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Abstract—Consider the European call option written on a zero 

coupon bond. Suppose the call option has maturity T and 

strike price K while the bond has maturity TS  . We 

propose a numerical method for evaluating the call option 

price under the Chan, Karolyi, Longstaff and Sanders (CKLS) 

model in which the increment of the short rate over a time 

interval of length dt , apart from being independent and 

stationary, is having the quadratic-normal distribution with 

mean zero and variance dt. The key steps in the numerical 

procedure include (i) the discretization of the CKLS model; 

(ii) the quadratic approximation of the time-T bond price as a 

function of the short rate  Tr  at time T; and (iii) the 

application of recursive formulas to find the moments of 

 dttr   given the value of  tr . The numerical results thus 

found show that the option price decreases as the parameter 

  in the CKLS model increases, and the variation of the 

option price is slight when the underlying distribution of the 

increment departs from the normal distribution. 

Keywords: zero coupon bond, CKLS model, option price. 

I. INTRODUCTION 

One factor interest rate models are a well-known class of 
interest rate models in the pricing of interest rate derivatives. 
There are many types of one factor interest rate models, such 
as the Vasicek model, Cox, Ingersoll and Ross (CIR) model, 
Hull-White model, Chan, Karolyi, Longstaff and Sanders 
(CKLS) model and others (see Vasicek(1977)[1], 
CIR(1985)[2], Hull-white(1990)[3] and CKLS(1992)[4]). The 
Vasicek model is considered as the most fundamental one 
factor interest rate model which exhibits mean reversion. The 
Vasicek model follows the following stochastic differential 
equation: 

      tdwdttrmatdr   . 

where  tr  is the interest rate at time 0t , a the drift factor 

with 0a , m  the long run mean around which mean 

reversion occurs,  the volatility factor and  tw  a Brownian 

motion. In mean reversion, if the interest rate  tr  is above 

the long run mean m, then the coefficient of a performs a 
negative drift such that the interest rate is pulled down back to 

the long run mean m. Likewise, if the interest rate  tr  is 

below the long run mean m, then the coefficient of a performs 
a positive drift such that the interest rate is pulled up back to 
the long run mean m. Thus, the coefficient of a is a speed of 
adjustment of interest rate towards m when it wanders away. 
However, there are some drawbacks of the Vasicek model. 
One of the main drawbacks is that the interest rate is 
theoretically possible to become negative which obviously 
does not make sense in market. This main shortcoming was 
then fixed in the CIR model. The CIR model follows the 
following stochastic differential equation: 

        tdwtrdttrmatdr   . 

In the CIR model, the term  tr  is imposed and its 

standard deviation factor becomes  tr . This standard 

deviation factor guarantees a nonnegative interest rate and 
hence eliminates the main drawback of the Vasicek model. 

In 1992, Chan, Karolyi, Longstaff and Sanders introduced 
a model which covers both Vasicek and CIR models. The 
CKLS model follows the following stochastic differential 
equation: 

            ,0; 0       rrtdwtrdttrmatdr      (1) 

where a is the drift factor, m the mean around which mean 
reversion occurs,  the volatility factor,   a positive 

constant, 0r  the initial interest rate at 0t  and  tw  a 

Brownian motion. Analytical solutions have been found in 
many of the one factor interest rate models. Unfortunately, 
there are no analytical solutions for the bond and option prices 
based on the CKLS model. Therefore, numerical approaches 
are required. In 2008, Pooi et al. and Ng et al. as in [5] and [6] 
proposed numerical methods to approximate the distributions 
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of the short term interest rates in one factor models. 
Barone-Adesi et al. (1997, 1999) as in [7] and [8] provided a 
method call the Box method for valuing the prices of the zero 
coupon bond and the call option written on the zero coupon 
bond in the CKLS model featured by a Brownian motion. 

