UNIVERSITI TEKNOLOGI MARA

SYMMETRIC ENCRYPTION USING PRESHARED PUBLIC PARAMETERS FOR A SECURE TFTP PROTOCOL

NUR NABILA BINTI MOHAMED

Thesis submitted in fulfilment of the requirements for the degree of **Master of Science**

Faculty of Electrical Engineering

February 2015

AUTHOR'S DECLARATION

I declare that the work in the thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree of qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nur Nabila binti Mohamed
Student I.D. No.	:	2012629994
Programme	3	Master in Electrical Engineering (EE780)
Faculty	:	Electrical Engineering
Thesis Title	a.	Symmetric Encryption Using Preshared Public Parameters For A Secure TFTP Protocol
Signature of Student	:	N/-
Date		February 2015

ABSTRACT

Due to rapid development of communication technology of constrained embedded systems, it is important to deal with security including integrity and confidentiality to maintain the accuracy while distributing data safely and efficiently. Trivial File Transfer Protocol (TFTP) is used for transferring files quickly and simply. The main advantage of using TFTP in embedded system is because of its speed and simplicity but it provides no security mechanism which makes it vulnerable to various attacks. This work proposes the security implementation of Diffie Hellman Key Exchange (DHKE) by presharing public parameters for mutual authentication that enables two communicating parties to achieve the same secret key. The concept is integrated with compression and encryption technique to significantly reduce the computational requirements in TFTP communication. The experiment is done on two embedded devices to perform the functionality of key exchange and data encryption in TFTP. The results were analyzed in terms of confidentiality and integrity of data, execution time, file scheme throughput, compression ratio, average file reduction percentage and transmission time using variable file size. The results show that the proposed work based on DHKE using preshared public parameters includes compression and encryption technique is an efficient solution to mitigate Man In The Middle (MITM) attack as well as manage security issues and large file sizes. The purpose of TFTP which acts as a simple file transfer protocol would bring huge advantages to be employed in ubiquitous computing environment if the basic security strategies were integrated with this protocol.

TABLE OF CONTENTS

AUT	HOR'S	DECLARATION	ii
ABS	TRACT		iii
ACK	NOWL	EDGMENTS	iv
ТАВ	LE OF	CONTENTS	v
LIST	T OF TA	ABLES	viii
LIST OF FIGURES			ix
LIST	Γ OF AB	BBREVIATIONS	xi
CHA	PTER (ONE: INTRODUCTION	1
1.1	RESE	ARCH BACKGROUND	1
1.2	MOTI	IVATIONS	3
1.3	RESE	EARCH OBJECTIVE	3
1.4	RESE	EARCH PROBLEM	4
1.5	SCOP	PE OF STUDY	4
1.6	RESE	EARCH CONTRIBUTION	5
1.7	THES	SIS OUTLINE	6
CHA	APTER 7	TWO: LITERATURE REVIEW	7
2.1	INTR	ODUCTION	7
2.2	FILE	TRANSFER PROTOCOLS	9
	2.2.1	Trivial File Transfer Protocol	11
	2.2.2	Constraints in TFTP	15
2.3	OVE	OVERVIEW OF CRYPTOGRAPHY	
	2.3.1	Security Properties	18
	2.3.2	Cryptographic Hash Functions	19
		2.3.2.1 Secure Hash Algorithm	20

	2.3.3	Asymmetric Key Encryption	20
		2.3.3.1 Key Exchange Protocol	21
	2.3.4	Symmetric Key Encryption	27
		2.3.4.1 Advanced Encryption Standard	28
	2.3.5	Constraints in Symmetric Asymmetric Encryption	31
2.4	DATA	A COMPRESSION IN COMMUNICATION	32
	2.4.1	Huffman Lossless Compression Algorithm	32
	2.4.2	Compression and Encryption Approach	33
2.5	RELA	TED WORKS IN SECURE TFTP	37
2.6	SUMN	MARY	38
СНА	ртгр т	ΓΗΡΕΓ· ΜΕΤΗΟΡΟΙ ΟΩν	30
СПА	TICK	INKEE. METHODOLOGY	37
3.1	INTRO	ODUCTION	39
3.2	PROJ	ECT WORK FLOW	40
3.3	DEVE	ELOPMENT ON DESKTOP PLATFORM	45
3.4	TEST	ING ON EMBEDDED PLATFORM	46
3.5	COM	PRESSION AND SECURITY PERFORMANCE	49
	3.5.1	Checking Both Sides Get Same Secret Key	50
	3.5.2	Execution Time of Compression/Encryption	50
	3.5.3	File Scheme Throughput	50
	3.5.4	File Compression Ratio	50
	3.5.5	Average File Size Reduction Space	51
	3.5.6	Execution Time of File Transmission	51
3.6	SUM	MARY	52