

Received 2 October 2017 Accepted 6 October 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; zinc; cadmium; dithiocarbamate; 4,4'-bipyridine; hydrogen bonding.

CCDC references: 1578328; 1578327

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of $(4,4'-bipyridyl-\kappa N)bis[N-(2-hydroxyethyl)-N-isopropyldithiocarbamato-<math>\kappa^2 S, S']$ -zinc(II)-4,4'-bipyridyl (2/1) and its isostructural cadmium(II) analogue

Yee Seng Tan and Edward R. T. Tiekink*

Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. *Correspondence e-mail: edwardt@sunway.edu.my

The title structures, $[M(C_6H_{12}NOS_2)_2(C_{10}H_8N_2)] \cdot 0.5C_{10}H_8N_2$, for M = Zn, (I), and Cd, (II), feature terminally bound 4,4'-bipyridyl ligands and noncoordinating 4,4'-bipyridyl molecules, with the latter disposed about a centre of inversion. The coordination geometry about the metal atom is defined by two non-symmetrically chelating dithiocarbamate ligands and a pyridyl N atom. The NS₄ donor sets are distorted but, approximate to trigonal bipyramidal in each case. In the crystal, hydroxy-O-H···O(hydroxy) and hydroxy-O-H··· N(pyridyl) hydrogen bonds between the zinc-containing molecules lead to a supramolecular layer parallel to (100). The three-dimensional architecture arises as the layers are linked *via* methine-C-H···S, pyridyl-C-H··· O(hydroxy) and π - π [inter-centroid distance between coordinated pyridyl rings = 3.6246 (18) Å] interactions. Channels along the *c*-axis direction are occupied by the non-coordinating 4,4'-bipyridine molecules, which are held in place by C-H··· π (chelate ring) contacts.

1. Chemical context

The ditopic ligand 4,4'-bipyridyl is ubiquitous in coordination chemistry, usually providing bridges between metal centres to generate coordination polymers. While bidentate bridging is normally observed in the structural chemistry of zinc(II) bis(N,N'-dialkyldithiocarbamate)s, these more often than not lead to binuclear species of the general formula $[Zn(S_2CNRR')_2]_2(4,4'-bipyridyl)$ as first observed in the archetypal compound [Zn(S₂CNEt₂)₂]₂(4,4'-bipyridyl) (Zemskova et al., 1994) and in other compounds relevant to the present study, such as $\{Zn[S_2CN(R)CH_2CH_2OH]_2\}_2(4,4'$ bipyridyl) for R = Me, Et and CH₂CH₂OH (Benson *et al.*, 2007). The exceptional structure is that of $Zn[S_2CN(n-Pr)_2]_2$ -(4,4'-bipyridyl), which features a relatively rare monodentate coordination mode for the 4,4'-bipyridyl molecule (Klevtsova et al., 2001). The analogous chemistry for cadmium(II) bis-(N,N'-dialkyldithiocarbamate)s is considerably less explored with the only example in the Cambridge Structural Database (Groom et al., 2016) being a linear coordination polymer in the crystal of $\{Cd[S_2CN(CH_2Ph)_2]_2(4,4'-bipyridyl)\}_n$ (Fan *et al.*, 2007). The difference in chemistry between zinc and cadmium dithiocarbamates can be rationalized in terms of the larger size of cadmium versus zinc but, also in terms of the reduced Lewis acidity of the zinc atom owing to the strong chelation mode of the dithiocarbamate ligand. This is also true for cadmium whereby unusual coordination modes are found for

Table 1Selected geome	tric parameters (Å, °) for (I).	
Zn-N3	2.077 (2)	C1-S1	1.733 (3)
Zn-S1	2.3540 (10)	C1-S2	1.715 (3)
Zn-S2	2.5366 (9)	C7-S3	1.735 (3)
Zn-S3	2.3541 (9)	C7-S4	1.714 (3)
Zn-S4	2.5904 (9)		
S1-Zn-S3	124.19 (3)	S2-Zn-S4	162.87 (3)

Table 2Selected geometric parameters (Å, $^{\circ}$) for (II).

Selected geome	the parameters (11,) 101 (11):	
Cd-N3	2.3011 (11)	C1-S1	1.7310 (12)
Cd-S1	2.5547 (3)	C1-S2	1.7218 (12)
Cd-S2	2.6500 (3)	C7-S3	1.7328 (13)
Cd-S3	2.5620 (4)	C7-S4	1.7257 (13)
Cd-S4	2.6696 (4)		
S1-Cd-S3	125.725 (11)	S2-Cd-S4	165.865 (11)

related pyridyl-containing molecules that might otherwise be expected to be bridging. This is discussed further below in *Database survey*. In the present report, the crystal and molecular structures of two compounds, formulated as Zn[S₂CN(*i*-Pr)CH₂CH₂OH]₂(4,4'-bipyridyl)·0.5(4,4'-bipyridyl) (I) and the cadmium analogue (II), are described, *i.e.* featuring monodentate and non-coordinating 4,4'-bipyridine molecules.

2. Structural commentary

The molecular structure of the constituents of (I) are shown in Fig. 1a and selected geometric parameters are collected in Table 1. The asymmetric unit comprises an entire molecule of Zn[S2CN(i-Pr)CH2CH2OH]2(4,4'-bipyridyl) and half a molecule of 4,4'-bipyridine, the latter being disposed about a centre of inversion. The zinc atom is coordinated by two dithiocarbamate ligands that form disparate Zn-S bond lengths. This is seen in the values of $\Delta(Zn-S) = Zn-S_{long} - S_{long}$ $Zn-S_{short}$, which compute to 0.19 and 0.23 Å for the S1- and S3-dithiocarbamate ligands, respectively. The fifth position in the coordination geometry is occupied by a pyridyl-N atom. Based on the value of τ (Addison *et al.*, 1984), which equals to 0.0 and 1.0 for ideal square-pyramidal and trigonal-bipyramidal geometries, respectively, it is possible to assign a coordination geometry based on the NS_4 donor set. In (I), $\tau = 0.64$ indicating a highly distorted coordination geometry but, one approximating a trigonal bipyramid. In this description, the less tightly bound S2 and S4 atoms define the axial positions, Table 1. The coordinated 4,4'-bipyridyl molecule is non-planar with the dihedral angle between the two residues being 28.12 (14)°.

Crystals of (II) are isostructural to those of (I), Fig. 1b and Table 2. Some differences in molecular geometry are apparent, most notably in the degree of symmetry in the Cd-

Figure 1

The molecular structures of the constituents of (a) (I) and (b) (II) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. For each of (I) and (II), the 4,4'-bipyridine molecule has been expanded to show the entire molecule; unlabelled atoms are related by the symmetry operation -x, 2 - y, -z.

research communications

Table 3

Hydrogen-bond	geometry	(Å, °)) for (II).
---------------	----------	--------	-------------

Cg1 is the centroid of the Zn/S3/S4/C7 chelate ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} \hline & O1 - H1 O \cdots N4^{i} \\ O2 - H2 O \cdots O1^{ii} \\ C4 - H4 \cdots S2^{iii} \\ C22 - H22 \cdots O2^{iv} \\ C26 - H26 \cdots Cg1^{v} \\ \end{array}$	0.83 (2) 0.83 (1) 1.00 0.95 0.95	1.88 (2) 1.89 (1) 2.68 2.40 3.00	2.7085 (15) 2.7162 (14) 3.5395 (14) 3.3473 (17) 3.776 (3)	176 (1) 173 (2) 144 174 140

Symmetry codes: (i) $-x, y - 1, -z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (iii) $x + \frac{1}{2}, y + \frac{3}{2}, z$; (iv) $x, -y, z - \frac{1}{2}$; (v) x, y + 1, z.

Table 4

Hydrogen-bond geometry (Å, $^\circ)$ for (I).

Cg1 is the centroid of the Cd/S3/S4/C7 chelate ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1-H1O\cdots N4^{i}$	0.85 (2)	1.85 (2)	2.697 (3)	179 (3)
$O2-H2O\cdots O1^{ii}$	0.84(2)	1.88 (2)	2.718 (3)	176 (4)
$C4-H4\cdots S2^{iii}$	1.00	2.67	3.515 (3)	142
$C22-H22\cdots O2^{iv}$	0.95	2.36	3.300 (3)	170
$C26-H26\cdots Cg1^{v}$	0.95	3.04	3.7943 (15)	138

Symmetry codes: (i) $-x, y - 1, -z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (iii) $x + \frac{1}{2}, y + \frac{3}{2}, z$; (iv) $x, -y, z - \frac{1}{2}$; (v) x, y + 1, z.

S bond lengths, *i.e.* Δ (Cd-S) = 0.09 and 0.11 Å for the S1- and S3-dithiocarbamate ligands, respectively. This is reflected in the narrower ranges in the C-S bond lengths in (II) *cf.* (I), Tables 1 and 2. The value of τ = 0.67 suggests a coordination geometry marginally closer to trigonal bipyramidal in (II) than for (I). The dihedral angle between the two rings comprising the coordinated 4,4'-bipyridyl molecule is 28.86 (7)°.

