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Abstract
Objectives: This paper aims to evaluate the performance of the machine learning classifiers and identify the most suitable 
classifier for classifying sentiment value. The term “sentiment value” in this study is referring to the polarity (positive, 
negative or neutral) of the text. Methods/Analysis: This work applies machine learning classifiers from WEKA (Waikato 
Environment for Knowledge Analysis) toolkit in order to perform their evaluation. WEKA toolkit is a great set of tools for 
data mining and classification. The performance of the machine learning classifiers was measured by examining overall 
accuracy, recall, precision, kappa statistic and applying few visualization techniques. Finally, the analysis is applied to 
find the most suitable classifier for classifying sentiment value. Findings: Results show that two classifiers from Rules 
and Trees categories of classifiers perform equally best comparing to the other classifiers from categories, such as Bayes, 
Functions, Lazy and Meta. Novelty /Improvement: This paper explores the performance of machine learning classifiers 
in sentiment value classification in the online reviews. Data used is never been used before to explore the performance of 
machine learning classifiers.

1. Introduction
A classifier is a function that takes the values of example 
(predictors or independent variable) in various features to 
predict the class that example belongs to (the dependent 
variable)1. Machine learning is a computational program 
that able to learn without being programmed where to 
look2. According to3 all machine learning algorithms 
assume that a “class” can be identified using statistical 
analysis. 

Machine learning classifiers are popularly used in pre-
dicting patterns, depending on the available dataset. For 
instance, in4 applied machine learning classifiers such as 
Support Vector Machines (SVM) and Logistic Regression 
(LR) for predicting tornadoes. In5 applied machine learn-
ing classifiers for predicting patients’ bleeding risk. The 
highest result of 88.7% for accuracy was from K-Nearest 
Neighbors. In6 evaluated four machine learning classifi-
ers in sentiment mining. According to their results, the 

most accurate classifier was Supported Vector Machines 
(SVM). In7 analyzed a huge data from island of Thasos. 
The analysis was done by applying classifiers like OneR, 
k‐means rule mining algorithms from WEKA. The used 
machine learning classifiers in analyzing complex data 
of fMRI (functional Magnetic Resonance Imaging)1. 
They finalized that by using their approach, it is possible 
to answer their questions in pattern discrimination and 
pattern characterization. In8 introduced a new machine 
learning. Model was used to predict how people do per-
sonal note-taking from spoken dialogue. Several studies 
use machine learning classification to analyze Twitter 
data. One of the examples is a study of9 on Korean tweets, 
regarding the discussion on food safety. They build a 
model and compared the four classifiers. Naive Bayes 
Multinomial classifier has shown the best performance, 
comparing to Support Vector Machine (SVM), Naive 
Bayes and Decision Tree Algorithms. In10 claims that 
machine learning is able to improve designs of machine 
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and efficiency of the systems. Also, machine learning 
techniques can be applied for the visualizing purpose, for 
instance in11 proposed an enhanced SVM which integrates 
image process and data mining algorithms to analyze 
brain tumor. Another example of applying machine 
learning techniques for image processing12. Similar to the 
previous work the use of SVM helps to identify the object 
from the image. Overall, there are several difference types 
of classifiers implemented to evaluate the performance in 
different areas. 

The previous study13 highlighted the importance of 
analyzing online reviews by looking at different formats 
of the text. However, the way of classifying text into posi-
tive, negative and neutral polarity was not discussed. This 
study intends to identify the best-performed type of clas-
sifier to determine the accurate polarity of online reviews 
and comments. The reason of WEKA toolkit is adopted 
to perform experiments, is because of the features that 
has more than 100 classification methods, which also 
supports graphical user interface, and different tools for 
better visualizing the classifier performance, which is also 
supported by14. Study by15 analyzed customer reviews 
using WEKA classifiers, with their interface namely 
“Review Analyzer System”. They applied only 6 out of the 
24 of WEKA Classifiers. Different from15, our study tested 
24 classifiers, to explore which classifier is more suitable 
to analyze reviews. Following subsections of this paper 
compare six types of classifiers from WEKA toolkit, and 
reviews from the different usage of the classifier in a dif-
ferent area. Part III describes the method and data used in 
this study. Part IV presents the results.  

Six categories of machine learning classifiers from 
WEKA toolkit are discussed in this section. Each category 
has several numbers of classifiers. This section reviewed 
the application within the past 10 years in different areas. 

