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From Newsletter #1 

Dear Colleague, 

This newsletter follows a three-day Conference to Examine Mathematics as a Humanistic Disci
pline in Claremont 1986 supported by the Exxon Education Foundation, and a special session at the 
AMS-MAA meeting in San Antonio January 1987. A common response of the thirty-six mathemati
cians at the conference was, "I was startled to see so many who shared my feelings ." 

Two related themes that emerged from the conference were 1) teaching mathematics humanistically, 
and 2) teaching humanistic mathematics. The first theme sought to place the student more centrally in 
the position of inquirer than is generally the case, while at the same time acknowledging the emo
tional climate of the activity of learning mathematics. What students could learn from each other and 
how they might come to better understand mathematics as a meaningful rather than arbitrary disci
pline were among the ideas of the first theme. 

The second theme focused less upon the nature of the teaching and learning environment and more 
upon the need to reconstruct the curriculum and the discipline of mathematics itself. The reconstruc
tion would relate mathematical discoveries to personal courage, discovery to verification, mathemat
ics to science, truth to utility, and in general, mathematics to the culture within which it is embedded. 

Humanistic dimensions of mathematics discussed at the conference included: 
a) An appreciation of the role of intuition, not only in understanding, but in creating concepts that 

appear in their finished versions to be "merely technical." 
b) An appreciation for the human dimensions that motivate discovery: competition, cooperation, the 

urge for holistic pictures. 
c) An understanding of the value judgments implied in the growth of any discipline. Logic alone 

never completely accounts for what is investigated, how it is investigated, and why it is investi
gated. 

d) A need for new teaching/learning formats that will help discourage our students from a view of 
knowledge as certain or to-be-received. 

e) The opportunity for students to think like mathematicians, including chances to work on tasks of 
low definition, generating new problems and participating in controversy over mathematical is
sues. 

f) Opportunities for faculty to do research on issues relating to teaching and be respected for that area 
of research. 

This newsletter, also supported by Exxon, is part of an effort to fulfill the hopes of the participants. 
Others who have heard about the conferences have enthusiastically joined the effort. The newsletter 
will help create a network of mathematicians and others who are interested in sharing their ideas and 
experiences related to the conference themes. The network will be a community of support extending 
over many campuses that will end the isolation that individuals may feel. There are lots of good 
ideas, lots of experimentation, and lots of frustration because of isolation and lack of support. In 
addition to informally sharing bibliographic references, syllabi, accounts of successes and failures ... 
the network might formally support writing, team-teaching, exchanges, conferences . ... 

Alvin White 
August 3, 1987 



From the Editor

Attempts to reform mathematics and science in the schools is not an activity for
the timid. Reports in Science (16 October 1998, p. 387-9; 29 August 1997, p. 1192-
5) are about people talking past each other.

Third graders in California will be taught about the periodic table, and sixth
graders will learn about Earth’s “lithospheric plates” under the standards ap-
proved by the state Board of Education. The presidents of the National Acad-
emy of Sciences and of the American Physical Society think that the standards
focus too much on detailed knowledge and too little on concepts. Rote learning
is substituted for understanding.

A high school chemistry teacher who helped draft the document thinks that it
is perfect. “The average student with a caring teacher can get through this.”

The president of the NAS complains that, “When you start teaching first and
third graders about abstract things like atoms and molecules, what we actually
do is not have kids understand anything...My hope is that the next governor
takes care of this by commissioning a major overhaul of the standards.”

According to Science, one major hindrance to the reform of mathematics in the
schools is the vast number of teachers who took few math or science classes in
college and have had no additional training. There are other pressures against
reform. The 1992 California framework, based on the NCTM standards, called
for teachers to question more and explain less, to group higher and lower abil-
ity students together, and to assign more projects and fewer workbook drills.
By 1994 the radically new textbooks started appearring in classrooms.

The reaction was swift. Parent groups organized to fight what they called “fuzzy
math” and “new New Math.” They said the curriculum used untried methods
and replaced basic skill drills, such as multiplication tables and long division
with projects such as writing. In California, with support from Gov. Wilson,
anti-reformist activists constitute the majority on the panels that are drafting
both the new content and performance standards and the 1998 framework.

The new framework relies heavily on standards from Virginia and North Caro-
lina. Shelley Ferguson, an elementary school teacher in San Diego who has been
involved with the reform effort observes, “It’s back to a laundry list of topics to
know. Conceptual understanding and problem solving are pretty absent.”

Whatever the outcome, reformers elsewhere say that the California math wars
have taught them the importance of educating parents as well as teachers.
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Natural Math
Maria Droujkova
2801 Calhoun St.

New Orleans, LA 70118
(504) 866-2508

e-mail: maria@math.tulane.edu
http://www.naturalmath.com

ABSTRACT
The Natural Math project’s main goal is to create math-
ematical curriculum around concepts of higher math
(algebra, calculus and “post-calculus” subjects), pre-
sented in a way that makes them available with mini-
mal prerequisites. In particular, the results of the
project make it possible and desirable to teach higher
math to very young children and math-anxious adults.

1. INTRODUCTION
Young people (ages 4 to 10) can learn higher math-
ematics. They can discover concepts for themselves,
develop original algorithms, and take many elements
of teaching into their own hands. Learning can be ar-
ranged in such a way that mathematics comes to stu-
dents naturally, painlessly, and very fast.

I attempt to prove the above statements by present-
ing examples of lessons that are part of the Natural
Math project. The main goal of the project is to create
mathematics curriculum that is rich in concepts yet
readily available to people of almost all ages and all
levels of mathematical education. One of the meth-
ods to achieve that goal is to arrive at higher math-
ematical ideas through intuition, common knowledge
and common language, adding rigor later.

Several rules are strictly followed in all experiments:
• Only volunteers can participate. Adults cannot vol-
unteer children against their will. Every child can stop
the program or start it again at any time.
• Students have to discover the key concepts for them-
selves. Teacher provides the environment that makes
it possible.
• Students are never given any algorithms, but are
led to generalize their concrete experiences into algo-
rithms.
• Students have “veto rights” in choice of activities;
mentors can ask them to lift the veto as a favor, but
can’t insist.

2. CHILDREN CAN DO IT.
Most lesson descriptions go much faster than the real
lessons, because some examples and explanations are
excluded.

1. Very young children can understand almost all arithmetic
concepts.
By “arithmetic” I mean concepts that can be presented
without algebraic generalizations, using only num-
bers. For example, the idea of multiplication is arith-
metic, and the idea of derivative is not; the idea of
negative numbers is arithmetic, and the idea of in-
verse function is not. This definition is intentionally
fuzzy: I do not want to create the impression that chil-
dren cannot do certain math before a certain age. We
cannot prove general negative statements of that sort
because any experiment necessarily uses particular
teaching methods, and negative results only give in-
formation about the teaching methods used. If you
have doubts, think about this: what if people used as
much mathematics in everyday life as they use lan-
guage? Wouldn’t everybody learn a lot of math by
the age of about three, together with his mother
tongue(s)? (Now, that would be some experiment!)

Example 1.1. Genevieve (age 4) learns coordinates.
Genevieve could count to 10 when we started. We had
some fun with zero (Montessori, p.329), when I asked:
“Give me one marble, please... Now give me zero
marbles! Jump two times... Now jump zero times,”
etc. I introduced negative numbers as something that
comes before zero as we count. I cut out small pieces
of paper, wrote numbers (-10 to 10) on them, and we
hung them on a long cardboard in the appropriate
order. I drew and cut out an animal (a dragon) that
“lived on the number line,” walking back and forth.
Genevieve enjoyed questions of the sort: “If the dragon
is at -2 and goes 3 steps to the left, where will it land?”
I always followed by: “See, negative two minus three
is negative five.”
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Then I pointed out that the dragon has wings and can
fly, and demonstrated by moving the dragon next to
a wall (e.g., two steps to the right, three steps down).
We drew the movements on graphing paper with a
coordinate system, and Genevieve was able to find
coordinates of given points, and to find points when
given coordinates, translating that into “steps” at first.

Example 1.2. Cecali (age 9) studies percents.
I wrote down: “3%” and explained that this phrase in
mathematical language means: “Three for every hun-
dred.” Then we discussed questions of the sort: “What
is 2% of 300?” At first, I had to translate it: “If we have
2 for every hundred, how many will we have for three
hundreds?” After about 5 minutes, I did not have to
translate anymore. Cecali did not know decimals yet,
so we could not move much farther than, for example:
“Find 7% of 250.” It never ceases to surprise me that
problems that are “too simple” often mean trouble:
Cecali could not find 15% of 100, and it took a while
for her to figure out that “degenerate” proportion: 15
for every hundred, then how many for a hundred?. It
is a general tendency: if the example is so simple that it
does not represent the concept anymore, young people al-
most always have difficulty with it. See also Example 2.3,
where Kirk could not understand the function f(x) =
x.

Cecali promised to help me with taxes next year.

2. Children can easily understand “lower-level abstractions”
that require few steps of reasoning, such as unknowns,
more-less, etc. They are not always able to express their
knowledge in mathematical (or any other) language,
so it is quite a challenge to communicate with them.

Example 2.1. Genevieve (age 4) solves equations.
We started by playing with beads and a little basket. I
put two beads in the basket without showing to
Genevieve how many were there. I demonstratively
added one more bead, and then shown the total of
three and asked: “How many were there before?” The
little girl thought for about half a minute (it’s a long
time); she was very concentrated on the task, and fi-
nally figured it out.

One of the major difficulties in my project is that most
adults seem to be unable to tolerate the sight of a child qui-
etly thinking for a long time. Most people who observe
my lessons have to be restrained from “helping” the

thinking child: they want to explain, to give hints, to
reformulate the problem. I warn people that they
should not interfere; many parents tell me that it is
very hard for them. It is interesting that little children
often are willing to think about a question much longer
than adults. Often children say, “Please, don’t tell me
the answer!” Many elementary math curricula con-
centrate on memorization, which means that most
teacher’s questions have to be answered immediately.
It follows that children do not have a chance to think.
Sometimes I even have to convince those of my older
students who go to school that it is OK to think before
answering.

We played the same “guessing game” many times,
and I started to move it onto paper by drawing and
writing. I first called the unknown “something,” writ-
ing: _ + 1 = 2 and saying: “Something plus one is two,
what is that something?” I mentioned the letter nota-
tion (x + 1 = 2), but it did not “sink in.” Unfortunately,
Genevieve did not know how to read yet, but she was
amused by the fact that she could “read mathemat-
ics:” she learned to recognize numbers up to 10, “+”,
“-” and “=”. She proudly told her parents about her
success.

Example 2.2. Jasmine (age 6) plays the “More-Less Game.”
The rules of the game are simple: the “host” takes a
number, and the others have to guess it. If the guess is
wrong, the “host” says if it is more or less than the
number he has. “Host” put some marbles in a bag
without showing how many (it gave the winner sat-
isfaction of confirming the right guess by counting
marbles). Jasmine had a lot of fun with the game. She
learned the idea of “less and more” and figured out
the beginning of the bisection method (the most effi-
cient way to play is to find an interval containing the
number and then bisect it repeatedly).

Example 2.3. Kirk (age7) constructs “Function Machines”
“Function machine” is a machine that does something
to numbers you put in it. I drew some mechanism for
Kirk, and asked her to give me numbers to put in the
machine until she could guess what the machine did.
We had: in 1 out 2, in 5 out 6, in 2 out 3, and Kirk said:
“The second number is one more.” I concluded: “The
machine adds one.” Then we took turns creating
“function machines,” and the drawings and the for-
mulas got fancier and more interesting. This game is
a big hit with every student to whom I show it. Kirk
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was very puzzled when I constructed the machine that
did: in 2 out 2, in 10 out 10 (f(x)=x). Compare to Ex-
ample 1.2.

“Function Machines” can effectively lead even very
young students to concepts such as composition of
functions, inverse, iterations, and so on (Figure 1).

3. Children can develop “higher-level abstractions.”
Sometimes the depth of their understanding is sur-
prising, given very little knowledge.

Example 3.1. Emily (age7) investigates matrices.
This lesson was inspired by a book by D. Cohen
(Cohen, pp. 5-8). Emily and I pretended to “go shop-
ping.” We chose what to buy and how much, and I
wrote prices as follows:

books dolls $

( 3 2 )   • 2     =  ?
5

Emily computed the total and wrote: “16”. 1 told her
that usually people call the thing we just did “multi-
plication of vectors,” and spelled the word “vector.”
Then we had two days of shopping:

roses skirts dolls $

day 1   1 3         2 1 20
day 2   2 1         1     • 5    =   9

2

I said that the traditional name for such an arrange-
ment of numbers is “matrix,” and spelled the word,
explaining that we multiplied a matrix by a vector.
Usually students quickly pick up appropriate “math
language.”

To motivate multiplication of two matrices, I sug-
gested “comparison shopping” using names of local
groceries:

item 1 item 2 item 3    S         WD

day 1  1 2 0    • 3 5         5       9
day 2  2 1 3 1 2   =   22     15

5 1

Linear algebra students often have problems with the
following: as a result, we are getting rows and col-
umns that correspond to days and shops, but which
is which? What does each entry in the answer matrix
mean? To explore that, I asked: “Which shop is

X + 1

2X

#

#

X + 3

?

X

X

X / 2

#

Figure 1: The Function Machines
Small cards are used to construct the “Function Machines.” (a) Composition of functions  (b) Inverse: what should be on the

empty card is the machine always returns the same number we put in?  (c) Iterations

 (a)    (b) (c)

( )
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cheaper?” After some confusion, Emily figured out
that the columns were for shops and the rows were
for days. Emily liked questions such as: “If you are a
manager of Winn Dixie, will you use day 1 or day 2 in
your advertising campaign? What if you are
Shwegmann’s manager? What to do if you are a cus-
tomer?”

At first, Emily was using addition to find totals, e.g.,
5 + 5 + 5 instead of 3 * 5. After a while, she seemed to
remember some of these “facts.”
She was doing multiplication faster
by the minute, without going
through a single drill on “times
tables.”  She and other children
with whom we studied “shop-
ping matrices” were able to figure
out the rules for matrix multiplica-
tion without any explanations.

Next time, we coded every letter
in the alphabet by its number, so
“a” was “1”, “b” was “2”... Emily
chose words and coded them, for
example, (4, 15, 7) for “dog”. Af-
ter Emily coded several words, I
told her that it is very easy to
guess what the code is. What
about making a secret code? She
asked me why people would
want secret codes, so we talked
about spies for a while. I sug-
gested to divide every number by
two (now “dog” was (2, 7 1/2, 3
1/2) ). We sent each other secret
messages and gave “keys” to
them.
Message: (1 1/2, 1/2, 10). Key:
multiply by 2
She decoded it quickly, and gave me a coded mes-
sage of this sort with no difficulty. But it did not pre-
pare me for her reaction to the next one I gave:

2   1
5   3

Message: 2   5   Key: multiply by       2
3   6             1

           12   1

Emily: ???

Me: Just like our shopping! (pointing to the page with
“shopping matrices”)
Emily (immediately): But we do not write like that.
Me: Like what? What do you mean?
Emily: I said, we do not write like that!

