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ABSTRACT 

 
Outliers are often ubiquitous in surveys that involve linear measurements. Knowing that the presence of such 

extreme points can grossly distort statistical analyses, most researchers are often tempted to conveniently 

eliminate them from the data set without much careful consideration. In this study, we investigate the 

performance of confidence intervals for the population mean under the various probabilities of outlier being 

caused by uncorrectable human errors. The sample under study is randomly generated and subscribed to a 

normal distribution, and it contains only one outlier at one of the two extreme ends. For the generated sample, 

we compute three types of nominally 100(1− )% confidence interval for the population mean, namely, 

EI (when the single outlier is expunged from the sample), RI  (the outlier is replaced) and UI  (a union of EI  

and RI ). It is found that when the sample size is smaller, UI  has a satisfactory level of coverage probability for 

all values of p. However, for larger sample sizes, RI and EI would instead be the better ones as they have 

shorter expected lengths, in addition to having reasonable levels of coverage probabilities for a wide range of p.  
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INTRODUCTION 

 

In surveys involving linear measurements, one or more data points may be found to be far 

from the rest of the observed values in the set. These points are conveniently classified as 

outliers, and in most cases are simply removed from the data set without careful 

consideration. An outlier has been described with various phrases. Grubbs (1969) defines an 

outlier as an observation that “appears to deviate markedly from other members of the 

sample in which it occurs”. Moore and McCabe (1999) describe an outlier as an observation 

that lies outside the overall pattern of a distribution.  

Most statistics books identify outliers as those observed values that are at least 1.5 

times greater than the upper quartile or 1.5 less than the lower quartile of the inter-quartile 

range. Graphically, the commonly used techniques for detecting outliers are the normality 
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plot, histogram, scatterplot and the box plot. The normality test uses the three-sigma rule to 

identify outliers. Another test is the Grubbs’ Test (1969) which employs an analytic 

procedure for detecting an outlier, also under the assumption of normal distribution.  

The presence of outliers is never to be underestimated. It can grossly distort 

statistical analyses. For instance, calculations of the mean and standard deviation can be 

massively distorted by a single extremely small or large data point. Outliers generally serve 

to increase error variance and cause a decrease in accuracy of the estimators. Failure to deal 

with outliers appropriately may run the risk of bias in estimating models.  

As a result, many researchers would simply eliminate any outliers detected. A 

simple act of elimination of an extreme data point may well result in an accidental deletion 

of some interesting and unforeseen change of norm. The problem can become even more 

complex when there is more than one outlier or one variable in the analysis. After having 

taken steps to identify outliers, an experienced statistician would carefully review each 

outlier and consider cautiously its appropriateness for inclusion or exclusion in the data 

analysis.  

Outliers can arise from several different mechanisms or causes. Human carelessness 

is one of the biggest contributors to the existence of outliers. Errors may occur in data 

collection, recording, or entry. Such errors can often be corrected by re-checking. However, 

if such human errors cannot be corrected at all, it would be best to just eliminate them from 

the data set. 

Outliers may also be caused by an error in sampling whereby several members of a 

sample were inadvertently drawn from a different population instead of the target 

population. There is also the likelihood that the outliers are due to an intentional 

misreporting by the survey participant due to his unwillingness to reveal some truth. In both 

cases, when we are sure of these being the causes of the outliers, removal of the outliers 

would also be the most natural thing to do. 

Both the prevailing physical conditions under which the research was carried out 

and the poor quality of the measuring equipment can contribute to a deficient measurement 

process. This source of exceptionally large measurement errors accounts for another 

common cause of outliers. Outliers could also be attributed to natural deviations from the 

population. Based on the 3-sigma rule, there is a 0.26% random chance that an outlier 

legitimately occurs in a normally distributed population. This means, the bigger the sample 

size, the higher the probability of an outlier occurring naturally. 

In summary, checking for outliers should be a routine procedure of any data 

analysis. If the extreme data point is in error, it should be corrected, if possible; and 

removed, if we believe that the outlier is due to careless mistakes and a correction of the 

data point is impossible. 

When we have no good reasons to believe that the extreme data point is due to 

careless mistakes, the classical way to estimate the population mean and standard deviation 

is by using respectively the median and the median absolute difference, or by a process 

called winsorisation (Tukey, 1960 and Huber, 1964).  However there is not much work 

which has been done on the construction of a suitable confidence interval for the population 

mean. 