1.1 Bayes   
Bayes classification is named after Thomas Bayes16. It rep-
resents a supervised learning and statistical methods for 
classification17. It is a fundamental statistical approach 
which is based on probability to the problem of pattern 
classification18. Study of17 stated that Bayes rule clas-
sifiers provide a useful perspective for evaluating and 
understanding learning algorithms. He also stated that 
Bayes classification calculates explicit probabilities for the 
hypothesis. He concluded that this classification provides 
a standard of ideal decision making. Bayesian classifica-

tion, not only widely used10, but also popularly used in 
text classification19. This is due to its non-requirement in 
any adjustment of parameters. Besides that, Naive Bayes 
can also consider feature distribution and the degree of 
feature importance20. Naive Bayes is discussed in several 
studies, such as: Naive Bayes anomalies21, about imple-
mentation of extended Naive Bayes for missed data22, 
about text classification using Naive Bayes23 and etc. 
Bayes classification can be applied for text classification, 
calculating probabilities for the hypothesis and pattern 
classification. 

1.2 Functions
The second category to discuss is named Function24. These 
classifiers namely: regression algorithms, SVM, and sup-
port vector classifier25. LR is used by many researchers for 
data processing in patterns and trends study. For instance, 
in26 used LR to identify the trend of people opinion of US 
politicians though twits. Results from that study showed 
that there is a lack of evidence to identify or classify neu-
tral polarity. In27 also used LR to analyze results in their 
study. They studied consumer opinions on reducing salt 
and Sodium in the food industry. Another study where 
LR was applied by28 is about smoking among job-seeking 
unemployed. They found that people who smoke usually 
unemployed or still under job-seeking status. Another 
classifier under this category is SVM, it is been discussed 
in from different perspective, for instance in29 discussed 
reason of failure SVM in that particular case and how to 
overcome the issue. Study of29 discussed problem of fea-
ture selection while comparing SVM, Naive Bayes, and 
Decision Tree classifiers. LR is widely used in analyzing 
collected data from human respondents to identify pat-
terns and trends.  

1.3 Lazy 
However, Lazy category, also known as “learning”24, has 
its own uniqueness. It only performs at prediction time25. 
Different from Bayes method, Lazy classifiers does not 
make assumption about data distribution, but Bayes 
classifiers assume that attributes are conditionally inde-
pendent to each other. The famous k-Nearest Neighbor 
(k-NN) is a classifier under the lazy category. In31 pro-
posed a classification model using improved k-NN 
algorithm for text categorization. They compared Rocchio 
and k-NN model algorithms with their proposed model. 
Their proposed model eventually outperformed other two 
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models; as such Lazy category seems not suitable for text 
classification. Another study by32 used k-NN classifier to 
conduct comparative assessment of the performance of 
Boosting, Bagging and Random Subspace. Boosting is an 
algorithm to reduce bias, bagging is designed to improve 
stability and accuracy and random subspace to construct 
and aggregate the base classifier. Eventually, Random 
Subspace SVM performed more accurate than another 
two methods. In33 proposed an approach for sentiment 
analysis. They used an adapted k-NN algorithm in their 
approach. Their proposed approach was tested with three 
different dictionaries so Dalian University of Technology 
Sentiment Dictionary showed the best results. In31,32 used 
lazy classifiers for text classification, but classifier did not 
show the higher accurate results compared to the other 
classifiers. In33 proposed an enhanced k-NN (lazy classi-
fier) algorithm for text sentiment analysis. Lazy classifiers 
were applied for text classification; however some study 
showed that there are more suitable classifiers for text 
classification. 

1.4 Meta 
Beside lazy classifiers, meta-classifiers are also widely 
used in polarity classification. Meta-classifier is useful 
for base classifiers regarding number of instances in the 
training data34. For instance, in35 applied meta-classifier 
in their proposed framework for sentiment classification. 
Their experiments were conducted using five popular 
datasets. Results proved that their technique is effective 
for sentiment classification. Another study36 proposed an 
enhanced meta-classifier. They36 compared his classifier 
with baseline approaches to check accuracy. Enhanced 
meta-classifier had the higher accuracy in polarity clas-
sification. Study of37 focused on polarity classification in 
the Spanish language. They combined different methods 
using meta-classifiers to archive accurate results in iden-
tifying polarity.In38 compared meta-algorithm with SVM 
regression and SVM multiclass versions to check their 
prediction performance. In38 results showed that meta-
algorithm performs better than both versions of SVM. 
This category of classifiers has been successfully applied 
for polarity detection in text. 

