

Received 6 October 2017 Accepted 9 October 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

‡ Additional correspondence author: omarsa@usm.my

Keywords: crystal structure; ruthenium; cluster; carbonyl; Hirshfeld surface analysis.

CCDC reference: 975445

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

 $[\mu_2$ -Bis(diphenylphosphanyl)hexane]bis[undecacarbonyl-*triangulo*-triruthenium(3 *Ru*—*Ru*)] hexane monosolvate: crystal structure and Hirshfeld surface analysis

Omar bin Shawkataly,^a‡ Siti Syaida Sirat,^a Mukesh M. Jotani^b and Edward R. T. Tiekink^c*

^aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and ^cResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. *Correspondence e-mail: edwardt@sunway.edu.my

In the title cluster complex hexane solvate, $[Ru_6(C_{30}H_{32}P_2)(CO)_{22}]\cdot C_6H_{14}$, two $Ru_3(CO)_{11}$ fragments are linked by a $Ph_2P(CH_2)_6PPh_2$ bridge with the P atoms equatorially disposed with respect to the Ru_3 triangle in each case; the hexane solvent molecule is statistically disordered. The $Ru \cdot \cdot \cdot Ru$ distances span a relatively narrow range, *i.e.* 2.8378 (4) to 2.8644 (4) Å. The hexyl chain within the bridge has an all-*trans* conformation. In the molecular packing, $C-H \cdot \cdot \cdot O$ interactions between cluster molecules, and between cluster and hexane solvent molecules lead to a three-dimensional architecture. In addition, there are a large number of $C \equiv O \cdot \cdot \pi$ (arene) interactions in the crystal. The importance of the carbonyl groups in establishing the packing is emphasized by the contribution of 53.4% to the Hirshfeld surface by $O \cdot \cdot H/H \cdot \cdot O$ contacts.

1. Chemical context

In the realm of cluster chemistry, diphosphane ligands are known to maintain the integrity of the metal core during chemical reactions (Kabir & Hogarth, 2009). In the solid state, diphosphane ligands are known to adopt a variety of bonding modes towards triruthenium clusters, including monodentate, chelating, edge-bridging and linking two clusters (Bruce et al., 1982; Lozano Diz et al., 2001; Shawkataly et al., 2012). The motivation for studying triruthenium cluster complexes containing diphosphane ligands arises primarily due to these complexes making attractive starting materials for further reactivity studies (Kabir & Hogarth, 2009; Rajbangshi et al., 2015, Shawkataly et al., 2016). Despite this, only relatively few compounds with diphosphane ligands connecting two triruthenium clusters have been structurally characterized (Bruce et al., 1982; Van Calcar et al., 1998; O'Connor et al., 2003; Kakizawa et al., 2015). Our interest in synthesizing the title [Ru₃(CO)₁₁]₂[Ph₂P(CH₂)₆PPh₂] cluster is to enable a comparison of the structural variations that arise from lengthening of the organic backbone in the diphosphane ligand. Furthermore, the joining of smaller cluster units with such spacer ligands is a useful method for the construction of larger aggregates (Bruce et al., 1985; Kakizawa et al., 2015). In the present study, two triruthenium cluster units were successfully connected through a bidentate bridging Ph₂P(CH₂)₆PPh₂ ligand in the compound [Ru₃(CO)₁₁]₂[Ph₂P- $(CH_2)_6PPh_2$, which was isolated as a 1:1 *n*-hexane solvate, (I). Herein, the crystal and molecular structures of (I) are

Figure 1

The molecular structure of the Ru_6 cluster molecule in (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

described, as well as an analysis of the calculated Hirshfeld surface.

2. Structural commentary

The molecular structure of the cluster molecule in (I) is shown in Fig. 1. The asymmetric unit comprises two $Ru_3(CO)_{11}$ cluster molecules linked by a $Ph_2P(CH_2)_6PPh_2$ bridge and a

Figure 2

A view of the unit-cell contents shown in projection down the *b* axis. The $C-H\cdots O$ interactions are shown as blue dashed lines.

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 the ring centroids of the C41–C46 and C51–C56 rings, respectively.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C35-H35B\cdots O20^{i}$	0.99	2.60	3.297 (5)	128
$C36-H36B\cdots O4^{ii}$	0.99	2.54	3.393 (4)	144
$C42 - H42 \cdots O7^{iii}$	0.95	2.56	3.401 (5)	148
$C52-H52\cdots O19^{iv}$	0.95	2.52	3.448 (4)	167
$C55-H55\cdots O14^{i}$	0.95	2.54	3.278 (5)	134
$C62 - H62 \cdots O18^{v}$	0.95	2.59	3.501 (5)	161
$C82X - H82D \cdots O8^{vi}$	0.99	2.55	3.391 (16)	143
$C81X - H81F \cdots O17^{vii}$	0.98	2.59	3.48 (2)	150
$C82X - H82C \cdots O11^{viii}$	0.99	2.59	3.528 (14)	157

hexane molecule which is statistically disordered over two sets of sites. The phosphane P atom occupies a position effectively coplanar with the Ru₃ core in each case, *i.e.* an equatorial site. The two Ru₃ cluster residues are each constructed about a triangular Ru₃ core, and the Ru-Ru edges span a relatively narrow range of distances, *i.e.* 2.8378 (4) Å for Ru2···Ru3 to 2.8644 (4) Å, for Ru1 \cdots Ru3. Each of the carbonyl ligands occupies a terminal position, with the Ru-C≡O angles ranging from 169.7 (4)° for Ru–C10=O10 to 179.4 (4)° for Ru5-C18=018. The hexyl chain in the diphosphane ligand has an all-trans conformation, with the P1/P2-C-C-C torsion angles being -177.8 (3) and 175.5 (2)°, respectively, and the C–C–C–C torsion angles ranging from 173.7 $(3)^{\circ}$ for C33-C34-C35-C36 to -177.4 (3)° for C32-C33-C34-C35. The consequence of this is that the pairs of Pbound phenyl rings lie to either side of the chain.

3. Supramolecular features

The molecular packing of (I) comprises a complex network of $C-H\cdots O$ and $C\equiv O\cdots \pi$ interactions. The C-H donors for the $C-H\cdots O$ interactions are either methylene- or phenyl-H, Table 1, and by themselves define a three-dimensional architecture, Fig. 2. Additional stability to the crystal is provided by a number of $C\equiv O\cdots \pi$ (arene) interactions, either with end-on or side-on approaches. Further discussion and details of the identified $C\equiv O\cdots \pi$ (arene) interactions are found below in *Analysis of the Hirshfeld surface* (§4). The closest interactions between the cluster molecule and the solvent hexane molecule are of the type solvent-methylene- $C-H\cdots O$ (carbonyl), Table 1. The solvent molecules reside in cavities defined by the cluster molecules.

4. Analysis of the Hirshfeld surface

The Hirshfeld surface calculations of (I) were performed in accord with a recent publication on a related heavy-atom complex and its dioxane solvate (Jotani *et al.*, 2017). The presence of the carbonyl groups in (I) lead to their participation in $C-H\cdots O$, $C\equiv O\cdots \pi$ and $C\cdots O/O\cdots C$ interactions,

Ta	bl	е	2
----	----	---	---

Percentage contributions of interatomic contacts to the Hirshfeld surfaces for (I) without hexane and for (I).

Contact	(I) without hexane	(I)
$O \cdots H/H \cdots O$	52.8	53.4
$H \cdot \cdot \cdot H$	18.3	19.9
00	11.8	10.3
$C \cdot \cdot \cdot O / O \cdot \cdot \cdot C$	8.9	7.8
$C \cdot \cdot \cdot H/H \cdot \cdot \cdot C$	6.9	7.4
$C \cdots C$	1.3	1.2

and the Hirshfeld surfaces mapped over d_{norm} , Fig. 3, indicate the influence of these in the crystal. Of the C-H···O interactions summarized in Table 1, the donors and acceptors of more influential contacts are viewed as bright-red spots near the phenyl-H52 and C55, diphosphane-hexyl-H32B and C82X, and carbonyl-O4, O8, O14 and O19 atoms, whereas the comparatively weak C-H···O contacts are viewed as faintred spots near the phenyl-C42, hexane-C81X and C82X, and carbonyl-O7, O11 and O17 atoms in Fig. 3. In addition, the presence of bright-red spots near the O2, O13, O21 and C21 atoms and the diminutive-red spots near the O1, O4, O19 and

Figure 3

Views of the Hirshfeld surface mapped over d_{norm} : (a) and (b) showing different orientations of the Ru₆ cluster molecule in (I) over the range -0.062 to 1.417 au, and (c) for the solvent hexane molecule in the range -0.033 to 1.345 au.

Views of the Hirshfeld surface mapped over the electrostatic potential for (a) the Ru₆ cluster molecule in (I), in the range ± 0.046 au, and (b) the solvent hexane molecule in the range ± 0.147 au. The red and blue regions represent negative and positive electrostatic potentials, respectively.

C15 atoms in Fig. 3, are also indicative of short inter-atomic O···O and C···O/O···C contacts effective in the crystal. The donors and acceptors of intermolecular interactions can also be viewed as blue and red regions, respectively, on the Hirshfeld surface mapped over electrostatic potential for the cluster molecule in Fig. 4*a*, and for the hexane molecule in Fig. 4*b*. Two intramolecular C–O··· π contacts, *i.e.* one between carbonyl-O9 and the phenyl C51–C56 ring, and the other between carbonyl-O21 and the phenyl C71–C76 ring are also illustrated through black, dotted lines in Fig. 4*a*. The cavity occupied by the hexane molecule, showing the relevant C–H···O contacts, Table 1, is highlighted in Fig. 5.

The overall two-dimensional fingerprint plots for the cluster molecule alone and for (I) are shown in Fig. 6a and clearly indicate the significance of the solvent molecule on the packing. This is also evident from the percentage contribution from the different surface contacts summarized in Table 2 and from the fingerprint plots delineated into H...H, O...H/ $H \cdots O$, $C \cdots H/H \cdots C$, $C \cdots O/O \cdots C$ and $O \cdots O$ contacts (McKinnon et al., 2007) in Figs. 6b-f, respectively. The inclusion of the hexane molecule in the Hirshfeld surface calculations increases the relative contributions from $O \cdots H/H \cdots O$, $H \cdots H$ and $C \cdots H/H \cdots C$ contacts but decreases those contributed by $O \cdots O$ and $C \cdots O/O \cdots C$ contacts. This observations arises as a result of the participation of the solvent molecule in interatomic $H \cdots H$ and $C \cdots H/H \cdots C$ contacts, Table 3, and in the intermolecular C-H···O interactions listed in Table 1.

The two pairs of short peaks at $d_e + d_i \sim 2.3$ and 2.4 Å in the fingerprint plot for (I) delineated into $H \cdots H$ contacts, Fig. 6b (right-column) indicate the presence of short interatomic contacts involving phenyl- and hexane-hydrogen atoms. The greatest contribution of 53.4% to the Hirshfeld surface of (I) is from $O \cdots H/H \cdots O$ contacts and these are characterized as

Table 3Summary of short inter-atomic (Å) in (I).