Only then I noticed that she was waving her hand up
and down. She instantly understood that the answer
will be a column vector (something most college stu-
dents would notice much later) and was trying to ex-

plain that it is improper in English
to write from top to bottom, not
from left to right. English is not
my native language; she was try-
ing to teach me as she does occa-
sionally (I always appreciate it
and thank her properly). It is
amazing that she understood
such an abstract fact in a few sec-
onds. Consider steps she had to
take:

1) recall the process of matrix
multiplication
2) understand, without performing
any operations, that she will get a
column vector
3) connect it with orientation of
writing, something most people
don’t even notice
4) find a way to explain it (hav-
ing very limited math vocabu-
lary).

After I wrote transposes, Emily
agreed to decode the message
(her name), which proves that her
column vs. row consideration
was not a guess.

Emily was so excited about matrices that she wrote a
poem, reproduced above, which I used to talk about
combinatorics.

4. Children can construct and use algorithms for solving
problems.
That also requires some classification of the problems
(to figure out what algorithm to use), which is an ab-
straction in itself. Sometimes it is desirable to lead
children to some particular algorithm; in this case,

Emily’s Matrix Poem

A little fun a little bit
And then we coded the alphabet

And on the coach was a pet
Matrix matrix matrix

A lot of fun a lot of it
We coded words and wrote it

and on the table was a pet
Matrix matrix matrix

A little fun a lot of it
We played with coordinate

And on the ceiling was a pet
Matrix matrix matrix

A lot of fun a little bit
We played a game and stitched it

And on the chair was a pet
Matrix matrix matrix

And on the bed was a pet
Matrix matrix matrix

Matrix!

( )( )
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restrictions can be used to make other methods “ille-
gal.” Restrictions can be presented as “the rules of the
game” (see Example 4.1 below), which saves a lot of
explanations by referring to the “game culture” that
is a common frame of reference (cf., Davis, pp. 107-
140) for many children. The “game frame,” with its
notions of fairness, fixed rules, sharing, competing,
and taking turns, is a very powerful teaching tool es-
pecially suited for mathematics.

Example 4.1. Aidar (age 7) solves equations by “reversing.”
After a “hands-on” introduction to equations (see Ex-
ample 2.1) I explained that it is a tradition in math-
ematics to write letters, especially “X”, instead of - or
“something,” and demonstrated: _+1=4 is the same
as  X+1=4
      X=3

Some education psychologists argue that young chil-
dren can not “reverse,” i.e., cannot see that subtrac-
tion is the inverse of addition. Sure enough, the idea
that: X = 4 - 1 was not something that naturally oc-
curred to my young students. They had no need for
“reversing,” being perfectly able to find the solution
by guessing. My task was to create that need. Since
my students were not fluent in large numbers and
fractions, it was impossible to present examples that
are usually used to motivate high school students who
only want to guess, such as 5X=7 or X+1997=2870. I
tried to ask (about X + 1 = 4): “What are you doing
with 4 and 1 to get 3?” which produced a lot of
puzzled looks and answers of the sort: “You find what
you should add to 1 to get 4.” After many more futile
attempts (allow me to spare the description) I finally
found a game that led students to “reversing.”

The game uses a calculator (TI-82, for example) where
all numbers and operations show and stay on the
screen. Here is my talk with Aidar (translated from
Russian):

Me: Do you remember how to solve equations? Try
this one: X+2=5
Aidar: X is 3
Me: Here is a new game with this calculator (some
explanations were required about the “enter” key).
We want to get the answer of the equation on the
screen, but we can’t just type it in. The rule of the game
is to use any buttons except the number that is the
answer, so you can’t use “3” here. Try it!

Aidar typed the following:
5+2 “clear” (he has noticed it does not work before he
pressed “enter” to find the answer)
2 “clear”
5-2 “enter”

We took turns solving equations with the calculator.
Aidar did not have to use “clear” button anymore. It
worked in a similar way with all my young students:
after understanding the rules of the game, they fig-
ured out the “reversing” method of solving equations,
without any hints from me. I used marbles to demon-
strate the method again: “There are some marbles hid-
den in my hand. I add two more, and now we have
five. To find out how many were there before, we can
just take away the two marbles I added, in order to
undo what I did.”

This example makes one wonder what does the
phrase: “Children are not able to understand concept
X until age Y” mean? Very often, it means that before
age Y children do not have any experiences that require
understanding of concept X. Hence, if a teacher pro-
vides such experiences, students might understand
concepts early.

Example 4.2. Emily (age 7) adds large numbers.
Emily wanted to learn how to operate with large (3-4
digit) numbers. She understood the idea of place value
and the fact that it is convenient to add tens to tens,
hundreds to hundreds, etc. However, she wanted to
do operations from right to left and did not know what
to do after the following step: 32+81=?

3 2
        +  8 1
           11 3

The problem was that I could not understand what
exactly she was doing (I only saw that she was writ-
ing from left to right). I had to iterate my suggestions,
by trial and error getting closer and closer to her yet
unknown to me technique (numerical method of peda-
gogy). She refused to use approaches that were too
far from her own. And I am happy she did, because
she invented something original. One wonders how
many inventions are lost because inventors do not
defend them strongly enough. Finally, we figured out
how to make her algorithm work. She added easily, if
slowly, and had no problems with 3- and 4-digit ex-
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amples:

1   7  3
        +  2   6   9

3 13 12
4 3 4  2
4  4   2

Emily added from left to right (first 1+2, then 7+6,
then 3+9), then “carried,” looking at the next number
while considering numbers from left to right. If I had
to teach “long addition” by “telling them the rule,” I
would use Emily’s algorithm rather than conventional
algorithm, because it is more straightforward. Emily
and I started to do “long multiplication” on the same
day the lesson above happened.

5. Children can understand some topics from almost all
branches of mathematics, including “postcalculus.”
Presentation has to be adjusted, of course. See ex-
amples from other sections, plus:

Example 5.1 Kirk (age 7) plays with cyclic groups.
Young people love cyclic groups. There is something
fascinating in being able to do arithmetic with finite
amount of numbers.

With Kirk, we started by looking at the ordinary clock.
Numbers never grow past 12, so if it is one o’clock
now, 15 hours later it will be 4, not 16. 1 pointed to the
wall clock and wrote: 15 + 1 = 4. With much laughter,
Kirk solved several problems of this sort. Then we
talked about other planets, where the day can be
longer or shorter than 12 hours. Kirk chose the 3-hour-
long day and drew the “space alien clock” with num-
bers 1, 2, and 3. Then I asked: “If it’s two o’clock on
that planet, what time will it be 14 hours later?” I ex-
pected Kirk to count hours around the clock (2,3,1,2,3,1
... ); however, she immediately said: “One o’clock.”
She solved it faster than I did (I used the fastest way,
i.e., remainders). She did other problems as fast, so it
was not a lucky guess (however, she was much slower
next week when we returned to the topic). Judging
by the time of her response, she was using a very effi-
cient method to solve these problems (cf., Woods,
Resnick and Groen), without being told about any
methods whatsoever!

I explained that mathematicians invented a way to
write about alien clocks without confusion: they write

2+14= 1 (mod 3) (I read it aloud). Kirk had no prob-
lems with notation. We explored alien clocks of dif-
ferent modulo, using examples with positive and
negative numbers, such as:

2-4=3(mod5)

Kirk developed a vague notion of remainders when
she noticed patterns in numbers:

4=1(mod 3)
5=2(mod 3)
6=0(mod 3)
7=1(mod 3) again, and so on.

Cyclic groups is now one of Kirk’s favorite topics in
mathematics. The topic can be used to talk about di-
vision and multiplication (“What time will it be on
the planet 13 hours after midnight?” or “How many
hours are there in 7 days?”) and is an effective way to
introduce remainders.

Example 5.2 Emily (age 8) starts to understand linear indepen-
dence of vectors.
We played a game: we take a piece of graphing paper
and draw some “obstacle course” on it, made of any
objects, e.g., trees, lakes, castles... The objective of the
game is for one of us to guide the other through that
maze from the start to some treasure at the finish. The
difficulty is that we can only use commands in num-
bers (I told a science fiction story to go with it, about
commands received through a very primitive radio
that could translate only numbers), so one has to give
coordinates of vectors to guide, for example (1,0) for
one step to the right. We played the game for a while
to make sure that all relevant terminology and con-
cepts were exposed (such as “vector addition,” “vec-
tor coordinates,” etc.).

When the game started to get too easy for Emily, I
suggested the new rules: now we guide the broken
robot that can make only two kinds of steps, but as
many of them as we want, in positive and negative
directions (Picture 3). Emily was guiding the robot at
first, but when time came to make steps in negative
direction, she did not know what to do. I asked her if
I could guide the robot, and she said, relieved and
reluctant at the same time: “We guided each other
before, but now we guide the robot, so it is OK for
you to do that.”
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During any lessons students are very vulnerable: just
by being there they admit to the whole world that they
do not know something, can’t do something, and need
a special person, the teacher, to help them. Too easily
it can be turned into a threatening situation. The
teacher has to exercise extreme caution and sensitiv-
ity not to hurt students’ feelings. It is espe-
cially true if students are unable to do
some task or if they make a mistake. Stu-
dents sometimes feel hurt by the gentlest of-
fer of help. So, I try to pro-
vide excuses for them to
ask for help, or play
along when they in-
vent excuses as
Emily did. Some-
times I would just
recommend stu-
dents to think some
more, of course. Let
me mention here that
if the teacher has to ad-
minister any sort of for-
mal tests that affect stu-
dents’ life in any way, the
situation almost always
gets ugly, sensitivity or not.

Next, I drew two vectors, (- 1, 1) and
(-2,2) and asked: “If the robot can only
go in the steps like that, will we be able
to get him to the treasure?” Emily saw
immediately that the robot would only
go along a straight line. I told her that
mathematicians say that vectors like
that are “not independent.” After
practicing with couples of vectors
(in the last few examples Emily
could see independence by coor-
dinates, without having to draw
vectors), we were ready to play
the next “maze game.” I drew
two independent vectors and
added the third, not parallel to
each of the two. I asked: “Do we
need the third vector, or is two
of them enough?” And after
Emily said that two is enough,
I explained that three are not in-
dependent again, because all

“steps” of the third kind can be achieved with the first
two vectors.

6. Many elements of teaching can be successfully managed by
even the youngest students.
These elements include, but are not limited to, plan-

ning and designing parts of curriculum (Ex-
ample 6. 1), and evaluation (Example 6.2).

One of the simplest
and most efficient
tools I use to ar-
range “self-teach-

ing” is taking turns with
students in all activities.

In most cases, students
move to more advanced

topics much faster than
most teachers would move

designing curriculum; in
other cases, students
want to stay longer on
topics that interest them
and/or are difficult to
them. One is reminded
of nutrition studies
showing that toddlers,
given full freedom,
choose the diet that is
best for them (I do not
have the reference; the
study results were pub-
lished in periodicals).

Example 6.1 Kirk (age7)
writes her own math

textbook.
Once Kirk started our les-

son by throwing her math
workbook into the recycling

bin. Her parents and I liked her
workbooks, but Kirk, being a

very independent person, did not
accept the idea of doing regular

exercises. She asked me if
I would write a better book
for her, and I suggested
that she can write her own
math text, and promised to
help. We meet once a week
and discuss the book’s

Figure 2: The Maze and the Broken Robot
Our robot could only make two kinds of steps, (1,2) and
(-2,2). Yet he reached the treasure, a bookshelf (Emily
loves to read). The game can be used to discuss linear

combinations and different coordinate systems.
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progress, and we exchange e-mail. Kirk invents math
games, creates exercises, and writes stories to accom-
pany them. I show her some math she does not know
yet, and she transforms and internalizes it. Here is her
story to accompany a series of simple arithmetic ex-
ercises she put in the book; she also draws pictures
for every page:

“Kirk’s mom told her she may have an Oreo, but she
is too small to reach the shelf. Every time Kirk solves
something, she grows. Help her to get the cookies.”

An example of interesting problems Kirk raises:

“One human year is about seven dog years. How old
is my dog in his years, if he is eight in our years?” It
led to an interesting discussion of proportions (and
biology: we talked about other creatures’ lives).

Most of Kirk’s math education is planned by her par-
ents (she is homeschooled). However, the little part
of her learning that her book constitutes seems to be
important to her, and, of course, much fun.

Example 6.2 Aidar (age 7) creates assessment.
Aidar initiated a “game of school”: one of us would
give the other exercises and then evaluate them. I was
playing the student first, and Aidar graded me (A+).
I noticed that he was nervous about the grades. Then
he was playing the student:

Me (returning his paper with solved exercises): Very
good!
Aidar (looking for the grade and not finding it): Where
is my grade?
Me: I don’t like grades.
Aidar: Oh... (thinking for a while, sadly looking at the
paper with huge A+ he wrote as a “gift” for me, then
getting an idea) But you can make tiny little marks
next to every problem that is solved right!

Aidar has found a way to make softer (and more in-
formative) evaluations. We followed his suggestion,
of course.

In summary, children can do a lot of quality math-
ematics before the age of 10. It does not even take much
time (none of my students spend more than two hours
a week on the lessons). The next section tries to an-
swer the question: “What is it for?”

3. WHY TEACH HIGHER MATH TO YOUNG PEOPLE?
1) “Bird’s eye view.” There is more understanding of
“what mathematics is about.” My young students
would not think, as many people of their age (and,
unfortunately, too many adults): “Math is addition,
subtraction, and some multiplication.”

2) Fun. Young students like higher math more than
primitive arithmetic (if rigor is not pushed too far). It
leaves more place for creativity. The best time for learn-
ing is when you like what you learn. None of my lin-
ear algebra students at Tulane University were in-
spired enough by the subject to write a poem (as Emily
in Example 3.1). Children often enjoy (or don’t mind)
learning material that is boring and/or difficult for
adults (consider languages, for example).

3) New frames of reference. Giving students even a
vague notion of new concepts creates frames of refer-
ence in their minds. It builds a base for further teach-
ing. It helps to break the vicious circle of “you can’t
start to learn it unless you understand it, but you can’t
understand it until you learn it.” Students are initi-
ated into richer mathematical culture, and it is done
gently, without the undue strain people experience in
college when they have to learn too much at once.
They have more time to get used to that culture and
to absorb it.

4) Advanced problem solving methods. Experiences
in higher mathematics lead students from purely ar-
ithmetical methods to algebraic methods involving
various symbolic operations, abstractions, etc. This
differs from many programs for “gifted” where chil-
dren are given the most difficult problems they can
possibly solve using elementary methods they already
know. As a child, I often felt “cheated” having to solve
problems with great difficulties using primitive meth-
ods, only to learn later that those tricky problems turn
into elementary exercises in more advanced methods.
I am sure everybody can supply his own examples.
My big personal sore was in elementary physics of
movement (velocity, acceleration, etc.) where prob-
lems were hard to solve without using derivatives,
but were just standard exercises with derivatives.
About half a year I wasted because of that seems to
be more than enough time to learn necessary calcu-
lus.

5) Meaningful exercise. Higher mathematics is “arith-
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metic-intense,” presenting excellent review opportu-
nities. Many people do not seem to learn subject #n
until they use it for subject #(n+l) (compare to the
usual lament of students taking, for example, a dif-
ferential equations course: “If I took calculus now, I
would get an “A” so easily!”)