3. Supramolecular features

The molecular packing of (I) comprises conventional hydrogen bonding as well as a number of weaker, non-covalent interactions, Table 3. The presence of hydroxy-O- $H \cdots O(hydroxy)$ hydrogen bonds leads to the formation of a centrosymmetric, 28-membered {···HOC2NCSZnSCNC2O}2 synthon. This ring contains two additional hydroxy-O-H H atoms and these form hydroxy- $O-H \cdots N(pyridyl)$ hydrogen bonds with the non-coordinating end of the monodentate 4,4'-bipyridyl molecules. This network of hydrogen bonds leads to the formation of a two-dimensional array lying parallel to (100), Fig. 2a. These layers are connected into double-layers via methine-C-H···S and π - π interactions involving the coordinated pyridyl ring [inter-centroid distance between the (N3/C13-C17) and $(N3/C13-C17)^{i}$ rings = 3.6246 (18) Å and angle of inclination = $0.46 (13)^{\circ}$ for symmetry code (i): -x, y, $\frac{1}{2} - z$]. The double-layers are connected into a three-dimensional architecture via 4,4'-bipyridyl-C-H···O(hydroxy) interactions, involving an H atom from the non-coordinating ring of the coordinated 4,4'-bipyridyl molecule. This architecture defines channels parallel to the c axis in which residue the non-coordinating 4,4'-bipyridine molecules. The closest interaction between the host and guests are of the type pyridine-C–H··· π (Zn/S3/S4/ C7), *i.e.* C–H··· π (chelate ring), a supramolecular synthon gaining prominence in the structural chemistry of metalcontaining species (Tiekink, 2017), especially for dithiocarbamates (Tiekink & Zukerman-Schpector, 2011) owing to

Molecular packing in (I): (a) view of two-dimensional supramolecular array sustained by hydroxy-O-H···O(hydroxy) and hydroxy-O-H···N(pyridyl) hydrogen bonding with all but the acidic H atoms removed and (b) a view of the unit-cell contents in projection down the c axis, with the non-coordinating 4.4'-bipyridine molecules in one channel highlighted in space-filling mode. The O-H···O, O-H···N, C-H···O, C-H···S and π - π interactions are shown as orange, blue, pink, sea-blue and purple dashed lines, respectively.

Table 5Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$[Zn(C_6H_{12}NOS_2)_2(C_{10}H_8N_2)] \cdot 0.5C_{10}H_8N_2$	$[Cd(C_6H_{12}NOS_2)_2(C_{10}H_8N_2)] \cdot 0.5C_{10}H_8N_2$
$M_{ m r}$	656.22	703.25
Crystal system, space group	Monoclinic, C2/c	Monoclinic, C2/c
Temperature (K)	100	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	22.418 (5), 11.501 (2), 25.094 (5)	22.7028 (12), 11.5950 (6), 24.8196 (13)
β (°)	105.50 (3)	103.385 (1)
$V(Å^3)$	6235 (2)	6356.0 (6)
Z	8	8
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	1.09	0.98
Crystal size (mm)	$0.30 \times 0.20 \times 0.20$	$0.04 \times 0.04 \times 0.03$
Data collection		
Diffractometer	Bruker SMART APEX CCD	Bruker SMART APEX CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 1996)	Multi-scan (SADABS; Sheldrick, 1996)
T_{\min}, T_{\max}	0.968, 0.979	0.962, 0.971
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	31204, 7738, 5204	41284, 7847, 7204
R _{int}	0.082	0.023
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.667	0.667
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.096, 1.00	0.019, 0.049, 0.99
No. of reflections	7738	7847
No. of parameters	358	358
No. of restraints	2	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.48, -0.46	0.46, -0.24

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publcIF (Westrip, 2010).

the ability of the dithiocarbamate ligand to form strong chelating interactions (see above).

The molecular packing for isostructural (II) follows that just described for (I), Table 4. However, in this case, the putative pyridyl-C $-H\cdots\pi$ (Cd/S3/S4/C7) interaction is just beyond the sum of the van der Waals radii for this type of contact (Spek, 2009).

4. Database survey

As mentioned in the Chemical context, ditopic ligands such as 4,4'-bipyridyl are normally observed providing bridges between metal centres. Thus, the structures of (I) and (II) are doubly curious as not only is the 4,4'-bipyridyl ligand coordinating in a monodentate fashion, there is a non-coordinating 4,4'-bipyridine molecule in the crystal. Recent reports confirm these interesting observations with related bipyridyl-type molecules of both the zinc(II) and, especially, cadmium(II) dithiocarbamates. Thus, just as for the 4,4'-bipyridyl structures mentioned in the Chemical context, i.e. [Zn(S₂CNEt₂)₂]₂(4,4'bipyridyl) (Zemskova et al., 1994) and $Zn[S_2CN(n-Pr)_2]_2(4,4'$ bipyridyl) (Klevtsova et al., 2001), with the anticipated bidentate, bridging and non-anticipated terminal coordination, respectively, similar chemistry occurs for the ditopic ligand with an ethylene space, *i.e. trans*-bis(4-pyridyl)ethylene (bpe) where structures of both bridging, *i.e.* [Zn(S₂CNEt₂)₂]₂(bpe) (Arman *et al.*, 2009), and terminal, *i.e.* $Zn[S_2CN(n-Pr)_2]_2(bpe)$ (Lai & Tiekink, 2003), coordination modes are known. Very recently, terminal coordination was found for 4-pyridinealdazine in the structure of $Zn[S_2CN(Me)CH_2CH_2OH_2]_2(4-pyridinealdazine)$ (Broker et al., 2017). In the realm of cadmium dithiocarbamates, the potentially bridging ligand just mentioned occurs in the structure of $Cd[S_2CN(n-Pr)CH_2CH_2OH_2]_2(4-pyridinealda$ zine)₂ with both being terminally bound (Broker & Tiekink, 2011). The ditopic ligand bpe was mentioned above. In the case of cadmium dithiocarbamates, a bidentate, bridging mode is seen in the crystal of $[Cd(S_2CNEt_2)_2(bpe)]_n$ (Chai et al., 2003). However, in another example both bridging and terminal modes, in a 1:2 ratio, are seen in the structure of $Cd[S_2CN(i-Pr)CH_2CH_2OH_2]_2(bpe)_3$ (Jotani *et al.*, 2016). The occurrence of unusual coordination modes for these bipyridyltype ligands indicate additional factors are coming into play, often a competition between hydrogen bonding and $M \leftarrow N$ donor interactions but, not always as seen in the structure of $Zn[S_2CN(n-Pr)_2]_2(4,4'-bipyridyl)$ (Klevtsova *et al.*, 2001).

5. Synthesis and crystallization

All chemicals and solvents were used as purchased without purification. The melting point was determined using an Krüss KSP1N melting point meter. The IR spectra were obtained by the attenuated total reflectance (ATR) technique on a Perkin Elmer RX1 FTIR spectrophotometer from 4000 to 400 cm⁻¹.

¹H and ¹³C NMR spectra were recorded at room temperature in DMSO- d_6 solution on a Bruker Avance 400MHz NMR spectrometer.

Synthesis of (I): 4,4'-bipyridine (1.79 mmol, 0.28 g) in ethanol (25 ml) was added dropwise to bis(*N*-2-hydroxy-ethyl,*N*-isopropyldithiocarbamato)zinc(II) (1.21 mmol, 0.51 g) in ethanol (25 ml). The resulting mixture was stirred for 0.5 h follow by filtration. After a week of slow evaporation of the filtrate, yellow blocks precipitated (yield: 0.698 g, 88%; m.p. 445.6 K). IR (cm⁻¹): 1467 (*m*) [ν (C–N)], 1175 (*m*) [ν (C–S)] cm^{-1.} ¹H NMR: δ 8.78–7.83 (*m*, 12H, aromatic H), 5.14 (*sept*, 2H, NCH, 6.63 Hz), 4.90 (*t*, 2H, OH, 5.38 Hz), 3.78–3.64 (*m*, 8H, NCH₂CH₂O), 1.18 (*d*, 12H, CH₃, 6.72 Hz). ¹³C NMR: δ 204.15 (CS₂), 150.53, 144.65, 121.58 (aromatic-C), 58.21 (CH₂O), 55.53 (NCH₂), 49.80 (NCH), 19.88 (CH₃).

Synthesis of (II): 4,4'-bipyridine (1.61 mmol, 0.25 g) in ethanol (25 ml) was added dropwise to bis(*N*-2-hydroxy-ethyl,*N*-isopropyldithiocarbamato)cadmium(II) (1.07 mmol, 0.50 g) in ethanol (25 ml). The resulting mixture was stirred for 0.5 h follow by filtration. A week of slow evaporation of the filtrate yielded yellow blocks (yield: 0.652 g, 87%; m.p. 438.7 K). IR (cm⁻¹): 1467 (*m*) [ν (C–N)], 1174 (*m*) [ν (C–S)] cm^{-1.} ¹H NMR: δ 8.79–7.80 (*m*, 12H, aromatic H), 5.22 (*sept*, 2H, NCH, 6.63 Hz), 4.84 (*t*, 2H, OH, 5.52 Hz), 3.80–3.64 (*m*, 8H, NCH₂CH₂O), 1.17 (*d*, 12H, CH₃, 6.72 Hz). ¹³C NMR: δ 205.29 (CS₂), 150.57, 144.46, 121.41 (aromatic-C), 58.26 (CH₂O), 56.62 (NCH₂), 50.47 (NCH), 19.91 (CH₃).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. For each of (I) and (II), carbonbound H atoms were placed in calculated positions (C-H = 0.95-1.00 Å) and were included in the refinement in the riding-model approximation, with $U_{iso}(H)$ set to 1.2- $1.5U_{eq}(C)$. The O-bound H atoms were located in difference-Fourier maps but were refined with a distance restraint of O-H = 0.84 ± 0.01 Å, and with $U_{iso}(H)$ set to $1.5U_{eq}(O)$. For (I), owing to poor agreement, two reflections, *i.e.* (0 0 6) and (27 3 4), were omitted from the final cycles of refinement. For (II), one reflection, *i.e.* $(\overline{27} 7 7)$, was omitted for the same reason.