Contact	Distance	Symmetry operation
O1C15	3.196 (5)	$1 + x, \frac{3}{2} - y, -\frac{1}{2} + z$
O1···O19	3.009 (4)	$1 + x, \frac{3}{2} - y, -\frac{1}{2} + z$
$O2 \cdot \cdot \cdot O2$	2.900 (4)	2 - x, 1 - y, 1 - z
O4···O18	3.024 (4)	$1 + x, \frac{3}{2} - y, -\frac{1}{2} + z$
$O7 \cdot \cdot \cdot H42$	2.62	$2-x, -\frac{1}{2}+y, \frac{1}{2}-z$
O8· · · H43	2.62	$2-x, -\frac{1}{2}+y, \frac{1}{2}-z$
O13···O21	2.970 (5)	$x, \frac{3}{2} - y, -\frac{1}{2} + z$
O13···C21	3.156 (5)	$x, \frac{5}{2} - y, -\frac{1}{2} + z$
C8· · · H83 <i>B</i>	2.86	1 + x, y, -1 + z
C10· · · H83A	2.87	1 - x, 1 - y, 1 - z
H35 <i>B</i> ···H63	2.38	1 - x, 1 - y, 1 - z
H55···H86D	2.39	1 - x, 1 - y, 1 - z
$H73 \cdot \cdot \cdot H84C$	2.30	1 - x, 1 - y, 2 - z

two specific types of interactions leading to two distinct distributions of points in the delineated fingerprint plot of Fig. 6c. The pair of sharp spikes having green aligned points within the plot and with tips at $d_e + d_i \sim 2.5$ Å are the result of $C-H\cdots O$ interactions involving cluster-bound atoms as donors and acceptors; the points corresponding to short interatomic weak $C-H\cdots O$ contacts (Table 1) and $O\cdots H/$ $H\cdots O$ contacts (Table 3) are merged within the plot. On the other hand, the exterior portion with broad tips at $d_e + d_i \sim$ 2.6 Å are due to $C-H\cdots O$ interactions involving hexanebound atoms as donors and carbonyl- oxygen atoms as acceptors. The comparison of $O\cdots H/H\cdots O$ delineated fingerprint plots for in Fig. 6c confirm this observation.

The involvement of hexane-H83A and H83B atoms in the short interatomic $C \cdot \cdot H/H \cdot \cdot C$ contacts (Table 3) results in forceps-like peaks at $d_e + d_i \sim 2.9$ Å in the delineated fingerprint, Fig. 6d. The 7.8% contribution from $C \cdot \cdot O/O \cdot \cdot C$ contacts to the Hirshfeld surface of (I) is due to the involve-

Figure 5

A view of Hirshfeld surface mapped over d_{norm} about a hexane molecule within a cavity defined by Ru₆-cluster molecules and showing intermolecular C-H···O contacts as black dashed lines.

Table 4	
Summary of short interatomic C=O··· π contacts (Å, °) in (I).	

Cg1-Cg4 the ring centroids of the C41-C46, C51-C56, C61-C66 and C71-C76 rings, respectively.

	-					
С	0	Cg	$O \cdot \cdot \cdot Cg$	$C - O \cdots Cg$	$C \cdot \cdot \cdot Cg$	Symmetry operation
C3	O3	Cg3	3.756 (4)	161.0 (3)	4.839 (5)	1 - x, 1 - y, 1 - z
C7	O7	Cg2	3.564 (4)	100.1 (3)	3.928 (4)	$2-x, -\frac{1}{2}+y, \frac{1}{2}-z$
C9	O9	Cg2	3.228 (3)	94.2 (2)	3.499 (4)	x, y, z
C18	O18	Cg4	3.707 (3)	97.6 (3)	4.015 (5)	$1 - x, \frac{1}{2} + y, \frac{3}{2} - z$
C19	O19	Cg1	3.554 (3)	146.0 (3)	4.546 (5)	$-1 + x, \frac{3}{2} - y, \frac{1}{2} + z$
C20	O20	Cg3	3.671 (4)	146.6 (4)	4.664 (4)	$x, \frac{3}{2} - y, \frac{1}{2} + z$
C21	O21	Cg4	3.074 (4)	98.3 (3)	3.424 (4)	x, y, z

ment of all carbonyl-O atoms (except O5) either in short interatomic C···O/O···C contacts, Table 3, or in end-on or side-on C=O··· π interactions, summarized in Table 4. The

Figure 6

(a) The full two-dimensional fingerprint plots for (I) less hexane (left-hand column) and for (I), and those delineated into (b) $H \cdots H$, (c) $O \cdots H/H \cdots O$, (d) $C \cdots H/H \cdots C$, (e) $C \cdots O/O \cdots C$ and (f) $O \cdots O$ contacts.

impact of end-on metal-C==O··· π (arene) interactions upon supramolecular aggregation patterns has been addressed in the recent literature (Zukerman-Schpector *et al.*, 2011, 2012). The pair of sharp, forceps-like tips at $d_e + d_i \sim 3.0$ Å in the fingerprint plots delineated into C···O/O···C contacts, Fig. 6*e*, represent short C···O/O···C contacts involving carbonyl-O1, O13, C15 and C21 atoms while the points distributed in adjoining parabolic form around (d_e, d_i) = (1.8, 2.0 Å) and (2.0, 1.8 Å) represent C==O··· π interactions, Table 4. The fingerprint plot delineated into O···O contacts, Fig. 6*f*, has a distribution of points within the rocket-shape with the tip at $d_e + d_i \sim 2.9$ Å, extending up to 3.0 Å, and is the result of significant short O···O contacts summarized in Table 3. The small contribution from C···C contacts on the Hirshfeld surfaces of (I) has a negligible effect on the packing.

5. Database survey

The most closely related structure in the literature is that of the dppe (Ph₂PCH₂CH₂PPh₂) analogue, *i.e.* Ru₃(CO)₁₁(dppe)Ru₃(CO)₁₁ (Van Calcar et al., 1998). The centrosymmetric molecule presents the same key features as described above for the cluster molecule in (I). There are only a handful of structures whereby two triangular clusters are bridged by a $Ph_2P(CH_2)_6PPh_2$ ligand as in (I). The most closely related of these to the present report is formulated as $Fe_3(CO)_{11}(Ph_2P(CH_2)_6PPh_2)Fe_3(CO)_{11}$ (Ferguson et al., 1991). The difference in this centrosymmetric molecule, cf. (I), is that there are two μ_2 -bridging carbonyls connecting the Fe atom bonded to P to one of the other Fe atoms of the triangle; the remaining Fe atom is bound to four terminal carbonyl ligands as in (I).

6. Synthesis and crystallization

The reagents $Ru_3(CO)_{12}$ (200.0 mg, 0.0003 mol) and Ph₂P(CH₂)₆PPh₂ (70.0 mg, 0.0002 mol) were mixed in distilled tetrahydrofuran (25 ml). The reaction mixture was treated dropwise with sodium diphenylketyl solution until the colour of the mixture turned from orange to dark-red followed by stirring for 30 min. The reaction was monitored by thin-layer chromatography (TLC). The solvent was removed under reduced pressure and the product was separated by preparative TLC (2:3 dichloromethane:n-hexane) to afford three bands. The second band was characterized as $[Ru_3(CO)_{11}]_2(Ph_2P(CH_2)_6PPh_2)$. Orange laths were grown by solvent/solvent diffusion of CH₂Cl₂/n-hexane at 283 K. Analysis calculated for C₅₂H₃₂O₂₂P₂Ru₆·C₆H₁₄: C 39.51, H 2.63%; found: C 38.45, H 1.53%. ATR-IR [cm⁻¹]: v(CO) 2093 (s), 2038 (m), 1957 (br). ¹H NMR (CDCl₃): δ 7.52–7.41 (m, 20H, Ph), 2.37-2.33 (m, 4H, CH₂), 1.26-1.13 (m, 8H, CH₂). ³¹P{¹H} (CDCl₃): δ 26.83 (*s*).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. The carbon-bound H atoms were