6) Future science education. Many people who are
successful in mathematics say that they are very com-
fortable with the parts of mathematics they learned
early (Danger! People who are forced  to learn things
they are not ready for may not benefit). For example,
Professor Vladimir Arnol’d says (Lui): “Many Rus-
sian families have the tradition of giving hundreds of
such problems [very nonstandard old merchant prob-
lems] to their children, and mine was no exception.
Very young children start thinking about such prob-
lems even before they have any knowledge of num-
bers. Children five to six years old like them very much
and are able to solve them ... The feeling of discovery
that I had then [as a child] was exactly the same as in
all the subsequent much more serious problems ...”
Anecdotal evidence shows that gentle exposure to
higher mathematics at an early age is very helpful for
future understanding. In practice, “gentle” means
“less rigorous, very intuitive, with no formal tests.”

7) Time saving. Learning arithmetic through higher
math saves time, for obvious reasons (returning to
concepts several times makes the periods “in be-
tween” work for understanding; review is imbedded
in learning of new things; students see arithmetic as a
mere tool for higher math, which reduces fear con-
siderably). In practice it means that people who are
interested in mathematics and science can start doing
graduate-level research several years earlier than
usual. Those who are not interested in math receive
an opportunity to spend considerably less time with the
subject, reaching the same or better results, and doing
work that can even change their attitude towards
math.

8) Application to remedial education. Methods of
teaching that work well for young people can be suc-
cessfully used with older people having learning prob-
lems. After all, young students and “lower track” stu-
dents face the same challenge of limited prerequisites.
Of course, the situation is usually worse for people
who learned math in a wrong way: they require re-
habilitation more than anything. My experience shows
that the methods I use with children do a good job
rehabilitating math-anxious people.

Clearly, more research is needed in the area of teach-
ing higher mathematics to people with limited pre-
requisites. I hope that more mathematicians and edu-
cation specialists will address the exciting pedagogi-
cal problem of making mathematics more available.
It can and should result, in particular, in very differ-
ent curricula for young people, whose learning po-
tential is too often grossly underestimated. I also hope
that more people will realize that students themselves
hold in their hands solutions to many pedagogical
problems, and that students need some freedom in
learning, as well as a lot of unobtrusive help, in order
to solve these problems.
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Do the Great While It Is Still Small:
Humanistic Teaching in the Elementary School

John Eichinger
California State University, Los Angeles

“Do nondoing,
strive for nonstriving,
savor the flavorless,
regard the small as important,
make much of little,
repay enmity with virtue;
plan for difficulty when it is still easy,
do the great while it is still small.
The most difficult things in the world
must be done while they are easy;
the greatest things in the world
must be done while they are small.”

- from the Tao Te Ching by Lao Tzu, translated by Tho-
mas Cleary (1991, p. 48)

These words from the Tao Te Ching offer practical guid-
ance regarding the teaching of humanistic mathemat-
ics and science. If mathematics and science are indeed
critical human endeavors, inextricably tied to culture
and social interaction, and therefore integral to a full
understanding of the human condition, then as hu-
manistic disciplines they must become integral aspects
of school curriculum. “Do the great while it is still
small,” suggests that educators begin teaching math
and science as humanistic disciplines at the earliest
possible point, that is, in elementary schools. We can-
not afford to wait until students are in college to
present math and science in a humanistic context.
Research has shown us that student interest in these
subjects is highest when in the elementary schools,
and that by the time they are in junior high school
many able students have lost much of their interest in
science and mathematics (Yager & Penick, 1986). Ap-
propriate instruction and learning opportunities can
be provided for students as young as pre-Kindergar-
ten, thereby allowing youngsters to grow up in a
world of exciting, useful, and challenging math-and-
science-related experiences. Adults raised under these
conditions will be more likely to understand the fas-
cinating and subtle aspects of science and math as
human enterprises, leading to greater math/science

interest, achievement, and appreciation.

The Tao reminds us too that, “The most difficult things
in the world must be done while they are easy.” El-
ementary students typically exhibit strong interest in
suitably presented science and mathematics, thus of-
fering a perfect opportunity for them to learn these
subjects in a humanistic context. What I propose to
do in this article is to make a case for presenting hu-
manistic math and science to elementary school chil-
dren, and then to introduce a theoretical, yet practi-
cal, framework for teaching these subjects in K-6 class-
rooms.

I refer to the subjects of math and science jointly in
this article because, especially in pre-college educa-
tional settings the two can be, or should be, intimately
linked. In the elementary classroom science and math-
ematics reinforce one another, each discipline draw-
ing upon the techniques and tools of the other to offer
students an experience and an awareness that is
greater than the sum of the parts. Problem solving
skills, whether in or out of school, will be strength-
ened when students can draw freely from the strate-
gies of math and/or science as necessary. When these
subjects are offered jointly students are able to make
natural connections between math and science, en-
hancing comprehension and appreciation of both.

Imagine standing before a room full of thirty-two ten
year olds. Now imagine that you are responsible for
their understanding of mathematics and science, as
well as other vital subjects including literacy, social
studies, communication, collaboration/cooperation,
and the arts. That is, imagine that you are an elemen-
tary school teacher. Next, consider how you will in-
struct these young students in this cornucopia of dis-
ciplines. Don’t forget that those young people are
potentially future graduate students in math and sci-
ence, future workers at math/science related occupa-
tions, and perhaps even future teachers. Also, don’t
forget that as an elementary school teacher your aca-
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demic background in math and science is probably
marginal at best. Will you rely on the traditional text-
book methodologies, or will you try the riskier and
more demanding approach of action-oriented and
individualized instruction? Imagine a curriculum that
would motivate these students to reach high levels of
achievement in math and science, while simulta-
neously encouraging their curiosity and personal in-
terest. Imagine a curriculum that would lay the
groundwork for a deep understanding of math and
science as humanistic efforts. A great deal of educa-
tional research indicates that such goals are within our
reach, and that they may be reached by our elemen-
tary-level students, working with motivated and in-
spiring teachers. (Drew,
1996; Myers & Fouts, 1992;
Vargas-Gomez & Yager,
1987; Yager & Penick, 1986).

What should be the basic
structure of a curriculum
rich in humanistic aspects of
math and science? A review
of research regarding effec-
tive elementary pedagogy
(Bruner, 1977; Dewey, 1926; Freire, 1970; Maslow, 1971;
Rogers, 1983; Vygotsky, 1978; Yager & Lutz, 1995) sug-
gests that a curriculum aimed at teaching the human-
istic, aesthetic, and pragmatic aspects of science and
mathematics should center on four theoretical and
functionally interconnected components. Such a cur-
riculum could apply to the teaching of math, of sci-
ence, or of math/science. A humanistic curriculum
would include interactive/collaborative, holistic/relevant,
interdisciplinary, and problem-based components, each
of which will now be considered at greater length.

INTERACTIVE/COLLABORATIVE COMPONENT
Elementary students, as fundamentally concrete
thinkers, require a personal and interpersonal experi-
ence of humanistic math/science if we wish to offer
them a deep and practical understanding of these sub-
jects. Students must be actively involved in their ex-
plorations of scientific/mathematic phenomena. En-
gaging lessons that encourage personal involvement
and provide opportunities for meaningful under-
standing are most satisfying and therefore optimally
motivational for students. In action, this component
will utilize what is known as “hands-on” or “minds-
on” classroom activities, the former referring to ex-

plorations involving objects and materials actually
manipulated by students (e.g., directing students to
separate a large pile of various leaves into two piles,
based on observable characteristics, then to construct
a bar graph based on the piles), and the latter refer-
ring to activities that promote the use of higher order
thinking skills, but not necessarily involving the use
of materials by students (e.g., an inquiry demonstra-
tion presented by the teacher). These concepts are well
described in the national standards now set for sci-
ence and mathematics teaching (AAAS, 1993; NCTM,
1989; NRC, 1996) since they form the basis for the
pedagogy described in those documents. These tech-
niques are particularly crucial for marginalized, at-

risk, and underachieving
students.

Further, to be fully effective,
interactive studies must be
undertaken in a collabora-
tive manner. Methods in-
volving cooperative group
work are essential to learn-
ing about science and math
as humanistic endeavors.

Not only is learning dependent on socialization
(Vygotsky, 1978), but the basis of humanistic math and
science lies in fostering an awareness of the interper-
sonal aspects of those disciplines. They cannot be
taught in a social vacuum, i.e., simply reading about
humanistic math and science is antithetical to devel-
oping authentic and functional comprehension and
appreciation in these areas. A deeper understanding
may be cultivated by actual problem solving in social
settings and augmenting those experiences with me-
dia such as texts, videos, and computer-based learn-
ing.

HOLISTIC/RELEVANT COMPONENT
Closely associated with the Interactive/Collaborative
Component is the need to present lessons that are rel-
evant to the students themselves. Student-centered
instruction focuses on student interests, student ques-
tions, student ideas, and student-generated projects.
Humanistic math/science remains oxymoronic in a
traditional classroom where teacher-centeredness is
the rule. Memorization and retention of facts are not
enough; a deeper understanding is required, which
can only be accomplished through a process of scaf-
folding student learning from the familiar to the un-

❝What sorts of experiences do they, the students,
encounter in their lives?
What do they believe?

What do they want?
Who are they?

Who do they want to become?
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familiar. The entire life of the child then becomes im-
portant to the humanistic educator. What sorts of ex-
periences do they, the students, encounter in their
lives? What do they believe? What do they want? Who
are they? Who do they want to become? What do they
like? What do they dislike? By taking a holistic view
of the child, as opposed to limiting the curriculum to
the cognitive dimension alone, the teacher may find
numerous opportunities to creatively attach human-
istic math and science to the child’s daily experiences.
Learning, founded on students’ actual lives, can then
build up and out in an ever-widening spiral.

The humanistic curriculum must also be holistic in
the sense that it involves the entire child. Caring
(Noddings, 1993), respecting, and empathizing
(Rogers, 1983) are values that support students as
unique thinking and feeling individuals in the pro-
cess of growing and understanding the world. An
ethic of care and compassion, openly and appropri-
ately expressed, encourages their exploration of the
unknown, both inside and outside the classroom. The
teacher’s style of interacting with students, in fact, has
been shown to be a critical variable associated with
student success in science and science-related classes
(Ebenezer & Zoller, 1993; Eichinger, 1992, 1997; Myers
& Fouts, 1992).

INTERDISCIPLINARY COMPONENT
Mathematics and science do not happen in a vacuum.
They are composed of meaningful acts performed by
real people in the courses of their lives. Just as I have
recommended the blending of math and science
throughout this article, these two subjects (tradition-
ally treated as discrete entities in school) can also be
combined effectively with other school disciplines.
Interdisciplinary combinations not only promote the
presentation of the subjects in a holistic and relevant
context (as recommended above), but also provide
opportunities for imaginative and personal connec-
tions between students and subject matter, which
serve to further enhance understanding and motiva-
tion.

Examples of interdisciplinary strategies involving
humanistic mathematics and/or science abound, com-
bining art and mathematics (Hall, 1995; Reiner, 1994;
Williams, 1995), art and science (Eichinger, 1996a; Kohl
& Potter, 1993), art, mathematics, and science
(Eichinger, 1997), music and mathematics

(Huylebrouck, 1996; Kitts, 1996), chemistry and the
dramatic arts (Budzinsky, 1995), literature and math-
ematics (Bernard, 1994; Growney, 1994; Lew, 1996),
literature, art, and mathematics (Swetz, 1996), and
history and mathematics (Priestley, 1996). Although
not all of the aforementioned studies were written
with elementary school teaching in mind, any of them
could be modified to accommodate students in grades
K-6. A servicable procedure for integrating units of
study in elementary math and science was proposed
by Francis and Underhill (1996). Examples of appro-
priately integrated math and science curriculum at the
elementary school level include those by Curran-
Everett (1997), who explores the properties of the
Möbius Band, Scarnati (1996), who teaches observa-
tion techniques through the description and assem-
bly of Lego shapes, and Eichinger (1996b), who chal-
lenges students to learn about thermodynamics
through experimentation, data collection, and inter-
pretation.

Other aspects of humanistic instruction that are often
overlooked in traditional elementary settings, such as
technological applications and the development of a
critical social consciousness, are readily accessible
through an interdisciplinary approach. The Science/
Technology/Society movement (STS) is defined by
Yager and Lutz (1995) as “the teaching and teaming
of science in the context of human experience, includ-
ing the technological applications of science” (p.30).
STS instruction is therefore intimately tied to practi-
cal applications of mathematics and leads students to
a deeply relevant understanding of the place of these
subjects in their lives. STS techniques are empower-
ing for students since, as stated by Yager and Lutz,
“The richness of STS comes from contributions of the
individual students, their creative ideas, and the cen-
tral role they play in planning and carrying out the
STS investigations” (p.35). Hurd (1994) called for a
science/technology curriculum “that relates science
to human affairs, the quality of life, and social
progress” (p. 109), and whose “ultimate purposes are
to have students who can take part in helping to plan
the science/technology aspects of our sociocultural
future” (p. 109). In this sense, notions of critical social
consciousness, human rights, and social action may
be forwarded in the elementary classroom through
interdisciplinary humanistic instruction that includes
authentic reflection and dialogue based upon real-
world issues. In this way, the humanistic mathemat-
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ics and science curriculum will “help students explore
their personal and group identities relative to the so-
cial structures in which they live, others who live
within the same social structures, the inequities that
exist there, and students’ roles in suffering from or
benefiting from them” (Jennings & Eichinger, 1996, p.
12).

Another reason for encouraging an interdisciplinary
facet to the humanistic curriculum is that it will pro-
vide teachers with more time to teach science and
mathematics in a very busy curricular day. The accu-
mulation of academic responsibilities, headed by the
need to teach reading, writing, and mathematical cal-
culation, leaves teachers too
little time to explore other
subjects in depth, especially
if those subjects are taught
in isolation from one an-
other. In addition to provid-
ing opportunities for mak-
ing meaningful connections
to the other disciplines, the
proposed interdisciplinary
curriculum will create more space for teaching math/
science in a humanistic context. Tie math/science into
reading and writing. Connect it also with social stud-
ies, art, and physical education. Blend these subjects
in new and innovative ways.

PROBLEM-BASED COMPONENT
The last of the four interrelated components refers to
the importance of grounding the humanistic curricu-
lum in meaningful, challenging problems and oppor-
tunities for authentic inquiry. Gone are the days when
rote memorization of facts and algorithms suffice for
a math/science education. An essential feature of the
current standards in science and mathematics is a call
for deeper, more active, and more relevant study of
these subjects at all grades for all students. As stated
by the National Research Council in the National Sci-
ence Education Standards (1996), “Learning science
[and/or math] is something students do, not some-
thing that is done to them” (p. 20). Posing realistic,
interesting, and challenging problems for students or
groups of students to solve is a mainstay of the cur-
rent movement toward curriculum reform in math
and science. The problem-solving instructional format
has been associated with increases in student achieve-
ment and motivation at all school levels. Perhaps most

importantly, students will understand and appreci-
ate the value of math and science as humanistic en-
deavors only if they have used it to solve problems of
interest to them. Through problem solving, students
learn not only to effectively confront challenges in the
classroom, but also to confidently face future choices
and tasks presented by “real life,” including those re-
lated to occupation, citizenship, leisure, and interper-
sonal relations.