In this study, we investigate the construction of confidence interval for population 

mean in the presence of only one outlier at one of the two extreme ends. The sample under 

study is randomly generated, subscribing to a normal distribution. 
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We assign the probability of p to the occurrence whereby the outlier is due to 

human errors, with no corrections possible. For instance, when p = 0.4, in the generation of 

N  samples, each of size n, about 40% of these generated samples would contain a single 

outlier caused by human errors, and about 60% of them contain an outlier due to 

exceptionally large measurement errors.  

For a generated sample the outlier is first expunged from the sample, and a 

nominally 100(1− )% confidence interval for the population mean is constructed based on 

the resulting sample of size n - 1. For the same generated sample, the outlier is next replaced 

(removed and substituted) by a randomly generated value which is larger than the second 

largest value (or smaller than the second smallest value) in the original sample that contains 

the outlier, and a nominally 100(1− )% confidence interval for the population mean is 

constructed using the resulting sample of size n. By taking a union of these two confidence 

intervals, we form a third confidence interval. 

To determine the performance of a given confidence interval, we estimate its 

coverage probability and expected length. The coverage probability may be estimated by the 

ratio of the number of confidence intervals that contain the population mean to N, while the 

expected length by the average length of the N confidence intervals based on the generated 

samples. 

 A nominally 100(1− )% confidence interval is said to perform adequately well if 

the estimated coverage probability is close to the stipulated target value of 1− . Between 

two types of confidence intervals with approximately the same estimated coverage 

probabilities, the one with a shorter average length is deemed to be a better confidence 

interval. 

 The above three types of confidence intervals are compared using their estimated 

coverage probabilities and average lengths. The main findings are that when the sample size 

is about 10, the confidence interval formed by the union operator has a satisfactory level of 

coverage probability for all values of p. As for sample sizes of about 20 and 30, the 

confidence interval in the case when the outlier is replaced and the confidence interval in the 

case when the outlier is eliminated from the sample would be a better one, respectively, as 

they have shorter average lengths apart from having reasonable level of coverage 

probabilities for a wide range of p. 

Other works on construction of confidence intervals in the presence of only one 

outlier can be found in Goh (2011) and Low (2011). When there are two independent 

normal random samples with common variance 2 , means 1 and 2 , and sizes n1 and n2, 

respectively, Goh (2011) assumes that there is an outlier from the first sample, and uses a 

similar method  based on the union operation to construct a confidence interval  for  the 

difference of the means of the two samples.  Low (2011) assumes that there is an outlier in 

the set of data generated from a simple linear regression model with normal random errors, 

and also uses a method based on the union operation to construct a confidence interval for 

the slope parameter. The present article differs from Goh (2011) and Low (2011) in the 

method of generating new observation to replace the removed outlier. 
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CONSTRUCTION OF CONFIDENCE INTERVAL IN THE PRESENCE OF AN 

OUTLIER 

 

Suppose ( 1 2 3, , ,... ny y y y ) is a normal random sample from the normal population with 

mean  and variance 
2 . The sample mean and standard deviation are given, respectively, 

by  
1

n

i
i

y y n


   and     
2

22

1

/ 1
n

i
i

s y y n


 
    

. The usual normal-theory (1- 𝛼) 100% 

confidence interval for   is  I = [L, U],  where L y t s n  and U y t s n  ; t being 

the 100(1 - 
2

 ) percentile of the t distribution with 1n   degrees of freedom.   

         

The coverage probability of confidence interval is given by  CP P L U   and the 

expected length of the confidence interval is given by  LE E U L  .  

 

Suppose there is an outlier in the sample and we do not know whether the outlier is due to 

human errors or exceptionally large measurement errors. In what follows, we study three 

types of nominally 100(1- ) % confidence intervals for the population mean in the 

presence of a single outlier.  

 

 

(a) Outlier is Eliminated 

  

We delete the outlier and rename the sample as 1 2 3 1, , ,... 
   

ny y y y . Let the corresponding 

sample mean and sample variance be denoted respectively by y and 
2s . A (1-𝛼)100% 

confidence interval for  is  ,E E EI L U , where 1    EL y t s n  and 

1    EU y t s n , t  being the 100(1 - 
2

 ) percentile of the t distribution with n - 2 

degrees of freedom. The coverage probability and expected length of the confidence interval 

EI  are given by  CE E EP P L U     and  LE E EE E U L  , respectively. 