Experimental details.Crystal data Chemical formula $[Ru_6(C_{30}H_{32}P_2)(CO)_{22}] \cdot C_6H_{14}$ 1763.31 M_r 1763.31Crystal system, space group Temperature (K)Monoclinic, P_{21}/c 100 a, b, c (Å)14.5323 (4), 23.3731 (6), 19.1883 (4) β (°)93.653 (1) V (Å ³)6504.3 (3) Z 4Radiation type μ (mm ⁻¹)Mo K α 4 Radiation type μ (mm ⁻¹)0.61 × 0.48 × 0.09Data collection DiffractometerBruker SMART APEXII CCD area-detectorAbsorption correctionMulti-scan (SADABS; Bruker, 2009) T_{min}, T_{max} $No of measured, independent andobserved [I > 2\sigma(I)] reflections0.047(8in \theta/\lambda)_{max} (Å-1)RefinementR[F^2 > 2\sigma(F^2)], wR(F^2), SNo. of reflections0.043, 0.097, 1.0119875No. of reflectionsNo. of reflections19875$	Table 5	
Crystal data Chemical formula $[Ru_6(C_{30}H_{32}P_2)(CO)_{22}] \cdot C_6H_{14}$ M_r 1763.31Crystal system, space group Temperature (K)Monoclinic, P_{21}/c a, b, c (Å)14.5323 (4), 23.3731 (6), 19.1883 (4) β (°)93.653 (1) V (Å ³)6504.3 (3) Z 4Radiation type μ (mm ⁻¹)Mo K α μ (mm ⁻¹)1.48Crystal size (mm)0.61 × 0.48 × 0.09Data collection DiffractometerBruker SMART APEXII CCD area-detectorAbsorption correctionMulti-scan (SADABS; Bruker, 2009) T_{min}, T_{max} 0.466, 0.880 78116, 19875, 14916No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.047 (\$in $\theta/\lambda)_{max}$ (Å ⁻¹)Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.043, 0.097, 1.01 19875No. of reflections19875No. of reflections19875	Experimental details.	
Chemical formula $[Ru_6(C_{30}H_{32}P_2)(CO)_{22}]\cdot C_6H_{14}$ M_r 1763.31Crystal system, space groupMonoclinic, P_{21}/c Temperature (K)100 a, b, c (Å)14.5323 (4), 23.3731 (6), β (°)93.653 (1) V (Å ³)6504.3 (3) Z 4Radiation typeMo $K\alpha$ μ (mm ⁻¹)1.48Crystal size (mm)0.61 × 0.48 × 0.09Data collectionBruker SMART APEXII CCD area-detectorDiffractometerBruker SMART APEXII CCD area-detectorAbsorption correctionMulti-scan ($SADABS$; Bruker, 2009) T_{min}, T_{max} 0.466, 0.880No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.047 (.716Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.043, 0.097, 1.01 19875No. of reflections19875No. of reflections19875	Crystal data	
M_r 1763.31Crystal system, space groupMonoclinic, $P2_1/c$ Temperature (K)100 a, b, c (Å)14.5323 (4), 23.3731 (6), β (°)93.653 (1) V (Å)6504.3 (3) Z 4Radiation typeMo $K\alpha$ μ (mm ⁻¹)1.48Crystal size (mm)0.61 × 0.48 × 0.09Data collectionBruker SMART APEXII CCDDiffractometerBruker SMART APEXII CCDAbsorption correctionMulti-scan (SADABS; Bruker, 2009) T_{min}, T_{max} 0.466, 0.880No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.047 R_{int} 0.047 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.716Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections19875No. of reflections19875	Chemical formula	$[Ru_{6}(C_{30}H_{32}P_{2})(CO)_{22}] \cdot C_{6}H_{14}$
Initial System, space group Temperature (K)Monoclinic, $P2_1/c$ 100 a, b, c (Å)14.5323 (4), 23.3731 (6), 19.1883 (4) β (°) V (Å3)93.653 (1) 6504.3 (3)Z4 Radiation type μ (mm ⁻¹)Data collection DiffractometerBruker SMART APEXII CCD area-detectorData collection DiffractometerBruker SMART APEXII CCD area-detectorAbsorption correctionMulti-scan (SADABS; Bruker, 2009) T_{min}, T_{max} observed $[I > 2\sigma(I)]$ reflections0.047 0.716Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections0.043, 0.097, 1.01 19875No. of reflections No. of reflections19875	М.	1763.31
Temperature (K) 100 a, b, c (Å) 14.5323 (4), 23.3731 (6), 19.1883 (4) β (°) 93.653 (1) V (Å ³) 6504.3 (3) Z 4 Radiation type Mo K α μ (mm ⁻¹) 1.48 Crystal size (mm) 0.61 × 0.48 × 0.09 Data collection Bruker SMART APEXII CCD Diffractometer Bruker SMART APEXII CCD Absorption correction Multi-scan (SADABS; Bruker, 2009) T_{min}, T_{max} 0.466, 0.880 No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections 0.047 R_{int} 0.047 $(sin \theta/\lambda)_{max}$ (Å ⁻¹) 0.716 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.043, 0.097, 1.01 No. of reflections 19875 No. of reflections 19875	Crystal system, space group	Monoclinic, $P2_1/c$
a, b, c (Å) 14.5323 (4), 23.3731 (6), 19.1883 (4) β (°) 93.653 (1) V (Å ³) 6504.3 (3) Z 4 Radiation type Mo K α μ (mm ⁻¹) 1.48 Crystal size (mm) 0.61 × 0.48 × 0.09 Data collection Bruker SMART APEXII CCD Diffractometer Bruker SMART APEXII CCD Absorption correction Multi-scan (<i>SADABS</i> ; Bruker, 2009) T_{min}, T_{max} 0.466, 0.880 No. of measured, independent and observed [$I > 2\sigma(I)$] reflections 78116, 19875, 14916 R_{int} 0.047 (sin $\theta/\lambda)_{max}$ (Å ⁻¹) 0.716 Refinement 19875 $R[F2 > 2\sigma(F2)], wR(F2), S$ 0.043, 0.097, 1.01 No. of reflections 19875	Temperature (K)	100
$ \begin{array}{ll} \beta \begin{pmatrix} 0 \\ Y \end{pmatrix} & 93.653 (1) \\ 6504.3 (3) \\ Z & 4 \\ \mbox{Radiation type} & Mo K\alpha \\ \mu \ (mm^{-1}) & 1.48 \\ \mbox{Crystal size (mm)} & 0.61 \times 0.48 \times 0.09 \\ \mbox{Data collection} \\ \mbox{Diffractometer} & Bruker SMART APEXII CCD \\ \mbox{area-detector} \\ \mbox{Absorption correction} & Multi-scan (SADABS; Bruker, 2009) \\ \mbox{T}_{min}, T_{max} & 0.466, 0.880 \\ \mbox{No. of measured, independent and observed } [I > 2\sigma(I)] reflections \\ \mbox{R}_{int} & 0.047 \\ \mbox{(sin } \theta/\lambda)_{max} (Å^{-1}) & 0.716 \\ \mbox{Refinement} \\ R[F^2 > 2\sigma(F^2)], wR(F^2), S & 0.043, 0.097, 1.01 \\ \mbox{No. of reflections} & 19875 \\ \mbox{No. of reflections} & 851 \\ \mbox{No. of reflections} & 851 \\ \end{tabular}$	<i>a</i> , <i>b</i> , <i>c</i> (Å)	14.5323 (4), 23.3731 (6), 19.1883 (4)
V (Å ³)6504.3 (3) Z 4Radiation typeMo $K\alpha$ μ (mm ⁻¹)1.48Crystal size (mm)0.61 × 0.48 × 0.09Data collectionBruker SMART APEXII CCD area-detectorDiffractometerBruker SMART APEXII CCD area-detectorAbsorption correctionMulti-scan (SADABS; Bruker, 2009) T_{min}, T_{max} 0.466, 0.880No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.047 0.716Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.043, 0.097, 1.01 19875No. of reflections19875No. of reflections19875	β (°)	93.653 (1)
Z4Radiation type μ (mm ⁻¹)Mo K α 1.48Crystal size (mm)0.61 × 0.48 × 0.09Data collection DiffractometerBruker SMART APEXII CCD area-detectorAbsorption correctionMulti-scan (SADABS; Bruker, 2009) T_{min}, T_{max} 0.466, 0.880No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.047 0.716Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.043, 0.097, 1.01 19875No. of reflections19875No. of reflections19875	$V(\text{\AA}^3)$	6504.3 (3)
Radiation typeMo $K\alpha$ μ (mm ⁻¹)1.48Crystal size (mm) $0.61 \times 0.48 \times 0.09$ Data collectionBruker SMART APEXII CCDDiffractometerBruker SMART APEXII CCDAbsorption correctionMulti-scan (SADABS; Bruker, 2009) T_{min}, T_{max} $0.466, 0.880$ No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections 0.047 R_{int} 0.047 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹) $0.043, 0.097, 1.01$ Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections19875No. of reflections19875	Ζ	4
μ (mm ⁻¹)1.48Crystal size (mm) $0.61 \times 0.48 \times 0.09$ Data collectionBruker SMART APEXII CCD area-detectorAbsorption correctionMulti-scan (SADABS; Bruker, 2009) T_{min}, T_{max} $0.466, 0.880$ No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections 0.047 0.716 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ $0.043, 0.097, 1.01$ 19875 No. of reflections 19875 No. of reflections 19875	Radiation type	Μο Κα
Crystal size (mm) $0.61 \times 0.48 \times 0.09$ Data collectionBruker SMART APEXII CCD area-detectorAbsorption correctionMulti-scan (SADABS; Bruker, 2009) T_{min}, T_{max} $0.466, 0.880$ No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections $0.446, 0.880$ R_{int} 0.047 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹) 0.716 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ $0.043, 0.097, 1.01$ 19875No. of reflections19875No. of reflections19875	$\mu \ (\mathrm{mm}^{-1})$	1.48
Data collection DiffractometerBruker SMART APEXII CCD area-detectorAbsorption correctionMulti-scan (SADABS; Bruker, 2009) T_{min}, T_{max} 0.466, 0.880No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.47 R_{int} 0.047 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.716Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.043, 0.097, 1.01 19875No. of reflections19875	Crystal size (mm)	$0.61 \times 0.48 \times 0.09$
DiffractometerBruker SMART APEXII CCD area-detectorAbsorption correctionMulti-scan (SADABS; Bruker, 2009) T_{min}, T_{max} 0.466, 0.880No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.047 R_{int} 0.047 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.716Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.043, 0.097, 1.01 19875No. of reflections19875No. of rarameters851	Data collection	
Absorption correctionMulti-scan (SADABS; Bruker, 2009) T_{min}, T_{max} 0.466, 0.880No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.467, 19875, 14916 R_{int} 0.047 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.716Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.043, 0.097, 1.01 19875No. of reflections19875No. of rarameters851	Diffractometer	Bruker SMART APEXII CCD area-detector
T_{\min}, T_{\max} 0.466, 0.880 No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections 78116, 19875, 14916 R_{int} 0.047 $(\sin \theta/\lambda)_{\max}$ (Å ⁻¹) 0.716 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.043, 0.097, 1.01 No. of reflections 19875 No. of rarameters 851	Absorption correction	Multi-scan (SADABS; Bruker, 2009)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections78116, 19875, 14916 R_{int} 0.047 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.716Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S0.043, 0.097, 1.01No. of reflections19875No. of reflections851	T_{\min}, T_{\max}	0.466, 0.880
R_{int} 0.047 $(\sin \theta / \lambda)_{max}$ (Å ⁻¹) 0.716 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.043, 0.097, 1.01 No. of reflections 19875 No. of reflections 851	No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	78116, 19875, 14916
$(\sin \theta / \lambda)_{max}$ (Å ⁻¹) 0.716 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.043, 0.097, 1.01 No. of reflections 19875 No. of reflections 851	R _{int}	0.047
Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.043, 0.097, 1.01 No. of reflections 19875 No. of parameters 851	$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.716
$R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S 0.043, 0.097, 1.01 No. of reflections 19875 No. of parameters 851	Refinement	
No. of reflections 19875 No. of parameters 851	$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.097, 1.01
No of parameters 851	No. of reflections	19875
1.0. of parameters 051	No. of parameters	851
No. of restraints 232	No. of restraints	232
H-atom treatment H-atom parameters constrained	H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$ 2.43, -1.32	$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	2.43, -1.32

Computer programs: *APEX2* and *SAINT* (Bruker, 2009), *SHELXS97* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015), *ORTEP-3 for Windows* (Farrugia, 2012), *DIAMOND* (Brandenburg, 2006) and *publCIF* (Westrip, 2010).

placed in calculated positions (C–H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with U_{iso} (H) set to 1.2–1.5 U_{eq} (C). The hexane molecule was statistically disordered over two sites and the atomic positions of each were refined independently but, the C–C bond lengths for each component were refined with the distance restraint C–C = 1.50±0.005 Å. The anisotropic displacement parameters were restrained to be almost isotropic and those for matching atoms to be similar. Owing to poor agreement, one reflection, *i.e.* $\overline{2}54$, was omitted from the final cycles of refinement. The maximum and minimum residual electron density peaks of 2.43 and 1.32 e Å⁻³, respectively, were located 1.34 and 0.50 Å from the C22 and Ru6 atoms, respectively.

Acknowledgements

OBS wishes to thank Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PJJAUH/8011002. SSS also thanks Universiti Teknologi Mara (UiTM) for a PhD sponsorship. The X-ray Crystallography Unit, School of Physics (USM), is thanked for the data collection.