Wheatley (1991) proposed a problem-centered model
of mathematical and scientific learning designed to
promote students’ construction of subject matter
knowledge in the classroom. That model is composed

of three elements: 1) stu-
dents are challenged with a
task, 2) work is done in
small groups, and 3) after
working on the problem the
groups convene to discuss
their solutions. Group pre-
sentations are made to the
class, not to the teacher,
whose role is that of non-

judgmental and encouraging facilitator. The implica-
tions of the problem solving approach have been dis-
cussed by various authors, including Meier, Hovde,
and Meier (1996) who stress the importance of “real
life” and interdisciplinary applications, and Lipson
(1995), who reported on student reactions to this sort
of instruction.

A clear advantage of the problem-centered approach,
as opposed to traditional, memory-based methods of
instruction, is that it encourages the inclusion of more
complex thinking skills. Critical thinking skills (e.g.,
analysis, synthesis, application, evaluation),
metacognition (i.e., reflective thinking), and process-
thinking skills (e.g., observing, predicting, inferring,
questioning, experimenting, and communicating) are
all a part of effective problem solving, and are also
critical to an understanding of humanistic science and
math.

A challenge presented by problem-centered instruc-
tion is that of assessment. Techniques of assessment
and evaluation must be aligned with instruction, i.e.,
they must be congruent with the knowledge con-
structed by problem solving, rather than with tradi-
tional memory-centered pedagogy (i.e., testing for

❝...students will understand and appreciate the
value of math and science as humanistic endeav-
ors only if they have used it to solve problems of
interest to them.
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simple recall of facts and concepts). Problem-based
learning necessitates assessment strategies that in-
volve observation of actual student performance and
solutions/products, and that note whether students
can apply and use information.

THE PRACTICE OF TEACHING HUMANISTIC MATHEMATICS/
SCIENCE.
What does the humanistic curriculum look like in
practice? Do programs exist that incorporate aspects
of interaction/collaboration and holism/relevance
within an interdisciplinary and problem-based in-
structional format? The good news is yes, there are
some appropriate programs in existence. The bad
news is that there are not enough such programs nor
are they necessarily in wide enough use. Teachers,
pressed for time to teach so many subjects in a school
day, are likely to “overlook” subjects with which they
are least familiar, and few are very familiar with dy-
namic and student-centered science and mathemat-
ics. Research shows us that teachers who are familiar
with aspects of the humanistic style outlined above
are more comfortable with the content and pedagogy
of such a curriculum, and are therefore more likely to
teach in a humanistic manner (Eichinger & Anderson,
1996).

Many classroom teachers employ their own uniquely
designed humanistic curricula, but appropriate, larger
scale programs do exist. Examples of instructional
programs that tend to approach math and science in
the four-pronged manner noted above can be found
in the inquiry-based science/math curricula of Pasa-
dena, CA, and Mesa, AZ, elementary schools. A num-
ber of packaged programs in math and/or science also
offer options that approach an effective humanistic
curriculum. Such programs include Project AIMS (Ac-
tivities Integrating Mathematics and Science), Math
Their Way, Full Option Science System (FOSS), Math
Renaissance, GEMS (Great Explorations in Math and
Science), and Mathland, among others. The profes-
sional journals Teaching Children Mathematics (formerly
The Arithmetic Teacher), School Science and Mathemat-
ics, and Science and Children are also useful resources
for the humanist elementary school teacher. Any cur-
riculum package or program can be misused, how-
ever, and the best way to reach the greatest number
of students is to be sure that the teachers themselves

understand and appreciate the human aspect of math
and science. Excellent instructional programs require
excellent teachers, since, in the end, it is largely the
teacher’s expertise that determines the quality of the
classroom experience.

Teachers, functioning as decision-making profession-
als and not merely as classroom “technicians,” must
be encouraged and supported in their pursuit of more
effective humanistic instructional strategies. Viewing
a popular movie such as The Lost World: Jurassic Park
might stimulate a teacher to ask some interesting ques-
tions of her or his students. Just how big was Tyran-
nosaurus rex? Could we draw one in chalk on the play-
ground asphalt? What color might it’s skin have been?
What makes you think so? Color in the skin with more
chalk. Now let’s estimate the volume of T. rex - how
can we do that? How many ways can we think of to
estimate its surface area, and which method is likely
to be the most accurate? Could we build a scale model
of T. rex? How big would a human be in comparison?
How far do you think T. rex could jump, and how
could you decide? Could it climb? Swim? What makes
you think so? Can you find any evidence for your
answers? What other questions do you have regard-
ing T. rex? How could you find those answers? What
resources are available to tell you more about T. rex?
These sorts of investigations are based on the
children’s own interests, and combine math and sci-
ence as tools to help young students discover what
they  want to know. Thus, math and science may be
seen as relevant and useful in their daily lives.

Mathematics and science are not just topics in a book;
they are interrelated elements of our everyday expe-
riences as human beings. They can be living, exciting,
and inspiring subjects when studied in a humanistic
and relevant setting. What I envision is a time when
children nationwide (dare I hope, worldwide?) will
find a deeper connection to mathematics and science
as humanistic pursuits. They may, for example, view
broadcast images of math/science in action such as
the travels of the Mars Rover Sojourner, exclaiming
with enthusiasm and joy, “That looks like what we
did in school!” To accomplish this goal, we can’t af-
ford to wait until these students enter college. We must
act on the knowledge that “...the greatest things in
the world must be done while they are small.”
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The Legend of the Apple
Raul A. Simon

Departamento de Pisica, Universidad de Tarapaca
Casilla 27-D, Arica CHILE

Slowly darkens the English countryside;
pale and distant, the moon sails the sky,

announcing to the green and sleepy farms
the coming of a new warm summer night.
Silent and brooding, the young scholar sits

close to the door of his ancestral manor,
and in the melancholy, timeless peace

surrounding him, his mind leisurely wanders
into half-closed domains of time and space.

Behold. One of the savory red fruits
noisily falls down from an apple tree,
compelled by its own sweet maturity.

The truth-searcher, lifting his idle gaze,
beholds both fallen fruit and silv’ry disk,

and the sharp edge of cruel inner lightning
pierces in silence the young scholar’s brain:

Is it then possible that star and fruit
 obey one law, both cases being one?
(Why does satellite not fall to earth,

but instead, far into the past and future,
once and again follow dutiful ellipse?)

Before dawn comes, will Isaac Newton find
the law of gravitation in his mind.
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Mathematics Found in Poetry
Alexis Mann, Student
Stony Brook School

New York

Mathematics is found everywhere, whether it be
building a house or planting a tree. Yet, you may not
know that mathematics is also found in poetry, rang-
ing anywhere from the amount of lines within a stanza
to internal rhythm patterns.

Like everyday life, poetry is surrounded by patterns
and rhythm. Biologists say that even before you were
born, you could feel the rhythm of your mother’s
walking pattern and of her heartbeat. From the hu-
man heartbeat many sounds have derived, all based
on the soft then loud stresses of the heart: lub-DUBB,
soft, hard. Due to the theory that we speak in the pat-
tern of heartbeats, we can measure and count the hard
and soft stresses. The most common one is iambic,
from the Greek. This pattern is soft hard, soft hard,
soft hard.1 We use this pattern often, adopting it as
the basic unit of speech, such as found in William
Shakespeare’s quote, To be or not to be, that is the ques-
tion. Patterns within the syllables are also important.
Usually the writer expresses him/herself in hidden
ways of repetition, such as in ancient Greece, where
they used the length of syllables to make patterns. We
also use syllables to express important ideas. You
would not want a soft stress on an important word.
To account for both syllables and patterns we use the
method of Syllable-stress. This measures how much
of both are in each line. To make a poem where one
thought is understood and remembered, some poets
use repetition, either of words or phrases. The re-
peated lines usually come in the idea of waves. Once
you reach the end of a Iine or wave, a new wave starts
with the same type of rhythm, bringing you to the
end of the next line. Poetry can also be measured in
musical notes, which dictate to the reader how long
one word should be held. Music is found in poetry a
lot. It is the measure of chronometric time. Once you
start dividing the full unit of time you come out with
different patterns; one beat equals a whole note, half
a beat equals a half note and so on until you reach
sixteenth notes.2

Poetry can also be compared to geometry, for in some

ways they are alike. What makes a geometric figure is
the consistency of its elements such as angles or line
segments which stay proportional as it goes through
different transformations. In other words, one reason
a triangle is considered a geometric figure is because
if it were flipped and expanded to a hundred times
its original size, its angles and lines would still be in
the same proportions as it was originally. Within po-
etry and other well-written works, proportion is a very
important. One example of this in poetry is in a four-
teen line poem, where the line stanzas are divided into
the proportion 6:8:14.

Fibonacci numbers play a big part in understanding
and analyzing both literature and biology. For in-
stance, if you look at a sunflower it seems to be an
unorganized mess of petals and untamed yellows, but
if you look closely enough, you see that there is an
order to its growth. When you look you find that there
are twenty-one florets spiraling in the clockwise di-
rection and thirty-four going in the counterclockwise
direction. These two numbers are part of the “golden
number” sequence, also known as Fibonacci numbers.

Figure 1:
Spiral pattern in the sunflower
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In poetry you can find parts of this “golden sequence.”
In the Aeneid, for instance, one part of book five has
lines grouped in numbers of five, eight and thirteen.
Another place where Fibonacci numbers might be
found are in the number of syllables found within
poem’s lines.3

In order for figures to be classified in geometry they
have to have certain characteristics.4 This is also true
in poetry. A square is listed under quadrilaterals be-
cause it has four sides. In poetry a fourteen line poem
is classified as a sonnet, yet there are more detailed
descriptions for each. Not only does a square have
four sides, but they all have to be equal. If this were
not true it would not be a square, but instead a rect-
angle. It is the same for a sonnet. This type of poem
has to have some sort of ordered rhyme scheme.
Rhyme scheme is the art of placing a letter at the end
of each line according to what sound is found there.
For instance, if your first line is, come out and play you
would place an A at the end of the line signifying play
as your first sound, then if you found anything which
rhymed with play later in the poem, you repeat the
letter A to show the same sound has been repeated.
This lets you trace the repetition of sound throughout
the poem. Such set examples of rhyme schemes can
be found in any well written sonnet, yet some of the
best examples are Shakespearean sonnets. Some pat-
terns found within his poems are abab cdcd efef gg,
abba abba cde cde, and abba abba cde edc. In Sir Philip
Sidney’s poem, “With How Sad Steps, O Moon,” the
rhyme pattern is abba abba cdcd ee.

With How Sad Steps, O Moon

With how sad steps, O moon, thou climb’st the skies,
How silently, and with how wan a face.
What, may it be that even in heavenly place

That busy archer his sharp arrows tries?
Sure, if that long-with-love-acquainted eyes

Can judge of love, thou feel’st a lover’s case;
I read it in thy looks; thy languisht grace,
To me that feel the like, thy state descries.

Then even of fellowship, 0 moon, tell me
Is constant love deemed there but want of wit?

Are beauties there as proud as here they be?
Do they above love to be loved, and yet

Those lovers scorn whom that love doth possess?
Do they call virtue there ungratefulness?

Besides the mechanics of creating a poem, there is also
the need for creative language and situations. With-
out the understanding of why the scene is taking place,
no poet can create a good poem. Within geometry you
also have to know the reason and theory behind ac-
cepted facts, because without that you could not fully
understand geometry. In order to accomplish this you
use the facts which you know are true. Then, using
deductive reasoning you combine statements which
are accepted as true and piece them together, coming
up with a logical conclusion, for if they say p is true
then it can’t be not p. For example, you know that the
vertices of a triangle have a total of one hundred and
eighty degrees. Although you could prove this  math-
ematically, most people accept it as a fact. In poetry
you do the same thing. You are given a situation that
the poet tells you is true and then from clues found
within the poem, you come up with an ending which
the writer hoped you would discover. For example:
Darkness creeps over the sleeping mountains. You know
that darkness means night and that sleeping also has
to do with night, so it is most likely nighttime. Be-
cause it is nighttime, then it can’t be day. In
Shakespeare’s “Sonnet 130,” he describes his mistress
whom he loves dearly, yet he confides in the reader
that she is truly not pretty. He goes through telling
about how her lips are not red like coral and her eyes
are not like the morning sun. Although in this society
beauty is sometimes considered the measurement of
love, this poem defies that and instead says the oppo-
site. In this case her ugliness only enhances her beauty.

Sonnet 130

My mistress’ eyes are nothing like the sun;
Coral is far more red than her lips’ red;
If snow be white, why then her breasts are dun;
If hairs be wires, black wires grow on her head.
I have seen roses damasked, red and white,
But no such roses see I in her cheeks;
And in some perfumes is there more delight
Than in the breath that from my mistress reeks.
I love to hear her speak, yet well I know
That music hath a far more pleasing sound.
I grant I never saw a goddess go;
My mistress when she walks treads on the ground:

And yet, by heaven! I think my love as rare
As any she, belied with false compare.5

Within deductive reasoning there are certain elements
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which must be present: terms, axioms and theorems.
Terms within geometry can be categorized as unde-
fined or defined. Undefined terms are points, lines
and planes. You know they exist but they have no di-
mensions or mass. In poetry undefined terms are ab-
stract feelings or events, ones which you know exist,
but have no color, smell, taste or sound. Because un-
defined terms are important, people have come up
with symbols which help them visualize what they
are talking about. A point is represented by a dot and
a plane is represented by a flat surface which extends
indefinitely, yet can be represented by any flat sur-
face. In poetry anger might be associated with red or
depression with black. Although undefined terms are
shapeless, they are very important to the plane they
are describing, as are the abstract thoughts which help
illustrate concrete images. One poem which shows the
use of intangible objects to create a feeling is “Fan-
tasy.”

Fantasy

The night’s sweet breath,
breathes desires past my ear,
whispering songs of fantasies,
which I keep contained under lock and key.
And only in the darkness do I let my mind wander
forgetting about reality,
letting my soul run free.

—Alexis Mann

In this poem there are almost no concrete images, yet
the poet gets her point across. Although you can not
touch, smell or taste the desires, you know they are
there. She lets you experience the speaker’s desires
by relating them through feelings which every per-
son has.

Axioms are another idea that makes up geometry.
They are statements which are assumed to be true and
therefore go without being proven, such as Euclid’s
fifth axiom or parallel postulate. This states that there
is a point not on a given line and only one line can be
drawn through the point parallel to the given line.
For years scientists have been trying to prove this
axiom right or wrong, yet none have been able to do
either. Thus, it is still classified as an axiom. In poetry
axioms can be described as a situation made up of
unproved facts. This is because the author is telling
you the situation is real so there is no reason for the

reader to investigate further, such as in the little girl
walks down the dirt New Hampshire road. The writer is
telling you the little girl is in New Hampshire, so there
is no reason to use other facts to prove this is true.