 

 

(b) Outlier is Replaced 

 

We next assume that the outlier in the sample is due to exceptionally large measurement 

errors and it would then be replaced. The confidence interval is constructed using the 

following procedure: 

1. Sort the values in the sample in an ascending order:        1 2 3
, , ,...,

n
y y y y . Then 

remove the outlier, either  1
y  or  n

y  (depending on whether the outlier is at the 

lowest or the highest end) and find the median M̂ of      2 3 1
, ,...,

n
y y y


. 
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2. Calculate 
  

1 2
2

2

1 ˆˆ
3

n

M j
j

y M
n





 

 . 

3.  Compute the factor f̂ from the values of M̂ and 2ˆ
M  using the formula  

                
2

o 1 2
ˆ ˆ ˆˆ ˆf c c M c M    , where oc , 1c and 2c are constants found in the 

next section.  

4.          Keep generating 
 
*

n
y (in the case when 

 n
y  is the outlier) using the distribution 

 
*

n
y ~   

2
ˆˆ ˆ,  MN M f  until the generated 

 
*

n
y  is larger than

 1n
y


. On the other 

hand, when 
 1

y is the outlier, we generate
 
*

1
y  using the distribution 

 
*

1
y ~ 

  
2

ˆˆ ˆ,  MN M f  until the generated value is smaller than
 2

y . 

5. Replace the deleted outlier with the generated 
 
*

n
y (or

 
*

1
y ) and rename the sample as 

       1 2 3
, , ,...,

n
y y y y    . Let the mean and variance of the resulting sample be y  and 

2s , respectively. 

6.          Compute a nominally (1-𝛼)100% confidence interval  ,r r rI L U  for , where 

rL y ts n     

             and rU y ts n   .  

7. Repeat Steps (4) – (6) above gN times, and obtain the confidence interval 

 ,R R RI L U of which RL   

and RU  are, respectively, the averages computed from the gN  values of rL  and 

rU  found in Step (6). 

 

We obtain another confidence interval for   by using the union 

operator:  ,U E R U UI I I L U   , and estimate the following coverage probabilities and 

expected lengths of the confidence intervals RI  and UI : 

 CR R RP P L U   ,  LR R RE E U L   

 CU U UP P L U   ,  LU U UE E U L   

 

 

FORMULA FOR COMPUTING THE FACTOR 
*f   

 

Starting with a given value of ( , ), we generate N values of the vector of observations y. 

We next sort the components in each generated vector in an ascending order to 

       1 2 3
, , ,...,

n
y y y y , and find the median M̂  of 

     2 3 1
, ,...,

n
y y y


 and the value 
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    
2

21
2

2

ˆˆ 3




  
    

  

n

M j
j

y M n  which serves as an estimate of the population 

variance. The average 
*R  of the N values of ˆ ˆ

MM  is then computed. 

For a given trial fixed value f , we keep generating *

( n )y - in the case when 
 n

y is 

the outlier – using the distribution 
 
*

n
y ~   

2
ˆ ˆ,  MN M f  until the generated *

( n )y is larger 

than 
 1n

y


. In the case when 
 1

y is the outlier, we generate 
 1

*y  using the distribution 
 
*

1
y ~ 

  
2

ˆ ˆ,  MN M f until the generated value is smaller than 
 2

y . We next apply  Steps (5) – 

(7) to each generated vector of observations to find a nominally (1-𝛼)100% confidence 

interval  ,R R RI L U  for and use the proportion of confidence intervals (out of the N 

confidence intervals) which covers  to estimate the coverage probability of the confidence 

intervals when f is used. We then find the value
*f of f such that the coverage probability 

of the corresponding confidence intervals is approximately equal to the target value 1  . 

A number of other starting values of ( , ) are then chosen. For each chosen value 

of ( , ), the corresponding values of *R and
*f are obtained. Figures 1, 2 and 3 depict the 

scatterplots of 
*f against *R , for the case when n = 10, n = 20 and n = 30, respectively. 