References

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

- Bruce, M. I., Hambley, T. W., Nicholson, B. K. & Snow, M. R. (1982). J. Organomet. Chem. 235, 83–91.
- Bruce, M. I., Williams, M. L., Patrick, J. M. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 1229–1234.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ferguson, G., Hourihane, R. & Spalding, T. R. (1991). Acta Cryst. C47, 544–547.
- Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2017). Z. Kristallogr. 232, 287–298.
- Kabir, S. E. & Hogarth, G. (2009). Coord. Chem. Rev. 253, 1285-1315.
- Kakizawa, T., Hashimoto, H. & Tobita, H. (2015). *Inorg. Chim. Acta*, **425**, 7–10.
- Lozano Diz, E., Neels, A., Stoeckli-Evans, H. & Süss-Fink, G. (2001). *Polyhedron*, **20**, 2771–2780.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). *Chem. Commun.* pp. 3814–3816.

- O'Connor, A. R., Nataro, C. & Rheingold, A. L. (2003). J. Organomet. Chem. 679, 72–78.
- Rajbangshi, S., Ghosh, S., Hogarth, G. & Kabir, S. E. (2015). J. Clust. Sci. 26, 169–185.
- Shawkataly, O. bin, Sirat, S. S., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, m629–m630.
- Shawkataly, O. bin, Sirat, S. S., Rosli, M. M. & Razak, I. A. (2016). *Polyhedron*, **117**, 193–201.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Van Calcar, P. M., Olmstead, M. M. & Balch, A. L. (1998). *Inorg. Chim. Acta*, **270**, 28–33.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zukerman-Schpector, J., Haiduc, I. & Tiekink, E. R. T. (2011). Chem. Commun. 47, 12682–12684.
- Zukerman-Schpector, J., Haiduc, I. & Tiekink, E. R. T. (2012). Adv. Organomet. Chem., 60, 49–92.

Acta Cryst. (2017). E73, 1652-1657 [https://doi.org/10.1107/S2056989017014517]

[µ₂-Bis(diphenylphosphanyl)hexane]bis[undecacarbonyl-*triangulo*triruthenium(3 *Ru—Ru*)] hexane monosolvate: crystal structure and Hirshfeld surface analysis

Omar bin Shawkataly, Siti Syaida Sirat, Mukesh M. Jotani and Edward R. T. Tiekink

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

 $[\mu_2$ -Bis(diphenylphosphanyl)hexane]bis[undecacarbonyl-triangulo-triruthenium(3 Ru—Ru)] hexane monosolvate

Crystal data

 $[\operatorname{Ru}_{6}(\operatorname{C}_{30}\operatorname{H}_{32}\operatorname{P}_{2})(\operatorname{CO})_{22}] \cdot \operatorname{C}_{6}\operatorname{H}_{14}$ $M_{r} = 1763.31$ Monoclinic, $P2_{1}/c$ a = 14.5323 (4) Å b = 23.3731 (6) Å c = 19.1883 (4) Å $\beta = 93.653$ (1)° V = 6504.3 (3) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.466, T_{\max} = 0.880$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.097$ S = 1.0119875 reflections 851 parameters 232 restraints F(000) = 3456 $D_x = 1.801 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9961 reflections $\theta = 2.3-30.5^{\circ}$ $\mu = 1.48 \text{ mm}^{-1}$ T = 100 KLath, orange $0.61 \times 0.48 \times 0.09 \text{ mm}$

78116 measured reflections 19875 independent reflections 14916 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$ $\theta_{max} = 30.6^{\circ}, \ \theta_{min} = 1.4^{\circ}$ $h = -20 \rightarrow 20$ $k = -33 \rightarrow 24$ $l = -27 \rightarrow 27$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0336P)^2 + 15.8643P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 2.43$ e Å⁻³ $\Delta\rho_{min} = -1.32$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ru1	1.00620 (2)	0.55309 (2)	0.32612 (2)	0.01502 (6)	
Ru2	1.03733 (2)	0.43753 (2)	0.28780 (2)	0.01907 (6)	
Ru3	1.02396 (2)	0.52319 (2)	0.18283 (2)	0.01861 (6)	
Ru4	0.44772 (2)	0.73619 (2)	0.66392 (2)	0.01666 (6)	
Ru5	0.43523 (2)	0.85302 (2)	0.70390 (2)	0.02018 (7)	
Ru6	0.45413 (2)	0.76646 (2)	0.80837 (2)	0.02177 (7)	
P1	0.95575 (6)	0.64831 (4)	0.33370 (4)	0.01513 (17)	
P2	0.49391 (6)	0.64017 (4)	0.66137 (4)	0.01546 (17)	
O1	1.19315 (19)	0.60410 (11)	0.29484 (15)	0.0285 (6)	
O2	1.0800 (2)	0.52828 (12)	0.47441 (13)	0.0290 (6)	
O3	0.8119 (2)	0.50828 (13)	0.35164 (16)	0.0366 (7)	
O4	1.22972 (19)	0.47647 (12)	0.34408 (15)	0.0292 (6)	
05	0.9991 (2)	0.38167 (12)	0.42725 (15)	0.0364 (7)	
O6	0.8389 (2)	0.41183 (14)	0.22927 (17)	0.0411 (8)	
07	1.1266 (3)	0.33838 (13)	0.21263 (18)	0.0459 (9)	
O8	0.9924 (3)	0.43736 (14)	0.06391 (17)	0.0514 (9)	
O9	1.0394 (2)	0.62774 (12)	0.08849 (14)	0.0345 (7)	
O10	0.8182 (2)	0.54838 (13)	0.19471 (16)	0.0360 (7)	
O11	1.2344 (2)	0.50741 (15)	0.18357 (16)	0.0408 (8)	
O12	0.2536 (2)	0.69344 (13)	0.69138 (17)	0.0369 (7)	
O13	0.3899 (3)	0.75663 (14)	0.51156 (15)	0.0439 (8)	
O14	0.6441 (2)	0.77508 (14)	0.63612 (18)	0.0406 (8)	
015	0.23144 (19)	0.82740 (12)	0.66258 (15)	0.0322 (7)	
016	0.6403 (2)	0.87491 (14)	0.74621 (18)	0.0433 (8)	
O17	0.4574 (3)	0.90584 (15)	0.56021 (16)	0.0492 (9)	
O18	0.3902 (2)	0.95585 (13)	0.79409 (16)	0.0361 (7)	
O19	0.2442 (2)	0.77232 (14)	0.81832 (17)	0.0412 (8)	
O20	0.4848 (3)	0.85964 (15)	0.91846 (16)	0.0458 (8)	
O21	0.4486 (3)	0.66222 (14)	0.90389 (17)	0.0498 (9)	
O22	0.6593 (2)	0.74167 (15)	0.79230 (17)	0.0432 (8)	
C1	1.1235 (3)	0.58298 (15)	0.30176 (18)	0.0203 (7)	
C2	1.0482 (3)	0.53920 (15)	0.41972 (19)	0.0207 (7)	
C3	0.8833 (3)	0.52326 (16)	0.34013 (19)	0.0244 (8)	
C4	1.1568 (3)	0.46479 (15)	0.32219 (18)	0.0221 (8)	
C5	1.0143 (3)	0.40244 (16)	0.3759 (2)	0.0264 (8)	
C6	0.9118 (3)	0.42326 (17)	0.2501 (2)	0.0286 (9)	
C7	1.0891 (3)	0.37462 (17)	0.2386 (2)	0.0304 (9)	
C8	1.0043 (3)	0.46885 (17)	0.1088 (2)	0.0319 (9)	
C9	1.0320 (3)	0.59062 (16)	0.12569 (19)	0.0241 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C10	0.8953 (3)	0.53866 (17)	0.1970 (2)	0.0282 (8)
C11	1.1571 (3)	0.51251 (17)	0.18660 (19)	0.0265 (8)
C12	0.3258 (3)	0.71177 (16)	0.6847 (2)	0.0238 (8)
C13	0.4142 (3)	0.74812 (16)	0.5685 (2)	0.0254 (8)
C14	0.5708 (3)	0.76263 (17)	0.6500 (2)	0.0278 (8)
C15	0.3077 (3)	0.83411 (16)	0.6796 (2)	0.0253 (8)
C16	0.5653 (3)	0.86347 (17)	0.7305 (2)	0.0292 (9)
C17	0.4476(3)	0.88626 (17)	0.6131 (2)	0.0298 (9)
C18	0.4064 (3)	0.91780(17)	0.7609(2)	0.0270(8)
C19	0.3214(3)	0.77160 (17)	0.8105(2)	0.0280(8)
C20	0.4736(3)	0.82438(19)	0.8778(2)	0.0317(9)
C21	0.4514(3)	0.62130(19) 0.69921(18)	0.8662(2)	0.0317(9)
C22	0.5825(3)	0.75258(19)	0.7934(2)	0.0322(9)
C31	0.8391(2)	0.65704 (16)	0.36328(17)	0.0323(7)
H31A	0.8187	0.6970	0.3544	0.0198 (7)
H31R	0.7965	0.6316	0.3354	0.024
C32	0.8319(2)	0.6310 0.64348(16)	0.3331 0.44098 (17)	0.021
U32	0.8540	0.6040	0.4505	0.0200(7)
H32R	0.8721	0.6700	0.4693	0.024
C33	0.3721 0.7331 (2)	0.64916 (16)	0.46227(18)	0.024 0.0205 (7)
Н33А	0.6943	0.6202	0.4368	0.0203 (7)
H33B	0.7093	0.6202	0.4482	0.025*
C34	0.7095 0.7245 (2)	0.0074 0.64145 (15)	0.54074(17)	0.023 0.0187 (7)
H34A	0.7219(2)	0.6716	0.5662	0.0107 (7)
H34R	0.7508	0.6039	0.5553	0.022
C35	0.7308 0.6248 (2)	0.6035 0.64463(16)	0.5555 0.56047 (18)	0.022
Н35А	0.6009	0.6837	0.5505	0.025*
H35R	0.5873	0.6176	0.5309	0.025*
C36	0.5075 0.6130(2)	0.63060 (15)	0.63721(18)	0.029 0.0192 (7)
H36A	0.6541	0.6556	0.6669	0.023*
H36R	0.6320	0.5905	0.6464	0.023*
C41	1.0235(2)	0.69543 (15)	0.39386(17)	0.023
C42	0.9948(3)	0.75128 (16)	0.59300(17) 0.4016(2)	0.0170(7)
H42	0.99710 (3)	0.7649	0.3750	0.0255 (5)
C43	1.0428(3)	0.78771(18)	0.3730 0.4483(2)	0.035 0.0368(11)
H43	1.0233	0.8263	0.4525	0.044*
C44	1.0233 1.1183 (3)	0.0203 0.76827 (17)	0.1323 0.4884 (2)	0.0305 (9)
H44	1 1500	0.7930	0.5211	0.0305 ())
C45	1.1300	0.7930 0.71272(17)	0.3211 0.4806 (2)	0.037
H45	1.1470 (5)	0.6992	0.5074	0.038*
C46	1.2004 1 1000 (3)	0.0992 0.67627(15)	0.3074 0.4335(2)	0.0228 (8)
U40 H46	1.1000 (3)	0.6379	0.4335 (2)	0.0228 (8)
C51	0.9510(2)	0.0379 0.68938(14)	0.3200 0.25241(17)	0.027 0.0173(7)
C52	1.0284(2)	0.00000 (14) 0.71912 (15)	0.23241(17) 0.23321(18)	0.0173(7)
H52	1.0204 (2)	0 71912 (13)	0.2631	0.073*
C53	1.0050	0.74909 (16)	0 17011 (19)	0.0230 (8)
Н53	1.0200 (3)	0 7601	0 1571	0.0230 (0)
C54	0.9466 (3)	0.74960 (16)	0.12667 (19)	0.020
UJ7	0.7700(3)	0.74200 (10)	0.1200/(17)	0.0227(0)