1.5 Rules
This category of classifiers is rule-based classifiers (e.g. 
ZeroR)24,25. Rule-based classifiers were also used in sev-
eral studies for text classification. For instance, in39 

proposed a fuzzy rule-based classifier with semantic coin 
tension. Results showed accurate classification and high 
semantic coin tension. In the linguistic study, in40 intro-
duced a rule-based approach for sentiment classification 
of Ukrainian online reviews. She applied two rules to be 
responsible to different scenarios of sentiment grammar: 
1. Context-independent that responsible for speech and 
sentiment, 2. Context-independent rules that responsible 
for lemmas of the words. In41 introduced a Rule-Based 
Emission Model (RBEM). Their model is able to do sen-
timent classification. They set several rules, for example, 
positive patterns referred to positive context and etc. 
Words such as well-done and good classified as positive 
patterns. In42 stated that rule-based system for text analyz-
ing tend to have more accurate performance but require 
more work from users because of requirement to write a 
rules. Besides Lazy and Meta classifiers, rule-based is also 
used for text classification. 

1.6 Trees
Trees category is tree-based classifiers, for example, J48 
and decision trees25. Tree classification is popular for 
analyzing text aswell, for example, in43 proposed a tree 
kernel and tree pruning based approach for sentiment 
classification. Results from their study showed that their 
approach is effective for sentence-level sentiment classi-
fication. In44 used a decision tree-based feature ranking 
in their approach for sentiment classification. They could 
archive 81.25% of classification accuracy. Other than this, 
in45 proposed a system for sentiment analyzing of Arabic 
comments. In their system, they used machine learning 
classifiers like support vector machines, decision tree, 
and Naive Bayes. Then they evaluated the performance 
of each classifier. Among three classifiers, support vector 
machines gave the highest results. In other words, trees 
classifiers were also effectively used for text classification. 

Finally, among all the six categories of classifiers dis-
cussed, conclusion is that they can be used for text and 
sentiment classification, pattern recognition, and polar-
ity prediction. However, trees, rules and meta categories 
were used for text classification more often than other 
categories. 

2. Method
In this section, data source, pre-processing, and statistics 
used for experiment are discussed.
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2.1 Data Source
There are 1041 reviews and comments collected from dif-
ferent online websites. These reviews and comments are 
collection of opinion on customers’ reviews on the prod-
ucts or services they purchased. Reviews were posted 
in forum from Amazon.com, Facebook comments and 
Gsmerena.com. 

These comments consisted reviews from 10 different 
categories 1. Beauty and Health 2. Camera 3. Computer 
4. Consumer Electronics 5. Fashion 6. Home appliance 7. 
Jewellery and Watch 8. Mobiles and Tables 9. Sport goods 
10. Toys and Kids. Comments were firstly analyzed with 
the UCREL Wmatrix system46, identifying the highest 
frequently used emotional words for our test. In total, 15 
positive and 15 negative emotional words were simulated 
in our test to obtain verification of agreement of polar-
ity. The scale of opinion ranging from ‘strongly dislike’ to 
‘strongly like’ in 7-point from 500 human respondents is 
later aggregate as our training set in evaluation process.

2.2 Pre-processing
This section explains the two steps involved in our pre-
processing. Pre-processing steps were taken to prepare 
data for classification. Step 1. Identifying the mean value 
for each of the comments from collected data. This step 
intends to find the average score of “like and dislike” for 
each comment from human raters. Step 2. Setting the 
polarity to each comment based on mean value from Step 
1 (1-3.99 to negative (Neg) polarity, 4-4.99 to Neutral and 
5-7 to Positive (Pov) polarity). This step intends to set a 
final class for classifier. 

These two steps are important and were necessary in 
order to prepare data to work with classifiers. Next sec-
tion elaborates the unit of measurement to obtain the 
performance of machine learning classifiers. 