Acknowledgements

Sunway University is thanked for support of biological and crystal engineering studies of metal dithiocarbamates.

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1472-m1473.
- Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). *CrystEngComm*, 9, 930–941.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Broker, G. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1458–1464.
- Broker, G. A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m320m321.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chai, J., Lai, C. S., Yan, J. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 249–250.
- Fan, J., Wei, F.-X., Zhang, W.-G., Yin, X., Lai, C.-S. & Tiekink, E. R. T. (2007). Acta Chim. Sinica, 65, 2014–2018.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Jotani, M. M., Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1700–1709.
- Klevtsova, R. F., Glinskaya, L. A., Berus, E. I. & Larionov, S. V. (2001). J. Struct. Chem. 42, 639–647.
- Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251–252.
- Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209-228.
- Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). *Chem. Commun.* **47**, 6623–6625.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zemskova, S. M., Glinskaya, L. A., Durasov, V. B., Klevtsova, R. F. & Larionov, S. V. (1994). J. Struct. Chem. 34, 794–802.

Acta Cryst. (2017). E73, 1642-1646 [https://doi.org/10.1107/S2056989017014396]

Crystal structure of (4,4'-bipyridyl- κN)bis[N-(2-hydroxyethyl)-N-isopropyldithiocarbamato- $\kappa^2 S, S'$]zinc(II)-4,4'-bipyridyl (2/1) and its isostructural cadmium(II) analogue

Yee Seng Tan and Edward R. T. Tiekink

Computing details

For both structures, data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

 $(4,4'-Bipyridyl-\kappa N)$ bis[$N-(2-hydroxyethyl)-N-isopropyldithiocarbamato-\kappa^2 S, S']$ zinc(II)-4,4'-bipyridyl (2/1) (I)

Crystal data

$$\begin{split} & [\text{Zn}(\text{C}_6\text{H}_{12}\text{NOS}_2)_2(\text{C}_{10}\text{H}_8\text{N}_2)] \cdot 0.5\text{C}_{10}\text{H}_8\text{N}_2 \\ & M_r = 656.22 \\ & \text{Monoclinic, } C2/c \\ & a = 22.418 \text{ (5) } \text{Å} \\ & b = 11.501 \text{ (2) } \text{Å} \\ & c = 25.094 \text{ (5) } \text{Å} \\ & \beta = 105.50 \text{ (3)}^\circ \\ & V = 6235 \text{ (2) } \text{Å}^3 \\ & Z = 8 \end{split}$$

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.968, T_{\max} = 0.979$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.096$ S = 1.007738 reflections 358 parameters 2 restraints F(000) = 2744 $D_x = 1.398 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3045 reflections $\theta = 2.3-25.2^{\circ}$ $\mu = 1.09 \text{ mm}^{-1}$ T = 100 KBlock, yellow $0.30 \times 0.20 \times 0.20 \text{ mm}$

31204 measured reflections 7738 independent reflections 5204 reflections with $I > 2\sigma(I)$ $R_{int} = 0.082$ $\theta_{max} = 28.3^\circ, \theta_{min} = 2.0^\circ$ $h = -27 \rightarrow 29$ $k = -15 \rightarrow 15$ $l = -33 \rightarrow 33$

Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0351P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.46 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn	0.05280 (2)	0.31725 (3)	0.16518 (2)	0.01632 (9)	
S 1	-0.04838 (3)	0.24709 (6)	0.12760 (3)	0.01626 (15)	
S2	0.00828 (3)	0.43350 (6)	0.07767 (3)	0.01723 (15)	
S3	0.14139 (3)	0.24004 (6)	0.14471 (3)	0.01887 (16)	
S4	0.09136 (3)	0.14774 (6)	0.23371 (3)	0.01927 (16)	
01	-0.20135 (9)	0.08393 (16)	0.01233 (8)	0.0200 (4)	
H10	-0.1869 (13)	0.034 (2)	0.0372 (9)	0.030*	
O2	0.25910 (9)	-0.01819 (18)	0.09286 (8)	0.0250 (5)	
H2O	0.2425 (14)	-0.036 (3)	0.0599 (6)	0.038*	
N1	-0.10592 (10)	0.35160 (18)	0.03253 (9)	0.0138 (5)	
N2	0.18772 (10)	0.05318 (19)	0.20497 (9)	0.0162 (5)	
N3	0.06894 (10)	0.45571 (18)	0.22034 (9)	0.0147 (5)	
N4	0.15344 (12)	0.9270 (2)	0.40786 (10)	0.0240 (6)	
N5	0.02413 (12)	0.7932 (2)	0.11006 (10)	0.0260 (6)	
C1	-0.05450 (12)	0.3457 (2)	0.07419 (11)	0.0140 (5)	
C2	-0.15890 (12)	0.2760 (2)	0.03229 (11)	0.0157 (6)	
H2A	-0.1974	0.3119	0.0093	0.019*	
H2B	-0.1630	0.2682	0.0704	0.019*	
C3	-0.15066 (13)	0.1563 (2)	0.00952 (11)	0.0180 (6)	
H3A	-0.1488	0.1632	-0.0293	0.022*	
H3B	-0.1114	0.1214	0.0314	0.022*	
C4	-0.11249 (13)	0.4398 (2)	-0.01199 (11)	0.0183 (6)	
H4	-0.0699	0.4635	-0.0129	0.022*	
C5	-0.14485 (14)	0.5472 (2)	0.00182 (13)	0.0280 (7)	
H5A	-0.1490	0.6049	-0.0277	0.042*	
H5B	-0.1860	0.5258	0.0052	0.042*	
H5C	-0.1204	0.5802	0.0369	0.042*	
C6	-0.14513 (14)	0.3914 (3)	-0.06898 (11)	0.0265 (7)	
H6A	-0.1484	0.4524	-0.0969	0.040*	
H6B	-0.1213	0.3259	-0.0776	0.040*	
H6C	-0.1867	0.3647	-0.0691	0.040*	
C7	0.14472 (13)	0.1375 (2)	0.19613 (11)	0.0167 (6)	
C8	0.23385 (12)	0.0495 (2)	0.17274 (11)	0.0185 (6)	
H8A	0.2719	0.0110	0.1950	0.022*	
H8B	0.2448	0.1300	0.1650	0.022*	
C9	0.21025 (13)	-0.0148 (3)	0.11867 (11)	0.0208 (6)	
H9A	0.1976	-0.0947	0.1255	0.025*	
H9B	0.1740	0.0259	0.0947	0.025*	