	0.0450		0.000	0.0054	
H54	0.9450	0.7699	0.0837	0.027*	
C55	0.8700 (3)	0.72062 (17)	0.1459 (2)	0.0264 (8)	
H55	0.8153	0.7214	0.1160	0.032*	
C56	0.8712 (3)	0.69031 (16)	0.20788 (19)	0.0227 (7)	
H56	0.8177	0.6702	0.2201	0.027*	
C61	0.4299 (3)	0.59277 (15)	0.59983 (18)	0.0195 (7)	
C62	0.4556 (3)	0.53561 (17)	0.5971 (2)	0.0305 (9)	
H62	0.5057	0.5221	0.6268	0.037*	
C63	0.4089 (4)	0.49828 (18)	0.5516 (2)	0.0394 (11)	
H63	0.4276	0.4594	0.5500	0.047*	
C64	0.3367 (4)	0.51669 (19)	0.5091 (2)	0.0433 (12)	
H64	0.3044	0.4907	0.4784	0.052*	
C65	0.3106 (4)	0.5728 (2)	0.5107 (3)	0.0520 (15)	
H65	0.2606	0.5859	0.4806	0.062*	
C66	0.3571 (3)	0.61109 (18)	0.5565 (2)	0.0351 (10)	
H66	0.3382	0.6500	0.5575	0.042*	
C71	0.4879 (3)	0.59843 (15)	0.74115 (18)	0.0205 (7)	
C72	0.5653 (3)	0.58703 (18)	0.78570 (19)	0.0272 (8)	
H72	0.6237	0.6023	0.7758	0.033*	
C73	0.5570 (3)	0.55321 (19)	0.8449 (2)	0.0353 (10)	
H73	0.6099	0.5454	0.8750	0.042*	
C74	0.4733 (3)	0.53110 (18)	0.8601 (2)	0.0370 (11)	
H74	0.4681	0.5083	0.9006	0.044*	
C75	0.3964 (3)	0.54226 (19)	0.8160 (2)	0.0366 (10)	
H75	0.3384	0.5268	0.8263	0.044*	
C76	0.4031 (3)	0.57533 (18)	0.7575 (2)	0.0290 (9)	
H76	0.3496	0.5827	0.7278	0.035*	
C81	0.239 (2)	0.5739 (10)	0.972 (2)	0.118 (7)	0.5
H81A	0.2892	0.6013	0.9653	0.176*	0.5
H81B	0.1992	0.5885	1.0066	0.176*	0.5
H81C	0 2034	0 5687	0.9270	0.176*	0.5
C82	0.2797 (11)	0.5176(7)	0.9270 0.9954 (10)	0.090(4)	0.5
H82A	0.3293	0.5065	0.9650	0.108*	0.5
H82B	0.3070	0.5214	1 0438	0.108*	0.5
C83	0.2068 (10)	0.3214 0.4723 (5)	0.9928 (8)	0.100	0.5
H83A	0.1752	0.4716	0.9928 (8)	0.000 (5)	0.5
H83B	0.1702	0.4819	1 0265	0.096*	0.5
C84	0.1004	0.4019	1.0205	0.090	0.5
U84 H84A	0.2450 (14)	0.4148	1.0095 (12)	0.070 (4)	0.5
1104A 1194D	0.1016	0.3800	0.0054	0.084*	0.5
C 95	0.1910 0.2221 (10)	0.3899	0.3334	0.084	0.5
C0J	0.3221 (10)	0.3723(0)	0.9994 (11)	0.064 (4)	0.5
	0.3803	0.3878	1.0212	0.101*	0.5
ПбЭВ	0.3297	0.30/5	0.9488	0.101^{*}	0.5
	0.3012 (11)	0.3130 (3)	1.0314 (7)	0.0/1 (3)	0.5
HððA	0.3370	0.2830	1.0099	0.100*	0.5
наов	0.2333	0.30/3	1.0230	0.100*	0.5
H86C	0.31/8	0.3169	1.081/	0.106*	0.5
C81X	0.2458 (16)	0.5839 (7)	0.9660 (14)	0.070 (5)	0.5

H81D	0.2084	0.6148	0.9839	0.105*	0.5
H81E	0.2325	0.5802	0.9155	0.105*	0.5
H81F	0.3113	0.5926	0.9756	0.105*	0.5
C82X	0.2231 (11)	0.5287 (5)	1.0012 (7)	0.079 (4)	0.5
H82C	0.2327	0.5342	1.0523	0.094*	0.5
H82D	0.1568	0.5206	0.9908	0.094*	0.5
C83X	0.2770 (6)	0.4768 (4)	0.9814 (4)	0.0384 (19)	0.5
H83C	0.3430	0.4814	0.9963	0.046*	0.5
H83D	0.2712	0.4709	0.9302	0.046*	0.5
C84X	0.2368 (13)	0.4269 (4)	1.0182 (8)	0.066 (4)	0.5
H84C	0.2507	0.4307	1.0692	0.079*	0.5
H84D	0.1689	0.4268	1.0093	0.079*	0.5
C85X	0.2750 (12)	0.3718 (5)	0.9938 (7)	0.076 (4)	0.5
H85C	0.3429	0.3718	1.0025	0.091*	0.5
H85D	0.2608	0.3677	0.9429	0.091*	0.5
C86X	0.2345 (13)	0.3222 (7)	1.0313 (9)	0.091 (5)	0.5
H86D	0.2399	0.2873	1.0035	0.137*	0.5
H86E	0.1693	0.3298	1.0380	0.137*	0.5
H86F	0.2679	0.3171	1.0769	0.137*	0.5

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Ru1	0.01666 (13)	0.01424 (12)	0.01453 (12)	-0.00087 (10)	0.00393 (10)	-0.00007 (10)
Ru2	0.02584 (15)	0.01404 (13)	0.01748 (13)	-0.00170 (11)	0.00262 (11)	-0.00060 (10)
Ru3	0.02418 (15)	0.01772 (14)	0.01422 (12)	-0.00099 (11)	0.00340 (11)	-0.00010 (10)
Ru4	0.01601 (13)	0.01746 (13)	0.01674 (12)	0.00162 (10)	0.00289 (10)	-0.00148 (10)
Ru5	0.01922 (14)	0.01841 (14)	0.02283 (14)	0.00088 (11)	0.00067 (11)	-0.00223 (11)
Ru6	0.02241 (15)	0.02536 (15)	0.01751 (13)	0.00297 (12)	0.00093 (11)	-0.00131 (11)
P1	0.0144 (4)	0.0167 (4)	0.0145 (4)	0.0015 (3)	0.0025 (3)	0.0008 (3)
P2	0.0139 (4)	0.0185 (4)	0.0141 (4)	0.0029 (3)	0.0019 (3)	-0.0010 (3)
01	0.0216 (14)	0.0248 (14)	0.0404 (16)	-0.0032 (11)	0.0120 (12)	-0.0031 (12)
O2	0.0314 (16)	0.0342 (16)	0.0212 (13)	-0.0039 (12)	0.0010 (12)	0.0042 (11)
O3	0.0275 (16)	0.0411 (18)	0.0425 (17)	-0.0113 (13)	0.0120 (14)	-0.0024 (14)
04	0.0256 (15)	0.0254 (14)	0.0358 (15)	0.0038 (11)	-0.0036 (12)	0.0049 (12)
05	0.054 (2)	0.0303 (16)	0.0262 (15)	0.0020 (14)	0.0114 (14)	0.0054 (12)
06	0.0350 (18)	0.0390 (18)	0.0484 (19)	-0.0153 (14)	-0.0042 (15)	0.0028 (15)
07	0.060(2)	0.0301 (17)	0.049 (2)	0.0015 (16)	0.0112 (17)	-0.0189 (15)
08	0.074 (3)	0.0392 (19)	0.0406 (18)	-0.0099 (18)	0.0030 (18)	-0.0195 (15)
09	0.049 (2)	0.0286 (15)	0.0264 (14)	0.0004 (14)	0.0090 (14)	0.0064 (12)
O10	0.0250 (16)	0.0443 (18)	0.0386 (17)	0.0007 (13)	0.0007 (13)	0.0064 (14)
O11	0.0322 (18)	0.060 (2)	0.0309 (16)	0.0070 (16)	0.0089 (14)	-0.0048 (15)
O12	0.0198 (15)	0.0328 (16)	0.059 (2)	-0.0018 (12)	0.0098 (14)	-0.0007 (14)
O13	0.066 (2)	0.0432 (19)	0.0221 (15)	-0.0032 (17)	-0.0021 (15)	0.0055 (13)
O14	0.0258 (16)	0.0427 (18)	0.055 (2)	-0.0092 (14)	0.0167 (15)	-0.0095 (15)
O15	0.0211 (14)	0.0338 (16)	0.0414 (17)	0.0017 (12)	-0.0020 (13)	-0.0043 (13)
O16	0.0240 (16)	0.0417 (18)	0.063 (2)	-0.0034 (14)	-0.0036 (15)	-0.0047 (16)
017	0.071 (3)	0.046 (2)	0.0303 (17)	-0.0151 (18)	0.0022 (17)	0.0059 (15)

