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ABSTRACT 

Cells respond to environmental stress via the activation of various survival pathways and 
may possibly end with the initiation of cell death in order to eliminate damaged cells. The 
ability of cells to mount an adaptive or destructive response depends on the type and 
duration of the stress. The response to continuous orbital fluid shear stress (OFSS), 
moderate hypothermia (35°C) and moderate hyperthermia (39°) in this study 
demonstrated an anabolic effect on Normal Human Osteoblast (NHOst) cells where the 
cell metabolism, differentiation and proliferation was either promoted or retained. The 
anabolic effect correlated with an inhibition of osteoclast activity by reducing the 
RANKL/OPG ratio. In response to 3 days of OFSS, increase in NHOst mitochondrial 
metabolism and proliferation simultaneously prevented apoptosis. Meanwhile the 
increase in alkaline phosphatase (ALP) activity and osteocalcin (OCN) after recovery 
from OFSS suggested that NHOst function was promoted. The possible mechanism for 
the transduction of these anabolic signals might have been generated through the actin 
fibres of the cell's cytoskeleton. On the other hand, when NHOst were exposed to 
temperature stress for 1 h (acute), 12 h & 24 h (short) and 72 h (prolonged), cells 
responded by expressing heat or cold shock proteins according to hypo- and hyperthermia 
severity and exposure duration. Exposure to acute 1 h temperature stress lead to an 
overall reduction in NHOst metabolism, mRNA and protein expression. Overexpression 
of Rbm3 and Hsp70 promoted NHOst viability and proliferation in response to short and 
prolonged moderate hypo- and hyperthermia but not in severe exposure. Up regulation of 
Rbm3 was involved in the adaptation of NHOst survival while Cirbp was to inhibit 
NHOst survival. Despite NHOst were progressing in the cell cycle in response to 
moderate hypothermia, the percentage of NHOst undergoing apoptosis was slightly 
higher compared to NHOst under severe hypothermia. Both moderate and severe 
hypothermia showed apoptosis was activated via a caspase 3-independent pathway. 
Insignificant up regulation of caspase 8 and 9 under moderate hypothermia led to the 
activation of caspase 3, suggesting both extrinsic and intrinsic pathway was activated. 
Detachment of NHOst from the culture substratum in response to severe hyperthermia 
suggests that anoikis as a form of apoptosis was induced. The expression of ALP and 
OCN was dependent on the expression of Runx2. Meanwhile the overexpression of 
osterix showed that response to moderate hyperthermia in particular suggests that NHOst 
have the capability to mature. Prolonged exposure to moderate hypothermia promoted 
mineral deposition required for bone mineralization as the calcium nodules were slightly 
larger compared to control. In conclusion, continues exposure to OFSS and short term 
moderate hypo- and hyperthermia promote if not retains bone functionality in vitro. 
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