The next and final part is theorems. Unlike axioms,
theorems can be proven using deductive reasoning.
To do this, though, you need references to other
proven theorems or additional information. One ex-
ample is how to find the congruency of two triangles.
Based on other knowledge, you know that if all three
corresponding angles and corresponding sides are the
same, then the triangles must be congruent. So, if you
know that two sides and one angle of triangle ABC
are congruent to the same two sides and one angle in
triangle DEF, then you have just proved their congru-
ency, using side angle side (SAS). Theorems can be
proven in poetry. To prove an idea or situation, you
use facts found in earlier stanzas or information you
have collected in everyday life, then relate it back to
the line you are reading. This helps you to understand
what is truly going on within the poem. This also helps
by making sure you do not become confused due to
the metaphors or symbols the poet might be using.6

Such an example can be found in “My Papa’s Waltz”
by Theodore Roethke.

My Papa’s Waltz

The whiskey on your breath
Could make a small boy dizzy;

But I hung on like death:
Such waltzing was not easy.

We romped until the pans
Slid from the kitchen shelf;
My mother’s countenance
Could not unfrown itself.

The hand that held my wrist
Was battered on one knuckle;

At every step you missed
My right ear scraped a buckle.

You beat time on my head
With a palm caked hard by dirt,

Then waltzed me off to bed
Still clinging to your shirt.

The writer here wants you to think of the father’s
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drunkenness as a waltz, but you know by past knowl-
edge that this dance is no dance at all but instead a
father beating his son. If you read this poem literally
without relating it back to prior knowledge, you
would have never understood the poet’s attempt to
hide this horrible event within a beautiful dance.
Therefore, using deductive reasoning, you have
proven that the father is not actually dancing.

In my final comparison between mathematics and
poetry I will look at direct and indirect proofs. In
mathematics, proofs are arguments which establish a
statement’s truth. A mathematical proof has a certain
defined structure, which can be divided into steps.
First is the initial step or hypotheses, which are asser-
tions that are considered true without having to be
proven. In poetry, the hypothesis is the structure of
the situation, whether it be true or false.7 For example,
if you are writing a poem about a cat and in the first
line you say it lives in a house and drinks water, then
throughout the poem you must make sure your facts
stay consistent. If in stanza one she lives in a house
and in stanza four she lives in an apartment, then that
original statement is now false because she no longer
lives in a house. To make the first statement true you
must make the cat still live in a house even in stanza
four. Indirect proofs can also be formed if there is a
contradiction found, or if you assume the conclusion
is false. This is found in poetry. When you read a poem,
and as you get toward the end, a simple fact switches
the meaning of the poem, such as in William
Shakespeare’s “Sonnet 33.”

Sonnet 33

Full many a glorious morning have I seen
Flatter the mountain tops with sovereign eye,
Kissing with golden face the meadows green,
Gilding pale streams with heavenly alchemy;
Anon permit the basest clouds to ride
With ugly rack on his celestial face,
And from the forlorn world his visage hide,
Stealing unseen to west with this disgrace.
Even so my sun one early morn did shine
With all-triumphant splendor on my brow;
But out alack he was but one hour mine,
The region cloud hath masked him from me now,

Yet him for this my love no whit disdaineth;
Suns of the world may stain when heaven’s sun
 staineth.

This poem at first shows a dark lifeless morning.
Shakespeare then goes through describing it and how
terrible it is, yet towards the end the sun comes out
for a instant. This is the turning point of the poem
when the whole meaning switches from the feeling
of depression and hopelessness to the possibility of
happiness.

Before I this started researching this paper, I was not
sure how much mathematics really related to writing
and poetry, yet as I searched I started to realize
poetry’s connection with mathematics. I hope you
have learned a little something while reading my re-
port; I know I have learned a great deal.

Mistress of mine, time and
Again you have wooed me with your
Theorems and proofs,
Held me captive with your abstract beauty, and
Enchanted me with your dance.
Mistress of mine, time and again I have been
Awed by the
Transcendent melodies you weave and the
Infinite tapestries you spin from only a sparse
Collection of symbols and signs.
Mistress of mine, it has been a long and glorious romance8

Monte J. Zerger
Adams State College Alamosa, CO
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A seagull
Measures the height of winter surf,
Sun and wind seeping through his feathers
While beneath him waves gather rocks from the
     shoreline,
Sift, sort, grind, and leave them at low tide,
Glinting pebbles, glistening sand.

People count, sort, and tally the pebbles
As the tide rises and falls to the rhythm of the moon.
We read the moon’s language
Measuring days, nights, months, years
According to the passage of sun and moon;
Our gaze soars from stars into the depths of space.

And we leave those pebbles on the beach and build
     machines to describe our universe.
Knowledge multiplies; accumulated thought patterns
Illuminate the darkness of abstraction.
The tide takes bottles from our shoreline,
Grinds them smooth, then tosses them back,
Muted green and brown
While a foghorn sounds through the mist
Barely audible above the wave roar.

Children gather rocks and bottle-pebbles from the
     beach to sort, count, tally, and weigh.
Parents feed facts into computers
Until waves of words and figures
Innundate our world behind the shoreline.

When thinkers left their counting pebbles by the sea
They built their theories on the supposition “If...”
They built, bound only by imagination and logic.

Still we create new theories from the depths of our
     insatiable minds,
Framing deductions, mathematical reason—
Concise amongst verbosity.
Our machines produce, computers test new ventures
Inspired by wind, sun, and space.

One day,
Two men taught and a computer performed.
The computer performed and the men learned.
Together they solved a problem,
Adding new dimension to our thought.
Together they built a proof mathematicians had
     sought alone for a  hundred years.*

But what of limits?
What if applications clash with oceans
Or distortions destroy?

Today’s tides pluck plastic bottles from the shoreline
And cannot toss them back ground smooth and
     glistening wet.
Instead toss them bent but indestructable onto rocks
Or gather them in eddies and currents to be carried
     through oceans
To contaminate distant beaches.

We will learn with our machines, produce, judge,
     explain, and solve
In unimagined ways
While seagulls watch,
Sun and wind filtering through their feathers;
Waves grind rocks and bottle-pebbles green and
     brown
To glistening sand;
Waves will silence the foghorn,
And what of the plastic?

* In 1976 two graph theorists, Kenneth Appel and Wolfgang
Haken, proved that four colors suffice to color any map
drawn on a plane so that no two adjacent countries are the
same color. This is the first documented mathematical proof
including computations compiled by computers (1,200
hours, 3 computers, used both as a research tool and in fi-
nal computations). University of Illinois, July 1976. While
solving this problem, the mathematicians learned from the
computations carried out by the computers, and likewise,
the computers’ calculations were modified based on what
the researchers deduced from the earlier calculations.
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INTRODUCTION
In general, surrounding or underlying the concept of
equality there is an idea of sameness. But same in what
sense? In mathematics, an equivalence relation is de-
fined as one which is reflexive, symmetric, and tran-
sitive,1 but there are many such relations and so, de-
pending on the case at hand, this is specified further.
In geometry, for example, there is a distinction be-
tween numerical equality of, say, areas of triangles,
and equality (or congruence) of both sizes and shapes.
When discussing functions, for example, one distin-
guishes between identities and equations, and, for
different subcontexts, such as matrix algebra, complex
variables or vector analysis, particularized definitions
are needed. The distinctions, and yet underlying unity,
of these various equivalence relations are often only
vaguely realized by learners and so could use more
thoroughgoing discussion.

In the political realm, where equality is so central to
our EuroAmerican views of democracy, justice, and
fairness, equality is used mostly in regard to the rights
or treatment of people vis-a-vis government, institu-
tions, or businesses. While there is a long and ongo-
ing history of philosophical and legal discussions of
equality, when used in common catchphrases, it of-
ten means quite different things to different people.2

Further, in common American -English usage, the
connotations of equality and equivalence differ: equal-
ity “implies the absence of any difference,” that is be-
ing exactly the same, while equivalence implies that,
although there inay be differences, “they amount to
the same thing.”3 These different realms of usage—
the mathematical, the political, and the everyday—
are, however, not strictly distinct. That they interact
is too often ignored; the differing usages, no doubt,
influence and support, or, at times, confuse each other.

To enlarge our thinking and stimulate discussion
about what equality means, we add a quite different
view. Among the Basque of Sainte-Engrâce, France,
there is a concept bardin-bardina translated as “equal-

equal.” Consideration of the Basque concept makes
us realize that there is cultural variation in even as
basic a concept as equality. In addition, elaboration of
their concept, within the Basque context, can provide
an opportunity to display mathematical ideas used
in the promotion of cooperation. All too often, in an
attempt to embed mathematical ideas in realistic-
sounding contexts, we overlook that we are implic-
itly transmitting values as we present numerous ex-
amples of competition, winning, and financial gain.
Here, instead, the focus is on how people organize
their interactions to provide mutual assistance and
receive mutual benefit.

The Basque concept of equality is underpinned by two
operational principles that structure relationships so
that everyone both gives and receives. The principles
are referred to as üngürü and aldikatzia. The former is
translated into English as “rotation,” in the sense of
“moving around a centre,” and the latter as “’serial
replacement’ as well as ‘alternation.”’ How these
mathematical ideas apply in this context and how they
relate to equality is best described in terms of their
operation.4 Where we use some algebraic symbols in
the description, the notation is ours and not that of
the Basque. The symbols are introduced to succinctly
capture and express, in terms familiar to us, the sys-
tem involved and some of its logical implications.
More important, the fact that this translation is pos-
sible highlights the mathematical nature of the ideas
involved.

CONTEXT
The community of Sainte-Engrâce is in the Basque
province of Soule, one of the nine Basque provinces
in the Pyrénées-Atlantique which straddle the French-
Spanish border. Although the exact origins of the
Basque are unknown, it is generally agreed that they
predate the French and Spanish-speaking peoples in
the region around them by perhaps thousands of
years. In the 1970’s, at the time of a study of Sainte-
Engrâce, there were about two million Basque, with
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about three-quarters of them living in the Basque
provinces in Spain, one-eighth in the Basque provinces
in France, and the rest living in other areas of the
world. Having their own language, a rich history, their
own political and social organization, and long-held
traditions, the recent history of the Basque has been
marked by conflict with the nation states which en-
compass them. Nevertheless, the Basque way of life
continues, particularly in a place like Sainte-Engrâce
which, situated in the high mountains, is one of the
most geographically and socially isolated communi-
ties in the region. Although the population declined
from about 1000 people in the late 1900’s to about 375
in the 1970’s, the community remains self-reliant, cen-
tering on small farms and shepherding.

The mountains which surround the Sainte-Engrâce
region range from about 1000 m to 2500 m. The Basque
conceive of the region in which they live as enclosed
by a circle of mountains with their households form-
ing another circle within that. Whether or not this is
actually the case, this spatial model forms the basis
for their idea of circularity which pervades many of
their interactions. In this circle everyone has neigh-
bors to the left and neighbors to the right. No one is
first and no one is last. Everyone’s participation is in-
volved in keeping the circle unbroken.

THE GIVING OF BREAD
Until the 1960’s, a fundamental circular exchange was
the giving of blessed bread. Each household regards
its neighbor to the right as its first neighbor. (The di-
rections right and left are as viewed from the center
of the circle so that right is clockwise and left is coun-
terclockwise.) The giving of bread took place weekly
and was thought of as being given from first neigh-
bor to first neighbor. That is, each Sunday a woman
from one particular household, call it Hi, bought two
loaves of bread to the church where it was blessed
and partially used in a church ritual. Then, before sun-
set, a portion of the bread was given by H

i
 to her first

neighbor, namely to Hi+ 1. The following week Hi+1 was
the bread-giver and Hi+2 the bread-receiver. Thus, the
giving (and receiving) of bread moved around the
circle serially, taking about two years to complete one
cycle of about 100 households. While each household
was both a giver and receiver of bread, this mode dif-
fers from simple reciprocity; only if there were a total
of two households would H

i
 and H

i+1
 directly recip-

rocate as each other’s first neighbor.

FIRST NEIGHBOR OBLIGATIONS
In a more extensive, ongoing, cooperative arrange-
ment, the exchange among neighbors is again predi-
cated on the circular model, but this exchange involves
several first neighbors. The first first neighbor of Hi
is, as in the breadgiving, Hi+1, the neighbor to the right;
the second first neighbor of Hi is the neighbor on the
left (Hi-1); and the third first neighbor is the next on
the left (H

i-2
). Thus, for example, when there is a death

in household Hi, the household calls upon its first
neighbors for assistance. As a group Hi-2, Hi-1, and Hi+1

help to keep the household going, but Hi+1 provides
particular assistance in specific preparations for the
funeral. And, on the occasion of a home birth for H

i
, it

is a woman of household Hi-1 who serves as the mid-
wife.

Planting, harvesting, threshing, sheep shearing, and
pig slaughtering all require the work of more than one
person and so, there too, the first neighbors are called
upon. These assistances are directly reciprocated by
providing food and drink and by the giving of small
gifts, but, primarily, the reciprocation is serial, that is,
by assisting, when called upon, as the first neighbors
of others.

A particularly interesting result of this mode of inter-
action in the farming yearly round is that households
must schedule their work with the obligations of oth-
ers and to others in mind. Also, for the same chore,
each household gets to work with different groups of
households and to play different roles within those
groups. Hi, for example, works in groups (Hi-2, Hi-1,
H

i
, H

i+1
), (H

i-3
, H

i-2
, H

i-1
, H

i
), (H

i-1
, H

i
, H

i+1
, H

i+2
), and

(Hi, Hi+1, Hi+2, Hi+3), taking the roles of primary house-
hold, and first, second, and third first neighbors re-
spectively. And, to avoid causing conflicting obliga-
tions for himself or any of his neighbors, Hi cannot
schedule his household’s work on the same day as
the work of Hi-3, Hi-2, Hi-1, Hi+1, Hi+2, or Hi+3 because,
for example, H

i
’s third first neighbor (H

i-2
) is H

i-3
’s first

first neighbor and his first first neighbor (Hi+1) is Hi+3’s
second first neighbor.

We note that the subscript arithmetic is mod n, where
n is the number of households and n > 4. (For n = 4,
this cooperative mode reduces to a group of 4 house-
holds which always work together but with rotating
roles.) It is particularly important to recognize that
the equivalence relations in modular arithmetic, usu-
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ally referred to as congruence rather than equality, is

H
i+nk

(mod n) = H
i
 for k = 0, ±1, ±2 .....

That is, to capture the circular nature of the Basque
concept, we must involve the algebra and form of
equivalence in modern mathematics that applies to
cycles.5

We further observe that if a particular job takes a group
of four households one day, it would take a minimum
of

n days
             n

to complete the job for all n households.6 This mini-
mum completion time has a minimum of 4, taken on
when n is a multiple of 4, a maximum of 7 taken on
when n = 7, and is equal to 5 for n > 12.