O18	0.0316 (17)	0.0302 (16)	0.0464 (18)	0.0020 (13)	0.0010 (14)	-0.0147 (14)
O19	0.0272 (17)	0.052 (2)	0.0455 (19)	0.0074 (15)	0.0094 (14)	0.0025 (15)
O20	0.059 (2)	0.047 (2)	0.0305 (16)	-0.0028 (17)	-0.0030 (16)	-0.0131 (15)
O21	0.082 (3)	0.0366 (18)	0.0331 (17)	0.0175 (18)	0.0206 (18)	0.0088 (14)
O22	0.0216 (16)	0.060 (2)	0.0481 (19)	0.0081 (15)	0.0000 (14)	0.0062 (16)
C1	0.0236 (19)	0.0161 (16)	0.0219 (17)	0.0051 (14)	0.0086 (14)	0.0005 (13)
C2	0.0226 (18)	0.0166 (16)	0.0233 (17)	-0.0038 (14)	0.0043 (15)	-0.0003 (13)
C3	0.025 (2)	0.0247 (19)	0.0236 (18)	-0.0047 (16)	0.0045 (15)	-0.0038 (15)
C4	0.033 (2)	0.0137 (16)	0.0198 (17)	0.0041 (15)	0.0036 (15)	0.0025 (13)
C5	0.036 (2)	0.0178 (18)	0.0256 (19)	-0.0004 (16)	0.0028 (17)	-0.0005 (15)
C6	0.034 (2)	0.026 (2)	0.0257 (19)	-0.0055 (17)	0.0029 (17)	0.0018 (16)
C7	0.040 (2)	0.022 (2)	0.029 (2)	-0.0044 (17)	0.0042 (18)	-0.0033 (16)
C8	0.045 (3)	0.024 (2)	0.027 (2)	-0.0050 (18)	0.0054 (19)	-0.0004 (16)
C9	0.028 (2)	0.0231 (19)	0.0209 (17)	-0.0001 (15)	0.0024 (15)	-0.0022(15)
C10	0.029 (2)	0.030 (2)	0.0259 (19)	-0.0018 (17)	0.0042 (17)	0.0068 (16)
C11	0.033 (2)	0.031 (2)	0.0168 (17)	0.0048 (17)	0.0058 (16)	-0.0040 (15)
C12	0.0221 (19)	0.0218 (18)	0.0279 (19)	0.0035 (15)	0.0040 (16)	-0.0027 (15)
C13	0.028 (2)	0.0223 (18)	0.0261 (19)	0.0011 (15)	0.0039 (16)	-0.0007(15)
C14	0.023 (2)	0.030 (2)	0.031 (2)	-0.0002 (16)	0.0042 (16)	-0.0046 (16)
C15	0.026 (2)	0.0242 (19)	0.0261 (19)	-0.0027(15)	0.0028 (16)	-0.0002 (15)
C16	0.026 (2)	0.027 (2)	0.035 (2)	-0.0002 (16)	-0.0009 (17)	-0.0044 (17)
C17	0.034 (2)	0.024 (2)	0.031 (2)	-0.0045 (17)	-0.0021 (18)	-0.0025 (16)
C18	0.0218 (19)	0.027 (2)	0.032 (2)	-0.0015 (16)	-0.0003 (16)	-0.0021 (17)
C19	0.029 (2)	0.030 (2)	0.0258 (19)	0.0023 (17)	0.0006 (17)	0.0018 (16)
C20	0.033 (2)	0.037 (2)	0.0249 (19)	-0.0011 (18)	-0.0023 (17)	-0.0025 (17)
C21	0.042 (3)	0.032 (2)	0.0234 (19)	0.0124 (19)	0.0073 (18)	-0.0016 (17)
C22	0.030 (2)	0.036 (2)	0.031 (2)	0.0017 (18)	-0.0011 (18)	0.0030 (17)
C31	0.0165 (17)	0.0271 (19)	0.0161 (16)	0.0026 (14)	0.0035 (13)	0.0013 (13)
C32	0.0168 (17)	0.0274 (19)	0.0163 (15)	0.0020 (14)	0.0053 (13)	-0.0005 (14)
C33	0.0193 (17)	0.0253 (18)	0.0175 (16)	0.0034 (14)	0.0058 (14)	0.0026 (14)
C34	0.0175 (17)	0.0211 (17)	0.0181 (16)	0.0013 (13)	0.0059 (13)	0.0008 (13)
C35	0.0186 (17)	0.0252 (18)	0.0186 (16)	0.0027 (14)	0.0055 (14)	-0.0007 (14)
C36	0.0168 (17)	0.0226 (18)	0.0187 (16)	0.0024 (13)	0.0042 (13)	-0.0012 (13)
C41	0.0194 (17)	0.0185 (16)	0.0158 (15)	-0.0005 (13)	0.0031 (13)	0.0011 (13)
C42	0.040 (2)	0.0215 (19)	0.0254 (19)	0.0076 (17)	-0.0045 (18)	-0.0027 (15)
C43	0.054 (3)	0.020 (2)	0.035 (2)	0.0061 (19)	-0.006 (2)	-0.0058 (17)
C44	0.038 (2)	0.023 (2)	0.030 (2)	-0.0081 (17)	0.0004 (18)	-0.0085 (16)
C45	0.024 (2)	0.029 (2)	0.040 (2)	-0.0003 (16)	-0.0081 (18)	-0.0049 (17)
C46	0.0200 (18)	0.0179 (17)	0.0302 (19)	0.0019 (14)	-0.0001 (15)	-0.0024 (14)
C51	0.0190 (17)	0.0146 (15)	0.0186 (15)	0.0039 (13)	0.0047 (13)	-0.0007(13)
C52	0.0175 (17)	0.0207 (17)	0.0184 (16)	-0.0010 (13)	0.0016 (13)	0.0015 (13)
C53	0.0207 (18)	0.0220 (18)	0.0270 (18)	0.0010 (14)	0.0056 (15)	0.0029 (15)
C54	0.0242 (19)	0.0231 (18)	0.0205 (17)	0.0049 (15)	0.0051 (15)	0.0073 (14)
C55	0.0211 (19)	0.033 (2)	0.0246 (18)	0.0023 (16)	-0.0009 (15)	0.0076 (16)
C56	0.0167 (17)	0.0284 (19)	0.0231 (17)	0.0008 (15)	0.0019 (14)	0.0046 (15)
C61	0.0219 (18)	0.0198 (17)	0.0172 (16)	-0.0006 (14)	0.0040 (14)	-0.0013 (13)
C62	0.037 (2)	0.0216 (19)	0.032 (2)	0.0038 (17)	-0.0040 (18)	-0.0050 (16)
C63	0.051 (3)	0.022 (2)	0.044 (3)	-0.0002 (19)	0.002 (2)	-0.0108 (18)

C64	0.054 (3)	0.032 (2)	0.043 (3)	-0.013 (2)	-0.012 (2)	-0.011 (2)
C65	0.054 (3)	0.037 (3)	0.060 (3)	-0.006 (2)	-0.034 (3)	-0.003 (2)
C66	0.035 (2)	0.022 (2)	0.046 (2)	0.0008 (17)	-0.015 (2)	-0.0016 (18)
C71	0.0217 (18)	0.0206 (17)	0.0194 (16)	0.0045 (14)	0.0044 (14)	-0.0022 (13)
C72	0.0234 (19)	0.036 (2)	0.0227 (18)	0.0101 (17)	0.0040 (15)	0.0029 (16)
C73	0.039 (2)	0.045 (3)	0.0228 (19)	0.020 (2)	0.0064 (18)	0.0086 (18)
C74	0.054 (3)	0.030 (2)	0.029 (2)	0.015 (2)	0.018 (2)	0.0111 (17)
C75	0.041 (3)	0.037 (2)	0.033 (2)	-0.004 (2)	0.015 (2)	0.0049 (19)
C76	0.027 (2)	0.034 (2)	0.0267 (19)	-0.0002 (17)	0.0054 (16)	0.0040 (16)
C81	0.120 (11)	0.107 (8)	0.125 (11)	-0.002 (8)	0.005 (9)	0.011 (8)
C82	0.087 (6)	0.094 (5)	0.089 (6)	-0.004 (4)	0.008 (4)	0.008 (4)
C83	0.086 (5)	0.083 (4)	0.071 (5)	0.001 (4)	-0.003 (4)	-0.002 (4)
C84	0.077 (6)	0.069 (5)	0.063 (6)	0.003 (4)	0.000 (4)	0.000 (4)
C85	0.089 (6)	0.082 (5)	0.082 (6)	-0.007 (4)	0.008 (5)	-0.007 (4)
C86	0.094 (8)	0.059 (5)	0.056 (6)	0.009 (6)	-0.012 (6)	-0.003 (5)
C81X	0.074 (8)	0.073 (6)	0.065 (7)	0.023 (6)	0.024 (6)	0.014 (6)
C82X	0.083 (9)	0.091 (7)	0.066 (7)	0.045 (7)	0.036 (7)	0.047 (7)
C83X	0.038 (5)	0.053 (5)	0.023 (4)	-0.016 (4)	-0.008 (4)	-0.005 (4)
C84X	0.101 (10)	0.059 (6)	0.035 (6)	-0.001 (6)	-0.016 (6)	-0.015 (5)
C85X	0.123 (13)	0.063 (6)	0.044 (6)	0.007 (8)	0.017 (8)	-0.018 (5)
C86X	0.112 (9)	0.083 (7)	0.079 (8)	-0.023 (7)	0.013 (7)	-0.004 (6)

Geometric parameters (Å, °)

Ru1—C2	1.888 (4)	C43—C44	1.377 (6)
Ru1—C1	1.927 (4)	C43—H43	0.9500
Ru1—C3	1.951 (4)	C44—C45	1.377 (6)
Ru1—P1	2.3506 (9)	C44—H44	0.9500
Ru1—Ru2	2.8431 (4)	C45—C46	1.393 (5)
Ru1—Ru3	2.8644 (4)	C45—H45	0.9500
Ru2—C4	1.926 (4)	C46—H46	0.9500
Ru2—C7	1.926 (4)	C51—C52	1.392 (5)
Ru2—C5	1.927 (4)	C51—C56	1.396 (5)
Ru2—C6	1.948 (4)	C52—C53	1.397 (5)
Ru2—Ru3	2.8378 (4)	С52—Н52	0.9500
Ru3—C8	1.913 (4)	C53—C54	1.379 (5)
Ru3—C9	1.928 (4)	С53—Н53	0.9500
Ru3—C10	1.941 (4)	C54—C55	1.374 (5)
Ru3—C11	1.948 (4)	C54—H54	0.9500
Ru4—C13	1.885 (4)	C55—C56	1.384 (5)
Ru4—C14	1.927 (4)	С55—Н55	0.9500
Ru4—C12	1.928 (4)	C56—H56	0.9500
Ru4—P2	2.3439 (9)	C61—C66	1.372 (5)
Ru4—Ru5	2.8454 (4)	C61—C62	1.389 (5)
Ru4—Ru6	2.8564 (4)	C62—C63	1.381 (6)
Ru5—C17	1.926 (4)	С62—Н62	0.9500
Ru5—C18	1.929 (4)	C63—C64	1.356 (7)
Ru5—C15	1.933 (4)	С63—Н63	0.9500