The discretized version of (1) featured by a Levy process 
with quadratic-normal increments can be expressed as 

  ,1,111      ktwrtrmarr kkkkk
    (2) 

where ,,,),( 21 wwtkttrrk        are independent, kw  

has a quadratic-normal distribution (see Pooi (2003) [9]) with 

parameters 0 and λ , [  λ,0~ QNwk ] and λ  is such that 

  ,2,1,1  kwVar k   . 

Let S
TB denotes the bond price at time Tt   of a zero 

coupon bond that matures at time St  , ST 0 . The 

bond price S
TB  can be expressed as  

 
. 
















S

T
dssrS

T eEB            (3) 

In 2009, Khor and Pooi as in [10] proposed a numerical 
method for evaluating the bond price under the CIR model 
featured by a Levy process. While in 2010, Khor, Ng and Pooi 
as in [11] proposed a numerical method for finding bond price 
of a zero coupon bond with maturity T under the CKLS model 
featured by a Levy process.  

The price of the call option with maturity T and strike 
price K written on the zero coupon bond that matures at time S 
is given by 

    ,exp
0

 
 

 



















 KBdssrEC S
T

T

       (4) 

where     0,max    KBKB S
T

S
T 


 is the payoff function.  

In this paper, we present an alternative method based on 
numerical integration for finding the price of European call 
option written on a zero coupon bond when the interest rate 
follows the CKLS model featured by a Levy process. 

The rest of this paper is structured as follows. In Section II, 
we explain two methods and an analytical formula of 
evaluating the price of the European call option written on a 
zero coupon bond. Section III shows some results found from 
the methods in Section II. The analysis of the results is 
discussed as well. We conclude our work in Section IV. 

II. METHODS OF EVALUATING THE PRICE OF THE 

EUROPEAN CALL OPTION WRITTEN ON A ZERO COUPON BOND 

We present two methods of finding the price of the call 
option written on a zero coupon bond. These methods are 
respectively the simulation method and the method based on 
numerical integration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Short rate  tr and times of the maturity of Bond and Option 

Suppose the interval  T,0  is divided into cN  intervals 

each of length t  and the interval  ST ,  into bN  

intervals each also of length t (see fig. 1). The two methods 

for finding the call option price written on a zero coupon bond 
are described below. 

2.1 Simulation Method 

We first use (2) to generate cM  values of Vc 

=   tuuu
cN ,...,, 21  where iu  is the short rate at time 

tit  . For each generated value of cV , we again use (2) to 

generate bM  values of   trrr
bNb  ,...,, 21V  where jr is 

the short rate at time . tjTt  Denote the thi  generated 

value of cV by   tuuu
ci iNiic  ,...,, 21V  and the thj  

generated of bV  by   trrr
bj jNjjb  ,...,, 21V . For the thi  

generated value
icV , we compute the following bond 

price,  ip  and payoff,  iq . 

   



b

j

M

j

b
b

i V
M

p

1

exp
1

 and      Kpq ii , 

where   trrrV
bj jNjjb  ...21 . 

The price C of the European call option written on a zero 
coupon bond can be estimated using the following expression: 

   



c

i

M

i

i
c

c

qV
M

C

1

exp
1

, 

where   tuuuV
ci iNiic  ...21 . 

2.2  Numerical Integration Method 

In Khor, Ng and Pooi (2010) as in [11], the polynomial 

approximations of the first four moments of kr  (see (2)) 

conditioned on the given value of 1kr  are given as 

 Bond matures 

T 

S 

2u  
1cNu  

cNu  

1r  2r  

1bNr  

bNr  
Option matures  tr  

t 

1u  
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  ,| 111101   kkk rccrrE                     (5) 

  ,| 2
122121201

2
  kkkk rcrccrrE                (6) 

  ,| 3
133

2
132131301

3
  kkkkk rcrcrccrrE       (7) 

  ,| 4
144

3
143

2
142141401

4
  kkkkkk rcrcrcrccrrE (8) 

where 441110 ,...,, ccc  are some constants. 

We now use the polynomial approximations for the first 

four moments of kr  conditioned on the value of 1kr  to find 

the bond price S
TB . 

