two other
circles with center at each foot and radius equal to the tibia
length (which is the height of the lower leg segment). +en, an
intersection between the hip circle and each of the foot circles is
performed. +ere are three possibilities:

(i) No intersection. In this case, the knee point is the
one given by the COG.

(ii) One intersection. In this case, the knee point is the
intersection point.

(iii) Two intersections. In this case, the knee point is the
intersection point more to the right (assuming gait
direction from left to right).

Finally, the location of each foot is the mean point of the
heel and toe obtained in the feet location phase. Figure 4
shows the 7nal result.

2.2. Frontal Approach. +e frontal approach is very similar
to the sagittal one proposed in the previous subsection. It has
the same phases: preprocessing, feet location, feature ex-
traction, and skeleton detection. +e diagram of the frontal
gait approach is shown in Figure 5.

2.2.1. Preprocessing. +is phase is exactly the same as for
sagittal. +e silhouette is obtained using Mixture of
Gaussians as background subtraction, and then morphology
operators are applied to remove noise.

2.2.2. Feet Location. In frontal view, both toes are always
visible but heels are constantly occluded, so heels cannot be
properly located. +erefore, we can only rely on toe
information.

To obtain toes, we proceed by dividing the silhouette in
four regions according to the anthropometric model estab-
lished in [16]. We focus only on the lower leg segment. +en,
we calculate its bounding box and split it vertically into half to
separate both feet. It is important to recalculate the bounding
box of this part so the vertical split separates both feet accurately;
otherwise, any misalignment can cause problems. Note that the

Figure 3: Location of the heel and toe of each foot for the sagittal
approach.
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process of splitting the bounding box for the purpose of sep-
arating both feet will never be accurate with gait patterns that
place one foot in front of the other. We will assume that this

particular gait pattern is not present in our dataset. We obtain
the left and right foot toe by locating the pixel with minimum y
component in the left and right half, respectively (8) (Figure 6).
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Figure 5: Diagram of the frontal gait approach.

Figure 4: Knee adjustment for the sagittal approach.
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argmin
x,y
∀x,y ∈ silhouette : y . (8)

2.2.3. Feature Extraction. +e previous phase provides the
position of each toe for each frame, which is precisely the in-
formation we need to derive HS and TO. We propose an ap-
proach to obtain HS and TO with frontal gait based on the time
series derived by subtracting the vertical component of both feet.

We will use the subtraction of the y component of the toes
to obtain a curve inwhich zero crosses indicate the feet adjacent
gait phase. HS and TO of each foot are located between each
zero cross. We can estimate HS and TO by assuming that HS is
produced before TO; HS is produced in the 7rst half of each
region and TO in the second half. +erefore, we can estimate
HS and TO following (9) and (10), respectively, where zci
relates to the frame in which a zero cross point occurs and zci−1
relates to the frame of the previous zero cross point.

HS � zci−1+
zci − zci−1(  × 3

4
, (9)

TO � zci−
zci − zci−1

4
. (10)

+is approach poses some problems with some abnor-
mal gait patterns, as shown in [17], in which some events
could not be detected, for example, when a foot is always
behind the other or is dragged due to some injury or pain.
Figure 7 shows foot dragging where, in some cases, the curve
does not cross zero during the swing phase. To solve the
problem, we devise another method. Using the same curve
from the previous approach (the di1erence of y component

of each foot), we proceed by applying Gauss 7lters to remove
noise (Figure 8 shows the curve of Figure 7 after applying
Gauss 7lters), then we obtain the local maxima and minima,
which are located more or less at the center of each pair of
zero crosses. But, in this case, the curve does not have to
cross zero to produce a maximum or minimum, and the
problem is solved.

HS are located before a maximum or minimum, and TO
after. We know that both events are located in that region.
Empirically adjusting them, we derived that the HS is located
at 1/4 the distance between onemaximum (orminimum) and
the previous one (12), and TO is located at 1/8 the distance
between one maximum (or minimum) and the next one (13).

Being M an ordered set of maxima and minima in as-
cending chronological order:

M� m1, m2, m3 · · ·mn . (11)

HS of mi is obtained as

HSi � mi −
mi −mi−1

4
, (12)

and TO is obtained as

TOi � mi +
mi+1 −mi

8
. (13)

2.2.4. Skeleton Detection. +e process is the same as the one
described for the sagittal approach, but for frontal approach,
the adjustment of knees is not necessary.

2.3. Smartphone Implementation. Sagittal and frontal ap-
proaches were implemented on Android using OpenCV
native functions.We allowed twoways of processing a dataset:

(i) On a real-time video: the smartphone camera re-
cords the subject walking and processes it at the same
time.

(ii) On a previously recorded video: the smartphone
records the subject walking and stores it in memory,
and then the stored video is processed.

