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Abstract 12 

 13 

A novel extraction method was developed, optimized and validated for the elemental 14 

analysis of organic samples. The method, called aerosol phase extraction (APE), was 15 

based on the nebulization of the extracting aqueous solution (0.1 mol L
-1

 nitric acid) on 16 

the sample. The extraction was performed at the interface of each generated extractant 17 

droplets as they entered in contact with the samples. Afterwards, the phases were 18 

allowed to separate and Ca, K, Na and Mg were determined in aqueous phase by means 19 

of inductively coupled plasma optical emission spectroscopy (ICP-OES). Measurement 20 

of aerosol characteristics demonstrated that a water-in-oil emulsion was generated. 21 

Therefore, once the aqueous solution was dispersed into the sample, the phases 22 

spontaneously separated. Furthermore, the interfacial specific surface area took values 23 

on the order of 1 m
2
 mL

-1
, hence enhancing the extraction kinetics over a conventional 24 

extraction method. The key variables affecting the extraction yield were: the 25 

nebulization gas flow rate, liquid flow rate, extraction time, acid concentration, 26 

nebulizer tip to sample surface gap and mOrganic phase/mAqueous phase ratio. Once the 27 

optimum conditions were selected, the method was applied and validated for the 28 

determination of Ca, K, Na and Mg by ICP-OES in 0.5 mL biodiesel samples with an 29 

expanded uncertainty lower than 2%. With the APE method, the extraction time was 30 

around 1 minute, whereas conventional methods employed to perform this kind of 31 

extraction required from 4 to 50 minutes. Additionally, the APE involved the analytes 32 

preconcentration thus lowering the limits of detection down to the ng mL
-1

 level (i.e., 33 

LODs based on the 3 sb criterion were 32, 20, 19 and 24 ng mL
-1

 for Ca, K, Na and Mg, 34 

respectively). Furthermore, accuracy when quantification of Ca, K, Na and Mg 35 

concentration using APE was not significantly different as compared to that afforded by 36 
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conventional liquid-liquid extraction. Finally, Ca, K, Na and Mg contents were 37 

determined in four real samples in the 0.5-13 mg kg
-1

 range. The obtained results were 38 

not statistically different to those encountered with a microwave-based digestion 39 

method. 40 

 41 

Keywords 42 

 43 

ICP-OES; Liquid – liquid Extraction; Aerosol phase extraction; Metals; Biodiesel 44 

 45 

Highlights 46 

A novel rapid aerosol phase extraction (APE) procedure has been applied for the first 47 

time to determine metal impurities in biodiesel samples. 48 

A water-in-oil emulsion is generated during the extraction process and the phases 49 

separation is spontaneously and quickly produced. 50 

The method provides high extraction yields with a concomitant analyte 51 

preconcentration. 52 

As the APE avoids introduction of organic solvents into the plasma, calibration can be 53 

performed with a set of plain acidified water standards. 54 

 55 

Novelty Statement 56 

The novel Aerosol Phase Extraction method has been applied for the first time to the 57 

analysis of organic samples. In this case, the analytes (Na, K, Ca and Mg) are extracted 58 

in an aqueous 0.1 mol L
-1

 nitric acid solution. The determination of these metals is 59 

finally carried out in inductively coupled plasma optical emission spectrometry by 60 

applying external calibration with aqueous standards. 61 
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Introduction  64 

 65 

Biodiesel is a well-established alternative to fossil fuels. Biodiesel quality control 66 

involves, among others, the determination of alkaline earth elements (Na, K, Ca, Mg) 67 

content.
1
 These species are a result of the biodiesel production process and play a very 68 

important role because they may modify the efficiency of the biodiesel production as 69 

well as its stability. Moreover, the presence of these elements may cause engine damage 70 

by corrosion and catalyst poisoning. These elements are present at variable 71 

concentrations depending on factors such as the raw materials, production process and 72 

the post-production pollution, among others.  73 

The quantification of alkaline and alkaline earth elements in biodiesel has 74 

several difficulties associated: (i) some of them are present at very low concentrations 75 

