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 Consider the American basket call option in the case where there are N underlying 

assets, the number of possible exercise times prior to maturity is finite, and the vector 

of N asset prices is modeled using a Levy process. A numerical method based on 

regression and numerical integration is proposed to estimate the price of the American 

option. In the proposed method, we first express the asset prices as nonlinear functions 

of N uncorrelated standard normal random variables. For a given set of time-t asset 
prices, we next determine the time-t continuation value by performing a numerical 

integration along the radial direction in the N-dimensional polar coordinate system for 

the N uncorrelated standard normal random variables, expressing the integrated value 
via a regression procedure as a function of the polar angles, and performing a numerical 

integration over the polar angles. The larger value of the continuation value and the 

time-t immediate exercise value will then be the option value. The time-t option values 
over the N-dimensional space may be represented by a quadratic function of the radial 

distance, with the coefficients of the quadratic function given by second degree 
polynomials in N-1 polar angles. Partitioning the maturity time T into k* intervals of 

length Δt, we obtain the time-(k-1)Δt option value from the time-kΔt option values for k 

= k*, k*-1,…, 1. The time-0 option value is then the price of the American option. It is 
found that the numerical results for the American option prices based on regression and 

numerical integration agree well with the simulation results, and exhibit a variation of 

the prices as we vary the non-normality of the underlying distributions of the assets. To 
assess the accuracy of the computed price we may use estimated standard error of the 

computed American option price. The standard error will help us gauge whether the 

number of selected points along the radial direction and the number of selected polar 

angles are large enough to achieve the required level of accuracy for the computed 

American option price.   
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INTRODUCTION 

 

 A major characteristic of the American option is that it can be exercised prior to maturity date. Pricing of 

American option is known to be a difficult problem especially when the number of underlying assets is large. 

The approaches for pricing American options include Monte Carlo simulation (Fu et al., 2001; Rogers, 2002), 

regression procedure (Carriére, 1996; Longstaff and Schwartz, 2001; Tsitsiklis and Van Roy, 1999, 2001), 

parametric approach (Bossaerts, 1989; Li and Zhang, 1996; Grant et al., 1997; Andersen, 2000; Garcia, 2003), 

stratification approach (Tilley, 1993; Barraquand and Martineau, 1995; Raymar and Zwecher, 1997), simulated 

tree approach (Broadie and Glasserman, 1997; Broadie et al., 1997b), neural networks (Hunt et al., 1992; 

Sanner et al., 1992; Kelly, 1994; Morelli et al., 2004; Kohler et al., 2006; Kohler and Krzyzak, 2009), and 

stochastic mesh method (Broadie and Glasserman, 1997; Avramidis and Hyden, 1999; Avramidis and 

Matzinger, 2004; Liu and Hong, 2009).   

 Let Si(t) be the time-t price of the i-th asset and S(t) = [S1(t), S2(t),…, SN(t)]
T
  the vector of asset prices. In 

this study, we aim to estimate the American option price when there are N underlying assets, the possible 

exercise times prior to maturity are 0 = t0, t1, t2, …, tk* = T where tk = kΔt and Δt is a small increment in time, 

and the vector of asset prices S(t) is modeled using a Levy process which is characterized by its independent and 

stationary increments, and stochastic continuity (Beh et al., 2010). We use a backward procedure to find the 

option values at S(tk*), S(tk*-1), ..., S(0) with the option value at S(0) representing the American option price. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sunway Institutional Repository

https://core.ac.uk/display/148366569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


9                                                                        Woan-Lin Beh et al, 2014   

Australian Journal of Basic and Applied Sciences, 8(24) Special 2014, Pages: 8-17 

 

 To find the option value at S(tk), 0  k  k*-1, we express the vector S(tk+1)  of prices at time tk+1 given the 

value S(tk) as a function of the vector e
(k+1) 

= ),...,,(
)1()1(

2
)1(

1
 k

N
kk

eee of a set of uncorrelated standard normal 

random variables. The space formed by e
(k+1)

 is next transformed to the N-dimensional polar coordinate system. 