3. Measurement
WEKA toolkit is set of tools for data mining, classifica-
tion, clustering and visualization25,47. Test mode was 
default, and it was set as 10-fold cross-validation. This 
mode was chosen because it is intensive and it uses all 
available examples for training and test48. Nevertheless, 
the number of folds is set as default by WEKA15. The mea-
surements such as: accuracy, precision, and recall of each 
classifier were compared.  

There are five measurements to support our arguments. 
Firstly, the accuracy of the measured value. It is the close-
ness of a measured value to a standard or known value49. 
Secondly, precision was used to compare performance of 
classifiers. Precision is defined as the closeness of two or 
more measurements to each other49. And thirdly, Recall 
in information retrieval, which is the fraction of the doc-
uments that are relevant to the query that is successfully 
retrieved50. Fourthly, kappa statistic. The kappa statistic 
measures the agreement of prediction with the true class 
25,51. Kappa statistic represents agreement range between 
observers. Perfect agreement is equal to a kappa of 1 and 
chance agreement is equal to kappa of 025.According to 
study of52 Kappa statistic has following interpretation: 
0 is referred to “Poor”, 0.2 is “Slight”, 0.4 is “Fair”, 0.6 is 
“Moderate”, 0.8 is “Substantial” and 1 is “Almost perfect”. 
And lastly, the ROC (Receiver Operating Characteristic). 
One of the ways to compare the performance of classi-
fiers is to visualize it using ROC curve53. The reason of 
using ROC curve is that ROC curve helps to visualizes 
all possible classification thresholds53. The perfect ROC 
curve would stay with Y axis from 0 to 1 and then expand 
to the X axis. As closer curve to 1 on the Y axis (which is 
an upper left corner) as better the performance of classi-
fier 54,55. Class value picker determines which of the classes 
should be evaluated. Each of the classes which are Pos, 
Neg and Neutral was picked for each of classifiers. Each 
class was selected to show the performance of each class.  

4. Results
To demonstrate the performance evaluation, six figures 
were displayed to visualize the performance of each clas-
sifier by applying ROC curve.

4.1 Visualization of Classifiers Performance 
for Bayes Category

Figure 1. ROC curves’ comparison of BayesNet and Naive 
Bayes classifiers

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Figure 1 presents the model performance chart for the 
classifiers in Bayes category.

Circle area on the graph represents how close BayesNet 
and Naive Bayes curves to the 1 on the Y axis. The curves 
relatively close to the left top corner as shown in Figure 1, 
and expanding towards the X axis. The value is definitely 
close to 1 on the Y axis. However, the result for Bayes Net 
curve is slightly further from 1 on the Y axis comparing to 
Naive Bayes, which demonstrated that Naive Bayes per-
formed better. 

4.2 Visualization of Classifiers Performance 
for Functions Category

Figure 2. ROC curves’ comparison of Logistic, SimpleLogistic 
and SMO classifiers

Functions category showed lower performance com-
pare to the Bayes category. Figure 2 presents a ROC curve 
for Logistic, Simple Logistic and SMO classifiers. Simple 
Logistic show good results, because curves are close to 
the left top corner, and then curves expand to the X axis. 
Logistic classifier showed the worst performance, because 
the curve is far from 1 on the Y axis. The curve for SMO 
classifier is in between two other curves, so the perfor-
mance of SMO better than Logistic classifier. 

4.3 Visualization of Classifiers Performance 
for Lazy Category

Compare to the previous two categories, Lazy cat-
egory has a curve in positive class which passes by on 1 
on Y axis. Figure 3 presents a ROC curve for IBk, KStar 
and LWL classifiers. LWL classifier definitely performed 
the best, because the curve is very close to 1 on Y axis. 
IBk classifier performed slightly better than KStar, since 
the curve of IBk is closer to 1 on Y axis compare to the 
curve of KStar.

Figure 3. ROC curves’ comparison of IBk, KStar and LWL 
classifiers

4.4 Visualization of Classifiers Performance 
for Meta category

Figure 4. ROC curves’ comparison of 
ClassificationViaRegression, IterativeClassifierOptimizer, 
MultiClassClassifier, and RandomizableFilteredClassifier 
classifiers

Figure 4 presents a ROC curve for Classification via 
Regression, Iterative Classifier Optimizer, Multi Class 
Classifier and Randomizable Filtered Classifier clas-
sifiers. Curves for Iterative Classifier Optimizer and 
Classification via Regression are very close to 1 on Y axis 
compare to the curves of Randomizable Filtered Classifier 
and Multi Class Classifier. Similar to Lazy category, Meta 
category has two curves in positive class which passes by 
on 1 on Y axis, which identifies that Iterative Classifier 
Optimizer and Classification via Regression performed 
very well.