C10	0 19577 (13)	-0.0287(2)	0 25202 (11)	0.0216 (6)
H10	0.1560	-0.0303	0.2629	0.026*
C11	0.24603 (15)	0.0160 (3)	0.2029 0.30141 (12)	0.0342 (8)
HIIA	0.2511	-0.0384	0 3324	0.051*
H11B	0.2852	0.0227	0.2912	0.051*
HIIC	0.2341	0.0925	0.3124	0.051*
C12	0.20898 (15)	-0.1525(2)	0.3121 0.23619(13)	0.021 0.0294 (7)
H12A	0.2140	-0.2037	0.2683	0.044*
H12B	0.1744	-0.1801	0.2061	0.044*
H12C	0.2471	-0.1532	0.2241	0.044*
C13	0.06136 (13)	0.5664 (2)	0.20303(11)	0.0190 (6)
H13	0.0458	0.5809	0.1645	0.023*
C14	0.07504 (12)	0.6604 (2)	0.23849 (11)	0.0182 (6)
H14	0.0692	0.7373	0.2242	0.022*
C15	0.09742 (12)	0.6424 (2)	0.29521 (11)	0.0158 (6)
C16	0.10366 (12)	0.5272 (2)	0.31327 (11)	0.0165 (6)
H16	0.1175	0.5102	0.3517	0.020*
C17	0.08975 (12)	0.4380 (2)	0.27525 (11)	0.0169 (6)
H17	0.0951	0.3602	0.2884	0.020*
C18	0.11560 (13)	0.7408 (2)	0.33461 (11)	0.0172 (6)
C19	0.08885 (13)	0.8507 (2)	0.32338 (12)	0.0208 (6)
H19	0.0571	0.8641	0.2903	0.025*
C20	0.10898 (14)	0.9398 (2)	0.36078 (12)	0.0235 (7)
H20	0.0902	1.0141	0.3526	0.028*
C21	0.17857 (14)	0.8211 (2)	0.41830 (12)	0.0251 (7)
H21	0.2101	0.8102	0.4517	0.030*
C22	0.16164 (13)	0.7269 (2)	0.38367 (11)	0.0192 (6)
H22	0.1811	0.6536	0.3932	0.023*
C23	-0.00233 (15)	0.7643 (2)	0.05770 (13)	0.0277 (7)
H23	-0.0148	0.6858	0.0501	0.033*
C24	-0.01294 (14)	0.8414 (2)	0.01340 (12)	0.0256 (7)
H24	-0.0318	0.8151	-0.0231	0.031*
C25	0.00438 (12)	0.9574 (2)	0.02306 (11)	0.0152 (6)
C26	0.03155 (13)	0.9879 (2)	0.07766 (11)	0.0218 (6)
H26	0.0444	1.0658	0.0868	0.026*
C27	0.03987 (14)	0.9051 (3)	0.11860 (12)	0.0260 (7)
H27	0.0581	0.9292	0.1556	0.031*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	0.01770 (18)	0.01443 (16)	0.01542 (16)	-0.00168 (14)	0.00199 (13)	-0.00196 (13)
S 1	0.0195 (4)	0.0144 (3)	0.0137 (3)	-0.0037 (3)	0.0024 (3)	0.0018 (3)
S2	0.0190 (4)	0.0162 (3)	0.0149 (3)	-0.0062(3)	0.0019 (3)	0.0018 (3)
S3	0.0212 (4)	0.0169 (3)	0.0191 (4)	-0.0009(3)	0.0062 (3)	0.0018 (3)
S4	0.0232 (4)	0.0183 (3)	0.0172 (4)	0.0032 (3)	0.0071 (3)	0.0019 (3)
01	0.0201 (11)	0.0164 (10)	0.0207 (11)	-0.0046 (8)	0.0006 (9)	0.0059 (8)
02	0.0193 (11)	0.0349 (12)	0.0216 (11)	-0.0052(9)	0.0066 (9)	-0.0113 (10)

N1	0.0157 (12)	0.0126 (11)	0.0126 (11)	-0.0023 (9)	0.0031 (9)	0.0012 (8)
N2	0.0159 (12)	0.0178 (12)	0.0139 (11)	0.0007 (10)	0.0020 (9)	-0.0006 (9)
N3	0.0134 (12)	0.0159 (11)	0.0134 (11)	-0.0017 (9)	0.0010 (9)	-0.0001 (9)
N4	0.0313 (15)	0.0186 (12)	0.0204 (13)	0.0010 (11)	0.0039 (11)	-0.0049 (10)
N5	0.0279 (15)	0.0205 (13)	0.0284 (14)	0.0004 (11)	0.0055 (12)	0.0037 (11)
C1	0.0161 (14)	0.0120 (12)	0.0146 (13)	-0.0001 (11)	0.0050 (11)	-0.0028 (10)
C2	0.0113 (14)	0.0175 (13)	0.0176 (14)	-0.0014 (11)	0.0025 (11)	0.0039 (11)
C3	0.0165 (15)	0.0202 (14)	0.0163 (14)	-0.0059 (11)	0.0026 (11)	-0.0010 (11)
C4	0.0195 (15)	0.0186 (14)	0.0150 (14)	-0.0025 (12)	0.0014 (11)	0.0064 (11)
C5	0.0345 (19)	0.0170 (15)	0.0354 (18)	0.0029 (13)	0.0142 (15)	0.0076 (13)
C6	0.0271 (18)	0.0318 (17)	0.0162 (15)	-0.0034 (14)	-0.0020 (13)	0.0073 (13)
C7	0.0175 (15)	0.0154 (13)	0.0147 (14)	-0.0044 (11)	0.0003 (11)	-0.0047 (10)
C8	0.0153 (15)	0.0213 (14)	0.0189 (14)	-0.0005 (12)	0.0044 (12)	-0.0045 (11)
C9	0.0166 (15)	0.0242 (15)	0.0216 (15)	-0.0037 (12)	0.0047 (12)	-0.0049 (12)
C10	0.0215 (16)	0.0227 (15)	0.0200 (15)	0.0053 (13)	0.0046 (12)	0.0054 (12)
C11	0.039 (2)	0.0365 (19)	0.0228 (17)	0.0076 (16)	0.0007 (15)	0.0012 (14)
C12	0.0344 (19)	0.0234 (16)	0.0299 (18)	0.0057 (14)	0.0076 (15)	0.0068 (13)
C13	0.0201 (15)	0.0198 (14)	0.0143 (14)	0.0016 (12)	-0.0002 (12)	0.0007 (11)
C14	0.0198 (15)	0.0136 (13)	0.0195 (14)	0.0014 (11)	0.0022 (12)	-0.0002 (11)
C15	0.0115 (14)	0.0179 (14)	0.0181 (14)	0.0011 (11)	0.0042 (11)	-0.0021 (11)
C16	0.0193 (15)	0.0183 (14)	0.0115 (13)	-0.0017 (12)	0.0035 (11)	-0.0010 (11)
C17	0.0191 (15)	0.0138 (13)	0.0179 (14)	-0.0003 (11)	0.0050 (12)	0.0010 (11)
C18	0.0200 (16)	0.0154 (13)	0.0172 (14)	-0.0008 (11)	0.0067 (12)	-0.0008 (11)
C19	0.0212 (16)	0.0180 (14)	0.0206 (15)	0.0032 (12)	0.0012 (12)	-0.0015 (11)
C20	0.0289 (17)	0.0160 (14)	0.0250 (16)	0.0019 (13)	0.0065 (13)	-0.0040 (12)
C21	0.0324 (18)	0.0223 (15)	0.0161 (14)	0.0017 (14)	-0.0013 (13)	-0.0025 (12)
C22	0.0239 (16)	0.0163 (14)	0.0166 (14)	0.0008 (12)	0.0042 (12)	-0.0023 (11)
C23	0.0342 (19)	0.0154 (14)	0.0330 (18)	-0.0033 (13)	0.0077 (15)	-0.0007 (13)
C24	0.0342 (19)	0.0179 (15)	0.0233 (16)	-0.0031 (13)	0.0051 (14)	-0.0013 (12)
C25	0.0120 (14)	0.0135 (13)	0.0203 (14)	0.0026 (11)	0.0049 (11)	0.0014 (11)
C26	0.0270 (17)	0.0109 (13)	0.0255 (16)	-0.0030 (12)	0.0035 (13)	-0.0013 (11)
C27	0.0295 (18)	0.0244 (16)	0.0208 (16)	-0.0003 (14)	0.0009 (13)	-0.0022 (13)

Geometric parameters (Å, °)

Zn—N3	2.077 (2)	C8—H8A	0.9900
Zn—S1	2.3540 (10)	C8—H8B	0.9900
Zn—S2	2.5366 (9)	С9—Н9А	0.9900
Zn—S3	2.3541 (9)	С9—Н9В	0.9900
Zn—S4	2.5904 (9)	C10—C11	1.525 (4)
C1—S1	1.733 (3)	C10—C12	1.529 (4)
C1—S2	1.715 (3)	C10—H10	1.0000
C7—S3	1.735 (3)	C11—H11A	0.9800
C7—S4	1.714 (3)	C11—H11B	0.9800
O1—C3	1.426 (3)	C11—H11C	0.9800
01—H10	0.843 (10)	C12—H12A	0.9800
O2—C9	1.414 (3)	C12—H12B	0.9800
O2—H2O	0.837 (10)	C12—H12C	0.9800