The continuation value at S(tk) is computed by performing numerical integration along the radial direction and 

over the polar angles. The option value at S(tk) is then given by the larger value of the time-t immediate exercise 

value and the continuation value at S(tk). 

 To express the time-t option values over the N-dimensional space as an N-dimensional function, we first 

derive the distribution of S(tk) given S(t0). It turns out that the random vector S(tk) can be expressed as a function 

of the vector )(~ k
e = )~,...,~,~( )()(

2
)(

1
k

N
kk eee  of another set of uncorrelated standard normal random variables. The 

space formed by )(~ k
e  is next transformed to an N-dimensional polar coordinate system. We approximate the 

time-t option values for the points along the radial direction by a low degree polynomial. By using a regression 

procedure, each of the coefficients of the polynomial in terms of the radial distance is next expressed as a low 

degree polynomial of the N-1 polar angles. In this way, we obtain the N-dimensional function which maps S(tk) 

to the time-kΔt option value Q(tk, S(tk)). This function can then be used to find the option value at S(tk-1).    

 As the option values are approximated by polynomials obtained by a regression procedure, the computed 

American option price would not be exact. We estimate the standard error of the option value at time tk for k = 

k*-1, k*-2,…, 0 in the indicated order. The estimated standard error at t0 will then be an estimate of the standard 

error of the American option price. 

 When N is large, instead of paying the high cost of estimating the standard errors for all the values of k in 

{k*-1, k*-2,…, 0}, we may compute the initial few standard errors and use an extrapolation procedure to get an 

idea of the size of the standard error of American option price. 

 The layout of this paper is as follows. The method based on regression and numerical integration for pricing 

the American call options and the estimated standard error of the American option price will be discussed in 

details in next topic accordingly. The results will be presented in the Results and Discussion section. Meanwhile 

the conclusion will be given in the last section of this paper.    

 

Pricing of American Call Options on the N Assets Using Regression and Numerical Integration: 
 Consider an American basket call option on the N assets (N ≥ 2) with time T to expiration and a strike price 

of K. Suppose the distribution of the vector of asset prices S(t) is described via a Levy process. The prices of the 

assets are usually correlated and each of them has fatter tails and thinner waist than the normal distribution. The 

multivariate normal distribution is thus not suitable for approximating the joint distribution of asset prices. In 

what follows, we approximate the distribution of the asset prices by using the quadratic-normal distribution 

which is introduced in Pooi (2003). To form the quadratic-normal distribution with parameters 0 and iλ , we 

may begin with the following non-linear transformation  
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where ~e  N(0, 1). If e has the standard normal distribution with the transformation in Eq.(1) is one-to-one, then 

~ is said to have the quadratic-normal distribution. The i-th component of the time-tk value of the vector of asset 

prices S(tk)
 
may be approximated by  

  twStSSStS k
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*
      (2) 

where i  and i  are respectively the mean rate and volatility of the price of asset i and w
(k)

 = 

(
 kw1 ,

 kw2 ,…,
 k
Nw ) is a set of N random variables that has a correlation structure specified by the correlation 

matrix P = { ij } with ij  = corr(
 k
iw ,

 k
jw ), for ji  , i, j = 1, 2,…, N and ii = var(

 k
iw ) = 1, for i = 1, 2,…, 

N. Let B = { ijb } be the (NxN) matrix formed by the N eigenvectors of the (NxN) matrix P = { ij } and 

)()( kTk
wBv  . Suppose the distribution of 

)(k
iv  is given by a quadratic-normal distribution with parameters 0 

and iλ , i.e.  
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where ~)(k
ie  N(0, 1). 
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 In what follows, we shall find an approximate distribution for S
(k)

. First, let *)(k
S  be the value of )(k

S when 

the value of )1( k
S is given. By using Eq.(1) we find the moments )][]([ 21 *)(*)( mk

j
mk

i SSE  for 0,0 21  mm  and 

421 mm ; i, j = 1, 2,…, N and k = 1, 2,…, k*. By using the moments )][]([ 21 *)1(*)1( m
j

m
i SSE  and the value of 

)0(
S we can find the moments )][]([ 21 )1()1( m

j
m

i SSE , for 0,0 21  mm and 421 mm  . Similarly by using the 

moments )][]([ 21 *)(*)( mk
j

mk
i SSE  and the value of )][]([ 21 )1()1( mk

j
mk

i SSE 
 we can find the moments 

)][]([ 21 )()( mk
j

mk
i SSE  for k = 2, 3,…, k*. 