Figure 6: Toe location of each foot for the frontal approach.
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Figure 7: Di1erence of component Y of each foot with abnormal
foot dragging.
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To achieve real-time processing, we use the pyramidal
multirresolution approach described in [18]. We achieve
10 fps using a quad core at 1.4 GHz smartphone with 1GB
memory and 25 fps using a tablet with a Tegra K1 quad core
processor at 2.2GHz and 2GBmemory.+e size of the input
image was reduced to 480× 270 pixels. However, results
shown in Section 3 are obtained using full resolution using
the dataset.

2.4. Cloud Platform. To develop the cloud platform, we used
the Microsoft Azure Machine Learning platform. +is is
a cloud platform for designing and developing predictive
models. Azure provides a REST Web Service to access the
Machine Learning tools.

For our purposes, we develop a K-nearest neighbour
(KNN) algorithm with Dynamic Time Warping (DTW) as
a distance function accessed through the REST Web Service
provided by Azure. To perform a classi7cation between
normal and abnormal gait, we use the stride (bounding box
width for sagittal approach, and subtraction between y
component of each foot for frontal approach) and leg-angle
time series (provided by the skeleton extraction algorithm
computed as the angle formed by the hip and each foot).

3. Results and Discussion

We will now describe the experiments performed and the
results obtained. +e dataset recorded for the experiments is
also described in this section.

3.1. Dataset. To test the proposed approaches, we recorded
two datasets of subjects walking: one using sagittal view and
the other using frontal view. Both datasets were recorded in
a room with a nonhomogeneous background including
windows where the light made it diNcult to extract the
silhouette. +is was intentional because we wanted to test
our approaches in real conditions, and so the silhouette is
often incomplete. Figure 9 shows the room in which the
recordings were performed.

To record the frontal dataset, we placed a camera at one
end of an 8m corridor and asked the subject to walk towards it.

We captured a total of 23 samples of normal gait and 20
samples of abnormal. To record the sagittal dataset, we used the
same environment, but we placed a camera at a distance of 4m
from the perpendicular of the gait direction to obtain a side
view. In this case, a total of 15 samples of normal gait and 15 of
abnormal gait were recorded. Even if the number of recorded
samples is low (43 for frontal gait and 30 for sagittal gait), there
are a total of 320 HS events and 319 TO events for frontal gait
and 233 HS events and 223 TO events for sagittal gait.

We asked the subjects to walk normally along the cor-
ridor and then to walk feigning some of the following
abnormalities:

(i) Knee pain: the subject simulated pain in one of his
knees.

(ii) Foot dragging: the subject dragged one foot.
(iii) Parkinsonian gait: the subject made some small

steps with variable speed.
(iv) Other: the subject depicted random patterns.

To guarantee the privacy of the subjects, we published
only the silhouettes extracted during the silhouette extrac-
tion phase. +ese silhouettes are stored as an ordered set of
images, and a 7le with the elapsed milliseconds for each
image is also included. For each recorded sample, we
manually mark the frames in which a HS or TO event occurs
to use it as a ground truth. We also include information
related to pixel width to be able to calculate distances and the
sample class (normal� 0 or abnormal� 1). In addition, a 7le
with the output of the feet location and feature extraction
phases is included which contains the positions of heel and
toe of each foot, their gradients, and the events of HS and TO
detected. +ese results are the output of the HS and TO
detection algorithm using full resolution (1920×1080),
which do not correspond to those provided by the smart-
phone using a quarter of that resolution.

Both datasets are accessible through the URL provided
by [19].

3.2. Experiments. We performed experiments using our own
datasets for sagittal and frontal gait. We used the manual
marking of the HS and TO events of each gait sequences of the
dataset as ground truth. +e error margin of this manual
marking was set to ± 1 frame because that is the minimum
value.We also assumed an error of ± 1 frame in the algorithm

Figure 9: Dataset background showing a room with closets and
windows.
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Figure 8: Di1erence of component Y of each foot after applying
Gauss 7lters.
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output. So, the global error margin was set to ± 2 frames.
+en, the di1erence in frames between the ground truth and
the proposed algorithm was analysed. Any di1erence less or
equal to the global error margin was considered acceptable.
+en, the root mean square error (RMSE) of the di1erences
was computed using

RMSE �

������������
1
n
∑
n

i�0
mi − ai( 

2



, (14)

where n corresponds to the number of events (HS or TO
in this case), mi the frame of the event i in the manual
marking, and ai the frame of the event i in the algorithm
output.

3.3. Sagittal Approach. In Table 1, we show the results after
applying the HS and TO detection algorithm with the
7ltering method described in the previous section for
sagittal view. +e table shows the amount of correct de-
tections (less than 2 frames of di1erence between algo-
rithm and manual marking), undetected cases, wrong
detection (more than 2 frames of di1erence), and the root
mean square error of both correct and wrong cases. As
observed, the RMSE of both HS and TO events is lower
than the error margin of 2 frames. TO events are more
accurately delimited than HS events. But, HS events show
less undetected cases. +erefore, it will be HS, the event we
will use to obtain the spatiotemporal parameters to per-
form classi7cation. Figure 10 shows graphically the cor-
rect, wrong, and undetected cases.