N1—C1	1.335 (3)	C13—C14	1.381 (4)
N1—C2	1.471 (3)	C13—H13	0.9500
N1—C4	1.486 (3)	C14—C15	1.392 (4)
N2—C7	1.343 (3)	C14—H14	0.9500
N2—C8	1.474 (3)	C15—C16	1.396 (4)
N2—C10	1.483 (3)	C15—C18	1.486 (4)
N3—C13	1.341 (3)	C16—C17	1.378 (4)
N3—C17	1.347 (3)	C16—H16	0.9500
N4—C20	1.335 (4)	C17—H17	0.9500
N4—C21	1.338 (3)	C18—C22	1.388 (4)
N5-C23	1.331 (4)	C18—C19	1.395 (4)
N5-C27	1.337 (4)	C19—C20	1.381 (4)
$C_2 - C_3$	1 520 (4)	C19—H19	0.9500
C2—H2A	0.9900	C20—H20	0.9500
C2H2B	0.9900	C_{21} C_{22} C_{22}	1.377(4)
C3—H3A	0.9900	C21—H21	0.9500
C3 H3B	0.9900	C^{22} H^{22}	0.9500
C4 C5	1 510 (4)	C_{22} C_{23} C_{24}	1.301(4)
C_{4}	1.519(4) 1.527(4)	C23—C24 C23—H23	0.0500
C4 = C0	1.527 (4)	C23—H25	0.9300
	1.0000	$C_{24} = C_{23}$	1.393 (4)
C5_USD	0.9800	C24—H24	1.288 (4)
C5—H5B	0.9800	$C_{25} = C_{26}$	1.388 (4)
C5—H5C	0.9800	$C_{25} - C_{25}$	1.489 (5)
С6—Н6А	0.9800	C26—C27	1.377 (4)
С6—Н6В	0.9800	С26—Н26	0.9500
С6—Н6С	0.9800	C27—H27	0.9500
C8—C9	1.512 (4)		
N3—Zn—S1	120.49 (7)	O2—C9—C8	107.2 (2)
N3—Zn—S3	115.32 (7)	O2—C9—H9A	110.3
S1—Zn—S3	124.19 (3)	С8—С9—Н9А	110.3
N3— Zn — $S2$	97.53 (6)	O2—C9—H9B	110.3
S1 - Zn - S2	73.73 (3)	С8—С9—Н9В	110.3
S3—Zn—S2	99.76 (3)	H9A—C9—H9B	108.5
N3—Zn—S4	99.60 (6)	N2-C10-C11	109.8 (2)
S1—Zn—S4	97.06 (3)	N2-C10-C12	112.1 (2)
S3—Zn—S4	73.12 (3)	$C_{11} - C_{10} - C_{12}$	111.9(2)
S2-Zn-S4	162.87 (3)	N2-C10-H10	107.6
C1 = S1 = Zn	87 38 (9)	C_{11} $-C_{10}$ $-H_{10}$	107.6
C1 = S2 = Zn	82.03 (9)	C12—C10—H10	107.6
C7 = S3 = 7n	88 01 (10)	C10-C11-H11A	109.5
C7-S4-Zn	81.07 (10)	C10-C11-H11B	109.5
C3-01-H10	106 (2)	$H_{11}A = C_{11} = H_{11}B$	109.5
C9	105(2) 105(2)	C10-C11-H11C	109.5
C1-N1-C2	1200(2)	$H_{11}A - C_{11} - H_{11}C$	109.5
C1 - N1 - C4	120.0(2) 1210(2)	H11B-C11-H11C	109.5
$C_2 N_1 C_4$	121.0(2) 118.8(2)	$C10-C12-H12\Delta$	109.5
$C_{7} N_{2} C_{8}$	120.5(2)	C10 - C12 - H12R	109.5
011200	120.2 (2)	$010 \ 012 - 1112D$	107.5

C7—N2—C10	121.3 (2)	H12A—C12—H12B	109.5
C8—N2—C10	117.7 (2)	C10—C12—H12C	109.5
C13—N3—C17	117.0 (2)	H12A—C12—H12C	109.5
C13—N3—Zn	121.84 (18)	H12B—C12—H12C	109.5
C17—N3—Zn	121.11 (17)	N3—C13—C14	123.2 (2)
C20—N4—C21	116.7 (2)	N3—C13—H13	118.4
C23—N5—C27	115.3 (3)	C14—C13—H13	118.4
N1—C1—S2	122.3 (2)	C13—C14—C15	120.0 (2)
N1—C1—S1	120.8 (2)	C13—C14—H14	120.0
S2—C1—S1	116.84 (15)	C15—C14—H14	120.0
N1—C2—C3	111.0 (2)	C14—C15—C16	116.8 (2)
N1—C2—H2A	109.4	C14—C15—C18	121.8 (2)
C3—C2—H2A	109.4	C16—C15—C18	121.4 (2)
N1—C2—H2B	109.4	C17—C16—C15	119.8 (2)
С3—С2—Н2В	109.4	C17—C16—H16	120.1
H2A—C2—H2B	108.0	C15—C16—H16	120.1
O1—C3—C2	109.4 (2)	N3—C17—C16	123.2 (2)
O1—C3—H3A	109.8	N3—C17—H17	118.4
С2—С3—НЗА	109.8	C16—C17—H17	118.4
O1—C3—H3B	109.8	C22—C18—C19	117.4 (2)
С2—С3—Н3В	109.8	C22—C18—C15	120.6 (2)
НЗА—СЗ—НЗВ	108.2	C19—C18—C15	121.9 (2)
N1-C4-C5	109.9 (2)	C20—C19—C18	119.4 (3)
N1—C4—C6	112.4 (2)	C20—C19—H19	120.3
C5—C4—C6	111.8 (2)	C18—C19—H19	120.3
N1—C4—H4	107.5	N4—C20—C19	123.4 (3)
C5—C4—H4	107.5	N4—C20—H20	118.3
C6—C4—H4	107.5	C19—C20—H20	118.3
C4—C5—H5A	109.5	N4—C21—C22	124.2 (3)
C4—C5—H5B	109.5	N4—C21—H21	117.9
H5A—C5—H5B	109.5	C22—C21—H21	117.9
C4—C5—H5C	109.5	C21—C22—C18	118.9 (3)
H5A—C5—H5C	109.5	C21—C22—H22	120.6
H5B—C5—H5C	109.5	C18—C22—H22	120.6
С4—С6—Н6А	109.5	N5—C23—C24	124.5 (3)
С4—С6—Н6В	109.5	N5—C23—H23	117.8
H6A—C6—H6B	109.5	C24—C23—H23	117.8
С4—С6—Н6С	109.5	C23—C24—C25	119.4 (3)
H6A—C6—H6C	109.5	C23—C24—H24	120.3
H6B—C6—H6C	109.5	C25—C24—H24	120.3
N2—C7—S4	122.3 (2)	C26—C25—C24	116.3 (2)
N2—C7—S3	120.0 (2)	C26—C25—C25 ⁱ	122.2 (3)
S4—C7—S3	117.69 (16)	C24—C25—C25 ⁱ	121.5 (3)
N2—C8—C9	112.2 (2)	C27—C26—C25	119.9 (3)
N2—C8—H8A	109.2	C27—C26—H26	120.1
С9—С8—Н8А	109.2	C25—C26—H26	120.1
N2—C8—H8B	109.2	N5—C27—C26	124.7 (3)
С9—С8—Н8В	109.2	N5—C27—H27	117.7

Н8А—С8—Н8В	107.9	С26—С27—Н27	117.7
C2—N1—C1—S2	-178.61 (19)	C17—N3—C13—C14	1.4 (4)
C4—N1—C1—S2	-3.1 (3)	Zn—N3—C13—C14	-176.2 (2)
C2—N1—C1—S1	1.6 (3)	N3—C13—C14—C15	-0.5 (4)
C4—N1—C1—S1	177.10 (19)	C13—C14—C15—C16	-1.3 (4)
Zn—S2—C1—N1	-178.6 (2)	C13—C14—C15—C18	177.0 (3)
Zn—S2—C1—S1	1.23 (13)	C14—C15—C16—C17	2.1 (4)
Zn—S1—C1—N1	178.5 (2)	C18—C15—C16—C17	-176.2 (3)
Zn—S1—C1—S2	-1.31 (14)	C13—N3—C17—C16	-0.5 (4)
C1—N1—C2—C3	-83.1 (3)	Zn—N3—C17—C16	177.1 (2)
C4—N1—C2—C3	101.3 (3)	C15-C16-C17-N3	-1.2 (4)
N1-C2-C3-O1	177.3 (2)	C14—C15—C18—C22	-150.2 (3)
C1—N1—C4—C5	-93.7 (3)	C16—C15—C18—C22	28.0 (4)
C2—N1—C4—C5	81.8 (3)	C14—C15—C18—C19	27.9 (4)
C1—N1—C4—C6	141.0 (3)	C16—C15—C18—C19	-153.9 (3)
C2—N1—C4—C6	-43.5 (3)	C22—C18—C19—C20	0.2 (4)
C8—N2—C7—S4	-178.27 (18)	C15-C18-C19-C20	-178.0 (3)
C10—N2—C7—S4	-6.7 (3)	C21—N4—C20—C19	-0.4 (4)
C8—N2—C7—S3	2.4 (3)	C18—C19—C20—N4	0.2 (5)
C10—N2—C7—S3	173.96 (19)	C20—N4—C21—C22	0.4 (5)
Zn—S4—C7—N2	-176.4 (2)	N4-C21-C22-C18	-0.1 (5)
Zn—S4—C7—S3	2.93 (13)	C19—C18—C22—C21	-0.2 (4)
Zn—S3—C7—N2	176.2 (2)	C15-C18-C22-C21	177.9 (3)
Zn—S3—C7—S4	-3.19 (14)	C27—N5—C23—C24	1.1 (5)
C7—N2—C8—C9	-86.4 (3)	N5-C23-C24-C25	-0.4 (5)
C10—N2—C8—C9	101.7 (3)	C23—C24—C25—C26	-0.1 (4)
N2-C8-C9-O2	-176.9 (2)	C23—C24—C25—C25 ⁱ	178.3 (3)
C7—N2—C10—C11	-94.0 (3)	C24—C25—C26—C27	-0.1 (4)
C8—N2—C10—C11	77.8 (3)	$C25^{i}$ — $C25$ — $C26$ — $C27$	-178.5 (3)
C7—N2—C10—C12	140.9 (3)	C23—N5—C27—C26	-1.3 (5)
C8—N2—C10—C12	-47.3 (3)	C25—C26—C27—N5	0.8 (5)

Symmetry code: (i) -x, -y+2, -z.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the Cd/S3/S4/C7 chelate ring.