For each value of n, we use a regression procedure to obtain the fitted function of 
*R : 

* * *2

0 1 2f c c R c R   . The values of oc , 1c and 2c  are given in the figures. 

 

 
*f  

 

 

                                                                                                         *R   

Figure 1. Scatterplot of  * *
,f  R ; n = 10, fitted function is 

* * *23.2217   0.7655  0.6549f R R    
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*f

 

 

 

                                                                                                            *R   

Figure 2. Scatterplot of  * *
,f  R ; n = 20, fitted function is 

* * *23.6962  0.1104  0.1881 f R R    

 

 
*f

  

 

 

                                                                                                            *R   

Figure 3. Scatterplot of  * *
,f  R ; n = 30, fitted function is 

* * *24.2848  0.1646  0.1509 f R R    

 

 

NUMERICAL RESULTS 

 

For each generated vector of observations y , we find the confidence intervals , ,E RI I I and 

UI  by using the procedures described above. For each type of confidence interval, we 

compute the corresponding estimated coverage probability and average length and record 

the results in Tables 1, 2 and 3.  
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Table 1 shows that when 10n  , the coverage probability of confidence interval 

EI  is very much less than the target value of 0.95 if  p is small. Conversely, when p is 

sufficiently large, the coverage probability of confidence interval RI  is clearly less than 

0.95. The coverage probability of confidence interval UI  is always slightly larger than 0.95, 

irrespective of the values of p, ,  and n . 

 

 

Table 1. Coverage Probabilities and Expected Length of Confidence Intervals for N =10000, 

 = 0.5, n = 10 

  p  
CP  CEP  CRP   CUP   LE   LEE   LRE    

LUE  

0.0 0.0001 0.9517 0.8990 0.9550 0.9663 0.6934 0.6472 0.8171 0.8630 

 

0.1 0.9513 0.8920 0.9580 0.9653 0.6974 0.6576 0.8363 0.8784 

 

0.3 0.9523 0.9053 0.9613 0.9723 0.6971 0.6781 0.8676 0.9055 

 

0.5 0.9553 0.9263 0.9700 0.9783 0.6942 0.6961 0.8975 0.9300 

 

0.7 0.9463 0.9347 0.9687 0.9783 0.6943 0.7181 0.9319 0.9585 

 

0.9 0.9517 0.9510 0.9777 0.9810 0.6961 0.7360 0.9659 0.9844 

 

0.9999 0.9543 0.9510 0.9143 0.9683 0.6939 0.7437 0.6939 0.8127 

0.5 0.0001 0.9487 0.9053 0.9523 0.9703 0.6944 0.6487 0.8227 0.8689 

 

0.1 0.9477 0.9077 0.9583 0.9723 0.6984 0.6603 0.8468 0.8874 

 

0.3 0.9470 0.9110 0.9590 0.9723 0.6888 0.6706 0.8616 0.9001 

 

0.5 0.9560 0.9277 0.9653 0.9750 0.6987 0.7006 0.9108 0.9413 

 

0.7 0.9493 0.9303 0.9693 0.9767 0.6970 0.7145 0.9378 0.9635 

 

0.9 0.9490 0.9437 0.9660 0.9747 0.6956 0.7363 0.9708 0.9909 

 

0.99999 0.9473 0.9430 0.9100 0.9667 0.6908 0.7387 0.6908 0.8080 

1.0 0.0001 0.9460 0.8993 0.9523 0.9633 0.6958 0.6503 0.8094 0.8601 

 

0.1 0.9577 0.9113 0.9587 0.9737 0.6990 0.6601 0.8254 0.8733 

 

0.3 0.9553 0.9167 0.9600 0.9693 0.6908 0.6717 0.8513 0.8926 

 

0.5 0.9513 0.9207 0.9630 0.9717 0.6973 0.6981 0.8918 0.9268 

 

0.7 0.9490 0.9303 0.9663 0.9747 0.6973 0.7173 0.9254 0.9524 

 

0.9 0.9387 0.9337 0.9667 0.9730 0.6941 0.7340 0.9516 0.9753 

 

0.99999 0.9580 0.9550 0.9117 0.9657 0.6936 0.7437 0.6936 0.8122 

1.5 0.0001 0.9487 0.9067 0.9550 0.9690 0.6967 0.6487 0.7986 0.8485 

 