(µg L
-1

); (ii) there are limited certified reference materials for method validation and 76 

quality controlling; and, (iii) the matrix is complex and its composition depends on the 77 

biodiesel origin and treatment. 78 

Therefore, it is obvious that sensitive techniques are required to carry out the 79 

determination of Na, K, Ca and Mg in this type of samples. The main techniques 80 

employed are flame atomic absorption spectrometry (FAAS), graphite furnace atomic 81 

absorption spectrometry (ETAAS), inductively coupled plasma optical emission 82 

spectroscopy (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS).
2
 83 

Dilution in an organic solvent (i.e. ethanol, xylene or kerosene) has been widely 84 

recommended for the determination of Na, Ca, K and Mg by atomic absorption 85 

spectrometry or ICP-OES.
3,4,5,6,7,8

 Unlike FAAS, the latter technique has multielemental 86 

capability, it provides lower limits of detection and wider dynamic ranges than the 87 

former. However, the introduction of organic samples into the plasma is a challenging 88 
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subject as ICP techniques suffer from severe interferences caused by complex organic 89 

matrices (e.g., matrix effects, plasma degradation or soot deposition at the injector 90 

tip).
9,10,11,12

 To circumvent them, several sample preparation approaches have been 91 

developed such as acid digestion and sample oxidation or combustion.
2,13,14

 However, 92 

these methods show some problems caused by the addition of reagents, sample 93 

contamination, degradation of limits of detection and volatile compounds losses.  94 

Emulsification has been proposed as an alternative to sample dilution, because 95 

the mass of organic solvent that reaches the plasma is minimized.
15

 Emulsification 96 

involves the addition of an aqueous phase containing an acid and/or surfactant to the 97 

sample. The selection of the surfactant and its concentration are the most crucial points. 98 

On this subject, it is necessary to consider that the emulsion physical properties may 99 

affect the nebulization process,
16

 the analyte transport efficiency and the stability of the 100 

emulsion. By mixing water, oil and one or more surfactants under controlled 101 

experimental conditions, either a cloudy (i.e., emulsion) or a transparent (i.e., 102 

microemulsion) mixture is obtained.
17

 To prepare an emulsion or microemulsion, the 103 

surfactant is first dissolved in water and then it is added to the sample. The dispersion is 104 

prepared by vigorously stirring or by using an ultrasonic bath.
17,18

 The major drawback 105 

of this methodology is related with the loss of sensitivity and the degradation of LODs 106 

as the sample is diluted. 107 

Solvent extraction is one of the most versatile and widely used procedures for 108 

the removal, separation and concentration of metals.
19,20

 In the last years, research 109 

efforts have been focused on the development of efficient, fast and miniaturized 110 

extraction methods.
20,21

 In classical liquid–liquid extraction, small droplets are 111 

generated by agitation, which increases the contact surface area and improves the 112 

extraction efficiency. However, in some instances, the classical procedure is not 113 
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effective enough and presents some disadvantages: laborious manipulation, large 114 

volumes of solvents required, high operational costs, possible formation of emulsions, 115 

large equipment and long analysis time. One of the means for improving the extraction 116 

efficiency is to increase the medium temperature and/or to apply sonication. This 117 

methodology has been satisfactorily used for the determination of Ca, K, Mg and Na in 118 

biodiesel by ion chromatography.
22

 However, complex procedures, large volumes of 119 

solvents and long analysis time are still required. In the dispersive liquid-liquid 120 

microextraction (DLLME) method, a dispersing agent is added to the extracting one. 121 

The extraction efficiency is improved due to the increase in the exchange surface as a 122 

substantial number of small droplets of the extracting solvent are dispersed into the 123 

liquid sample.
23,24

  124 

In this paper, a new liquid-liquid extraction method, based on the concept of 125 

aerosol extraction, previously developed in our laboratory,
25

 has been applied for the 126 

first time to the determination of Ca, K, Mg and Na in organic samples (c.a., biodiesel). 127 

The Aerosol Phase Extraction (APE) method is based on the confinement of an aerosol, 128 

previously generated from the extraction solution, into the sample. As indicated in 129 

previous reports,
26

 the extraction has been carried out by using a diluted nitric acid 130 

solution, thus eliminating the aforementioned drawbacks associated to the introduction 131 

of organic matrices into ICP-OES.  132 

 133 

Materials and methods 134 

 135 

Chemicals and samples 136 

Ultrapure water was supplied by a three-step ion-exchange system Milli-Q, fed by 137 

reverse osmosis, Elix 3, both from Millipore (El Paso, TX, USA). 65% HNO3 138 
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(Suprapur®, Merck KGaA, Darmstadt, Germany) was used to prepare washing 139 

solutions and acidify the standards and samples. An ICP multielement standard solution 140 