SUMMER PASTURING
By far the most intricate cooperative arrangement in-
volves the shepherding and cheese-making groups
that work and live together during the summer
months. These groups of households share in the
ownership of pasturage sites in the mountains. The
origin and practices of these groups are part of a long
tradition which was described in writing as early as
the 1600’s. Prior to the 1900’s, the ideal ownership
group consisted of 10 households, each contributing
50 to 60 ewes and 2 rams to the summer flock and one
man to the working unity. The flock of about 550 sheep
had to be driven up into the mountains in late May,
watched over until they were driven down to the val-
ley for shearing in July, then driven back up to be
watched over until returning to their valley homes at
the end of September. Additional important aspects
of the May to July work were the twice daily milking
of the sheep, and the making of cheese from the milk.
Different roles were defined that encompassed the
various jobs that needed doing, and a formal system
of rotation was used to insure that everyone was equal
in terms of work contributed, in terms of cheeses pro-
duced, and in terms of status.

The households, first of all, had a specific order in the
ownership group that remained unchanged from year
to year. For the May-July period, for the working

group of 10 men, there were 6 explicit roles which re-
quired 6 of the men to be together at the mountain
site. Thus, calling the households’ representatives H

1
,

H2,..., H10, and the work roles ranked in status order
R1, R2,..., R6, once the sheep were safely at the moun-
tain site, assuming the household count started with
H1, the assignments were: H1 -> R1, H2 -> R2, ... , H6 ->
R

6
, and H

7
, H

8
, H

9
, H

10
 returned home. After 24 hours,

the rotation would begin: H7 would ascend the moun-
tain, keeping to the right, and then H1 would descend,
keeping to the left. Their ascent and descent is con-
ceived of as taking place in a circle. Upon his arrival
on the mountain, H

7
 would take on role R

6
 and each

of the others would move up one role: H2 -> R1, H3 ->
R2, ... , H7 -> R6. Similarly, every 24 hours, at the end of
day i, there would take place the rotation up and down
of Hi+6 and Hi, respectively, and the moving up by one
role of the others: H

i+1
 -> R

1
, H

i+2
 -> R

2
, H

i+6
 -> R

6
. With

10 men cycling through this rotation, the subscript
arithmetic is, of course, mod 10. Thus on, say the 18th
day, those present at the mountain site would be H8,
H9, H10, H1, H2, and H3 in roles R1 through R6 respec-
tively. Out of every 10-day period, each man spent 6
consecutive days at the mountain site and 4 days at
home. Generally, from May to mid-July, each of the
10 men carried out each of the 6 roles about 6 times
with, for reasons of equity to be explained later, an
extra turn at R

1
 for H

1
 and H

2
.

From the time of shearing in July until the end of Sep-
tember, because milking and cheese-making were
complete, the number of men needed at the moun-
tain site was reduced to two with just two roles, R

1
’,

and R2’. For this, two men remained on the mountain
for 6 consecutive days, alternating daily between roles
R1’ and R2’, After the 6-day period, the pair descended
the mountain and the next pair in the cyclic order as-
cended. Thus, if the period began with H

1
 and H

2
 in

roles R1’ and R2’, then the next day H2 -> R1’ and H1 -
R

2
’, and so on until, on the 7th day, H

3
 -> R

1
’, while H

4
-> R2’, or, in general, on the ith day of this second
phase,

H(2    i-1   + k)(mod 10) - Rk’ where k=1 if i odd,
         k=2 if i even.

Hence, during a 30-day period, each man spent 6 con-
secutive days at the mountain site, 3 of them as R

1
’

and 3 as R2’, and 24 days at home. Usually, each man
had two of these 6-day turns on the mountain.

4

6
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By these rotations, the men’s contributions were the
same in terms of time spent at home, time spent at the
mountain site, time spent in each of the six roles R

1
,

..., R6, and time spent in the roles R1’and R2'. The pro-
cedure also insured receiving an equal number of
cheeses made from the milk of the sheep. These
cheeses were an important part of a household’s an-
nual food supply. One responsibility that went with
the highest status role (R1) was making two cheeses
and watching over the cheeses that others had previ-
ously made. With the exception of the first cheese
made on the first day and the first cheese made on
the second day, the cheeses made by a person were
for his household’s use during the year. (The first
cheese was sold outside of the community with all
the members of the group sharing equally in the profit,
and the other was given to the priest or guard of the
forest. The extra turns noted before, of H

1
 and H

2
 be-

ing R1 and, hence, of making more cheese, were to
compensate for these cheeses.) In general, a cheese
weighed about 8 or 9 kilos. With six turns at being R1
and making two cheeses on each of these days, each
person took home about 100 kilos of cheese.

In cases where a household had fewer sheep than the
ideal of 50 to 60, they could own a half share in the
cooperative. In that case, two households together
owned a full share and together contributed the stan-
dard number of sheep as well as two workers, one
from each household. The two workers had to alter-
nate their six-day mountain stay so that each did three

of the six stays in the May-June segment and one of
the two stays in the July-September segment. In this
way, they each did half as much work and got half as
much cheese as did the others, but they did not modify
the rotations up and down the mountain or through
the various roles.

A larger cycle in which the annual cycles are embed-
ded is the multi-year cycle. We noted that the ten
households are in a fixed order H1, H2, ... , H10. The
order remains fixed throughout time, but which
household representative starts a year as R1 rotates
by one position each year. That is, in a hypothetical
Year 1, H1, H2, ... , H6 are the first subgroup at the
mountain site but then, in Year 2, the first subgroup
would be H2, H3, ... , H7, and so on, from year to year.
(To reflect this in our previous statements involving
H

i
, i should be modified to i+Y-1 where Y is the year

number of the cooperative’s operation.)

Finally, we introduce the crucial issue of equality of
status which becomes particularly significant for
groups smaller than the ideal of ten. The six roles, from
highest to lowest status are: R1 = woman of the house;
R2 = master shepherd; R3 = servant shepherd; R4 =
guardian of non-lactating ewes; R5 = guardian of
lambs; and R6 = female servant. R1 is the cheesemaker
and is also in charge of cooking and of cleaning the
hut in which the six men live. R6 serves as his servant
in the household chores. R

2
, the master shepherd, or-

ganizes and directs the work of R3, R4, and R5. Because

Day 1 2 3 4 5 6 7 ... i ... i+5

R
1

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
i+1

H
i+5

R
2

H
2

H
2

H
4

H
5

H
6

H
7

H
8

H
i+2

H
i+6

R3 H2 H4 H5 H6 H7 H8 H9 Hi+3 Hi+7

R4 H4 H5 H6 H7 H8 H9 H10 Hi+4 Hi+8

R5 H5 H6 H7 H8 H9 H10 H1 Hi+5 Hi+9

R
6

H
6

H
7

H
8

H
9

H
10

H
1

H
2

H
i+6

H
i+10

 = H
i

Role

Figure 1: The rotation through six roles with ten households. (Subscript arithmetic is mod 10.)
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there is a decided hierarchy in the roles, the rotation
is of special significance in preserving equality. Hav-
ing ten men rotate through the six roles insures that
no status hierarchy is consistently imposed. In par-
ticular, whoever serves as R6 (house servant) when
some Hi is R1 (woman of the house) will serve as R1
(woman of the house) when that Hi is R6 (house ser-
vant). And, the Basque further note that this H

i
 will

never be above those whom his R6 will be above when
he serves as R1. (This is seen in Figure 1 where, for
example, on day 1, H1 and H6 are in roles R1 and R6
respectively, but on day 6 their roles are reversed. And,
since H

6
 is above some or all of H

7
, H

8
, H

9
, H

10
 on days

2-6, H1 is never above any of them.) In general, using
mod 10 subscript arithmetic, on day i, Hi = R1 and Hi+5

= R6, but on day i+5, their roles are reversed: Hi+5 = R1,
Hi = R6. Also, since Hi+5 is above Hi+6, Hi+7, Hi+8, and
H

i+9
, H

i
 is never above them. Similarly, H

i+5
 is never

above Hi+1, Hi+2, Hi+3, and Hi+4.

After 1900 the number of households in the coopera-
tives decreased as a result of the overall decrease in
the number of community households. With fewer
households in each, cycling through the various roles
would still insure equality of time and work contri-
butions, but the criteria for the equality of status would
not be met without adjusting the number of roles. To
view this generally, let n = number of households in
the cooperative and, hence, use subscript arithmetic
mod n, and let r number of roles. To insure the role
reversal of woman of the house/house servant, that
is, to insure that

Hi = R1 and Hi+r-1 = Rr on day i and
H

i+r-1
 = R

1
 and H

i+2r-2
 = R

r
 on day i+r-1,

the following relationship between roles and house-
holds would have to hold:

i+2r-2 = i(mod n) = i+n, or
2r-2 = n.

This relationship would also insure that there is no
overlap between those whose roles are below those
of H

i
 and those whose roles are below those of H

i+r-1
,

since this criterion is satisfied whenever n > 2r-2.

Clearly, the relationship 2r-2 = n is satisfied for r = 6
and n = 10. And, while we do not know how the
Basque arrived at the requirements, the Basques knew

that there could be at most 5 roles when there were 8
households, 4 roles when there were 6 households,
and 3 roles when there were 4 households. To
accomodate odd numbers of households and the situ-
ations where there were more than the necessary mini-
mum of households, meeting the requirement n > 2r-
2 became sufficient. In these cases, the stipulation of
H

i
 and H

i+r-1
 being over non-overlapptng groups is

maintained, but the requirement of the complete role
reversal of Hi and Hi+r-1 is loosened. The number of
roles were reduced, in about 1900, from six roles to
five roles by deleting R4, and then, in about 1940, they
were further reduced to four roles by deleting R

5
. In

the 1960’s and 1970, they were still further reduced
by either reassorting the functions into three newly
titled, but still hierarchically ranked roles, or by cre-
ating only two roles by combining into one the mas-
ter ranks R

1
 and R

2
, and into another the servant ranks

R3 and R6.

CONCLUSION
The Basque concept of equal-equal is evidenced by a
variety of different circles and cycles. There is, first of
all, the giving and receiving of bread in which H

i
 sim-

ply gives to Hi+1 and the giving moves around the
circle made up of all households in the community.
There are also the ongoing first neighbor obligations
for which the circle of all is divided into fixed, adja-
cent, overlapping sets of size 4. For the summer pas-
turing, the community separates into subunits of
households, and each subunit is a circle which rotates
within itself. There is the annual rotation in which
shareholder Hi+1 replaces shareholder Hi in the start-
ing position of the season’s cycle. Beginning with the
designated starting household, the season’s cycle is
made up of two consecutive subcycles: in the first
subcycle, one man (Hi+6) goes up and one (Hi) comes
down the mountain daily, and, in the next subcyele,
two (H

i+2
, H

i+3
) go up and two (H

i
, H

i+1
) come down

every six days. Further, within these subcycles, there
can be alternation within a single H

i
 of a pair of joint

owners of the share. And, while on the mountain, the
earlier occupants cycle once through r < 6 roles, and
the later ones cycle three times through two roles.

The variety and interrelatedness of the cycles, as well
as the cycles themselves, testify to the deep embed-
ding of these ideas in the culture. We not only see al-
gorithms of interaction involving cycles, sequences,
and alternation, but a spatial concept of circle under-
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pinning them, as well as an overarching concept of
equality uniting them.

The overarching concept, “equal- equal”, is not a static
relationship as is our conventional mathematical or
everyday equality. It is a dynamic process of interac-
tion in which an essential feature is that the partici-
pants know what is expected of them and they know
what to expect from others. That is, the actors in the
process move in synchronization, doing different
things, at different times, but together making up a
whole. If one were to stop the process at an arbitrary
point in time, there would be inequities in what has
been contributed, what has been received, and who
is superior to whom. But, just as a circle is enclosed
by a never-ending line, the process of creating an
equal-equal relationship continues throughout the
season and throughout the years.

In a previous discussion of the spatial ideas of several
cultures,7 we noted that for many outside of our Euro-
American stream, time and space are intimately con-
nected and, what is more, the circle is as fundamental
for them as lines and angles are for us. While it is sur-
prising to think that these differences may pervade
the concept of equality as well, it may, in fact, be that
where equality is conceived of as a static point of bal-
ance separating more and less or better and worse, it
is often too precarious to be stable or easily attained.8

NOTES
1. More specifically, an equivalence relation R on set S is one
which satisfies the following for all elements a, b, c of set S:

Reflexive: aRa
Symmetric: If aRb, then bRa;
Transitive: If aRb and bRc, then aRc.

2. For socio-political discussions of equality that were influential
in Euro-American culture, see, for example, Nicomachean Eth-

ics, Book V, Aristotle, 4th century B.C.E.; Jean Jacques
Rousseau’s “A Discourse on the Origin of Inequality” (1754) and
“The Social Contract” (1762); and John Stuart Mill’s “On Liberty”
(1859).
3. The phrases quoted appear under the synonyms for same on
p. 1289 of Webster’s New World Dictionary of the American Lan-
guage, College Edition, World Publishing Co., N.Y., 1966.
4. My discussion of the Basque and their ideas is derived from A
Circle of Mountains: A Basque Shepherding Community, Sandra
Ott, Clarendon Press, Oxford 1981. Of particular relevance are
pp. vii-viii, 1-41, 63-81, 103-106, 129-170, and 213-217. The few
phrases directly quoted are from p. vii.
5. For a circle of, for example, 5 households, n = 5 and the house-
holds are (H1, H2, H3, H4, H5). When counting around the circle,
the household identified as, say, H22 is the same household as
H2, H7, or H-3. For more about modular arithmetic, see, for ex-
ample, Chapter 7 on congruences in Invitation to Number Theory,
Oystein Ore, New Mathematical Library, MAA, Washington, D.C.,
1975.
6. The symbol  x  denotes the greatest integer less than or equal
to x. For example,  4.0  = 4,  4.1  = 4, and  4.99 = 4. The symbol  x
denotes the smallest integer greater than or equal to x. For ex-
ample,  4.11  = 5,  4.99  = 5, and  5.0  = 5.
7. See Chapter 5, “The organization and modeling of space” in
Ethnomathematics: A Multicultural View of Mathematical Ideas,
Marcia Ascher, Brooks/Cole, Belmont, CA, 1991 (paper edition,
Chapman & Hall/CRC, New York, 1994.)
8. Other mathematical ideas of the Basque are being studied ex-
tensively by Rosyln M. Frank. See, for example, “The Geometry
of Pastoral Stone Octagons: The Basque Sarobe,” R. M. Frank
and J. D. Patrick, pp. 77-91 in Archeoastronomy in the 1990’s,
Clive L. N. Ruggles, ed., Loughborough Group D Publications,
London, 1993, or “An essay on European ethnomathematics: the
coordinates of the septuagesimal cognitive framework in the At-
lantic facade,” R. M. Frank, 78 pp., ms., 1995. Also, a special
counting technique among the Basque living in California is de-
scribed in “Counting sheep in Basque,” Frank P. Arawjo, Anthro-
pological Linguistics, 17 (1975) 139-145.
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Part I of this article appeared in Issue #17 of the Humanis-
tic Mathematics Network Journal.

7. NEGATIVE NUMBERS
Yet the uneasiness won’t go away.  The history of
mathematics is full of “impossible” objects that later
became common, so much so that we wonder at the
blindness of our ancestors.  Irrational ratios horrified
the Pythagoreans, but were quite understandable to
the school of Plato.  Imaginary numbers were simply
not there at all, that is, there were no “numbers” x
such that x2+1 = 0, until such numbers somehow
turned up “temporarily” in some of the cases of
Cardano’s sixteenth century solution of the cubic
equation.  Proper combination of such imaginary
numbers turned out to deliver genuine, “real” an-
swers, that “checked” in every detail.