 Let )(~ k
A  be the (NxN) variance-covariance matrix of )(k

S , and )(~ k
B the matrix formed by the N 

eigenvectors of )(~ k
A . Furthermore let )(~ k

μ  be a vector of which the i-th component is )( )(k
iSE . Then  

)~(
~~ )()()()( kkTkk

μSBv  , for k = 1, 2,…, k*                          (4) 

is a vector consisting of uncorrelated random variables. The next step is to compute the first four moments of 
)(

i
~ k
v (i = 1, 2,…, N), and approximate the distribution of 

)(
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~ k
v  using a quadratic-normal distribution, 
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The payoff from the exercise of the basket call option at time tk at which S(tk) = x
(k)

 is given by  
 ))(...)()((),( 2211

)( KtSatSatSath kNNkk
k

k x , for k = 0, 1,..., k*.                 (5) 

When S(tk*-1) = x
(k*-1)

, the conditional expectation of the payoff at k = k* is given by 
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with r is the risk free interest rate and (
)*(

1
k

w ,  
)*(

2
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w ,…, 
)*(k

Nw ) having the same distribution as (
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1
k

w ,  
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2
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w ,…, 

)(k
Nw ). We may write )*()*( kk

Bvw   where 
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iv*
 has the same distribution as 

 k
iv  in Eq.(3). Let 

Q(tk, x
(k)

) = max( h(tk, x
(k)

), e
(-r∆t)

E
*
[Q(tk+1, S(tk+1)) | S(tk) = x

(k)
] ) for k < k*                        (7) 

and  Q(tk*, x
(k*)

) = h(tk*, x
(k*)

).                      (8) 

 The value Q = Q(0, S(0)) will then be an approximation of the price of the American basket call option. The 

approximation would be good when k* is large enough.  

The function Q(tk*, x
(k*)

) may be computed and summarized as follows. 

First we note that the distribution of S
(k*) 

(Eq.(4) when k = k*) is specified by  
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and ~~ (k*)
ie N(0, 1),  i =1, 2,..., N. 

 We transform *)(~ k
e = )~,...,~,~( *)(*)(

2
*)(

1
k

N
kk eee to an N-dimensional polar coordinate system given by the radial 

distance 
*)(~ k and (N-1) polar angles 
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where qi = -1 or +1, depending on the quadrant which contains *)(~ k
e , for i = 1, 2,..., N. 
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 For each of the 2
N
 quadrants, we choose randomly a set of nv values of )
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where *)(~ kξ  is a constant which depends on *)(~ k . We may use a regression procedure to approximate 
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We again introduce an N-dimensional polar coordinate system given by 
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cos...

~
cos

~
cos

~
sin~~ 








  kkk
N

k
N

k
N

kk qe                            (25) 

             1
1

1
2

1
4

1
3

1
2

1
3

1
3

~
sin

~
cos...

~
cos

~
cos

~
sin~~ 








  kkk
N

k
N

k
N

kk qe                           (26) 

  
       1

1
1

2
1

1
1

1

~
sin

~
sin~~ 



  kkk

N
k

N qe            (27) 

)1(
1

)1()1( ~
cos~~ 


kk

N
k

N qe  ,   90
~

0 )1(k
i , i = 1, 2,…, N-1,                                    (28) 

where qi = -1 or +1, depending on the quadrant which contains )1(~ k
e , for i = 1, 2,..., N. 