(Merck IV, Merck KGaA, Darmstadt, Germany) containing 1000 mg element per litre 141 

was used to prepare the standards by serial dilutions. Stock and standard solutions were 142 

prepared in 2 % (v/v) HNO3. 143 

To evaluate the feasibility of the developed method four real samples were 144 

analyzed. A biodiesel certified reference material (CRM), VHG-B100M5-10-100G, 145 

produced by VHG Labs (Manchester, U.S.A.) was also studied. The CRM had a Fatty 146 

Acid Methyl Ester matrix (B100) and the certified Na, Ca, Mg, K and P concentrations 147 

were 10.0 ± 0.1 µg g
-1

. 148 

 149 

Aerosol phase extraction procedure 150 

Figure 1 shows the experimental set-up used to perform the APE procedure. 0.5-0.9 g of 151 

biodiesel were poured into a 5 mL extraction vial. Then, a HNO3 solution was delivered 152 

to a glass pneumatic concentric nebulizer (TR-30-A2, Meinhard®, USA) through a 153 

peristaltic pump (Perimax, Spetec, Erding, Germany). The generated droplets were thus 154 

directed towards the organic phase. The metal extraction occurred at the interface of 155 

each generated droplet, thus giving rise to a large contact surface area. Once the 156 

solutions were separated, the Ca, K, Mg and Na concentrations were determined in the 157 

aqueous phase through ICP-OES. 158 

All the experiments and measurements were carried out at room temperature. 159 

Three extractions and ten measurement replicates were performed for all the evaluated 160 

conditions. 161 

 162 

Volume drop size distributions and ICP-OES measurements 163 
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The aerosols generated by the nebulizer were measured by means of a laser Fraunhofer 164 

diffraction system (model 2600c, Malvern Instruments, Malvern Wolcestershire, UK). 165 

The sizer was equipped with a 63 mm lens focal length, which enabled the system to 166 

measure droplets with diameters included within the 1.2 to 118 µm range and provided 167 

the aerosol liquid volume fraction for a set of 31 diameter intervals (bands) thus giving 168 

rise to the complete volume drop size distribution. The nebulizer tip was set at 30 mm 169 

from the lens and at 15 mm from the laser beam center. 170 

An axially viewed Agilent 720 ICP-OES spectrometer (Santa Clara, USA) was 171 

used to determine the intensities for the selected elements. The system was equipped 172 

with a 40.68 MHz free-running generator and a polychromator with an echelle grating. 173 

A glass pneumatic concentric nebulizer (TR-30-K2, Meinhard®, USA) fitted to a 174 

cyclonic spray chamber was used as sample introduction system. Table 1 summarizes 175 

the operating conditions. 176 

 177 

Results and Discussion 178 

 179 

Fundamental studies 180 

In the Aerosol Phase Extraction (APE) procedure, the extracting (aqueous) aerosol was 181 

pneumatically generated through the interaction between the liquid stream and a high 182 

velocity gas stream. For a given pneumatic nebulizer, the experimental variables that 183 

influence the aerosol drop size distribution are the gas and liquid flow rates. The 184 

efficiency of liquid-liquid extraction, in turn, is precluded by the total liquid interface 185 

area. The higher this magnitude, the higher the extraction yield. To accomplish this in 186 

the case of the APE method, aerosols as fine as possible must be generated. It was 187 

clearly observed that at low gas flow rates (i.e., 0.2 L min
-1

) the proportion of liquid 188 
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volume contained in coarse droplets was significantly higher than at higher values of 189 

this variable. This was a direct consequence of the increase in the gas kinetic energy.
27

 190 

As regards the liquid flow rate, Ql, an increase in this variable led to a drop in the liquid 191 

to gas volume ratio thus leading to coarse aerosols.  192 

In the APE, the metals extraction took place at the interface of each particular 193 

droplet what resulted in a larger contact surface area than in the case of the classical 194 

extraction method. The aerosol surface area distribution was thus obtained by applying 195 

the following equation to each diameter range:  196 

 197 

�� = 	 ���×��	×%���        Equation 1 198 

 199 

where, Ai is the absolute area for a given band drop diameter (cm
2
); VAP is the total 200 

volume of extracting solution required for a complete run, e.g., 0.5 mL;	�� is the 201 

diameter at each band midpoint (µm); and, %�  is the % aerosol volume at the midpoint 202 

of the band provided by the sizer. 203 

Figure 2 shows the absolute surface drop size distributions obtained after 204 

applying Equation 1 at the three gas flow rates studied. It was first observed that a 205 

significant liquid surface was contained in droplets with diameters lower than 1.2 µm (7 206 

and about 20% for 0.2 and 0.4 L min
-1

, respectively). When considering the curves for 207 

diameters above this value, it was found that they peaked towards lower drop diameters 208 

as increased the gas flow rate (Figure 2). 209 

By integrating the curves in Figure 2 it was possible to determine the effective 210 

liquid surface or liquid-liquid interfacial surface area. The obtained values were 0.33, 211 