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H…A	D····A	D—H…A
O1—H1O····N4 ⁱⁱ	0.85 (2)	1.85 (2)	2.697 (3)	179 (3)
O2—H2 <i>O</i> …O1 ⁱⁱⁱ	0.84 (2)	1.88 (2)	2.718 (3)	176 (4)
C4—H4 \cdots S2 ^{iv}	1.00	2.67	3.515 (3)	142
C22—H22···O2 ^v	0.95	2.36	3.300 (3)	170
C26—H26…Cg1 ^{vi}	0.95	3.04	3.7943 (15)	138

Symmetry codes: (ii) -*x*, *y*-1, -*z*+1/2; (iii) *x*+1/2, *y*+1/2, *z*; (iv) *x*+1/2, *y*+3/2, *z*; (v) *x*, -*y*, *z*-1/2; (vi) *x*, *y*+1, *z*.

 $(4,4'-Bipyridyl-\kappa N)bis(N-2-hydroxyethyl-N-isopropyldithiocarbamato-\kappa^2 S,S')cadmium(II)-4,4'-bipyridyl (2/1) (II)$

F(000) = 2888

 $\theta = 2.2 - 28.3^{\circ}$

 $\mu = 0.98 \text{ mm}^{-1}$

Block, yellow

 $0.04 \times 0.04 \times 0.03 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.470 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 24754 reflections

Crystal data

 $[Cd(C_{6}H_{12}NOS_{2})_{2}(C_{10}H_{8}N_{2})] \cdot 0.5C_{10}H_{8}N_{2}$ $M_{r} = 703.25$ Monoclinic, C2/c a = 22.7028 (12) Å b = 11.5950 (6) Å c = 24.8196 (13) Å $\beta = 103.385 (1)^{\circ}$ $V = 6356.0 (6) Å^{3}$ Z = 8

Data collection

Bruker SMART APEX CCD diffractometer	41284 measured reflections 7847 independent reflections
Radiation source: fine-focus sealed tube	7204 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.023$
ω scans	$\theta_{\rm max} = 28.3^\circ, \theta_{\rm min} = 1.7^\circ$
Absorption correction: multi-scan	$h = -30 \rightarrow 30$
(SADABS; Sheldrick, 1996)	$k = -15 \rightarrow 15$
$T_{\min} = 0.962, \ T_{\max} = 0.971$	$l = -33 \rightarrow 33$
Refinement	

Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.019$	Hydrogen site location: mixed
$wR(F^2) = 0.049$	H atoms treated by a mixture of independent
S = 0.99	and constrained refinement
7847 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0249P)^2 + 6.291P]$
358 parameters	where $P = (F_o^2 + 2F_c^2)/3$
2 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.46 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cd	0.04996 (2)	0.31263 (2)	0.16486 (2)	0.01723 (3)
S1	-0.05744 (2)	0.24286 (3)	0.12217 (2)	0.01723 (6)
S2	0.00085 (2)	0.43727 (3)	0.07636 (2)	0.01907 (7)
S3	0.14726 (2)	0.23031 (3)	0.14448 (2)	0.02008 (7)
S4	0.09406 (2)	0.14429 (3)	0.23619 (2)	0.02109 (7)
01	-0.20171 (4)	0.08734 (8)	0.00837 (4)	0.02070 (19)
H1O	-0.1878 (8)	0.0408 (13)	0.0337 (6)	0.031*
O2	0.26295 (4)	-0.02139 (9)	0.09436 (4)	0.0253 (2)
H2O	0.2468 (8)	-0.0409 (17)	0.0620 (5)	0.038*

N1	-0.10858(5)	0.35363 (9)	0.02905 (4)	0.0151 (2)
N2	0.19087 (5)	0.05102 (10)	0.20849 (4)	0.0180 (2)
N3	0.06811 (5)	0.46557 (9)	0.22553 (4)	0.0166 (2)
N4	0.15540 (6)	0.92852 (10)	0.41323 (5)	0.0257 (2)
N5	0.02716 (6)	0.79642 (11)	0.11132 (6)	0.0294 (3)
C1	-0.05999(5)	0.34592 (10)	0.07123 (5)	0.0146 (2)
C2	-0.16139(5)	0.27871 (11)	0.02738 (5)	0.0169 (2)
H2A	-0.1980	0.3156	0.0045	0.020*
H2B	-0.1676	0.2693	0.0653	0.020*
C3	-0.15277(6)	0.16054 (11)	0.0033	0.020
НЗА	-0.1516	0.1683	-0.0360	0.023*
	-0.1130	0.1065	0.0300	0.023
115D C4	-0.11295 (6)	0.1200 0.44210(11)	-0.01475(5)	0.023
C4	-0.11285 (0)	0.44310 (11)	-0.01473(3)	0.0187(2)
П4 С5	-0.0700	0.40/4	-0.0149	0.022°
	-0.145/4 (/)	0.54870 (13)	-0.00028 (7)	0.0298 (3)
H5A	-0.1484	0.60/2	-0.0293	0.045*
H5B	-0.1866	0.5269	0.0025	0.045*
H5C	-0.1234	0.5803	0.0352	0.045*
C6	-0.14156 (7)	0.39715 (14)	-0.07228 (6)	0.0269 (3)
H6A	-0.1434	0.4589	-0.0996	0.040*
H6B	-0.1172	0.3332	-0.0811	0.040*
H6C	-0.1826	0.3698	-0.0732	0.040*
C7	0.14824 (6)	0.13339 (11)	0.19783 (5)	0.0176 (2)
C8	0.23758 (6)	0.04441 (12)	0.17638 (5)	0.0198 (3)
H8A	0.2740	0.0063	0.1990	0.024*
H8B	0.2491	0.1234	0.1677	0.024*
C9	0.21556 (6)	-0.02239 (12)	0.12279 (6)	0.0216 (3)
H9A	0.2055	-0.1027	0.1309	0.026*
H9B	0.1788	0.0143	0.0999	0.026*
C10	0.19723 (6)	-0.02799 (12)	0.25659 (6)	0.0235 (3)
H10	0.1579	-0.0276	0.2682	0.028*
C11	0.24587 (8)	0.01794 (16)	0.30508 (6)	0.0369 (4)
H11A	0.2500	-0.0343	0.3368	0.055*
H11B	0.2846	0.0229	0.2941	0.055*
H11C	0.2342	0.0948	0.3154	0.055*
C12	0.20978(7)	-0.15172(13)	0.24188 (7)	0.0302(3)
H12A	0.2136	-0.2008	0.2747	0.045*
H12B	0.1763	-0.1796	0.2124	0.045*
H12C	0.2475	-0.1544	0.2291	0.045*
C13	0.06012 (6)	0.57559 (11)	0.2291 0.20834 (5)	0.0184(2)
H13	0.0437	0.5903	0.1702	0.022*
C14	0.0437	0.5905	0.1702 0.24304 (5)	0.022
U14 U14	0.07479(0)	0.0000+(11)	0.27597(5)	0.0102(2) 0.022*
C15	0.0000	0.7440	0.2301	0.022°
C15	0.09040(3)	0.04000(11)	0.30035(3)	0.0133(2)
	0.10320 (0)	0.55450 (11)	0.31609 (3)	0.0108 (2)
П10 С17	0.1201	0.31/3	0.3302	0.020^{*}
	0.09027 (6)	0.44634 (11)	0.27985 (5)	0.01/2 (2)
H17	0.0959	0.3689	0.2925	0.021*