For each of the 2
N
 quadrants, we choose randomly a set of nv values of )

~
,...,

~
,

~
(

~ )1(
1

)1(
2

)1(
1

)1( 


  k
N

kkk  , and 

for each chosen value of 
)1(~ k , we consider the following nr+1  values of 

)1(~ k : 

jhk
j  )1(~ , j = 0, 1,…, nr                                                                                             (29) 

where h =  /nr. For each 
)1(~ k , we   

(i) find 
)1(~ k

ie , for i = 1, 2,..., N  by using Eq.(24) – (28) with 
)1(~ k = 

)1(~ k
j , 

(ii) find 
)1(~ k

iv , for i = 1, 2,..., N  by using Eq.(22), and 
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(iii) find  S(tk-1) = x
(k-1)

 by using Eq.(21).  

We next need to find h(tk-1, x
(k-1)

)  and E
*
[Q(tk, S

(k)
|S

(k-1)
 = x

(k-1)
)] in order to determine Q(tk-1, x

(k-1)
).  

 To find E
*
[Q(tk, S

(k)
|S

(k-1)
 = x

(k-1)
)] under the risk-neutral distribution, we may perform an N-dimensional 

numerical integration. The relevant procedure is as follows.  

 First we transform )(

1

ke  , )(

2

ke ,…, )(k

Ne  which appear in Eq. (3) using an N-dimensional polar coordinate 

transformation given by 
2)(2)(2)(

2
2)(

1 ][][...][][ kk
N

kk eee                                                (30) 

             kkk
N

k
N

k
N

kk qe 1232111 sincos...coscoscos                                        (31) 

             kkk
N

k
N

k
N

kk qe 1232122 sincos...coscossin                                         (32) 

             kkk
N

k
N

k
N

kk qe 1243233 sincos...coscossin                                                   (33) 

  
       kkk

N
k

N qe 1211 sinsin                                           (34) 

)(
1

)()(
cos

kk
N

k
N qe  ,  900 )(k

i , i = 1, 2,…, N-1,                                                    (35) 

where qi = -1 or +1, depending on the quadrant which contains )(k
e , for i = 1, 2,..., N. 

For each of the 2
N
 quadrants, we choose randomly a set of nv values of ),...,,(

)(
1

)(
2

)(
1

)( k
N

kkk
  , and for each 

chosen value of )(k , we consider the following nr+1  values of 
)(k : 

jhk
j )( ,  j = 0, 1,…, nr                                                                                              (36) 

where h =  /nr and 
2

01.0,
2

N  is the 99% point of the chi square distribution with N degree of freedom.  For 

each )(k and
)(k , we use Eq.(31) – (35) to compute ),...,,( )()(

2
)(

1
k

N
kk eee . We next compute 

),...,,(
)*()*(

2
)*(

1
k

N
kk

vvv using 

 























0)),
2

1
(][(

0)),
2

1
(]([

)(32)(
32

)(
i1

)(32)(
2

)(
i1

)(*

k
i

ik
iii

k
i

k
i

ik
ii

k
i

k
i

eee

eee
v







                         (37) 

where T
iii ),,( 321   is the parameter iλ  of the quadratic-normal distribution for 

*(k)
iv . 

We next compute   

w
*(k)

 = Bv
*(k)

 ,                                (38) 

and  xi
(k)

 = Si
(k)

(conditioned on Si
(k-1)

) = Si
(k)

(1+r t + tw
k

ii  )*(
), for i = 1, 2,…, N,             (39)  

where r is the risk free interest rate. 

Then we find )~(
~~ )()()()( kkTkk

μxBv  (see Eq. (4)), and )~,...,~,~( )()(
2

)(
1

k
N

kk eee (see Eq.(10)), and obtain 

)(
1

)(
2

)(
1

)( ~
,...,

~
,

~
,~ k

N
kkk

  using Eq.(11) – (16) with k* changed to k. 