3.4. Frontal Approach. Table 1 also shows the results after
applying the frontal approach. As shown in there, the RMSE of
bothHS andTO in normal gait is smaller than the errormargin
of 2 frames, but it is slightly bigger for abnormal gait.+erefore,
results are acceptable for both normal and abnormal. Error is
mainly produced in the 7rst steps when the silhouette is smaller
(the subject is farthest from the camera). Figure 11 shows
graphically the results of Table 1.

+e results obtained with our sagittal view approach are
similar for normal gait. We obtained 1.44 frames for HS and
1.08 for TO, which were slightly more precise than the ones
we extracted from frontal approach (1.88–1.63) but close to
each other. However, in the case of abnormal gait, we ob-
tained 1.79 frames for HS and 1.59 for TO, which were more
precise than those obtained with the frontal approach
(2.42–2.17).
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Figure 10: Results of the sagittal approach.

Table 1: Results of the sagittal HS and TO detection algorithm
showing the amount of correct detections (less than 2 frames of
di1erence between algorithm and manual marking), undetected
cases, wrong detection (more than 2 frames of di1erence), and the
root mean square error of both correct and wrong cases.

Approach Correct Undetected Wrong RMSE
DAI dataset normal gait heel strike
Sagittal 90.2% 1.1% 7.6% 1.44 frames (48ms)
Frontal 89.4% 0% 10.60% 1.88 frames (63ms)
Toe o4
Sagittal 93.3% 2.2% 2.2% 1.08 frames (36ms)
Frontal 89.4% 0% 10.6% 1.63 frames (54ms)
DAI dataset abnormal gait heel strike
Sagittal 89% 2.1% 6.9% 1.79 frames (60ms)
Frontal 72.1% 0% 27.9% 2.42 frames (81ms)
Toe o4
Sagittal 82.1% 3.6% 10.7% 1.59 frames (53ms)
Frontal 75% 0% 25% 2.17 frames (72ms)
Total heel strike
Sagittal 89.5% 1.7% 7.2% 1.66 frames (55ms)
Frontal 78.8% 0% 21.3% 2.23 frames (74ms)
Toe o4
Sagittal 86.5% 3.0% 7.4% 1.41 frames (47ms)
Frontal 80.6% 0% 19.4% 1.98 frames (66ms)
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3.5.Classi6cation. To perform a classi7cation between normal
and abnormal gait, we use KNN to compare the stride length
and leg-angle time series of the di1erent gait cycles. To calculate
the distance between two time series, we apply DTW. We
perform the classi7cation test with two di1erent methods:

(i) Testing each gait cycle separately. +e time series
corresponding to each gait cycle is treated separately
as if it belonged to di1erent subjects.

(ii) Testing each gait cycle of each recording sample and
outputting the mode class for each subject. In this
case, a prediction for each gait cycle follows, and
then another prediction is computed by outputting
the mode class for the same recording sample.

To validate the proposed classi7cation, we use 10-fold
and leave-one-out cross-validations to 7nely measure the
accuracy of each classi7er.

Table 2 shows the results of the stride and leg-angle time
series for the sagittal approach. We obtained an accuracy
rate of 100% using leg-angle time series when outputting the
mode class for each recording sample. Least accurate results,
however, are the ones o1ered by the stride width.

+e results of the classi7cation experiments for frontal
approach are shown in Table 3. As shown in there, testing
each recording sample produces better results as it tends to
eliminate outliers.

We have focussed on obtaining a classi7cation between
normal and abnormal gait to assess the suitability of the
proposed algorithm to di1erentiate between the two of them.
For this test, we considered knee pain and foot dragging as
abnormal gait. +e results obtained suggest that the classi7er
can di1erentiate between normal and abnormal gait.
+erefore, future work will focus on classifying di1erent
abnormal gaits.

4. Conclusion

+emain contribution of this paper is a nonexpensive and
easy-to-deploy approach to obtain HS and TO and some

skeleton joints using both sagittal and frontal gait se-
quences. Frontal view poses some problems when
obtaining heels position, so we focus on toes instead.
Results show acceptable precision in providing HS and
TO in both the sagittal and the frontal methods. Com-
paring both approaches, results were similar but sagittal
proved to be more accurate. +e dataset recorded to test
the proposed approaches is for anyone to use it [19]. To
maintain the privacy of the subjects, we published only
the silhouette.

We also provide a cloud platform-based web service to
perform a classi7cation between normal and abnormal gait
for both sagittal and frontal views. Results show a classi7-
cation rate greater than 80% in frontal view and more than
90% in sagittal view.

+e ability to perform gait analysis using frontal view
reduces the physical space required for the tests. In addition,
this method does not rely on silhouette displacement (the
sagittal approach does), so it is also suitable for treadmill gait
sequences. +erefore, the space could be reduced even more
in cases where the alteration of gait patterns that the
treadmill could cause does not signi7cantly matter.

Future work will focus on improving the accuracy of HS
and TO for abnormal gait and classifying di1erent abnormal
gait types.
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