Ru5—C16	1.942 (4)	C64—C65	1.367 (7)
Ru5—Ru6	2.8490 (4)	C64—H64	0.9500
Ru6—C20	1.908 (4)	C65—C66	1.396 (6)
Ru6—C22	1.933 (5)	С65—Н65	0.9500
Ru6—C21	1.926 (4)	С66—Н66	0.9500
Ru6—C19	1.936 (4)	C71—C72	1.395 (5)
P1—C51	1.829 (3)	C71—C76	1.399 (5)
P1—C31	1.834 (4)	C72—C73	1.396 (5)
P1—C41	1.836 (3)	С72—Н72	0.9500
P2—C71	1.822 (4)	C73—C74	1.370(7)
P2—C61	1.830 (4)	C73—H73	0.9500
P2-C36	1.834 (4)	C74—C75	1.383 (7)
01-C1	1 141 (4)	C74—H74	0.9500
$0^{2}-C^{2}$	1.148(4)	C75-C76	1 370 (6)
02 - 02	1.110(1) 1.131(5)	C75—H75	0.9500
$O_4 - C_4$	1.131(5) 1.148(5)	C76—H76	0.9500
05 C5	1.140(5) 1.133(5)		1 499 (5)
05-05	1.133(3)	$C_{81} = C_{82}$	0.0200
07 67	1.140(5) 1 120(5)	C_{81} H81P	0.9800
$O^{*}_{}C^{*}_{}$	1.139 (3)		0.9800
08-08	1.138 (5)	C81 - H81C	0.9800
09-09	1.133 (5)		1.496 (5)
	1.142 (5)	C82—H82A	0.9900
	1.135 (5)	C82—H82B	0.9900
012	1.148 (5)	C83—C84	1.502 (5)
O13—C13	1.144 (5)	C83—H83A	0.9900
O14—C14	1.151 (5)	C83—H83B	0.9900
O15—C15	1.147 (5)	C84—C85	1.497 (5)
O16—C16	1.143 (5)	C84—H84A	0.9900
O17—C17	1.131 (5)	C84—H84B	0.9900
O18—C18	1.128 (5)	C85—C86	1.504 (5)
O19—C19	1.141 (5)	C85—H85A	0.9900
O20—C20	1.139 (5)	C85—H85B	0.9900
O21—C21	1.130 (5)	C86—H86A	0.9800
O22—C22	1.146 (5)	C86—H86B	0.9800
C31—C32	1.534 (5)	C86—H86C	0.9800
C31—H31A	0.9900	C81X—C82X	1.503 (5)
C31—H31B	0.9900	C81X—H81D	0.9800
C32—C33	1.524 (5)	C81X—H81E	0.9800
С32—Н32А	0.9900	C81X—H81F	0.9800
C32—H32B	0.9900	C82X—C83X	1.506 (5)
C33—C34	1.529 (5)	C82X—H82C	0.9900
С33—Н33А	0.9900	C82X—H82D	0.9900
C33—H33B	0.9900	C83X—C84X	1.501 (5)
C34—C35	1.523 (5)	C83X—H83C	0.9900
C34—H34A	0.9900	C83X—H83D	0.9900
C34—H34B	0.9900	C84X - C85X	1 489 (5)
C35—C36	1 529 (5)	C84X - H84C	0 9900
C35—H35A	0.9900	C84X—H84D	0.9900
	0.7700		0.7700

С35—Н35В	0.9900	C85X—C86X	1.505 (5)
С36—Н36А	0.9900	C85X—H85C	0.9900
С36—Н36В	0.9900	C85X—H85D	0.9900
C41—C42	1.381 (5)	C86X—H86D	0.9800
C41—C46	1.381 (5)	C86X—H86E	0.9800
C42—C43	1.390 (6)	C86X—H86F	0.9800
C42—H42	0.9500		
C2—Ru1—C1	93.19 (15)	С34—С35—Н35В	108.9
C2—Ru1—C3	92.90 (16)	Н35А—С35—Н35В	107.7
C1—Ru1—C3	173.85 (15)	C35—C36—P2	112.5 (2)
C2—Ru1—P1	100.79 (11)	С35—С36—Н36А	109.1
C1—Ru1—P1	87.47 (10)	Р2—С36—Н36А	109.1
C3—Ru1—P1	92.18 (12)	С35—С36—Н36В	109.1
C2—Ru1—Ru2	92.04 (11)	Р2—С36—Н36В	109.1
C1—Ru1—Ru2	97.12 (10)	H36A—C36—H36B	107.8
C3—Ru1—Ru2	81.85 (11)	C42—C41—C46	119.0 (3)
P1—Ru1—Ru2	166.14 (2)	C42—C41—P1	118.8 (3)
C2—Ru1—Ru3	145.87 (11)	C46—C41—P1	122.2 (3)
C1—Ru1—Ru3	73.77 (11)	C41—C42—C43	120.4 (4)
C3—Ru1—Ru3	100.62 (11)	C41—C42—H42	119.8
P1—Ru1—Ru3	109.75 (2)	C43—C42—H42	119.8
Ru2—Ru1—Ru3	59.630 (9)	C44—C43—C42	120.4 (4)
C4—Ru2—C7	92.79 (17)	C44—C43—H43	119.8
C4—Ru2—C5	92.47 (16)	C42—C43—H43	119.8
C7—Ru2—C5	101.53 (17)	C45—C44—C43	119.4 (4)
C4—Ru2—C6	170.51 (16)	C45—C44—H44	120.3
C7—Ru2—C6	94.20 (18)	C43—C44—H44	120.3
C5—Ru2—C6	92.43 (17)	C44—C45—C46	120.2 (4)
C4—Ru2—Ru3	91.68 (10)	C44—C45—H45	119.9
C7—Ru2—Ru3	101.66 (12)	C46—C45—H45	119.9
C5—Ru2—Ru3	156.20 (12)	C41—C46—C45	120.5 (3)
C6—Ru2—Ru3	80.62 (12)	C41—C46—H46	119.7
C4—Ru2—Ru1	75.64 (11)	C45—C46—H46	119.7
C7—Ru2—Ru1	157.76 (13)	C52—C51—C56	119.0 (3)
C5—Ru2—Ru1	97.94 (11)	C52—C51—P1	120.0 (3)
C6—Ru2—Ru1	95.63 (12)	C56—C51—P1	121.0 (3)
Ru3—Ru2—Ru1	60.559 (10)	C51—C52—C53	120.3 (3)
C8—Ru3—C9	97.59 (16)	С51—С52—Н52	119.9
C8—Ru3—C10	97.34 (19)	С53—С52—Н52	119.9
C9—Ru3—C10	91.23 (17)	C54—C53—C52	120.1 (3)
C8—Ru3—C11	92.51 (18)	С54—С53—Н53	119.9
C9—Ru3—C11	91.69 (17)	С52—С53—Н53	119.9
C10—Ru3—C11	169.27 (16)	C55—C54—C53	119.7 (3)
C8—Ru3—Ru2	93.38 (12)	C55—C54—H54	120.2
C9—Ru3—Ru2	167.57 (11)	С53—С54—Н54	120.2
C10—Ru3—Ru2	93.16 (11)	C54—C55—C56	121.1 (4)
C11—Ru3—Ru2	81.97 (12)	С54—С55—Н55	119.4

C8—Ru3—Ru1	148.89 (13)	С56—С55—Н55	119.4
C9—Ru3—Ru1	111.03 (11)	C55—C56—C51	119.9 (3)
C10—Ru3—Ru1	70.94 (12)	С55—С56—Н56	120.1
C11—Ru3—Ru1	98.38 (11)	С51—С56—Н56	120.1
Ru2—Ru3—Ru1	59.811 (9)	C66—C61—C62	118.4 (3)
C13—Ru4—C14	90.16 (18)	C66—C61—P2	122.9 (3)
C13—Ru4—C12	93.49 (17)	C62—C61—P2	118.7 (3)
C14—Ru4—C12	175.82 (16)	C63—C62—C61	120.6 (4)
C13—Ru4—P2	100.25 (12)	С63—С62—Н62	119.7
C14—Ru4—P2	91.98 (12)	С61—С62—Н62	119.7
C12—Ru4—P2	89.38 (11)	C64—C63—C62	120.6 (4)
C13—Ru4—Ru5	95.90 (12)	С64—С63—Н63	119.7
C14—Ru4—Ru5	78.78 (12)	С62—С63—Н63	119.7
C12—Ru4—Ru5	98.80 (11)	C63—C64—C65	119.8 (4)
P2—Ru4—Ru5	161.41 (2)	С63—С64—Н64	120.1
C13—Ru4—Ru6	153.66 (12)	С65—С64—Н64	120.1
C14—Ru4—Ru6	94.70 (12)	C64—C65—C66	120.4 (4)
C12—Ru4—Ru6	81.13 (11)	С64—С65—Н65	119.8
P2—Ru4—Ru6	105.42 (2)	С66—С65—Н65	119.8
Ru5—Ru4—Ru6	59.956 (10)	C61—C66—C65	120.3 (4)
C17—Ru5—C18	103.41 (17)	С61—С66—Н66	119.9
C17—Ru5—C15	91.02 (17)	С65—С66—Н66	119.9
C18—Ru5—C15	94.36 (17)	C72—C71—C76	118.4 (4)
C17—Ru5—C16	92.36 (18)	C72—C71—P2	122.5 (3)
C18—Ru5—C16	89.77 (17)	C76—C71—P2	119.1 (3)
C15—Ru5—C16	173.92 (17)	C73—C72—C71	119.9 (4)
C17—Ru5—Ru4	97.59 (12)	С73—С72—Н72	120.0
C18—Ru5—Ru4	157.80 (12)	С71—С72—Н72	120.0
C15—Ru5—Ru4	78.01 (12)	C74—C73—C72	120.7 (4)
C16—Ru5—Ru4	96.53 (12)	С74—С73—Н73	119.6
C17—Ru5—Ru6	155.84 (13)	С72—С73—Н73	119.6
C18—Ru5—Ru6	99.99 (12)	C73—C74—C75	119.5 (4)
C15—Ru5—Ru6	93.16 (11)	С73—С74—Н74	120.3
C16—Ru5—Ru6	81.72 (13)	С75—С74—Н74	120.3
Ru4—Ru5—Ru6	60.213 (10)	C76—C75—C74	120.7 (4)
C20—Ru6—C22	96.98 (19)	С76—С75—Н75	119.6
C20—Ru6—C21	100.63 (18)	С74—С75—Н75	119.6
C22—Ru6—C21	90.24 (19)	C75—C76—C71	120.7 (4)
C20—Ru6—C19	92.56 (18)	С75—С76—Н76	119.6
C22—Ru6—C19	170.42 (18)	С71—С76—Н76	119.6
C21—Ru6—C19	88.92 (18)	C82—C81—H81A	109.5
C20—Ru6—Ru5	89.47 (13)	C82—C81—H81B	109.5
C22—Ru6—Ru5	93.73 (13)	H81A—C81—H81B	109.5
C21—Ru6—Ru5	168.62 (13)	C82—C81—H81C	109.5
C19—Ru6—Ru5	85.39 (12)	H81A—C81—H81C	109.5
C20—Ru6—Ru4	147.96 (13)	H81B—C81—H81C	109.5
C22—Ru6—Ru4	77.65 (12)	C83—C82—C81	110.4 (17)
C21—Ru6—Ru4	110.86 (12)	C83—C82—H82A	109.6