From )(~ k (
 k

1

~
 , 

 k
2

~
 ,…,

 k
N 1

~
 ), we find the quadrant which contains )(~ k  and use Eq.(30) with k* replaced 

by k to get 
 k
gc~ , g = 0, 1, 2. From 

 k
gc~ , g = 0, 1, 2, we find  

 ]]~[~~~~[),( 2)()(
2

)()(
1

(k)
0

)( kkkkk
k ρcρcctQ x                                                  (40) 

 In short for a given value of ),...,,,,...,,(
)(
1

)(
2

)(
121

k
N

kk
Nqqq   and the values 

)(k
j , j = 0, 1, 2, …, nr of 

)(k , 

we find nr+1 corresponding values of Q(tk, x
(k)

). From these nr+1 values of Q(tk, x
(k)

), we use a regression 

procedure to obtain  












)()(

)()(2)()(
2

)()(
1

)(
0)(

0,

0,][
),(

kk

kkkkkkk
k

k
ξρ

ξρρcρcc
tQ x                                           (41) 

For a given value of ),...,,( 21 Nqqq , we need to compute the multiple integral 

   
   






2/

0

2/

0

2/

0 0

])[2/1(2)()(
2

)()(
1

)(
0

)2/(
...

)(
1

)(
2

)(
1

)(

)(

2)(

21
||)][()2(


















k k k

N

k

k

k

N
JecccI kkkkkN

qqq    

)(
1

)(
2

)(
1

)( ...
kkk

N
k dddd   ,                                                   (42)    
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where J=[ Jacobian obtained from ),...,,(
)()(

2
)(

1
k

N
kk

eee ]=

)(
1

)(

)(
1

)(
2

)(
1

)(
1

)(
1

)(

)(
1

)(
2

)(
1

)(
1

)(

)(

)(

)(
2

)(

)(
1

k
N

k
N

k
N

k

k
N

k

k

k
N

k

k

k

k

k

k
N

k

k

k

k

eee

eee

eee

 

















































. 

To compute the integral in Eq.(42) we  

(i) use numerical integration to perform the integration with respect to )(k , 

(ii) regress the value from (i) on )(
1

)(
2

)(
1 ,...,, k

N
kk

  to obtain a polynomial of low degree in the polar angles, and 

(iii) use numerical integration to evaluate integrals of which the integrands are products of the powers, sines and 

cosines of the polar angles. 

Then  
*E [       11|,   kkk

ktQ xSS ]   
  


1,1 1,1 1,11 2

21
q q q

qqq

N

N
I        (43) 

and the time-(k-1)Δt option value at x
(k-1)

 is given by 

Q(tk-1, x
(k-1)

) = max(h(tk-1, x
(k-1)

), e
(-r∆t)

E
*
[Q(tk, S

(k)
|S

(k-1)
 = x

(k-1)
)]).                         (44) 

 We next obtain the N-dimensional function which maps S(tk-1) to the time-(k-1)Δt option value Q(tk-1, S(tk-

1)). For each of )1(~ k , we may approximate Q(tk-1, x
(k-1)

) by a quadratic function of 
 1~ k and express Q(tk-1, 

x
(k-1)

) as 

















 )1()1(

)1()1(2)1()1(

2

)1()1(

1

)1(

0)1(

1 ~~0,

~~0,]~[~~~~
),(

kk

kkkkkkk
k

k
ξρ

ξρρcρcc
tQ x      (45) 

where 
)1(

0
~ k
c , 

)1(
1

~ k
c , 

)1(
2

~ k
c  and )1(~ kξ  are constants which depend on )1(~ k . 

Then, for each quadrant and each value of g = 0, 1, 2, we may regress 
)1(~ k

gc  on 
)1(

1
)1(

2
)1(

1

~
,...,

~
,

~ 


 k
N

kk   to get  

                  21
1

1

1
1

,1

1

1

1111
1

1

11
0

1 ~~~~~~~~~ 



















   k

i

N

i

k
gii

N

jii

N

j

k
j

k
i

k
gij

k
i

N

i

k
gi

k
g

k
g ddddc  ,                       (46) 

for   90
~

0 )1(k
i  and i, j = 1, 2, ..., N-1. 