4.5 Visualization of Classifiers Performance 
for Rules Category

Figure 5 presents a ROC curve for Decision Table, 
JRip, OneR, PART and ZeroR classifiers. Curves for 
Decision Table, JRip, OneR, PART are quite close to 1 on 
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the Y axis, it means their performance are good to com-
pare to the curve of ZeroR. ZeroR classifier showed very 
low performance, the curve is very far from 1 on the Y 
axis. Compare to classifiers from Bayes, Functions, Lazy 
and Meta categories, ZeroR classifier shows the worst per-
force. 

Figure 5. ROC curves’ comparison of DecisionTable, JRip, 
OneR, PART, and Zero classifiers

4.6 Visualization of Classifiers Performance 
for Trees Category 

Figure 6. ROC curves’ comparison of DecisionStump, 
HoeffdingTree, J48, LMT, RandomForest, RandomTree and 
REPTree classifiers 

Figure 7. Visualization (Tree view) of J48 classifier

Figure 6 presents a ROC curve for Decision Stump, 
Hoeffding Tree, J48, LMT, Random Forest, Random Tree 
and REP Tree classifiers. Curves for Decision Stump, REP 
Tree and J48 show the best results, because curves are 
very close to the left top corner and then curves expand 
to the X axis. Random Tree classifier showed lower per-
formance, the curve is very far from 1 on the Y axis.

Overall, Iterative Classifier Optimizer, Classification 
via Regression, REP Tree and J48 classifiers showed the 
best performance based on ROC curves comparison.

4.7 Visualization of Classifiers Performance 
for J48

Figure 7 represents visualization (tree view) of J48 
classifier. Since J48 classifier has the highest accuracy 
results and it is a tree based classifier, we elaborate more 
on the structure of outcome. WEKA builds the tree which 
is consistent with information gain values calculated55 
in Figure 7. The mean is root attribute because it con-
tains premier information gain55. Looking at the J48 tree 
visualization it can be seen that the classifier determines 
patterns in polarity level. J48 classifier identifies correctly 
135 negative comments with polarity equal or less than 
3.996. Fifty four positive comments were identified cor-
rectly with polarity more than 4.996.   

4.8 Classifiers: Precision, Recall, Accuracy, 
Kappa Statistic
The previous section visualized the performance of clas-
sifiers though ROC curve, this section presents an overall 
performance of 24 classifiers. Precision, Recall, Accuracy, 
and Kappa statistic were used to measure the performance 
of each classifier. Results are presented in to Table 1.

Four classifiers which showed the highest values were 
highlighted, whereby PART and J48 have same results. 
In total, four classifiers provided the highest results for 
Precision, Recall, and Accuracy. Classifiers, PART, and 
J48 gave the same highest results. The interesting discov-
ery, two classifiers are from a different category. PART is 
Rules base classifier and J48 is Trees base classifier. The 
third classifier with an accuracy of 96.667 % is Iterative 
Classifier Optimizer, it is Meta base. Another Trees base 
classifier with accuracy 96.25% is REP Tree. The low-
est value of Accuracy was for Zero R classifier which is 
57.0833 %. Kappa statistic results show similar results. 
Iterative Classifier Optimizer, PART, J48, and REP Tree 
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are top three high results. However, PART and J48 have 
the same value similar as accuracy for those two classi-
fiers are equally the highest. 

5. Conclusion
Studies from past 10 years showed that Bayes, Meta, 
Rules and Trees classifiers were widely used for text clas-
sification. Our method included all the 6 categories of 
classifiers from WEKA toolkit. Total up to 24 classifiers. 
The result of accuracy from two classifiers namely J48 and 
PART showed equally rate of 97.5%. Result of recall and 
precision showed similar to accuracy results, both J48 and 
PART classifiers have 0.975.

Kappa statistic represents the agreement of prediction 
with the true class. J48 and PART classifiers showed the 
same result as 0.9569. Overall results suggest that Rules and 
Trees based classifiers can be successfully applied to clas-
sifying comments into the positive, negative and neutral. 
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