C19—Ru6—Ru4	93.74 (12)	C81—C82—H82A	109.6
Ru5—Ru6—Ru4	59.831 (10)	C83—C82—H82B	109.6
C51—P1—C31	102.71 (16)	C81—C82—H82B	109.6
C51—P1—C41	102.18 (16)	H82A—C82—H82B	108.1
C31—P1—C41	102.02 (16)	C82—C83—C84	112.4 (15)
C51—P1—Ru1	116.05 (11)	C82—C83—H83A	109.1
C31—P1—Ru1	115.00 (12)	C84—C83—H83A	109.1
C41—P1—Ru1	116.74 (11)	C82—C83—H83B	109.1
C71—P2—C61	99.68 (16)	C84—C83—H83B	109.1
C71—P2—C36	104.11 (16)	H83A—C83—H83B	107.9
C61—P2—C36	102.27 (16)	C85—C84—C83	146.3 (16)
C71— $P2$ — $Ru4$	117.77 (12)	C85—C84—H84A	100.3
C61 - P2 - Ru4	117.29 (12)	C83—C84—H84A	100.3
C36-P2-Ru4	113.47 (12)	C85—C84—H84B	100.3
O1-C1-Ru1	171.7 (3)	C83—C84—H84B	100.3
O2-C2-Ru1	174.1 (3)	H84A—C84—H84B	104.2
O3-C3-Ru1	175.7 (3)	C84—C85—C86	110.4 (11)
$O4-C4-Ru^2$	174 4 (3)	C84—C85—H85A	109.6
$05-C5-Ru^2$	1787(4)	C86—C85—H85A	109.6
$O6-C6-Bu^2$	176 2 (4)	C84—C85—H85B	109.6
$O7-C7-Ru^2$	174.2 (4)	C86—C85—H85B	109.6
O8 - C8 - Ru3	1787(4)	H85A—C85—H85B	108.1
09—C9—Ru3	174.9 (3)	C85—C86—H86A	109.5
O10-C10-Ru3	169 7 (4)	C85—C86—H86B	109.5
O11-C11-Ru3	174 8 (3)	H86A—C86—H86B	109.5
O12— $C12$ —Ru4	172.9 (3)	C85—C86—H86C	109.5
013 - C13 - Ru4	172.9(3) 1766(4)	H86A—C86—H86C	109.5
O14— $C14$ — $Ru4$	173.4(4)	H86B—C86—H86C	109.5
O15-C15-Ru5	174 1 (3)	C82X - C81X - H81D	109.5
O16-C16-Ru5	1737(4)	C82X - C81X - H81E	109.5
O17— $C17$ —Ru5	178.1 (4)	H81D - C81X - H81E	109.5
O18— $C18$ — $Ru5$	179 4 (4)	C82X - C81X - H81F	109.5
O19— $C19$ — $Ru6$	173.2(4)	H81D - C81X - H81F	109.5
O20-C20-Ru6	178.9 (4)	H81E—C81X—H81F	109.5
O21— $C21$ —Ru6	175.2 (4)	C83X - C82X - C81X	116.5 (12)
O22-C22-Ru6	171.9 (4)	C83X - C82X - H82C	108.2
C_{32} C_{31} P_{1}	113.5(2)	C81X - C82X - H82C	108.2
C32—C31—H31A	108.9	C83X - C82X - H82D	108.2
P1-C31-H31A	108.9	C81X - C82X - H82D	108.2
C_{32} C_{31} H_{31B}	108.9	H82C - C82X - H82D	107.3
P1-C31-H31B	108.9	C82X - C83X - C84X	106.5 (9)
H31A—C31—H31B	107.7	C82X - C83X - H83C	110.4
C_{33} C_{32} C_{31}	111 5 (3)	C84X - C83X - H83C	110.4
C33—C32—H32A	109.3	C82X—C83X—H83D	110.4
C31—C32—H32A	109.3	C84X - C83X - H83D	110.4
C33—C32—H32B	109.3	H83C—C83X—H83D	108.6
C31—C32—H32B	109.3	C85X - C84X - C83X	111.0 (10)
H32A—C32—H32B	108.0	C85X—C84X—H84C	109.4
	• • • • • • • • • • • • • • • • • • • •		+

C32—C33—C34	113.0 (3)	C83X—C84X—H84C	109.4
С32—С33—Н33А	109.0	C85X—C84X—H84D	109.4
С34—С33—Н33А	109.0	C83X—C84X—H84D	109.4
С32—С33—Н33В	109.0	H84C—C84X—H84D	108.0
С34—С33—Н33В	109.0	C84X—C85X—C86X	110.5 (12)
H33A—C33—H33B	107.8	C84X—C85X—H85C	109.6
C33—C34—C35	112.2 (3)	C86X—C85X—H85C	109.6
C33—C34—H34A	109.2	C84X—C85X—H85D	109.6
C35—C34—H34A	109.2	C86X - C85X - H85D	109.6
C33—C34—H34B	109.2	H85C - C85X - H85D	108.1
C35_C34_H34B	109.2	C85X - C86X - H86D	100.1
$H34\Delta$ $C34$ $H34B$	107.9	C85X - C86X - H86E	109.5
$C_{26} C_{25} C_{24}$	107.9		109.5
$C_{30} = C_{33} = C_{34}$	113.3 (3)	$\begin{array}{c} 1180D - C80X - 1180E \\ C85X - C86X - H86E \\ \end{array}$	109.5
C_{30} C_{35} H_{35A}	108.9	1000	109.5
C34—C35—H35A	108.9	$H_{00} - C_{00} - H_{00} - H$	109.5
Сзо—Сзэ—Нззв	108.9	H80E-C80A-H80F	109.5
C51 D1 C21 C22	1(1 5 (2))	C52 C51 C5(C55	0.1(5)
C_{31} P1 C_{31} C_{32}	-101.5(3)	$C_{52} - C_{51} - C_{50} - C_{55}$	-0.1(5)
C41 - P1 - C31 - C32	-55.9(3)	P1 = C31 = C36 = C35	-1/8.5(3)
Ru1 - P1 - C31 - C32	/1.5 (3)	C/1 - P2 - C61 - C66	127.9 (4)
P1 - C31 - C32 - C33	-1/.8(3)	$C_{36} - P_2 - C_{61} - C_{66}$	-125.2 (4)
$C_{31} - C_{32} - C_{33} - C_{34}$	-174.6(3)	Ru4—P2—C61—C66	-0.4 (4)
C32—C33—C34—C35	-177.4(3)	C/1—P2—C61—C62	-51.7 (3)
C33—C34—C35—C36	173.7 (3)	C36—P2—C61—C62	55.2 (3)
C34—C35—C36—P2	175.5 (2)	Ru4—P2—C61—C62	-180.0(3)
C71—P2—C36—C35	160.6 (3)	C66—C61—C62—C63	0.2 (6)
C61—P2—C36—C35	57.2 (3)	P2—C61—C62—C63	179.8 (4)
Ru4—P2—C36—C35	-70.1 (3)	C61—C62—C63—C64	-0.5 (7)
C51—P1—C41—C42	54.3 (3)	C62—C63—C64—C65	0.9 (8)
C31—P1—C41—C42	-51.8 (3)	C63—C64—C65—C66	-0.9 (9)
Ru1—P1—C41—C42	-178.0 (3)	C62—C61—C66—C65	-0.2 (7)
C51—P1—C41—C46	-128.3 (3)	P2-C61-C66-C65	-179.8 (4)
C31—P1—C41—C46	125.7 (3)	C64—C65—C66—C61	0.5 (8)
Ru1—P1—C41—C46	-0.6 (4)	C61—P2—C71—C72	131.1 (3)
C46—C41—C42—C43	0.5 (6)	C36—P2—C71—C72	25.7 (4)
P1-C41-C42-C43	178.0 (3)	Ru4—P2—C71—C72	-100.9 (3)
C41—C42—C43—C44	-1.4 (7)	C61—P2—C71—C76	-46.9 (3)
C42—C43—C44—C45	1.7 (7)	C36—P2—C71—C76	-152.2(3)
C43—C44—C45—C46	-1.2 (7)	Ru4—P2—C71—C76	81.1 (3)
C42—C41—C46—C45	0.0 (6)	C76—C71—C72—C73	0.1 (6)
P1—C41—C46—C45	-177.5 (3)	P2-C71-C72-C73	-177.9(3)
C44—C45—C46—C41	0.4 (6)	C71—C72—C73—C74	-0.2(6)
C_{31} = P1 = C51 = C52	145.4 (3)	C72-C73-C74-C75	0.3(7)
C41 - P1 - C51 - C52	39.9 (3)	C73 - C74 - C75 - C76	-0.3(7)
Ru1—P1—C51—C52	-883(3)	C74-C75-C76-C71	0.2(7)
C_{31} P1 C_{51} C_{56}	-36.3(3)	C72-C71-C76-C75	-0.1(6)
C41 - P1 - C51 - C56	-1418(3)	P2-C71-C76-C75	178.0 (3)
Ru1—P1—C51—C56	90 1 (3)	C81 - C82 - C83 - C84	174 (2)
	· · · · · · · · · · · · · · · · · · ·		- / · (<i>-</i> /

C56—C51—C52—C53	-0.4(5)	C82—C83—C84—C85	-42 (4)
P1—C51—C52—C53	178.0 (3)	C83—C84—C85—C86	-174 (3)
C51—C52—C53—C54	0.4 (5)	C81X—C82X—C83X—C84X	-175.3 (17)
C52—C53—C54—C55	0.1 (6)	C82X—C83X—C84X—C85X	171.2 (13)
C53—C54—C55—C56	-0.7 (6)	C83X—C84X—C85X—C86X	179.7 (14)
C54—C55—C56—C51	0.7 (6)		

Hydrogen-bond geometry (Å, °)

Hydrogen-bond geometry (Å, °) for (I). Cg1 and Cg2 the ring centroids of the C41–C46 and C51–C56 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C35—H35B····O20 ⁱ	0.99	2.60	3.297 (5)	128
C36—H36 <i>B</i> ···O4 ⁱⁱ	0.99	2.54	3.393 (4)	144
C42—H42…O7 ⁱⁱⁱ	0.95	2.56	3.401 (5)	148
C52—H52···O19 ^{iv}	0.95	2.52	3.448 (4)	167
C55—H55…O14 ⁱ	0.95	2.54	3.278 (5)	134
C62—H62···O18 ^v	0.95	2.59	3.501 (5)	161
C82 <i>X</i> —H82 <i>D</i> ···O8 ^{vi}	0.99	2.55	3.391 (16)	143
C81 <i>X</i> —H81 <i>F</i> ···O17 ^{vii}	0.98	2.59	3.48 (2)	150
C82X—H82 C ···O11 ^{viii}	0.99	2.59	3.528 (14)	157

Symmetry codes: (i) *x*, -*y*+1/2, *z*-3/2; (ii) -*x*+2, -*y*+1, -*z*+1; (iii) -*x*+2, *y*+1/2, -*z*+1/2; (iv) *x*+1, -*y*+1/2, *z*-3/2; (v) -*x*+1, *y*-1/2, -*z*+3/2; (vi) -*x*+1, -*y*+1, -*z*+1; (vii) *x*, -*y*+1/2, *z*-1/2; (viii) *x*-1, *y*, *z*+1.