0.82 and 0.92 m
2
 per cm

3
 of liquid at Qg values of 0.2, 0.4 and 0.6 L min

-1
, respectively 212 

It was therefore verified that the higher the gas flow rate, the higher the interfacial area. 213 
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Taking into account a 0.5 mL total volume of extracting solution, the respective total 214 

interfacial surface values were 0.16, 0.41 and 0.45 m
2
. 215 

The effect of the liquid flow rate was also evaluated. Aerosol measurements 216 

demonstrated that at 0.3 and 0.5 mL min
-1

¸ about 25% of the liquid surface was 217 

contained in droplets with diameters below 1.2 µm; whereas, at 1.0 mL min
-1

 the 218 

surface area contained in droplets with diameters lower than 1.2 µm decreased down to 219 

3%. According to these data, the interface surface areas were 0.95, 0.83, 0.41 and 0.28 220 

m
2
 per liquid cm

3
 at 0.25, 0.50, 0.75 and 1.0 mL min

-1
, respectively. 221 

Finally, it was verified that the aerosols generated were composed by droplets 222 

whose diameters ranged from 1.2 to around 100 µm. This size range corresponded to a 223 

conventional emulsion.
28

 In conclusion, the presented method was based on the 224 

generation of an emulsion without the need of using a dispersing agent. This fact was 225 

advantageous, because, due to the instability of emulsions, in comparison with 226 

microemulsions,
29,30

 both phases could separate spontaneously.  227 

  228 

Optimization of the operating variables 229 

A univariate optimization of the variables affecting the extraction efficiency was carried 230 

out. The parameters considered were those that affected the characteristics of the 231 

generated aerosols at the sample surface (the nebulizer gas and liquid flow rates and 232 

nebulizer tip – sample gap) as well as those that influenced the status of the extraction 233 

equilibrium (nitric acid concentration and mass phases ratio). In order to perform this 234 

study, Na, K, Ca and Mg concentrations were determined in the biodiesel CRM. For a 235 

given element, the recovery (R, %) was given by: 236 

 237 

��%� = 	����	���������	���� ����    Equation 2 238 
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 239 

where Cdet corresponded to the experimentally determined analyte concentration, mext 240 

was the mass of extracting solution and Ccert and mCRM were the CRM concentration and 241 

mass (0.5 g), respectively. 242 

 243 

Effect of the nebulizer gas flow rate, Qg 244 

Regarding the effect of the gas flow rate (Qg), it was possible to anticipate that the finer 245 

the generated aerosols (i.e., the higher the interfacial surface), the better recoveries. 246 

Thus, according to the data shown in Figure 2 the best conditions would correspond to 247 

the highest Qg evaluated (i.e., 0.9 L min
-1

). Figure S1 plots the recovery versus the 248 

nebulizer gas flow rate showing an unexpected optimum (100%) at 0.4 L min
-1

. Higher 249 

values of this variable induced a drastic drop in the extraction yield. For example, at 0.9 250 

L min
-1

 only 20% of the analyte mass initially present in the sample was extracted. This 251 

could be explained by an increase in the speed at which the aerosol impacted against the 252 

organic phase. Indeed, it was visually observed that above 0.4 L min
-1

, a fraction of the 253 

sample was ejected from the sample vial and it was consequently lost. For this reason, 254 

0.4 L min
-1

 was taken as the optimum Qg for the remainder of the study.  255 

 256 

Effect of the liquid flow rate, Ql 257 

Studies on extraction kinetics were carried out by modifying the liquid flow rate (Ql) set 258 

to aspirate 0.5 g of aqueous phase (extracting solution). According to Figure S2, 100% 259 

recoveries were obtained at low liquid flow rates (i.e., from 0.1 to 0.5 mL min
-1

). This 260 

parameter dropped down to 65% as Ql was further increased up to 1 mL min
-1

. Because 261 

the volume of extracting agent was kept constant, this trend was likely due to the 262 

inverse relationship between Ql and extraction time. Additionally, as mentioned before, 263 