C18	0.11718 (6)	0.74550 (11)	0.33969 (5)	0.0167 (2)
C19	0.08995 (6)	0.85379 (12)	0.33087 (6)	0.0226 (3)
H19	0.0577	0.8671	0.2995	0.027*
C20	0.11034 (7)	0.94170 (12)	0.36829 (6)	0.0263 (3)
H20	0.0914	1.0150	0.3617	0.032*
C21	0.18115 (7)	0.82418 (12)	0.42167 (6)	0.0241 (3)
H21	0.2131	0.8134	0.4535	0.029*
C22	0.16396 (6)	0.73140 (11)	0.38674 (5)	0.0196 (2)
H22	0.1837	0.6590	0.3946	0.024*
C23	-0.00188 (8)	0.76757 (13)	0.05982 (7)	0.0323 (3)
H23	-0.0154	0.6902	0.0533	0.039*
C24	-0.01356 (7)	0.84325 (12)	0.01538 (6)	0.0288 (3)
H24	-0.0343	0.8172	-0.0203	0.035*
C25	0.00530 (6)	0.95788 (11)	0.02321 (5)	0.0188 (2)
C26	0.03523 (7)	0.98828 (12)	0.07680 (6)	0.0258 (3)
H26	0.0490	1.0651	0.0848	0.031*
C27	0.04485 (7)	0.90635 (13)	0.11837 (7)	0.0299 (3)
H27	0.0655	0.9299	0.1545	0.036*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	<i>U</i> ¹³	U^{23}
Cd	0.01892 (5)	0.01605 (5)	0.01519 (5)	-0.00140 (3)	0.00083 (3)	-0.00184 (3)
S 1	0.02100 (15)	0.01453 (14)	0.01510 (14)	-0.00512 (11)	0.00201 (11)	0.00145 (11)
S2	0.02016 (15)	0.01946 (15)	0.01593 (14)	-0.00819 (12)	0.00078 (11)	0.00279 (11)
S3	0.02200 (15)	0.02007 (15)	0.01891 (15)	-0.00138 (12)	0.00624 (12)	0.00193 (12)
S4	0.02419 (16)	0.02194 (16)	0.01883 (15)	0.00403 (12)	0.00847 (12)	0.00277 (12)
01	0.0189 (4)	0.0182 (4)	0.0216 (5)	-0.0049 (4)	-0.0023 (4)	0.0050 (4)
O2	0.0196 (5)	0.0355 (6)	0.0214 (5)	-0.0060(4)	0.0062 (4)	-0.0109 (4)
N1	0.0155 (5)	0.0150 (5)	0.0151 (5)	-0.0024 (4)	0.0041 (4)	0.0010 (4)
N2	0.0174 (5)	0.0204 (5)	0.0158 (5)	-0.0001 (4)	0.0028 (4)	-0.0006 (4)
N3	0.0167 (5)	0.0170 (5)	0.0150 (5)	-0.0016 (4)	0.0016 (4)	-0.0009 (4)
N4	0.0340 (7)	0.0196 (6)	0.0230 (6)	-0.0005 (5)	0.0057 (5)	-0.0054 (5)
N5	0.0313 (7)	0.0235 (6)	0.0328 (7)	0.0015 (5)	0.0061 (5)	0.0050 (5)
C1	0.0170 (6)	0.0129 (5)	0.0146 (5)	-0.0020 (4)	0.0052 (4)	-0.0016 (4)
C2	0.0135 (5)	0.0172 (6)	0.0198 (6)	-0.0028 (4)	0.0036 (5)	0.0001 (5)
C3	0.0172 (6)	0.0188 (6)	0.0192 (6)	-0.0040 (5)	0.0015 (5)	-0.0023 (5)
C4	0.0186 (6)	0.0207 (6)	0.0167 (6)	-0.0018 (5)	0.0036 (5)	0.0054 (5)
C5	0.0379 (8)	0.0205 (7)	0.0345 (8)	0.0032 (6)	0.0156 (7)	0.0084 (6)
C6	0.0281 (7)	0.0324 (8)	0.0175 (6)	-0.0029 (6)	-0.0002 (5)	0.0056 (6)
C7	0.0188 (6)	0.0182 (6)	0.0146 (5)	-0.0037 (5)	0.0014 (4)	-0.0033 (5)
C8	0.0168 (6)	0.0228 (6)	0.0197 (6)	-0.0019 (5)	0.0038 (5)	-0.0047 (5)
C9	0.0192 (6)	0.0248 (7)	0.0211 (6)	-0.0047(5)	0.0055 (5)	-0.0067 (5)
C10	0.0236 (7)	0.0269 (7)	0.0191 (6)	0.0044 (5)	0.0031 (5)	0.0046 (5)
C11	0.0408 (9)	0.0442 (10)	0.0199 (7)	0.0038 (8)	-0.0047 (6)	0.0004 (7)
C12	0.0320 (8)	0.0254 (7)	0.0336 (8)	0.0054 (6)	0.0087 (6)	0.0083 (6)
C13	0.0188 (6)	0.0203 (6)	0.0149 (6)	0.0009 (5)	0.0013 (5)	0.0010 (5)
C14	0.0192 (6)	0.0159 (6)	0.0182 (6)	0.0024 (5)	0.0018 (5)	0.0019 (5)

C15	0.0131 (5)	0.0164 (6)	0.0160 (6)	0.0000 (4)	0.0028 (4)	-0.0020 (4)
C16	0.0175 (6)	0.0187 (6)	0.0136 (5)	-0.0006 (5)	0.0026 (4)	0.0011 (4)
C17	0.0184 (6)	0.0158 (6)	0.0166 (6)	-0.0018 (5)	0.0025 (5)	0.0015 (5)
C18	0.0187 (6)	0.0158 (6)	0.0164 (6)	-0.0008 (5)	0.0055 (5)	-0.0009 (5)
C19	0.0254 (7)	0.0199 (6)	0.0213 (6)	0.0050 (5)	0.0032 (5)	-0.0009 (5)
C20	0.0337 (8)	0.0170 (6)	0.0273 (7)	0.0053 (6)	0.0055 (6)	-0.0029 (5)
C21	0.0283 (7)	0.0224 (7)	0.0188 (6)	-0.0006 (5)	-0.0005 (5)	-0.0034 (5)
C22	0.0228 (6)	0.0166 (6)	0.0188 (6)	0.0019 (5)	0.0036 (5)	-0.0012 (5)
C23	0.0436 (9)	0.0152 (6)	0.0365 (8)	-0.0051 (6)	0.0062 (7)	0.0002 (6)
C24	0.0392 (8)	0.0171 (6)	0.0284 (7)	-0.0059 (6)	0.0045 (6)	-0.0032 (6)
C25	0.0169 (6)	0.0146 (6)	0.0256 (7)	0.0011 (5)	0.0067 (5)	-0.0018 (5)
C26	0.0272 (7)	0.0182 (6)	0.0291 (7)	-0.0026 (5)	0.0010 (6)	-0.0026 (5)
C27	0.0328 (8)	0.0253 (7)	0.0284 (7)	-0.0006 (6)	0.0003 (6)	0.0005 (6)

Geometric parameters (Å, °)

Cd—N3	2.3011 (11)	C8—H8A	0.9900
Cd—S1	2.5547 (3)	C8—H8B	0.9900
Cd—S2	2.6500 (3)	С9—Н9А	0.9900
Cd—S3	2.5620 (4)	С9—Н9В	0.9900
Cd—S4	2.6696 (4)	C10—C12	1.523 (2)
C1—S1	1.7310 (12)	C10—C11	1.528 (2)
C1—S2	1.7218 (12)	C10—H10	1.0000
C7—S3	1.7328 (13)	C11—H11A	0.9800
C7—S4	1.7257 (13)	C11—H11B	0.9800
O1—C3	1.4259 (15)	C11—H11C	0.9800
O1—H1O	0.833 (9)	C12—H12A	0.9800
O2—C9	1.4168 (16)	C12—H12B	0.9800
O2—H2O	0.832 (9)	C12—H12C	0.9800
N1—C1	1.3364 (16)	C13—C14	1.3801 (18)
N1—C2	1.4733 (15)	C13—H13	0.9500
N1—C4	1.4895 (16)	C14—C15	1.3960 (17)
N2—C7	1.3416 (17)	C14—H14	0.9500
N2—C8	1.4688 (16)	C15—C16	1.3940 (17)
N2	1.4851 (17)	C15—C18	1.4832 (17)
N3—C13	1.3441 (16)	C16—C17	1.3827 (17)
N3—C17	1.3441 (16)	C16—H16	0.9500
N4—C20	1.3363 (19)	C17—H17	0.9500
N4—C21	1.3389 (18)	C18—C19	1.3942 (18)
N5—C27	1.3356 (19)	C18—C22	1.3944 (18)
N5—C23	1.338 (2)	C19—C20	1.3846 (19)
C2—C3	1.5242 (18)	C19—H19	0.9500
C2—H2A	0.9900	C20—H20	0.9500
C2—H2B	0.9900	C21—C22	1.3801 (18)
С3—НЗА	0.9900	C21—H21	0.9500
С3—Н3В	0.9900	С22—Н22	0.9500
C4—C5	1.520 (2)	C23—C24	1.386 (2)
C4—C6	1.5220 (19)	С23—Н23	0.9500

