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Abstract— Soft-Output Viterbi Algorithm (SOVA) is one 
type of recovery memory-less Markov Chain and is used 
widely to decode convolutional codes. Fundamentally, 
conventional SOVA is designed on the basis of 
Maximum A-Posteriori Probability (APP) with the 
assumption of normal distribution. Therefore, 
conventional SOVA fails miserably in the presence of 

symmetric alpha stable noise S Sα  which is one form 

of stable random processes widely accepted for 
impulsive noise modeling. The author studies and has 
improved the performance of conventional SOVA by 
introducing Cauchy function into path-metric 
calculation. Substantial performance improvement was 
gained from Mento Carlo Simulation for SOVA based 
turbo codes. 
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I.  INTRODUCTION  

Power line communication (PLC) for data 
transmission has been the fascinating topic for coding 
theorists, scientists and engineers for broadband 
communications since 20

th
  century. However, the data 

that is transmitted over such channels would be 
subjected to various interferences; such as impulsive 
noise and Additive White Gaussian Noise (AWGN). 
Conventional channel codes that are typically optimum 
in the context of AWGN impairment are found deficient 
in the presence of impulsive noise. Several models 
have been developed to statistically describe the 
behaviors of non-Gaussian channels. They are 
contaminated Gaussian model, Generalized Gaussian 
Distribution(GCD), Stable Distributions and 
Middleton’s Class. Among the interference model, 

Symmetric Alpha-Stable model S Sα was chosen to 
emulate the noisy environment of the transmission 
medium for PLC in our investigation. 

 

Iterative decoding of turbo codes has received a lot 
attentions from researchers since its invention and has 
been proven to approach Shannon capacity limit with 

minimum required Eb/N0 of 0.7 dB for BER of 10
-5
 [1, 

2,3].  
 

Typically, turbo codes can be categorized 
according to its concatenated connections, which are 
parallel concatenated convolutional codes (PCCC) and 
serial concatenated convolutional codes (SCCC). The 
component codes of PCCC and SCCC are connected 
parallel and serial respectively [3, 4].  PCCC was used 
in our analysis to serve as the platform for SOVA 
based turbo codes. The encoder of PCCC is illustrated 
as Fig. 1: 
 

 
Figure. 1 PCCC encoder with code rate 1/3r = . 

 
The encoder of parallel turbo codes consists 

of two parallel recursive convolutional component 
encoders with the random interleaver to minimize the 
symbol correlation between two inputs. In order to 
increase code rate, puncturing can be performed on 
parity bits from first and second component encoders 
alternatively. Subsequently, multiplexer can be used to 
produce desired outputs. The code rate can be defined 
as Eqn. 1.  

k
R

n
=    (1) 

 

where k is the information bits and n is the output bits .  
 

In the presence of non-Gaussian noise, the 
performance of turbo codes is substantially degraded. 
It is possible to mitigate the detrimental effects brought 
into turbo codes by impulsive noise.  It is shown in [5] 
that the introduction of Cauchy probability function into 
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the detection of MAP (Maximum A-Posteriori) decoder 
has enabled the conventional turbo codes to function 
effectively over non-Gaussian channel and significant 
improvement in BER was obtained. The performance 
improvement was achieved in previous work by 
introducing robust Cauchy probability density function 
(pdf) into  MAP’s transition metric computation. 
However, MAP decoder is highly complicated for 
physical VLSI applications and incurs intolerable 
decoding latency for time critical communication 
systems. Hence, a low complexity decoding strategy 
was proposed in [6] by enabling the widespread use 
Viterbi algorithm (VA) with soft-decision output 
capability and it is known as Soft-Output Viterbi 
Algorithm (SOVA). In our investigation, the author has 
further extended the conventional AWGN optimized 
SOVA  to provide optimum performance in  Symmetric 

Alpha Stable ( S Sα ) channel. 

 
To decode the parallel concatenated 

convolutional codes which are produced by parallel 
convolutional code, SOVA decoder is used and its 
block diagram is shown in Fig. 2: 
 

 
Figure. 2 SOVA PCCC decoder. 