Page 12 of 32

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13 

 

aerosols became coarse (with lower liquid surface areas) as the liquid flow rate was 264 

increased. It was finally verified that a 60 s extraction time was enough to obtain 265 

recoveries close to 100% for the four elements tested. This time was from 3 to 50 times 266 

shorter than those required in previous works.
22,31

  267 

 268 

Effect of the distance from nebulizer tip to the sample surface, d 269 

The effect of the nebulizer nozzle sample surface gap (Figure 1) on R was evaluated. It 270 

was observed that recoveries were 100% when the distance was set at values of 1.0 or 271 

1.5 cm. Higher d values made a fraction of the aerosol to impact against the vertical 272 

walls of the biodiesel container and did not efficiently interact with the sample. Under 273 

these circumstances, recoveries ranged from 80 to 90%. When the nebulizer was set at 274 

closer distances from the sample, the aerosol droplets impacted against the surface of 275 

the organic phase at a high speed. This, together with the effect of the high velocity 276 

stream, caused the ejection of a significant sample mass. The direct consequence of this 277 

phenomenon was that a portion of the sample was lost and did not interact efficiently 278 

with the extracting agent. For instance, for a 0.8 cm nebulizer – sample surface distance, 279 

the measured recovery was 90%. 280 

 281 

Effect of HNO3 concentration 282 

Figure S3 shows that the extraction efficiency increased with the acid concentration. 283 

The major effect was observed for calcium. For this element, the recovery went from 284 

60% to 100% as the acid concentration was increased from 0.05 to 0.1 mol L
-1

. In 285 

contrast, magnesium exhibited an around 80% extraction yield for the lowest acid 286 

concentration tested. For all the elements, a plateau was reached at a 0.1 mol L
-1

 HNO3 287 

concentration. 288 
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 289 

Effect of mOrganic phase/mAqueous phase ratio (r) 290 

Values of this parameter from 0.5 to 3 were chosen to evaluate the analyte pre-291 

concentration effect of the APE method. Figure S4 shows that, for the four elements 292 

tested, the intensity in the aqueous phase increased almost linearly with the r value. This 293 

trend suggested that the analyte extraction efficiency did not vary as a function of the 294 

aqueous to organic phase ratios within the r studied range. It was later verified that 295 

recoveries were close to 100% for all the evaluated r values. Therefore, a r value of 3 296 

was selected because of the expected decrease in the limits of detection.  297 

In order to monitor whether the phase separation step was properly performed, 298 

once the extraction was completed, the carbon 193.030 nm emission signal was 299 

measured in the extracting phase and a clean diluted nitric acid solution. No significant 300 

differences were found between both signals, thus confirming the absence of emulsified 301 

biodiesel traces in the extracting solution.  302 

 303 

Optimized parameters 304 

Table 2 summarizes the optimized operating conditions for the new aerosol phase 305 

extraction approach. A new test was done to check whether the analyte extraction was 306 

complete under the optimized conditions or not. The biodiesel sample initially exposed 307 

to the APE procedure under optimum conditions was subjected to a second extraction 308 

step. Ca, K, Mg and Na concentrations were again measured in the new aqueous phase 309 

and they were not significantly different from those measured for a blank. As a 310 

conclusion, a single procedure was sufficient for the complete extraction of the analytes. 311 

 312 

Phase separation step 313 
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According to previous studies carried out in our laboratories,
25

 an aqueous sample could 314 

be nebulized over an organic solution in order to perform the extraction of 315 

molybdenum. It was verified that, once the aerosol interacted with the organic phase, 316 

the phase separation took place in ten minutes. This could be associated to the fact that 317 

too fine aerosols were generated. In fact, the nebulizer employed in ref. 25 yielded 318 

aerosols whose maximum diameter was 15 µm. Presumably, the existence of a 319 

significant proportion of fine droplets caused a slow phase separation. Based on these 320 

results, a nebulizer able to generate aerosols more compatible with the production of an 321 

emulsion was chosen. As mentioned before, under optimized conditions, the maximum 322 

aerosol drop diameter was close to 100 µm. As a consequence, the phase separation 323 

took place instantaneously once the aerosol generation ceased. This involved a 324 

significant shortening in the analysis time and, hence, a ten times increasing in the 325 

sample throughput from 5 to 50 h
-1

. 326 

 327 

Aerosol phase extraction versus conventional extraction 328 

An extraction procedure adapted from a method recently validated for Na, K, Mg and 329 