C4—H4	1.0000	C24—C25	1.3960 (18)
С5—Н5А	0.9800	C24—H24	0.9500
C5—H5B	0.9800	C25—C26	1.3917 (19)
С5—Н5С	0.9800	C25—C25 ⁱ	1.487 (3)
C6—H6A	0.9800	$C_{26}^{}C_{27}^{}$	1382(2)
Сб НбР	0.0800	C26 H26	0.0500
	0.9800	C27_U27	0.9500
	0.9800	С2/—П2/	0.9300
(8	1.5202 (18)		
N3—Cd—S1	121.64 (3)	O2—C9—C8	107.32 (10)
N3—Cd—S3	112.61 (3)	О2—С9—Н9А	110.3
S1—Cd—S3	125.725 (11)	С8—С9—Н9А	110.3
N3—Cd—S2	95.71 (3)	O2—C9—H9B	110.3
S1—Cd—S2	69.571 (10)	С8—С9—Н9В	110.3
S3—Cd—S2	104.839 (11)	H9A—C9—H9B	108.5
N3—Cd—S4	98.43 (3)	N2-C10-C12	112.15 (11)
S1—Cd—S4	102.645 (11)	N2—C10—C11	109.64 (12)
\$3-Cd-\$4	69 533 (10)	C12-C10-C11	112.07(13)
\$2	165 865 (11)	N2 - C10 - H10	107.6
$C_1 = C_1 = C_1$	87.22 (4)	C_{12} C_{10} H_{10}	107.6
C1 = S2 = Cd	87.22 (4)	C_{12} C_{10} H_{10}	107.0
C1 = S2 = C1	84.39 (4) 87.12 (4)		107.0
	87.13 (4)	CIO-CII-HIIA	109.5
C/—S4—Cd	83.88 (5)	CI0—CII—HIIB	109.5
C3—O1—H1O	106.5 (13)	H11A—C11—H11B	109.5
С9—О2—Н2О	105.2 (13)	C10—C11—H11C	109.5
C1—N1—C2	120.10 (10)	H11A—C11—H11C	109.5
C1—N1—C4	121.37 (10)	H11B—C11—H11C	109.5
C2—N1—C4	118.36 (10)	C10-C12-H12A	109.5
C7—N2—C8	120.56 (11)	C10-C12-H12B	109.5
C7—N2—C10	121.95 (11)	H12A—C12—H12B	109.5
C8—N2—C10	117.13 (11)	C10—C12—H12C	109.5
C13—N3—C17	117.88 (11)	H12A—C12—H12C	109.5
C13 = N3 = Cd	122 21 (8)	H12B $C12$ $H12C$	109.5
C17 N3 Cd	119.83 (8)	N3_C13_C14	109.5 122.62(12)
$C_{1} = N_{1} = C_{1}$	117.03(0)	N3 C12 H12	122.02 (12)
$C_{20} = N_{4} = C_{21}$	117.14(12)	$N_{3} = C_{13} = H_{13}$	110.7
$C_2/-N_3-C_{23}$	115.51 (13)		118.7
NI-CI-S2	121.29 (9)		119.85 (12)
NI-CI-SI	120.01 (9)	C13—C14—H14	120.1
S2—C1—S1	118.69 (7)	C15—C14—H14	120.1
N1—C2—C3	111.34 (10)	C16—C15—C14	117.23 (11)
N1—C2—H2A	109.4	C16—C15—C18	121.11 (11)
C3—C2—H2A	109.4	C14—C15—C18	121.64 (11)
N1—C2—H2B	109.4	C17—C16—C15	119.62 (11)
C3—C2—H2B	109.4	C17—C16—H16	120.2
H2A—C2—H2B	108.0	C15—C16—H16	120.2
O1—C3—C2	109.17 (10)	N3—C17—C16	122.77 (12)
O1—C3—H3A	109.8	N3—C17—H17	118.6
C2—C3—H3A	109.8	C16—C17—H17	118.6

O1—C3—H3B	109.8	C19—C18—C22	117.47 (12)
С2—С3—Н3В	109.8	C19—C18—C15	121.90 (12)
НЗА—СЗ—НЗВ	108.3	C22—C18—C15	120.62 (11)
N1—C4—C5	109.96 (11)	C20—C19—C18	119.37 (13)
N1—C4—C6	112.47 (11)	C20—C19—H19	120.3
C5—C4—C6	112.12 (12)	C18—C19—H19	120.3
N1—C4—H4	107.3	N4—C20—C19	123.24 (13)
C5-C4-H4	107.3	N4—C20—H20	118.4
C6-C4-H4	107.3	C19 - C20 - H20	118.4
C4-C5-H5A	109.5	N4-C21-C22	123 81 (13)
C4 $C5$ $H5B$	109.5	N4 C21 H21	118.1
$H_{5A} = C_{5} = H_{5B}$	109.5	$C_{22} = C_{21} = H_{21}$	118.1
C_{A} C_{5} $H_{5}C$	109.5	$C_{22} = C_{21} = \Pi_{21}$	110.1
L_{4} L_{5} L_{5} L_{5}	109.5	$C_{21} = C_{22} = C_{18}$	110.90 (12)
HSD C5 HSC	109.5	$C_{21} = C_{22} = H_{22}$	120.5
H3B-C3-H3C	109.5	C18—C22—H22	120.5
C4 - C6 - H6A	109.5	N5-C22-C24	124.20 (14)
С4—С6—Н6В	109.5	N5—C23—H23	117.9
H6A—C6—H6B	109.5	C24—C23—H23	117.9
С4—С6—Н6С	109.5	C23—C24—C25	119.73 (14)
H6A—C6—H6C	109.5	C23—C24—H24	120.1
H6B—C6—H6C	109.5	C25—C24—H24	120.1
N2—C7—S4	121.13 (10)	C26—C25—C24	116.13 (13)
N2—C7—S3	119.58 (10)	$C26-C25-C25^{i}$	121.98 (15)
S4—C7—S3	119.30 (8)	C24—C25—C25 ⁱ	121.88 (15)
N2—C8—C9	111.65 (10)	C27—C26—C25	119.81 (13)
N2—C8—H8A	109.3	C27—C26—H26	120.1
С9—С8—Н8А	109.3	C25—C26—H26	120.1
N2—C8—H8B	109.3	N5-C27-C26	124.56 (14)
С9—С8—Н8В	109.3	N5—C27—H27	117.7
H8A—C8—H8B	108.0	С26—С27—Н27	117.7
C2—N1—C1—S2	-176.55 (9)	C17—N3—C13—C14	1.25 (19)
C4—N1—C1—S2	-1.29 (16)	Cd—N3—C13—C14	-175.45 (10)
C2—N1—C1—S1	3.28 (16)	N3—C13—C14—C15	-0.6 (2)
C4—N1—C1—S1	178.54 (9)	C13—C14—C15—C16	-1.00 (19)
Cd—S2—C1—N1	-176.80 (10)	C13—C14—C15—C18	177.49 (12)
Cd—S2—C1—S1	3.36 (6)	C14—C15—C16—C17	1.82 (18)
Cd—S1—C1—N1	176.69 (10)	C18—C15—C16—C17	-176.68 (12)
Cd—S1—C1—S2	-3.48 (7)	C13—N3—C17—C16	-0.37 (19)
C1—N1—C2—C3	-83.28 (14)	Cd—N3—C17—C16	176.41 (9)
C4—N1—C2—C3	101.32 (13)	C15—C16—C17—N3	-1.19 (19)
N1-C2-C3-01	173.57 (10)	C16—C15—C18—C19	-152.60 (13)
C1—N1—C4—C5	-93.77 (14)	C14—C15—C18—C19	28.96 (19)
C2—N1—C4—C5	81.57 (14)	C16—C15—C18—C22	28.66 (18)
C1—N1—C4—C6	140.52 (12)	C14-C15-C18-C22	-149.77(13)
C2-N1-C4-C6	-44.15(15)	C22-C18-C19-C20	0.4 (2)
C8—N2—C7—S4	-178.55(9)	C15-C18-C19-C20	-17833(13)
C10-N2-C7-S4	-5.59 (17)	C_{21} N4 C_{20} C_{19}	-0.3(2)
			~~~ (-)

C8—N2—C7—S3 C10—N2—C7—S3 Cd—S4—C7—N2 Cd—S4—C7—S3 Cd—S3—C7—N2 Cd—S3—C7—S4 C7—N2—C8—C9 C10—N2—C8—C9 N2—C8—C9—O2 C7—N2—C10—C12 C8—N2—C10—C12	$\begin{array}{c} 1.70 \ (16) \\ 174.65 \ (10) \\ -176.04 \ (10) \\ 3.71 \ (7) \\ 175.91 \ (10) \\ -3.85 \ (7) \\ -84.72 \ (15) \\ 102.00 \ (13) \\ 178.55 \ (11) \\ 138.65 \ (13) \\ -48.17 \ (16) \end{array}$	C18—C19—C20—N4 C20—N4—C21—C22 N4—C21—C22—C18 C19—C18—C22—C21 C15—C18—C22—C21 C27—N5—C23—C24 N5—C23—C24—C25 C23—C24—C25—C26 C23—C24—C25—C26 C24—C25—C26—C27 C25 ⁱ —C25—C26—C27	$\begin{array}{c} -0.1 (2) \\ 0.3 (2) \\ 0.1 (2) \\ -0.45 (19) \\ 178.35 (12) \\ 0.4 (2) \\ -0.2 (3) \\ -0.1 (2) \\ 179.10 (16) \\ 0.3 (2) \\ -178.94 (16) \end{array}$
C8—N2—C10—C12	-48.17 (16)	C25 ⁱ —C25—C26—C27	-178.94 (16)
C7—N2—C10—C11	-96.19 (15)	C23—N5—C27—C26	-0.2 (2)
C8—N2—C10—C11	76.99 (15)	C25—C26—C27—N5	-0.1 (2)

Symmetry code: (i) -x, -y+2, -z.

## Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the Zn/S3/S4/C7 chelate ring.

D—H···A	D—H	Н…А	D····A	D—H···A
O1—H1O···N4 ⁱⁱ	0.83 (2)	1.88 (2)	2.7085 (15)	176 (1)
O2—H2 <i>O</i> …O1 ⁱⁱⁱ	0.83 (1)	1.89(1)	2.7162 (14)	173 (2)
$C4$ — $H4$ ··· $S2^{iv}$	1.00	2.68	3.5395 (14)	144
C22—H22···O2 ^v	0.95	2.40	3.3473 (17)	174
C26—H26···· $Cg1^{vi}$	0.95	3.00	3.776 (3)	140

Symmetry codes: (ii) -*x*, *y*-1, -*z*+1/2; (iii) *x*+1/2, *y*+1/2, *z*; (iv) *x*+1/2, *y*+3/2, *z*; (v) *x*, -*y*, *z*-1/2; (vi) *x*, *y*+1, *z*.