Negative numbers, too, have had such a history, and
that not so long ago.  Even today, while we teach chil-
dren the number line, positives to the right and nega-
tives to the left (or positives up and negatives down,
as the y-axis is marked in the Cartesian plane), and
while we feel quite superior to those of our ancestors
who said you couldn’t subtract 9 from 7 (We know
the answer to be -2; don’t we?), let us consider our
algorithm for the more difficult subtractions that we
teach in the third or fourth grade:

We subtract 19 from 57; how?  We can’t take 9 from 7
so we regroup:  Instead of subtracting 10+9 from 50+7,
we subtract 10+9 from 40+17.  Now 9 from 17 is 8 and
10 from 40 is 30, and our answer is 8+30 or 38.  In my
day this was called “borrowing:”  we borrowed the
“1” — really 10 — from the 5 (really 50), and so on,
with a certain way of placing the borrowed digit on
the page.  In effect, we replace the array

   5  7
 - 1 9   by the new arrangement
 ———

   4(17)
 - 1  9
 ——— before performing the operation that

produces 3  8  as the answer.

But this whole scheme is predicated on the notion that
“you can’t take 9 from 7,” surely nothing other than
the quaint prejudice we have a minute earlier been
priding ourselves on having overcome! We can take 9
from 7 if we have the courage of our convictions.
Damn the torpedoes; let us take 9 from 7 and get -2,
and then take 10 from 50 and get 40, and then com-
bine -2 with 40 to get 38, by golly, the correct answer!
Here is the layout:

    5  7
  - 1  9
  ———
    4(-2), i.e. 40-2, or 38.

Is there anything wrong with this?

Yet with no sense of inconsistency, teachers who tell
children about negative numbers on the number line
in Grade 2 say that “you can’t take 9 from 7" in Grade
3, to introduce the apparent necessity for “borrow-
ing”. One can give a good reason for all this, in that
the “regrouping” or “borrowing” scheme can be
chained in a convenient manner for a longish prob-
lem, while combining the positive and negative dif-
ferences over a multi-digit subtraction might prove
more tedious, but this is probably not why we have
the algorithm we do.  Our ‘regrouping’ scheme as
written above was invented four or five hundred years
ago, in the early years of the European adoption of
the decimal system, and in that era subtracting large
from small numbers was suspect.  Try it on an aba-
cus, for example, which historically preceded the writ-
ten algorithm but uses the same idea. In fact, there is
not an arithmetic book in the Western world that
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shows how to subtract 866 from 541 by placing the
figures in this form

   591
  -866
  ——

and then going through the “borrowing” ritual to the
bitter end.  Where on earth is the last “loan” to come
from?  Our schoolbooks even today evade the ques-
tion by merely announcing that the difference b-a is
the negative of the difference a-b, and telling us to
solve the subtraction problem printed above by com-
puting the opposite difference

   866
  -591
  ——
   275

in the approved manner, finally changing the sign of
the positive result, to -275, to answer the original prob-
lem.

8.1.  DE MORGAN’S RESERVATIONS ABOUT NEGATIVES
Now, so recent and illustrious a mathematician as
Augustus DeMorgan, while willing to go so far as to
make temporary use of so ridiculous a notion as “-2”
as we did in the earlier subtraction of 19 from 57, was
still unwilling to grant a negative number a real final
existence.  In his 1831 book, On the Study of Mathemat-
ics (reprinted in 1898 by the Open Court publishing
company in La Salle, Illinois), Chapter IX is named
“On the Negative Sign, etc.”  Here (p.103) De Morgan
cautions the beginner in algebra to beware of nega-
tives:

If we wish to say that 8 is greater than 5 by the
number 3,we write this equation 8-5 = 3.  Also
to say that a exceeds b by c, we use the equa-
tion a-b = c.  As long as some numbers whose
value we know are subtracted from others
equally known, there is no fear of our attempt-
ing to subtract the greater from the less; of our
writing 3-8, for example, instead of 8-3.  But in
prosecuting investigations in which letters
occur, we are liable, sometimes from inatten-
tion, sometimes from ignorance as to which is
the greater of two quantities, or from miscon-
ception of some of the conditions of a prob-
lem, to reverse the quantities in a subtraction,

for example to write a-b when b is the greater
of two quantities, instead of b-a.  Had we done
this with the sum of two quantities, it would
have made no difference, because a+b and b+a
are the same, but this is not the case with a-b
and b-a.  For example, 8-3 is easily understood;
3 can be taken from 8 and the remainder is 5;
but 3-8 is an impossibility; it requires you to
take from 3 more than there is in 3, which is
absurd.  If such an expression as 3-8 should be
the answer to a problem, it would denote ei-
ther that there was some absurdity inherent
in the problem itself, or in the manner of put-
ting it into an equation.  Nevertheless, as such
answers will occur, the student must be aware
what sort of mistakes give rise to them, and in
what manner they affect the process of inves-
tigation...

I caution the reader here that De Morgan is not naive,
and that he is making a philosophical point from
which he wishes to derive the usual rules of algebra
as we know and use them, including”negatives,” and
that his general idea, as we shall see, is that playing
with absurdities like 3-8 AS IF they made sense can
be made to lead to correct final conclusions.  It takes
him a full chapter to explain this.

It would be wise for present-day teachers to have some
appreciation of the philosophical problem involved
here, and its clever modern solution by “negative
numbers” defined as equivalent pairs of such “impos-
sible” subtraction pairings.  But this process,which
mathematicians call “embedding a commutative semi-
group in a group,” while logically satisfying and con-
sistent, does not really attack the problem of what the
new numbers mean in applications to the world of
apples and gardens.  However, this is not something
for the 9th grade to elucidate.  The mere representa-
tion of negative numbers as they appear in practical
life, debts as against credits, past as against future,
and so on, will usually do the job without needing
such sophistication.

De Morgan observes this himself later in the same
chapter.  He has set up a problem in which the an-
swer has turned out to be -c, and the surprise is that
we suddenly discover that c is positive. What are we
to make of the absurd answer, -c?  On page 55 he gives
a simple example:
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“A father is 56 and his son 29 years old.  When will
the father be twice the age of the son?”

Putting x a time when this will happen, i.e. in the fu-
ture, he arrives at the equation 2(29+x) = 56+x, i.e.
twice the age of the son x years from now will equal
the father’s age x years from now.  The solution is
x = -2.  It checks in the equation, but what does it
mean? Unlike the problem of the rectangular garden
above, this negative number is the only answer.  Can
it mean that the problem has no solution?

Today we would immediately construe this solution
to mean that it was two years ago that the son was half
the age of the father, and we would be done with it.
To De Morgan this needed more explanation.  It was
a mistake, he explains, to have begun the algebraic
formulation of the problem by putting the date in the
future.  The negative sign, an absurdity, tells us we
have made such a mistake and have asked an impos-
sible problem.  We should instead let x be the number
of years into the past that the doubling of age occurred.
then 2(29-x) = 56-x, i.e. twice the age of the son x years
ago equals the father ’s age x years ago.  The solution is
x = 2, and De Morgan is philosophically satisfied.

Just the same, this kind of thing happens so often that
there must be a simpler way to interpret what has hap-
pened.  De Morgan announces his principle, his justi-
fication for the use of absurd numbers, on page 121:

...When such principles as these have been es-
tablished, we have no occasion to correct an
erroneous solution by recommencing the
whole process, but we may, by means of the
form of the answer [by ‘form’ he means nega-
tive or positive], set the matter right at the end.
The principle is, that a negative solution indi-
cates that the nature of the answer is the very
reverse of that which it was supposed to be in
the solution; for example, if the solution sup-
poses a line measured in feet in one direction,
a negative answer, such as -c, indicates that c
feet must be measured in the opposite direc-
tion; if the answer was thought to be a num-
ber of days after a certain epoch, the solution
shows that it is c days before that epoch; if we
supposed that A was to receive a certain num-
ber of pounds, it denotes that he is to pay c
pounds, and so on.  In deducing this principle

we have not made any supposition as to what
-c is; we have not asserted that it indicates the
subtraction of c from 0; we have derived the
result from observations only, which taught us
first to deduce rules for making that alteration
in the result which arises from altering +c into
-c at the commencement; and secondly, how
to make the solution of one case of a problem
serve to determine those of all the
others...reserving all metaphysical discussion
upon such quantities as +c and -c to a later
stage, when [the pupil] will be better prepared
to understand the difficulties of the subject.

8.2.  DE MORGAN’S RESERVATIONS AS TO IMAGINARY NUM-
BERS
From this point onwards, De Morgan uses negative
numbers without much shame, stating for example
that a positive number has two square roots, one of
them negative.  On the other hand, he still does not
use negatives entirely freely. In discussing the qua-
dratic equation a few pages later he distinguishes six
cases, viz.

          ax2+b = 0
          ax2-b = 0
          ax2+bx+c = 0
          ax2-bx+c = 0
          ax2+bx-c = 0
and   ax2-bx-c = 0.

This is to say that he is loath to permit a, b, or c to be
negative, since, after all, there is no need.  Whatever
we today might call the signs of the coefficients is
taken care of by letting the letters always represent
positive numbers but having the equation take on the
appropriate one of the six forms listed.  This all leads
to an analysis of the sign of the discriminant, b2-4ac in
some cases and of b2+4ac in others, all very correct
and difficult to remember.  (In many American school
algebra books of a hundred years ago students were
asked to memorize the analysis of all six cases, and
whether the roots in each case would be positive, nega-
tive, etc.)  But worse is to come:  When the discrimi-
nant is negative, a wholly new problem emerges:
imaginary numbers.

De Morgan was writing in 1831, but in an insular En-
gland that was largely ignorant of recent develop-
ments in Continental mathematics. The Argand dia-
gram for complex numbers had been known for 35
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years, and Gauss and Cauchy had developed a sci-
ence of complex numbers almost to the point of view
taken today, but De Morgan makes no attempt in his
book to develop a philosophy of their interpretation
equivalent to what he has done for negatives.  Per-
haps he understood more than he was saying, but in
this book, designed for teachers of children, he re-
frained from its elaboration.  On page 151 he writes:

We have shown the symbol   −a  to be void of
meaning, or rather self-contradictory and ab-
surd.  Nevertheless, by means of such sym-
bols, a part of algebra is established which is
of great utility.  It depends upon the fact, which
must be verified by experience, that the com-
mon rules of algebra may be applied to these
expressions without
leading to any false
results...

Despite these pleasant fea-
tures, he denies them any
sense. He proposes two
problems to distinguish his
meanings: The first is the problem of the ages of fa-
ther and son described above, where a negative an-
swer can be made to yield up some sense, either as a
guide to a restatement of the problem, or by the de-
vice of interpreting such a number as the same as its
positive opposite, taken in an opposite direction.  The
equivalence of the two devices is of algebraic and prac-
tical importance.  But his second example, he thinks,
yields no such practical interpretation.  Here it is: “It
is required to divide a into two parts, whose product
is b.  The resulting equation is x2-ax+b = 0..., the roots
of which are imaginary when b is greater than a2/4.”
Try as he may, he cannot get out of this one.  If he
replaces x by -x in the problem the roots are still imagi-
nary when a is too small. (For De Morgan,”imaginary”
means what we call complex.)  He concludes that there
is an essential difference between mere negative num-
bers, which can be repaired by a reinterpretation of
the problem, and imaginary numbers, which for all
that they obey the usual algebraic rules, cannot be
made to represent anything sensible.

Of course, he has a physical prejudice in the back of
his mind here.  The problem of dividing a into two
parts whose product is b is an ancient one, Babylonian
but put into geometric form in Euclid, where it is con-

strued as asking for a segment of length a to be parti-
tioned into two segments which are sides of a rect-
angle of given area.  (We would say “of given area,”
whereas Euclid remains purely geometric, and exhib-
its as the datum “b” a triangle to which he wants the
resulting rectangle to be equivalent in his own sense
of “equals.”  There are no numbers at all, hence no
“areas” in our sense, in Euclid’s formulation of such
problems.)

Euclid’s theorems provide a construction by which the
point of partition may be found, but he notes a limita-
tion:  If the triangle b is larger than the square built on
a/2 (i.e. half the segment a), then the necessary point
of partition cannot be found.  And that’s the end of it:
impossible.  Euclid’s “impossibility condition” is pre-

cisely our criterion concern-
ing the discriminant, as it
turns out.  It says that the
given length a is simply too
short to accomplish the
asked-for job, no matter
where you divide it.

Neither Euclid nor De Morgan construes this prob-
lem in any other way; it is plain that the number a,
which is to be partitioned in De Morgan’s problem,
looks to him like a line segment, and that there is
plainly no solution, not even one that can be reinter-
preted as an “opposite” when it turns out negative,
when b is larger than the square upon a/2.  Yet today,
we often take a different point of view.

To us, to “divide a into two parts” when a is a number,
means nothing other than to find two numbers whose
sum is a, and this can be done in such a way that the
product is any given number (not area) b is easy, when
complex numbers are allowed as answers. Complex
numbers are absurd if construed as line segments —
or are they?  Remember, -10 was also absurd, when
construed as a length.

9.  THE NEGATIVE ROOT IS NOT ABSURD!
But this is not the only interpretation of the number
-10 that turns up in our gardening problem.*  Ah, how
much wiser we are, or think we are, than our forefa-
thers!  Let us return to the problem of the garden,
whose area is to be 600 square yards, and one side of
which is 50 more than the other.  We put x for the

❝Complex numbers are absurd if construed as line
segments — or are they?

*Introduced in Part I.
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“length” of the garden, and found that x had to be 60
or -10, if anything.  We rejected -10 as absurd, and
solved the problem:  60 was the length, 10 the width.

Now where is this garden to be located?  Here:  One
corner of it is under my feet, and the length is to be
taken to the east, the width to the north.  We can walk
around the garden by walking 60 yards east, ten yards
north, 60 back to the west and 10 south again and here
we are.  What about -10?  Suppose we use that absurd
solution as De Morgan, poor, simple De Morgan, sug-
gested.  We now surround what piece of land?  Well,
x = -10 and the “width” is 50 yards less, or -60, so:  We
walk -10 yards east, i.e. +10 yards west, then -60 yards
north, i.e. 60 yards south, then back ten yards and back
60 yards and here we are at the origin (original cor-
ner). It is a totally different piece of land, to be sure,
lying in the fourth (Cartesian) quadrant rather than
the first.  Its east-west dimension is of absolute value
10 rather than 60, so that “length” might be consid-
ered a strange description of that part of the bound-
ary; but it, with the “width” of absolute value 60, sat-
isfies all criteria of the problem.  Its length is — as a
number — indeed fifty more than its width (-10 is
greater than -60 by 50, is it not?), and its area is 600, if
“area” is the product of the numbers that describe the
sides.

The answer the teacher expected was then 60 yards
east by 10 yards north.  But the stupid kid who in-
sisted on “checking” the impossible answer x = -10,
and got it to “check” at an area of 600 had just as good
an answer, only his garden had a different orienta-
tion and position.  I wonder what a Babylonian would
have said to that.