Ca determination in biodiesel samples was taken for comparison purposes.
22

 To lower 330 

the sample and reagent consumption, the extraction procedure was miniaturized. 250 331 

mg of each sample were directly weighed into a centrifuge tube with a precision of 0.1 332 

mg. Then, 500 ± 0.1 mg of ultrapure water were mixed with 1.25 µL of a 1 mol L
-1

 333 

HNO3 solution. The mixture was shaken for 1 min in a vortex apparatus (Selecta, 334 

Barcelona, Spain). Afterwards, the tube was partially immersed in a thermostatic bath 335 

set at 85 ◦C for 30 min. This tube was then placed for 15 min in an ultrasonic bath 336 

(Selecta, Barcelona, Spain) operating at a 50 kHz frequency. After that, it was 337 
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centrifuged at 1000 rpm for 5 min. The aqueous phase was separated and diluted with 338 

0.625 ± 0.0001 g of ultrapure water. 339 

Table S1 gathers the Na, K, Ca and Mg concentrations found for the two 340 

extraction procedures in the biodiesel CRM. Both methods provided similar results. 341 

However, the aerosol extraction procedure proved to be slightly more reproducible than 342 

the reference method. Certainly, the main advantage of the APE over the reference 343 

procedure was the significantly shortening in analysis time from 51 min in the case of 344 

the former procedure to 1 min for the aerosol phase extraction methodology. 345 

  346 

Method validation 347 

A complete in-house validation and uncertainty estimation according to IUPAC
32

 and 348 

EURACHEM
33

 guidelines was carried out. 349 

 350 

Linearity and working range 351 

Calibration was performed using five mass fraction levels covering from 0 to 6 mg kg
-1

. 352 

To counter potential memory effects, five replicates for each calibration solution were 353 

measured in a random order. Coefficients of determination (R
2
) in the 0.9987-0.9996 354 

range were obtained for five different calibration curves, and no outlying measurements, 355 

i.e. > 3 times the standard error of the calibration function, were found.  356 

 357 

Limit of detection and limit of quantification 358 

Ten independent replicate analyses of the Element Blank Oil 75 Viscosity standard 359 

(Conostan®, Ponca City, USA) were carried out under repeatability conditions. This 360 

standard was selected because it could be considered as a matrix similar to that of 361 

biodiesel. The LOD and LOQ were estimated as 3 or 10 times the total standard 362 

Page 16 of 32

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17 

 

deviation (sT), respectively. Equation 3 was applied to calculate sT. Total standard 363 

deviation includes the standard deviation of all the measurements (sM) and the standard 364 

deviation coming from the CRM (sSd = 0.015 mg kg
-1

). The LOD and LOQ values were 365 

around 0.06 and 0.18 mg kg
-1 

(Table 3). The major contribution came from the blank 366 

standard.  367 

 368 

�� = 	���� + �!�� 		 Equation 3	369 

 370 

In order to compare the LODs with previous works, they were estimated 371 

according to the 3sb criteria, where sb was the standard deviation of ten background 372 

consecutive measurements. In the present study, the blank corresponded to the biodiesel 373 

CRM after performing two consecutive APE procedures in order to ensure that the 374 

analytes were quantitatively removed. As Table 3 shows, LODs for the APE method in 375 

combination with an ICP-OES spectrometer were from 2 to 20 times lower than those 376 

found in previous works.
 
Even considering the contribution of the standard deviation 377 

coming from the CRM (Equation 3), LODs found in the case of the new APE were 378 

lower than those encountered in the already described methods (see Table 3). 379 

Obviously, the use of a sensitive technique such as ICP-OES promoted the reduction in 380 

LODs over other techniques considered in Table 3 such as ion chromatography or flame 381 

photometry. 382 

 383 

Trueness 384 

Trueness was evaluated by measuring the Ca, K, Mg and Na concentration for a 385 

biodiesel CRM. Three replicate samples were analyzed on two different days. The 386 

evaluation of the measurement results on a certified reference material was done by 387 
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comparison of the difference between the certified and measured values (∆m) with the 388 

combined uncertainty of certified and measured value (U∆). The absolute difference 389 

between the mean measured value and the certified value were calculated according to 390 

Equation 4. The expanded uncertainty U∆, corresponding to a confidence level of 391 

approximately 95 %, was obtained by multiplication of u∆ by a coverage factor (k), 392 

usually equal to 2. The uncertainty u∆ was calculated, based on Equation 5, from the 393 

uncertainty of the certified value and the standard deviation of the measurement result. 394 