By finding Q(tk*, x
(k*)

), Q(tk*-1, x
(k*-1)

), ..., Q(t1, x
(1)

), Q(t0, x
(0)

) in the indicated order, we can finally obtain the 

price of the American basket call option  

Q = Q(t0, x
(0)

) = Q(0, S(0)).                               (47) 

 Instead of using numerical integration to compute the conditional expectation E
*
[Q(tk, S

(k)
|S

(k-1)
 = x

(k-1)
)] (see 

Eq.(42), (43) and (44)), we may use simulation to estimate the same conditional expectation. The option price 

thus obtained may be referred to one which is based on simulation.     

 

Estimation of the Standard Error of the Computed Price of an American Option:  

 We notice that for each of the 2
N
 quadrants in the coordinate system for (

*)(*)(
2

*)(
1

~,...,~,~ k
N

kk eee ), we compute 

the coefficients 
*)(~ k

gid and 
*)(~ k

gijd (see Eq.(20)), which can be used to find ),( *)(
*

k
ktQ x  approximately. We also 

notice that in the computation of 
*)(~ k

gid and 
*)(~ k

gijd , we have chosen randomly for each quadrant, a set of nv values 

of 
*)(~ k , and for each chosen value of 

*)(~ k , we have considered nr+1 values of 
*)(~ k  (see Eq. (17)), which 

represent nr+1 radial points. 

 It is obvious that for a different set of selected values of 
*)(~ k and radial points, the computed values of  

*)(~ k
gid and 

*)(~ k
gijd  in a given quadrant would be different. Let *)(k

i f
D  be the set of all values of the 

*)(~ k
gid  and 

*)(~ k
gijd  

based on the if -th selected set of 2
N 

· nv · (nr+1) values of )~,
~

( *)(*)( kk  . 

 A way to measure the extent of variation of the values in 
*)(k

i f
D  as we vary if is by examining the following 

estimated standard error of  ),(
)1*(

01*



k

ktQ x  where 
)1*(

0
k

x  is an (Nx1) vector of which the i-th component is 

)]0(|[ )1*(
S

k
iSE : 
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2/1

1

2)1*(
01*

)1*(
01*

)1*(
01* )],(),([

1
),(














 












f

f

f

n

i

k
k

k
ki

f

k
kQ tQtQ

n
tS xxx                (48) 

where  

nf is the number of selected sets of 2
N 

· nv · (nr+1) values of )~,
~

( *)(*)( kk  , ),(
)1*(

01*



k

ki tQ
f

x is the value of 

),(
)1*(

01*



k

ktQ x  based on *)(k

i f
D  

and 

),(
)1*(

01*



k

ktQ x = f

n

i

k
ki ntQ

f

f

f
/),(

1

)1*(
01*




 x .                                  (49) 

 As we move backward in time from tktk )1*(1*   (i.e. when k assumes the value k*-1, k*-2,…, or 1 in 

the indicated order), we compute the following estimated standard error of  ),( )1(
01



k

ktQ x  where 
)1(

0
k

x  is an 

(Nx1) vector of which the i-th component is )]0(|[ )1(
S

k
iSE : 

2/1

1

2)1(
01

)1(
01

)1(
01 )],(),([

1
),(














 












f

f

f

n

i

k
k

k
ki

f

k
kQ tQtQ

n
tS xxx                           (50) 

where  

nf  now is the number of selected sets of 2
N 

· nv · (nr+1) values of )~,
~

( )()( kk  , ),(
)1(

01



k

ki tQ
f

x  is the value of 

),( )1(
01



k

ktQ x  based on  

(i) the if -th selected set of 2
N 

· nv · (nr+1) values of )~,
~

( )()( kk  , 

(ii) a randomly selected set of 2
N 

· nv · (nr+1) values of  ),( )1()1(  kk   where )1( k  is the vector of (N-1) 

angular coordinates in the polar coordinate system for ),...,,( )1()1(
2

)1(
1

 k
N

kk eee ,  

and  

(iii) a randomly selected member from { )1()1(
2

)1(
1 ,...,,  k

n
kk

f
DDD },  

and  

),(
)1(

01



k

ktQ x = f

n

i

k
ki ntQ

f

f

f
/),(

1

)1(
01




 x .                  (51) 

 The value of  ))0(,0( SQS  will now be an estimate of the standard error of the computed American option 

price. 