Let   trrrV
bNb  ...21 . Applying (5) with 

1,...,1,  bb NNk , we can get  bVE  in terms of a linear 

function  of 10c  and 11c . Applying (5) and (6) with 

1,...,1,  bb NNk , we can get  2
bVE  in terms of a 

quadratic function of 10c , 11c , 20c , 21c  and 22c . 

Applying (5), (6) and (7),  3
bVE  is found in terms of a cubic 

function of 10c , 11c , 20c , 21c , 22c , 30c , 31c , 32c  and 

33c . Applying (5), (6), (7) and (8), we get  4
bVE  in terms of 

a quartic function of 10c , 11c , 20c , 21c , 22c , 30c , 31c , 

32c , 33c , 40c , 41c , 42c , 43c  and 44c . 

By using (3), the following bond price can then can be 

obtained for a given value of 0r : 

 
     

2462
1

432
bbb

b
S
T

VEVEVE
VEB  . 

After computing S
TB  for a number of selected values of 

0r  in  1,0 , we then apply the regression technique to find 

the following quadratic approximation for S
TB . 

2
02010 rgrggBS

T             (9) 

We note that the value of 0r  coincides with the value 

cNu which appears in the vector   tuuu
cc NN  ,...,, 21V . 

Thus from (4) and (9), we get 

 EC                   (10) 

 
1231201 |||| ...



cNcN uuuuuuuu EEEE , 

where  

    

   ,
2462

1
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2
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2
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with   tuuuV
cNc  ...21  

Next, we let 

 
11 | 


cNcNcN uuu EF .        (11) 

 
1212 || 


cNcNcNcNcN uuuuu EEF .     (12) 

                       

 
123121 ||| ...



cNcN uuuuuuu EEEF .     (13) 

To find 
1cNuF , we first use numerical integration to 

compute 

, 

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











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1

|
1

,




,4,3,2,1,0 and express each 
1, cNuE as a low degree 

polynomial function of 1cNu : 

.0,2
12110, 1

 
        

cccN NNu uuE      (14) 

.2,1,3
13

2
12110, 1

















                                               
c

cccN

N

NNu

u

uuE
     (15) 

.4,3,4
14

3
13

2
12110, 1

















                            
cc

cccN

NN

NNu

uu

uuE
       (16) 

By using (14), (15) and (16), we can find 
1cNuF  

approximately (see (11)) and express 
1cNuF  as a low degree 

polynomial function 
1cNuF  of 1cNu . 

We next use (5) – (8) to compute 
2cNuF  given by (12): 

1212 | 


cNcNcNcN uuuu FEF . 

Similarly by using the iterative formulas in (5) – (8), we 

can also find ,
3cNuF …,

2uF ,
1uF and C. 

2.3  Analytical Formula 

When the increment )()( twdttw   in the CIR model is 

having the normal distribution with mean zero and variance dt, 
the analytical result for the price of the European call option 
written on a zero coupon bond was derived in [2]. The explicit 
expression for the price is given below. 

   
  
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
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2

2
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where 
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     0,exp),, rUtBUtAUtP   , TU  or S , 

 
  

     

2

2

1exp2

2

1
exp2
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
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


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






















tUhhh

tUhh

UtA , 

 
   

     1exp2

1exp2
,






tUhhh

htU
UtB


, 

 

 

 STB

K
STA

TSrr
,

,ln






 , 

 
   1exp

2
2 


tTh

h
tT


 , 

2




h
 , 

22 2 h . 

The function   ,;2 x  is a non-central chi-squared 

cumulative distribution function with   degree of freedom 
and non-centrality parameter  . In Section III, the numerical 

results based on the above formula will be compared with 
those obtained by using the simulation method and the 
proposed numerical method. 

III.    NUMERICAL RESULTS 

In this section, we present some numerical values for the 
prices of the European call option written on a zero coupon 
bond when the interest rate follows the CKLS model. We 

denote  3
kwE  and  4

kwE  as 3m  and 4m  respectively 

(see (2)). When the random variable kw  in (2) has a standard 

normal distribution, we have 03 m  and 0.34 m .The 

following table shows the values of the parameters used. 