To evaluate the method performance, ∆m was compared with U∆. As ∆m was lower than 395 

U∆ for all the elements, it was concluded that there were no statistically significant 396 

differences between the values obtained experimentally and the certified concentrations 397 

(Table S2). 398 

 399 

∆#=	 |%# − %'()|    Equation 4 400 

 401 

*∆ = 	+,#- +	*'()- 				Equation 5 402 

	403 

where cm is the mean measured value, cCRM is the certified value, sm is the standard 404 

deviation and uCRM is the uncertainty of the certified value. 405 

 406 

Repeatability and intermediate precision 407 

Three sub-samples of a CRM sample were measured on 5 different days, using 5 408 

different calibration curves. One-way ANOVA was used to estimate the repeatability 409 

and intermediate precision as within-group and between-group standard deviation, 410 

respectively. The repeatability of the method was lower than 0.8 % for all the elements, 411 

whereas the intermediate precision was lower than 0.11%. 412 
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 413 

Uncertainty estimation 414 

Calibration solutions preparation has a contribution to the final measurement 415 

uncertainty through the purity of the standards and the weighing steps. Furthermore, the 416 

uncertainty of the purity of the standards has also been assessed to estimate the total 417 

uncertainty contribution of the calibration. The relative standard uncertainty of the 418 

calibration resulted in 0.6% by taking into account the uncertainty contribution of the 419 

preparation of the calibration solution, all additional contributions coming from the 420 

stock solution preparation and the uncertainty of the purity of the standards. 421 

The relative standard uncertainty contributions related to the repeatability and 422 

intermediate precision were obtained applying one-way ANOVA to the 15 423 

measurements (equations 6 and 7): 424 

.��/ 	= 0112345 	6�!���/�7��/   Equation 6 425 

.�/ 	= 0112345 	6�!��/�7�89�   Equation 7 426 

 427 

where cCRM is the mean value of concentration measured for each element, RSDrep is the 428 

repeatability, nrep is the number of replicates, RSDip is the intermediate precision, and 429 

ndays is the number of days. Moreover, the relative standard uncertainty related to the 430 

trueness contribution was estimated by applying Equation 8. 431 

 432 

.� 	= 011×:∆2345 	  Equation 8 433 

 434 
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The contributions of the calibration, repeatability, intermediate precision and trueness 435 

were taken into account for the calculation of the expanded uncertainty (U) of the 436 

measurements.
34

  437 

 438 

;	 = < ∙ �.�8>� + .��/� +	.�/� + .��   Equation 9 439 

 440 

where U is the expanded relative uncertainty, k is the coverage factor (k=2), ucal is the 441 

relative standard uncertainty of calibration, urep is the relative standard uncertainty of 442 

repeatability, uip is the relative standard uncertainty of intermediate precision, and, ut is 443 

the relative standard uncertainty of trueness. The coverage factor applied was 2 444 

corresponding to the 95 % confidence level.
34

 Table S3 shows the final expanded 445 

relative uncertainty for each element and the contribution of the different uncertainty 446 

sources. For all the elements, the expanded relative uncertainty was around 1.5-1.9%. 447 

The major sources of uncertainty contribution were related to the calibration and 448 

trueness assessment and they represented around 47-56%  and 36-46% of the 449 

uncertainty, respectively. 450 

 451 

Analysis of real samples 452 

With the aim of validating the aerosol phase extraction methodology, the biodiesel 453 

certified reference material and four real samples including three biodiesels and a waste 454 

cooking oil were analyzed. Concentration values were also calculated by sample acid 455 

digestion and subsequent determination by ICP-OES. The samples were treated using 456 

the microwave digestion system Start D (Milestone, Sorisole, Italy). Approximately 250 457 

mg of the sample, weighed with a precision of ±0.1 mg, were transferred to a 458 

microwave digestion vessel and then 7 mL of 65% HNO3 and 1 mL of 30% H2O2 were 459 
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added. The sample was digested at 200 °C for 30 min. The digests were transferred to 460 

graduated glass flasks and diluted to 10 mL with Milli-Q water. 461 

To evaluate whether the difference between the concentrations provided by the 462 

two tested methods was significantly different, the statistical t-test was applied. As 463 

Table 4 shows, no significant statistical differences were observed between the values 464 

obtained by the APE and by the digestion procedure.465 
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 466 