0.1 0.9450 0.9037 0.9507 0.9653 0.6996 0.6633 0.8188 0.8680 

 

0.3 0.9490 0.9170 0.9537 0.9667 0.6930 0.6743 0.8394 0.8826 

 

0.5 0.9467 0.9197 0.9610 0.9693 0.6923 0.6958 0.8751 0.9116 

 

0.7 0.9487 0.9380 0.9647 0.9733 0.6950 0.7145 0.9084 0.9382 

 

0.9 0.9603 0.9543 0.9713 0.9793 0.6954 0.7361 0.9404 0.9651 

 

0.99999 0.9540 0.9570 0.9213 0.9683 0.6951 0.7426 0.6951 0.8126 

2.0 0.0001 0.9450 0.9027 0.9570 0.9667 0.6979 0.6498 0.8038 0.8527 

 

0.1 0.9493 0.9080 0.9610 0.9683 0.6948 0.6590 0.8203 0.8644 

 

0.3 0.9487 0.9127 0.9610 0.9703 0.6983 0.6792 0.8508 0.8904 

 

0.5 0.9500 0.9283 0.9667 0.9740 0.6993 0.6991 0.8816 0.9161 

 

0.7 0.9537 0.9397 0.9653 0.9743 0.6942 0.7145 0.9052 0.9345 

 

0.9 0.9363 0.9333 0.9643 0.9703 0.6926 0.7317 0.9330 0.9570 

 

0.9999 0.9520 0.9517 0.9117 0.9653 0.6966 0.7462 0.6966 0.8153 

2.5 0.0001 0.9543 0.9080 0.9680 0.9750 0.7019 0.6558 0.8230 0.8691 

 

0.1 0.9440 0.9047 0.9590 0.9693 0.6956 0.6589 0.8288 0.8725 

 

0.3 0.9533 0.9200 0.9703 0.9770 0.6950 0.6768 0.8550 0.8925 

 

 

0.5 0.9507 0.9210 0.9680 0.9733 0.6961 0.6960 0.8867 0.9201 
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0.7 0.9510 0.9343 0.9700 0.9753 0.6985 0.7174 0.9142 0.9428 

 

0.9 0.9480 0.9500 0.9773 0.9817 0.6930 0.7344 0.9398 0.9618 

 

0.9999 0.9427 0.9413 0.9003 0.9547 0.6944 0.7441 0.6944 0.8127 

3.0 0.0001 0.9503 0.9017 0.9590 0.9677 0.6912 0.6445 0.8293 0.8674 

 

0.1 0.9567 0.9007 0.9680 0.9750 0.6974 0.6607 0.8482 0.8874 

 

0.3 0.9517 0.9203 0.9730 0.9777 0.6924 0.6740 0.8692 0.9023 

 

0.5 0.9457 0.9210 0.9697 0.9743 0.6941 0.6948 0.9010 0.9283 

 

0.7 0.9470 0.9293 0.9760 0.9807 0.6972 0.7187 0.9332 0.9554 

 

0.9 0.9513 0.9497 0.9807 0.9827 0.6936 0.7325 0.9529 0.9713 

 

0.9999 0.9487 0.9503 0.9113 0.9637 0.6966 0.7460 0.6966 0.8149 

  

 
Table 2 reveals a slightly different observation. Although the coverage probability 

of confidence interval EI  is still less than target value 0.95 for the case when the value of p 

is small, the coverage probability of confidence interval RI  is not very much less than 0.95 

when p is sufficiently large. As in the case when 10n  , the coverage probability of 

confidence interval UI  when n = 20 is likewise  slightly larger than 0.95, irrespective of the 

values of p, ,  and n . This means that when n = 20, both the confidence intervals RI and 

UI  have satisfactory coverage probabilities. The performance of RI and UI  can be deduced 

further by comparing their expected lengths. We observe that RI  would be a better 

confidence interval as it has a shorter expected length. 