 
The received information would be decoded 

iteratively with SOVA component decoders. Extrinsic 
information is produced by subtracting soft-decision 

output ( )|L u y  with a-prior information ( )P u  and 

channel measurement via matched filter. The extrinsic 
information represents the addition uncorrelated gain 
from turbo decoding. The soft-output extrinsic 

information ( )eL u would be exchanged between the 

component decoders and better estimate for particular 
output bit is obtained for additional iteration of turbo 
codes. The gain of the turbo codes is its iterative 
nature of passing extrinsic information to aid 
subsequent stage of decoding performance 
resembling to turbo engine.  
 
Typically, the BER of the decoded bits will fall 

exponentially for additional iteration that is performed 

on the pairs of SOVA component decoders. For each 
iteration, the performance improvement is also 
decrease exponentially. For reasonable complexity 
and decoding latency, eight iterations are used as 
additional iteration has shown insignificant and little 
performance improvement over decoding bits[14]. 

 

II. CHANNEL AND NOISE MODELS  

 

To generate impulsive noise for simulation purpose, 

Symmetric Alpha Stable ( S Sα ) model is chosen in 

our investigation due to its excellent empirical fits on 
data and many signal processing applications are 

symmetric. Typically, S Sα distribution is characterized 

by setting its skewness parameter δ  to zero. Its 

characteristic function is given in Eqn. 2. 
 

( ) ,   - <e
ααγ ωφ ω ω−= ∞ < ∞

   (2)
 

where γ is dispersion and (0, 2]α ∈  is the 

characteristic exponent which described the 

impulsiveness of  S Sα process. When  2α = , it 

gives Gaussian distribution and when 1α = , Cauchy 

distribution could be obtained from the random 
process. Due to the non-close form for other values of 

α , our investigation is limited to 1α = to 2α = .  

 
To convenient our derivation for robust SOVA, 

the variables for our transmission model are defined 
as vector u is denoted as the input vector 

[ ]1 2 3, , ,...... nu u u u u=  . Vector y is the received vector 

[ ]1 2 3, , ,......... ny y y y y=  from the noisy channel. Vector x is 

transmitted sequence produced by the pair of parallel 
convolutional encoders  [ ]1 2 3, , ,........ nx x x x x=  .  

 
The baseband received signal prior to 

matched filtering could be described mathematically as 
Eqn. 3: 
 
  (3) 

 
where A is the 

channel gain and n is the random process with normal 

or S Sα random variables.  

III. ROBUST SOVA DECODER 

Theoretically, SOVA is derived based on MAP by 
extending the functionality of Viterbi algorithm (VA) to 
provide soft–decision output. MAP can be expressed 
as mathematically as Eqn. 4 which maximizes the a-
posteriori probability (APP) of the decoded bits: 

( )2 1bA E= ⋅ − +y x n
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The soft-decision output of SOVA is given as a-
posteriori (APP) Log-Likelihood Ratio (LLR ) as Eqn. 5: 
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Eqn. 5 can be computed recursively by  incorporating 
trellis as follow [8]:   
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Where 1ku = + is the set of input to the SOVA decoder 

that resulted in the transition from previous state 

1ks − to the present state ks  and hence similar 

to 1ku = − ( )1 1k ksα − − is the forward recursion of APP. 

( )1,k k ks sγ −  is the transition APP from state 1ks − to ks  

and ( )k ksβ is backward recursion of APP. 