Conclusions 467 

The new aerosol phase extraction (APE) method could be considered a valuable sample 468 

preparation method. From the point of view of green chemistry, the use of organic 469 

solvents has been avoided and waste generation has been minimized. Moreover, the 470 

developed method reduced significantly the time required for a quantitative extraction. 471 

Fundamental studies showed that the extraction procedure is based on an emulsion 472 

formation, thus phase separation is spontaneously produced. These advantages have 473 

been exploited in the determination of Ca, K, Mg and Na in biodiesel samples. The 474 

combination of the APE with ICP-OES provides a simple, reliable, accurate and 475 

reproducible method whose results are deemed to be of low uncertainty. In fact, the 476 

expanded uncertainty values are in the order of 2%. In face of the results, the APE 477 

method together with ICP-OES determination could be proposed as an alternative 478 

method to the conventional and regulated ones, where the dilution with an organic 479 

solvent is recommended.
3,4,5

 480 

Compared with the previously studied method,
25

 the new APE procedure shows 481 

several differences: (i) the phase separation took place quickly and spontaneously. As a 482 

consequence, the analysis time was shortened. This was due to the use of a nebulizer 483 

able to generate droplets whose diameters matched perfectly within the values 484 

theoretically required to generate emulsions (i.e., < 100 µm). In fact, the whole sample 485 

preparation took place in around 65 and 630 s for the APE and the previously developed 486 

method,
25

 respectively; (ii) the analyte was extracted in aqueous phase, thus avoiding 487 

the problems associated to the introduction of organic solutions into the ICP; (iii) 488 

sample losses caused by re-nebulization were minimized as on the one hand the 489 

extracting solution was nebulized over the sample and, on the other hand, the nebulizer 490 
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tip to sample surface was optimized; and, (iv) it was not necessary to add complexing 491 

agents in order to promote the analyte extraction. 492 

 493 
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Table 1. Operating conditions of the ICP-OES detector. 

Variable Value 

Liquid flow rate, Ql/ mL min
−1

 0.8
 

Nebulizer gas flow rate, Qg/L min
−1

 0.7 

Outer plasma gas flow rate, L min
−1

 15 

Intermediate plasma gas flow rate, L min
−1

 1.5 

Rf power, kW 1.4 

Integration time, ms 25 

Sampling time, s 1 

Elements and Wavelengths, nm 

Ca 396.847 

K 766.491 

Mg 279.553 

Na 589.592 
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Table 2. Optimized operating conditions of the aerosol phase extraction procedure. 

Variable Value 

Nebulizer gas flow rate, Qg, L min
−1

 0.4 

Nebulizer liquid flow rate, Ql, mL min
−1

 0.3 

Extraction time, s 60 

HNO3, mol L
-1 

0.1 

Nebulizer tip to sample surface gap (d), cm 1.5 

mOrganic phase, g 0.9 

r = mOrganic phase/mAqueous phase 3 
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Table 3. Limit of detection (mg kg
-1

) obtained for Ca, K, Mg and Na by applying 

different extraction and determination procedures. 

 APE*  APE
#
 APE

&
 Liquid 

extraction + 

Flame 

photometry
#,31

 

Liquid extraction 

+ Line source 

flame atomic 

absorption 

spectrometry
#,31

 

Conventional liquid-

liquid extraction + 

Ion 

chromatography
#,22

 

Ca 0.06 0.03 0.017 -- 0.15 0.23 

K 0.05 0.02 0.008 0.18 0.21 0.42 

Mg 0.05 0.02 0.015 -- 0.03 0.36 

Na 0.05 0.02 0.014 0.36 0.04 0.11 

*
Calculated considering the standard deviation obtained by applying Equation 3.  

# 
Calculated considering only the standard deviation of all blank signal measurements. 

& 
Calculated considering the standard deviation of the biodiesel sample initially exposed 

to the APE procedure subjected to a second extraction. 
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Table 4. Ca, K, Mg and Na concentration (mg kg
-1

) obtained by APE and acid 

digestion methods. Calculated t values, s values, the critical t value (α=0.05) and 

equations employed to calculate t and s. 
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Figure 1. Scheme of the experimental setup employed to perform the Aerosol Phase 

Extraction, APE.  
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Figure 2. Absolute surface drop size distribution curves in band for the aerosols 

generated by a concentric nebulizer under different gas flow rates. Liquid flow rate 0.5 

mL min
-1

; gas flow rate: 0.2 L min
-1

 for dotted line; 0.4 L min
-1

 for black line; and, 0.6 

L min
-1

 for grey line. 
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