 

 

Table 2. Coverage Probabilities and Expected Length of Confidence Intervals for N =10000, 

 = 0.5, n = 20 

  p  
CP  CEP  CRP   CUP   LE   LEE   LRE    LUE  

0.0 0.0001 0.9477 0.9093 0.9460 0.9657 0.4630 0.4356 0.5477 0.5781 
 0.1 0.9443 0.9127 0.9523 0.9703 0.4618 0.4392 0.5531 0.5792 

 0.3 0.9543 0.9247 0.9627 0.9720 0.4635 0.4489 0.5688 0.5893 

 0.5 0.9513 0.9287 0.9630 0.9723 0.4612 0.4548 0.5785 0.5950 

 0.7 0.9467 0.9350 0.9680 0.9757 0.4613 0.4640 0.5924 0.6036 

 0.9 0.9593 0.9523 0.9763 0.9817 0.4639 0.4729 0.6065 0.6127 

 0.9999 0.9520 0.9540 0.9277 0.9660 0.4642 0.4781 0.4642 0.5228 

0.5 0.0001 0.9437 0.9067 0.9453 0.9653 0.4610 0.4351 0.5456 0.5773 

 0.1 0.9430 0.9153 0.9470 0.9647 0.4630 0.4395 0.5532 0.5803 

 0.3 0.9480 0.9263 0.9533 0.9690 0.4594 0.4446 0.5627 0.5852 

 0.5 0.9503 0.9363 0.9610 0.9747 0.4617 0.4548 0.5777 0.5950 

 0.7 0.9530 0.9477 0.9733 0.9803 0.4625 0.4640 0.5917 0.6022 

 0.9 0.9467 0.9420 0.9710 0.9743 0.4623 0.4728 0.6052 0.6113 

 0.99999 0.9460 0.9460 0.9243 0.9597 0.4626 0.4756 0.4626 0.5206 

1.0 0.0001 0.9550 0.9163 0.9483 0.9720 0.4622 0.4354 0.5415 0.5726 
 0.1 0.9453 0.9127 0.9440 0.9637 0.4620 0.4388 0.5467 0.5758 

 0.3 0.9480 0.9220 0.9583 0.9733 0.4607 0.4457 0.5589 0.5825 

 0.5 0.9540 0.9373 0.9600 0.9750 0.4633 0.4572 0.5744 0.5929 

 0.7 0.9567 0.9430 0.9673 0.9747 0.4617 0.4631 0.5856 0.5984 

 0.9 0.9463 0.9433 0.9643 0.9673 0.4645 0.4744 0.6024 0.6097 

 0.99999 0.9563 0.9560 0.9233 0.9647 0.4628 0.4763 0.4628 0.5211 
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1.5 0.0001 0.9503 0.9147 0.9437 0.9697 0.4613 0.4348 0.5352 0.5687 