RESULTS AND DISCUSSION 
 

 We may illustrate the methods in the previous section by using the following examples:  

N = 6, T = 10/365, r = 0.05, K = 46.5, 2.01 a , 2.02 a , 2.03 a , 1.04 a , 1.05 a  and  2.06 a , 

     k
j

k
i ww ,corrP

 

is given in Table 1, 
 0,, Sii  for i = 1, 2,…, 6, are given in Table 2. The coefficient of 

the skewness of 
 k
iv  (see Eq.(3))  

2
3

2

3
3

m

m
m   with   jk

ij vEm  , for j = 2, 3, 4,  

and the corresponding coefficient of kurtosis  

2
2

4
4

m

m
m  are also given in Table 2. 

 The results for the American call option prices are shown in Table 3. The computing times required for 

computing the American call option prices by using the proposed method and simulation (in minutes) 

respectively in an Intel(R) Core(TM) i5 processor 2.27GHz computer are shown in Table 4. 

From Table 3, we can get the following findings: 

F1:  The American call option prices found by using numerical method agree well with those based on 

simulation especially when the number ns of points chosen randomly from the N-dimensional space is very 

large. 

F2:  When the distributions of 
 k
iv  are normal (see example A1 in Tables 2 and 3), an increase in the value of 

(nv, nr) does not affect the price based on the numerical method very much. However when the distributions of 
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 k
iv  deviate from normality (see examples A2, and A3 in Tables 2 and 3), the variation of nv and nr has a rather 

large effect on the price based on the numerical method. Thus when the 
 k
iv  are non-normal, we need to use 

fairly large nv and nr in order to compute the price accurately. 

F3:  When the distributions of  k
iv  are skewed and having larger kurtosis, the American call option price 

tends to deviate from the American call option price computed when the distributions of  k
iv are normal. 

 From Table 4, we see that the computing times required by the proposed method are comparable to those 

required by the simulation procedure when ns = 1,000. But when ns = 10,000, the simulation procedure requires 

much longer time.  

 The values of estimated standard error ),(
)(

0

k
kQ tS x  when k = 9, 8, 7 and 6 and 0

)(
3 

i
m  and  0.3

)(
4 

i
m , i = 

1, 2, …, 6 are shown in Table 5, while those of ),( )(
0

k
kQ tS x  for k = 5, 4, 3,…, 1, 0 based on linear extrapolation 

are shown in Table 6. The last row of Table 6 shows that the standard error of the American option price 

decreases as we increase the value of nv while keeping nr fixed at 30. 

 

Table 1: The (i, j) entry of 
     k

j
k

i ww ,corrP

 

 j 

1 2 3 4 5 6 

i 1 1 0.01 0.045 0.08 0.05 0.1 

2 0.01 1 0.05 0.03 0.1 0.07 

3 0.045 0.05 1 0.1 0.075 0.09 

4 0.08 0.03 0.1 1 0.07 0.05 

5 0.05 0.1 0.075 0.07 1 0.04 

6 0.1 0.07 0.09 0.05 0.04 1 

 

Table 2: Values of ,, ii  (0)
S , 

)(
3

im  and 
)(

4
im under the three cases A1, A2, and A3 

 
Example i 

i  i   0
S  

)(
3

im  
)(

4
im  

A1 1 0.05 0.15 50 0.0 3.0 

2 0.05 0.10 60 0.0 3.0 

3 0.05 0.20 35 0.0 3.0 

4 0.05 0.20 40 0.0 3.0 

5 0.05 0.20 45 0.0 3.0 

6 0.05 0.20 52 0.0 3.0 

A2 1 0.05 0.15 50 0.0 5.0 

2 0.05 0.10 60 0.0 5.0 

3 0.05 0.20 35 0.0 5.0 

4 0.05 0.20 40 0.0 5.0 

5 0.05 0.20 45 0.0 5.0 

6 0.05 0.20 52 0.0 5.0 

A3 1 0.05 0.15 50 0.1 3.6 

2 0.05 0.10 60 0.1 3.2 

3 0.05 0.20 35 0.1 3.4 

4 0.05 0.20 40 0.1 3.0 

5 0.05 0.20 45 0.1 3.8 

6 0.05 0.20 52 0.1 4.0 

 