 
To reduce the complexity of calculation, the 

APP-LLR from Eqn. 7 can be computed recursively in 
natural logarithmic domain as Eqn. 8: 
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where  

( ) ( ) ( )( )1 1 1ln ,k k k k k k kA s s s sα γ− − −= ⋅  

( ) ( ) ( )( )1 1 1ln ,k k k k k k kB s s s sβ γ+ + −= ⋅  

( ) ( )( )1 1, ln ,k k k k k ks s s sγ− −Γ =  

 
Cauchy metric is obtained from Cauchy distribution as 
Eqn. 9: 

( )
( )22

1
f y

y x

γ
π γ

=
+ −

   (9)

 

with Cauchy Density Function ( γ , β ), where γ  is the 
dispersion parameter and it relates to variance 

as
2 2σ γ=

. Hence the conditional probability of the 
received symbol can be expressed as
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where a is the fading amplitude of the channel where a 

= 1 for non-fading AWGN channel. To enable the 

effective decoding of SOVA in impulsive noise, 

modification on the branch metric of conventional 

Gaussian-based SOVA is needed for robust detection. 

To equip the Gaussian-based SOVA decoder for 

robustness, the path-metric could be modified as Eqn. 

11: 
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where ( ) ( )1|k k kp s s p u− = is the priori probability of the 

input bit 1ku = ±  and ( ) ( )1| , |k k k k kp y s s p y x− = . Hence, the 

accumulated path-metric ( )skM s that can be 

computed recursively as Eqn. 12: 
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where constant 
1 ln

2
C N

γ
π

 =  
   can be omitted. If two 

paths merge at state sk, then path sk is selected on the 

basis that 
( )

^

k kM s M s
 >  
 

. Then the path metric difference 

s

k∆ of the merging path at stage k can be determined 

which is the magnitude of the soft-decision output of 
SOVA as the Eqn. 13:

 ( )
^

0s

k k kM s M s
 ∆ = − ≥ 
     (13)

 

 
Hence, the soft-decision output of SOVA can be 
expressed as Eqn. 14 for optimal performance. 
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The extrinsic information ( )eL u  could be obtained 

mathematically as Eqn. 15.  
 

( ) ( ) ( ) ( )|e k k k sys kL u L u y L u L u= − −
  (15) 

 
where ( ) ( ) ( )2 2

3
ln 2 ln 2

2
sys k ks ksL u C y C y= + ⋅ − − ⋅  

  

and 2 2

2
1

ks
C yγ= + + . ( )kL u is the priori Log Likelihood 

Ration (LLR) from information bits and ( )sys kL u is the 

LLR from systematic bits of the received signal. 
Finally, the hard decoded bits can be obtained 
mathematically from second SOVA component 
decoder LLRs output as Eqn. 15: 
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where ( )sgn x is a signum function.  

IV. RESULT AND DISCUSSION 

Mento Carlo simulation was performed on the 

modified robust SOVA PCCC over impulsive S Sα  

channel. Numerical results for BER performance with 
respect to Eb/N0 were collected and analyzed. In our 
simulation, binary information bits with 1000 bits and 
10 frames were channel coded with parallel 
convolutional encoder of code rate 1/3r =  and be 

transmitted directly as baseband signal over noisy 
transmission medium. Random interleaver’s size is set 
to 1000. At receiver, the baseband signals which were 

corrupted by AWGN or S Sα  noise were decoded 

iteratively via SOVA algorithm.  

1) Performance in AWGN Noise with Bayesian 

Gaussian metric.  
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Figure 3. BER performance for SOVA with Bayesian Gaussian 

metric over AWGN channel. 

 
From the Figure 3, it is shown that SOVA PCCC can 
perform close to Shannon’s capacity limit in AWGN 
noise. 

    2) Performance in S Sα Noise with Bayesian 

Gaussian metric. 
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Figure 4. BER performance for SOVA with Bayesian Gaussian 

metric over S Sα  channel with  , 1α = . 

However, significant performance degradation can be 
observed from Figure 4 while conventional SOVA 

attempted to correct errors due to S Sα noise with 

1α = .  

3) Performance in S Sα  Noise with Bayesian   

Cauchy metric 
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Figure 5. BER performance for SOVA with Bayesian Cauchy Metric 

over S Sα channel with 1α = . 

 
Figure 5 shows the performance of modified SOVA 
with Bayesian Cauchy metric. Performance 
improvement can be observed from the graph after 
eight iterations were performed on the received data. 
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