 0.1 0.9510 0.9153 0.9503 0.9700 0.4593 0.4369 0.5387 0.5694 

 0.3 0.9487 0.9207 0.9507 0.9680 0.4611 0.4469 0.5545 0.5786 

 0.5 0.9437 0.9270 0.9547 0.9693 0.4622 0.4561 0.5672 0.5870 

 0.7 0.9467 0.9337 0.9660 0.9713 0.4624 0.4642 0.5816 0.5945 

 0.9 0.9483 0.9393 0.9683 0.9727 0.4612 0.4708 0.5922 0.6001 

 0.99999 0.9480 0.9450 0.9213 0.9570 0.4634 0.4773 0.4634 0.5213 

2.0 0.0001 0.9413 0.9027 0.9403 0.9640 0.4608 0.4332 0.5307 0.5642 

 0.1 0.9463 0.9157 0.9413 0.9670 0.4610 0.4384 0.5382 0.5692 

 0.3 0.9457 0.9170 0.9527 0.9687 0.4600 0.4450 0.5488 0.5733 

 0.5 0.9463 0.9277 0.9567 0.9717 0.4617 0.4544 0.5634 0.5831 

 0.7 0.9533 0.9410 0.9683 0.9760 0.4614 0.4625 0.5767 0.5903 

 0.9 0.9523 0.9490 0.9757 0.9807 0.4618 0.4713 0.5889 0.5981 

 0.9999 0.9513 0.9520 0.9270 0.9643 0.4621 0.4755 0.4621 0.5200 

2.5 0.0001 0.9513 0.9173 0.9463 0.9690 0.4629 0.4362 0.5346 0.5681 

 0.1 0.9500 0.9103 0.9503 0.9677 0.4610 0.4383 0.5387 0.5687 

 0.3 0.9440 0.9113 0.9500 0.9633 0.4628 0.4485 0.5533 0.5773 

 0.5 0.9527 0.9357 0.9640 0.9743 0.4638 0.4579 0.5669 0.5867 

 0.7 0.9477 0.9320 0.9597 0.9693 0.4613 0.4631 0.5764 0.5893 

 0.9 0.9557 0.9520 0.9740 0.9767 0.4612 0.4703 0.5868 0.5959 

 0.9999 0.9513 0.9513 0.9190 0.9627 0.4638 0.4770 0.4638 0.5219 

3.0 0.0001 0.9523 0.9203 0.9480 0.9673 0.4602 0.4340 0.5350 0.5676 

 0.1 0.9480 0.9220 0.9493 0.9700 0.4639 0.4412 0.5452 0.5761 

 0.3 0.9507 0.9207 0.9557 0.9697 0.4625 0.4481 0.5553 0.5811 

 0.5 0.9597 0.9323 0.9653 0.9780 0.4623 0.4555 0.5672 0.5861 

 0.7 0.9507 0.9427 0.9670 0.9750 0.4626 0.4642 0.5799 0.5937 

 0.9 0.9523 0.9510 0.9740 0.9780 0.4633 0.4729 0.5921 0.6002 

 0.9999 0.9540 0.9537 0.9430 0.9707 0.4601 0.4732 0.5150 0.5513 

 

 

When n = 30, all three confidence intervals EI , RI  and UI have satisfactory 

coverage probabilities (refer to Table 3). The interval EI  would now be the best confidence 

interval as it has the shortest expected length.  

By using linear extrapolation of the results in Tables 1 – 3, we may further conclude 

that the confidence interval  UI  would be the preferred one when the sample size n is less 

than or equal to 10, and the confidence interval  EI  would instead be the most satisfactory 

one when n is bigger or equal to 30. For a given value of n between 11 and 29 but not close 

to 10, 20 or 30, the best confidence interval may be determined by using linear interpolation 

of the results in Tables 1 – 3.  
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Table 3. Coverage Probabilities and Expected Length of Confidence Intervals for N =10000, 