TABLE 1.  VALUES OF PARAMETERS 

Parameter Value 

a  1.0 

m  1.0 

  1.0 

t  
365

1  

0r   

K  0.4 

 

Table 2 shows the option prices obtained by using the 

methods in Sections 2.1 to 2.3 when 5.0 , 03 m  and 

0.34 m  

TABLE 2.  OPTION PRICE WHEN 5.0 , 0.03 m  AND 0.34 m  

 tkT   

k Option Price 

Simulation Numerical 

Integration 

Analytical 

Formula 

50 0.21827092935 0.2221749346 0.2202023774 

100 0.1806177512 0.1863042828 0.1831610025 

200 0.1272962859 0.1344418227 0.1307168901 

300 0.0959408320 0.1003385409 0.0976330740 

365 0.0809268886 0.0832110177 0.0822883281 

This table shows that the option prices found from the 
methods of simulation and numerical integration (Section 2.1 
and Section 2.2) agree fairly well with those found from the 
analytical method (Section 2.3). 

When the random variable kw  is quadratic-normally 

distributed, the option prices obtained from the methods of 
simulation and numerical integration for the CIR model are 
shown in Table 3. 

TABLE 3.  OPTION PRICES WHEN 5.0 AND tT  365  FOR 

VARIOUS VALUES OF  43 ,mm  

  Option Price 

Simulation Numerical 

Integration 

0.0 2.6 0.0822254808 0.0832112631 

0.0 8.0 0.0788519675 0.0832079504 

0.5 6.2 0.0810694488 0.0830742762 

3.0 20.0 0.0820817169 0.0823858031 

From Table 3, we observe that when kw  has the 

quadratic-normal distribution, the option prices do not differ 
much from the result obtained by the analytical formula for 

the case when 5.0  and    3,0, 43  mm . 

At the same time, we produce option prices when the   

is varied from 0.1 to 0.9. Table 4 shows the option prices when 

0.03 m  and 4m  is varied whereas Table 5 gives the option 

prices when 3m  is nonzero. 

TABLE 4.  OPTION PRICES FOR DIFFERENT VALUES OF  FOR 

0.03 m  AND tT  365  

 003 .m  

624 .m  034 .m  084 .m  

0.1 0.1003085479 0.100308491 0.100307757 

0.2 0.0920748876 0.0920748095 0.092073829 

0.3 0.0881931422 0.0881300059 0.088191230 

0.4 0.0855136680 0.0855134764 0.0855110817 

0.5 0.0832112631 0.0832110177 0.0832079504 

0.6 0.0810360881 0.0810357640 0.0810317101 

0.7 0.0789214506 0.0789209927 0.0789152552 

0.8 0.0768586515 0.0768579490 0.0768491154 

0.9 0.0748481852 0.0748470100 0.0748321504 

  

0.1 

4m  3m  
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TABLE 5.  OPTION PRICES FOR DIFFERENT VALUES OF  FOR 

0.03 m AND tT  365  

  503 .m  264 .m  033 .m  0204 .m  

0.1 0.1000572229 0.0987054007 

0.2 0.0918911949 0.0909350768 

0.3 0.0880423613 0.0872776490 

0.4 0.0853754988 0.0846821386 

0.5 0.0830742762 0.0823858031 

0.6 0.0808936705 0.0801695653 

0.7 0.0787690562 0.0779761557 

0.8 0.0766911151 0.0757819327 

0.9 0.0746554390 0.0735216583 

From Tables 4 and 5, we see that the option prices 

decrease when   increases, but the variation of 3m  and 

4m  has not much influence on the prices. 

IV.    CONCLUDING REMARKS 

As the parameter   in the CKLS model has a significant 

effect on the option price, it is important that   should be 

determined carefully. Although the values of 3m  and 4m  

have only slight effects on the option price, it is also important 
to determine these values accurately. The reason is that when 
the total number of units of option traded is large, a small 
difference in option price might still have a significant effect 
on the total value of the large number of units of option. 
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