Table 3: Results for American call option prices under the three cases A1, A2, and A3 

Example (nv, nr) Numerical Method Simulation 

ns=1,000 ns=10,000 

A1 (50,30) 1.39999 1.40089 1.40059 

(100,30) 1.39266 1.40035 1.39412 

(200,30) 1.39571 1.40201 1.39725 

(300,30) 1.39720 1.40252 1.39788 

(400,30) 1.39247 1.40003 1.39275 

A2 (50,30) 1.39864 1.40163 1.40048 

(100,30) 1.40054 1.41781 1.40443 

(200,30) 1.40190 1.41650 1.40259 

(300,30) 1.40855 1.41030 1.40828 

(400,30) 1.40974 1.41002 1.40996 

A3 (50,30) 1.41880 1.41012 1.41677 

(100,30) 1.41983 1.41286 1.41530 

(200,30) 1.41557 1.41027 1.41546 

(300,30) 1.41188 1.41747 1.41054 

(400,30) 1.41347 1.41019 1.41517 
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Table 4: Computation times (in minutes) required for computing the American call option prices presented in Table 3. 

(nv, nr) Numerical Method Simulation 

ns=1,000 ns=10,000 

(50, 30) 120.25 135.21 1650.12 

(100, 30) 253.18 270.51 3270.43 

(200, 30) 1012.28 1078.36 6510.76 

(300,30) 1665.15 1692.67 13030.32 

(400,30) 2160.00 2241.39 26040.16 

 

Table 5: The values of estimated standard error ),( )(
0

k
kQ tS x  with 0

)(
3 

i
m  and  0.3

)(
4 

i
m for i = 1, 2, …, 6 when k = 9, 8, 7 and 6  

k (nv, nr) = (100, 30) (nv, nr) = (200, 30) (nv, nr) = (300, 30) (nv, nr) = (400, 30) 

9 0.00009 0.00005 0.00005 0.00005 

8 0.00089 0.00066 0.00054 0.00041 

7 0.00199 0.00165 0.00151 0.00145 

6 0.00296 0.00246 0.00229 0.00215 

 

Table 6: The estimated values of ),( )(
0

k
kQ tS x  obtained by using linear extrapolation. 

k (nv, nr) = (100, 30) (nv, nr) = (200, 30) (nv, nr) = (300, 30) (nv, nr) = (400, 30) 

5 0.0038 0.0034 0.0029 0.0030 

4 0.0048 0.0042 0.0037 0.0037 

3 0.0058 0.0050 0.0045 0.0044 

2 0.0068 0.0058 0.0053 0.0051 

1 0.0078 0.0066 0.0061 0.0058 

0 0.0088 0.0074 0.0069 0.0065 

 

Conclusions: 
 The main contributions of the study include 

(A) The introduction of a method based on multivariate quadratic-normal distribution for computing the joint 

distribution of the vector of time-t asset prices. 

(B) The introduction of a method based on regression and numerical integration for pricing multidimensional 

American options. 

(C) The introduction of a method for assessing the accuracy of the computed prices of the American options. 

 The main feature of the methods in this paper is the representation of the N-dimensional function as a 

quadratic function of the radial distance, with the coefficients of the quadratic function given by second degree 

polynomials in N-1 polar angles. The above N-dimensional function can approximate fairly well the American 

option values over the N-dimensional space. Furthermore this representation of the N-dimensional function is 

attractive from a computational point of view as it leads to easily integrated multiple integrals of which the 

integrands take the form of a product of N functions of individual variables given by the radial distance and N-1 

polar angles.       

 Although the paper concentrates on the basket call options, it should be interesting to find out whether the 

methods in the paper may also be adapted to deal with other types of American option, for example the max-

option and geometric average option.    
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