 = 0.5, n = 30 

  p  
CP  CEP  CRP  CUP  LE  LEE  LRE  

LUE  

0 0.0001 0.9550 0.9317 0.9610 0.9777 0.3790 0.3617 0.4581 0.4810 

 
0.1 0.9557 0.9380 0.9607 0.9780 0.3797 0.3651 0.4625 0.4823 

 
0.3 0.9543 0.9303 0.9593 0.9713 0.3790 0.3686 0.4692 0.4850 

 
0.5 0.9543 0.9440 0.9703 0.9793 0.3789 0.3743 0.4776 0.4897 

 
0.7 0.9567 0.9503 0.9760 0.9830 0.3797 0.3797 0.4865 0.4941 

 
0.9 0.9563 0.9487 0.9813 0.9833 0.3785 0.3843 0.4929 0.4961 

 
0.9999 0.9593 0.9587 0.9383 0.9707 0.3795 0.3873 0.3795 0.4199 

0.5 0.0001 0.9510 0.9310 0.9510 0.9743 0.3782 0.3610 0.4554 0.4787 

 
0.1 0.9600 0.9340 0.9577 0.9770 0.3781 0.3633 0.4595 0.4796 

 
0.3 0.9557 0.9360 0.9670 0.9767 0.3794 0.3694 0.4689 0.4856 

 
0.5 0.9560 0.9327 0.9647 0.9757 0.3792 0.3736 0.4757 0.4884 

 
0.7 0.9503 0.9430 0.9700 0.9790 0.3794 0.3790 0.4847 0.4924 

 
0.9 0.9573 0.9547 0.9803 0.9820 0.3785 0.3839 0.4922 0.4952 

 
0.9999 0.9563 0.9550 0.9383 0.9670 0.3795 0.3878 0.3795 0.4198 

1.0 0.0001 0.9533 0.9297 0.9540 0.9727 0.3794 0.3614 0.4520 0.4746 

 
0.1 0.9537 0.9350 0.9540 0.9777 0.3804 0.3654 0.4582 0.4798 

 
0.3 0.9540 0.9377 0.9643 0.9780 0.3780 0.3681 0.4628 0.4799 

 
0.5 0.9557 0.9380 0.9707 0.9773 0.3782 0.3736 0.4714 0.4836 

 
0.7 0.9570 0.9463 0.9760 0.9813 0.3800 0.3803 0.4818 0.4897 

 
0.9 0.9613 0.9593 0.9837 0.9860 0.3783 0.3835 0.4878 0.4912 

 
0.9999 0.9560 0.9540 0.9327 0.9663 0.3785 0.3861 0.3785 0.4184 

1.5 0.0001 0.9553 0.9360 0.9523 0.9773 0.3800 0.3624 0.4494 0.4741 

 
0.1 0.9567 0.9280 0.9543 0.9690 0.3771 0.3624 0.4500 0.4718 

 
0.3 0.9553 0.9380 0.9607 0.9743 0.3799 0.3698 0.4613 0.4794 

 
0.5 0.9603 0.9423 0.9660 0.9783 0.3804 0.3758 0.4701 0.4840 

 
0.7 0.9500 0.9433 0.9663 0.9743 0.3790 0.3791 0.4764 0.4842 

 
0.9 0.9553 0.9527 0.9780 0.9807 0.3788 0.3840 0.4839 0.4875 

 
0.99999 0.9587 0.9580 0.9373 0.9687 0.3794 0.3875 0.3794 0.4197 

2.0 0.0001 0.9567 0.9320 0.9493 0.9747 0.3801 0.3625 0.4465 0.4725 

 
0.1 0.9563 0.9303 0.9527 0.9743 0.3796 0.3642 0.4491 0.4727 

 
0.3 0.9557 0.9350 0.9640 0.9787 0.3782 0.3683 0.4559 0.4745 

 
0.5 0.9590 0.9413 0.9650 0.9790 0.3779 0.3735 0.4640 0.4781 

 
0.7 0.9570 0.9463 0.9720 0.9813 0.3800 0.3802 0.4743 0.4838 

 
0.9 0.9560 0.9553 0.9800 0.9850 0.3783 0.3839 0.4802 0.4842 

 
0.9999 0.9583 0.9523 0.9330 0.9643 0.3778 0.3857 0.3778 0.4177 

2.5 0.0001 0.9623 0.9350 0.9543 0.9770 0.3801 0.3625 0.4447 0.4707 

 
0.1 0.9483 0.9250 0.9440 0.9657 0.3783 0.3632 0.4464 0.4700 

 
0.3 0.9527 0.9373 0.9573 0.9733 0.3796 0.3697 0.4566 0.4756 

 
0.5 0.9520 0.9337 0.9620 0.9740 0.3778 0.3725 0.4612 0.4748 

 
0.7 0.9530 0.9453 0.9687 0.9743 0.3795 0.3801 0.4719 0.4805 

 
0.9 0.9577 0.9563 0.9780 0.9803 0.3788 0.3839 0.4792 0.4833 

 
0.9999 0.9527 0.9540 0.9330 0.9690 0.3784 0.3862 0.3784 0.4185 

3.0 0.0001 0.9530 0.9250 0.9483 0.9650 0.3768 0.3595 0.4416 0.4678 

 
0.1 0.9587 0.9327 0.9567 0.9767 0.3794 0.3643 0.4481 0.4715 

 
0.3 0.9527 0.9380 0.9563 0.9720 0.3782 0.3679 0.4540 0.4721 

 
0.5 0.9620 0.9467 0.9697 0.9793 0.3805 0.3759 0.4650 0.4788 

 
0.7 0.9607 0.9497 0.9760 0.9837 0.3786 0.3786 0.4700 0.4789 

 
0.9 0.9523 0.9523 0.9757 0.9797 0.3796 0.3848 0.4793 0.4832 

 
0.9999 0.9590 0.9587 0.9483 0.9697 0.3806 0.3884 0.4046 0.4361 

 



Sunway Academic Journal Volume 8 

 
 

37 

CONCLUDING REMARKS 

 

In the present article it is assumed that the random errors are normally distributed and there 

is only one outlier in the given set of data. The numerical results in this study show that the 

choice of a suitable confidence interval for the population mean would depend on the 

sample size. Future research may be carried out to determine confidence intervals for the 

population mean and other parameters under a more general assumption of the distribution 

of the random errors in the presence of more than one outlier. 
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