One lesson that comes from all this is summarized by
the title of a famous paper by the physicist Eugene P.
Wigner, “The Unreasonable Effectiveness of Math-
ematics in the Natural Sciences” (Comm. in Pure &
Appl. Math. v.13 (1960), 1-14).  The present example,
interpreting the ‘absurd’ second solution of the qua-
dratic equation, is trivial compared to the sort of thing
Wigner mainly had in mind, but it is of the same na-
ture:  the equations arrived at by scientists to describe
some part of the physical world often seem to contain
more information than the inventors thought they had
put into it, and that it is one of the wonders of the life
of science to discover such a thing in practice.  But
one also has to know how to look.

10.  THE ANALYTIC GEOMETRY OF THE GARDEN
How did anyone ever think of that second solution to
the garden problem?  It sounds like a stretching of the
meaning of “-10” to suddenly start talking east and
west, north and south, but in truth we do talk that
way in the 20th century all the time.  Here is a refor-
mulation of the garden problem which will automati-
cally make sense of the “absurd” solution as well as
the usual one.  The word “analysis” was used above
to describe the process of algebra we were using; well,
the reformulation has to do with analytic geometry.
Any child can do it:

PROBLEM:  Let a rectangle in the plane have one corner
at (0,0) andthe opposite corner at (x,y), where y = x-
50.  Find all the corners if the area is to be 600.

ANSWER:  Notice the problem does not insist on (x,y)
being in the first quadrant.  The area is clearly the ab-
solute value of xy, whatever quadrant (x,y) is in.  Since
y = x-50, we set |x(x-50)| = 600 and hope such an x
can be found, as above.  Then either x(x-50) = 600 or
-x(x-50) = 600, according to whether the number in-
side the absolute value signs turns out to be positive
or negative.  The first of the two equations gives
x = 60 or x = -10, as earlier, and produces the corners
(60,10) and (-10,-60) to define two rectangles (whose
opposite corners are at the origin) that do the job.  How
easy!  Of course x = -10 has a meaning, once we set the
thing up on the coordinate plane.

But wait, what about the other equation, “-x(x-50) =
600”? This one has solutions, too, and they are x = 30
and x = 20, producing opposite-corner points (30,-20)
and (20,-30), either of which, with the origin, sure
enough forms a rectangle of area 600.  Goodness, the
more we want to make sense of the problem, the more
answers turn up!  But if you look at these last two
“solutions,” do they “check” when we try to prove
they satisfy the conditions of the problem? They do:
they give the correct area, and y = x-50 as demanded.
The trouble here is that we probably have stated the
problem badly.

If all we wanted was that the number that is the y-
coordinate of the opposite-corner point should be 50
less than the number that is the x-coordinate of that
point, these last two solutions check out in every de-
tail.  But surely this is a poor statement of the original
problem, where the architect doubtless intended the
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length of one side of the garden to be 50 more than the
length  of the other side.  The condition “y = x-50” is
not a statement of that condition, while |y| = |x|-50
is the point (either that, or |x| = |y|-50).

With this restatement we can go back over the whole
problem and find that the third and fourth “solutions”
do not check.  On the other hand, the new conditions
on length, expressed in terms of absolute value, give
rise to some new possibilities, and it will perhaps sur-
prise nobody that there are eight solutions, with
the”opposite-corners” at (10,60), (60,10), (10,-60), (60,-
10), (-10,60), (-60,10), (-10,-60), and (-60,-10), that is,
all the possible ways you
can place a sixty-by-ten rect-
angle with one corner at the
origin and sides parallel to
the axes.

Pandora’s Box is now open:
what if the rectangles are
not parallel to the axes?
There are answers to that
one, too, but they go beyond simple algebraic equa-
tions and their meaning.  It were best now to cut our
losses and go back to the beginning:  “Sixty by ten” is
doubtless the best answer.  But intellectually we have
found something out:  negative numbers, just as De
Morgan said, can be made to mean something valid.
We have found something else out, too, just as De
Morgan said, which is that we must understand that
we are making them mean something, and that the
process of associating these invented numbers with
some scientific or architectural use is not as simple or
obvious as it might seem when they are presented axi-
omatically.  Logic is not only a matter of reasoning
from axioms for a field, it is also a matter of reasoning
from life.

11. EVEN IMAGINARY SOLUTIONS ARE NOT NECESSARILY
ABSURD
Finally, let us return to the partition of a segment of
(positive) length a into two pieces forming adjacent
sides of a rectangle of area b.  (This discussion will be
rather condensed, compared to what has gone before.)

We suppose x is a length that does the job, i.e. x and
a-x are the two side-lengths.  We blindly set up the
quadratic equation x(a-x) = b and find two solutions
(both of which check in the equation if not the prob-

lem):  They are

(a/2) + 
    

a
2







2

− b  and (a/2) -
    

a
2







2

− b .

So, if there is a solution it has to be one of these two
numbers. (Actually, since these solutions add up to a,
this pair of numbers is the only possible solution, i.e.
if x is the first, a-x is the second, and if x is the second,
a-x is the first.)

When (a/2)2>b all is well; we get two positive num-
bers which add to a and
which solve the problem.
We can draw a picture of the
resulting rectangle, and we
have no negative solution to
have to interpret.  But what
happens when (a/2)2< b?
Can we, with Wigner, dis-
cover the “unreasonable ef-
fectiveness of mathematics”

by finding that there really is a genuine visible rect-
angle that solves the problem even when a is too small
to partition properly, i.e. to produce the sides of a rect-
angle with desired area b?  Sure.

Let a four dimensional Euclidean space have its axes
labelled x,y,u,v, with the point (x,y,0,0) representing
the number x+yi when this is the solution of a qua-
dratic equation using the sign “+” in the quadratic
formula, and the point (0,0,u,v) representing
thenumber u+vi where this is the solution of the same
quadratic equation using the “-” sign in the quadratic
formula.  Observe that in our problem, where a and b
are positive, the numbers x,y,u and v obtained from
our quadratic will always be positive when the dis-
criminant forces us into complex roots.  Thus x+yi can
be pictured as a vector, or rather an arrow with tail at
the origin and arrow-head in the first quadrant of the
xy plane, and similarly for u+iv in its plane, which is
perpendicular to the xy plane.  The vectors are (when
you disregard the frill of the arrowhead) perpendicu-
lar segments in 4-space, and the area of the rectangle
they subtend — a genuine, visible rectangle — is their
inner product xu+yv.  Work it out; it is b.

How come?  In this problem, a was “too small” to
admit such a partition, or to put it in other terms, b

❝The process of associating these invented
numbers with some scientific or architectural use
is not as simple or obvious as it might seem
when they are presented axiomatically
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was “too big” for a rod of length a to be broken for the
purpose of making a rectangle that big.  But what are
the lengths of the vectors that made the sides of our

rectangle in 4-space?  They are     x2 + y2  and     u2 + v2 ,

or   b  in each case; hey! — we’ve even got a square,
not just a rectangle! Those are pretty long segment
lengths, big enough so that the square they build in 4-
space is sure enough of area b.  But we found earlier
that long things like that can’t partition a segment of
length a.  Indeed, the sum of these two lengths is 2  b ,
which is certainly not a.

Well, what was the problem?  Did we ask for a to be
partitioned into two pieces whose lengths add to a,
or did we ask for a to be partitioned into two num-
bers whose sum was a?  We solved the latter prob-
lem, by finding complex numbers whose (complex)
sum was a but whose lengths were big enough to
make a square of size b.

Do I hear someone cry fraud?

“Fraud!” cried the maddened thousands, and echo answered
fraud; But one scornful look from Casey and the audience
was awed.

Partitioning a into complex pieces that make, in a suit-
able geometric interpretation of complex numbers, a

suitable real rectangle is no more fraudulent than in-
terpreting the garden problem as one of finding coor-
dinates of a point in the Cartesian plane, rather than
lengths of wall, or using negative numbers in the
manner of DeMorgan to represent the past instead of
a putative future.

We all know there is no date at which the son will be
half the age of the father; it’s too late for that already.
In De Morgan’s time it was still questionable whether
using a negative answer amounted to a swindle.  Un-
fortunately, “hardly a man is now alive,” (to quote
from another narrative poet) who still appreciates the
intellectual effort it took to overcome this natural dis-
inclination to treat mathematical artifices as if they
had real significance, and it is a rare teacher who rec-
ognizes there is even a problem.

A garden plot with negative sides is really every bit
as silly, at first glance, as a square with complex sides.
But you can get used to these things after a while.
The important thing is to understand just what it is
you are getting used to.

Editor’s Note: In the last issue of the Humanistic Math-
ematics Network Journal Mr. Raimi’s e-mail address was
incorrect. It should be: rarm@db1.cc.rochester.edu, with a
1 instead of an l. We apologize for the error.

Untermeyer, Louis. The Pursuit of Poetry. Simon and Shuster,
New York,1969.

“Verse.” Encyclopedia Britannica. Volume 21, The Encyclopedia
Britannica, 1911.

Zerger, Monte J. “Poetry .” Humanistic Mathematics Network Jour-
nal  11. Harvey Mudd College, Claremont, CA 91711, 1995. 27.

Alexis Mann
125 Old Post Road

Port Jefferson, NY 11777

Hart, J. D.. English Teacher, Stony Brook School.

Newman, James R. The World of Mathematics. Simon and
Schuster, New York, 1956

Nims, John Frederick. Western Wind. McGraw-Hill Publishing Co.,
New York, 1983.

Pendlebury, B. J. The Art of the Rhyme. Charles Scribner’s Sons,
New York, 1971.

“Poetry.” Encyclopedia Britannica. Volume 27, The Encyclopedia
Britannica, 1911

Mathematics Found in Poetry
continued from page 20



Humanistic Mathematics Network Journal #18 35

Architecture and Mathematics:
An Introduction for Elementary and Middle School Children
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In June 1996 I directed an international conference on
architecture and mathematics entitled “Nexus ’96:
Relationships Between Architecture and Mathemat-
ics.”1 The conference venue was my “home town,”
Fucecchio, a medium-sized (population 18,000) indus-
trial town on the Arno river, about midway between
Florence and Pisa (and ten minutes from Leonardo’s
home town, Vinci). Conferences, mathematics, archi-
tecture, professors .... all of these are almost unheard
of in Fucecchio. In order that the conference not re-
main an “ivory tower” event in the town, I proposed
a series of lessons to fourth and fifth graders in the
elementary school and to sixth, seventh and eighth
graders at the middle school. The idea was to show
them some of the ways in which architects use math-
ematics. In return, I asked them to become architects,
using geometrical shapes to “design” buildings. Their
compositions would then be exhibited during the con-
ference. In this article I want to share with you the
brief program I put together for those lessons.

I introduced myself to the younger children by tell-
ing them how I became an architect. My family moved
to Houston in 1958, and I grew up with the city. With
the boom in oil prices, Houston in the 1960’s grew
like wildfire. I was inspired by all the new buildings
in town to study architecture. I learned that architects
design buildings not just using their imaginations, but
also by following the tradition of architectural design
that, in our western world, began as far back as an-
cient Egypt. The ancient Roman architect Vitruvius
said that good architecture has to satisfy three condi-
tions: firmness, commodity and delight.2 Firmness
means that a building has to stand up, supporting its
own weight and protecting the people and things in-
side. Commodity means that the building has to serve
its purpose in a convenient and appropriate way: a
church or temple has to remind us that we are in the
house of God; a house should feel like a home and
make our daily lives comfortable and healthy. Delight

means that architecture should be beautiful. Math-
ematics is an important tool of the architect for achiev-
ing all three of these qualities. In these lessons, we
shall see some of the ways in which mathematics is
used.

One of the most fundamental building blocks of ar-
chitecture is shape. Because buildings have shape, it
is important that architects know geometry. Looking
around the classroom, you can notice any number of
differently-shaped rectangles: the door, the windows,
the light fixtures, the blackboard, the desktops. What
other shapes are used in architecture? We find circles,
circular segments and spheres used in round win-
dows, arches and domes. The cylinder is found in col-
umns and in towers. Triangles are found in many
roofs. Cones are found in the roofs of the towers of
castles. Some shapes are important to the architect
because they are stronger than others. The triangle is
a very important shape for the architect, because it is
“rigid.” We can best understand the rigidity of a tri-
angle through an experiment.

To experiment with the special properties of the tri-
angle, we built squares out of pieces of drinking straws
and linked paper clips.3 The squares were constructed
by linking two paper clips to form each corner, then
slipping the paper clips into the ends of the drinking
straws (Fig. 1a). Once we had a square shape, it was
easy to see that it didn’t hold its shape: we could make
it into a rhombus or flatten it altogether. In technical
terms, when we put pressure on one of the angles,
the square “deformed under stress.” Would this be a
good shape for holding up a house? The students all
agreed it would not. Next we added a third paper clip
to two opposite corners and added a fifth drinking
straw (Fig. 1c). Now we could no longer deform the
square: in structural terms, it had become “rigid.”
What had happened to the square? We had actually
transformed it into two triangles, and triangles are
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naturally rigid shapes—they do not easily deform
under stress. This is the property that makes them
important for architects. We find triangles in the Pyra-
mids, for example, where four triangles lean against
each other at the apex (Fig. 2). We also find them in
the pediments of Greek and Roman temples, where
the triangle shape was useful in supporting the roof
(Fig. 3). An important use of triangles is in the con-
struction of trusses, which are lightweight structural
systems that derive their strength from triangulation.
Although there are many kinds of trusses, all are based
on triangles (Fig. 4). Trusses are used in bridge build-
ing and also in the construction of large buildings with
open spaces where columns might get in the way of
the action, such as in a basketball arena.4

In ancient architecture, different shapes were impor-
tant because of what they symbolized. The square, for
instance, represented the earth, because it has four

Figures 1a, 1b and 1c
The construction of a square with paper clips and

drinking straws. You can make a square ... but it doesn’t
stay a square! When a fifth drinking straw is added as a
diagonal, the square is transformed into two triangles

and the shape becomes rigid.

Figure 3
Greek and Roman

architects used
the triangle to

make strong roof
structures.

Figure 2
The triangle was used
in the Pyramids of the

Egyptians.
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sides like the earth has the four directions, north,
south, east and west. The cube also represented the
earth, because it could be precisely measured. On the
other hand, the circle and sphere represented heaven,
because their diameters and circumferences can only
be expressed using the irrational value, and not by
human, rational measurements. It was believed that
the irrational values belonged only to God. This is why
we find the dome used over the altars in churches and
temples, because the spherical shape of the dome rep-
resented heaven.

Having looked at the uses of shapes in architecture,
we tried our first experiment in becoming architects.

We divided the class into work groups of 3 to 4 chil-
dren, and each received a package of shapes (squares,
rectangles, triangles, circles, half-circles) that had been
cut out from construction paper at random. They were
asked to use the shapes to design their first “build-
ings.” This was the end of the first lesson for the el-
emeÁtary school children.

The first lesson for the middle school children was
similar to that for the elementarystudents in scope but
geared for the older student. In order to introduce the
idea of mathematics in architecture, I began with ar-
chitecture in art, using hands-on experiments with
the Moebius strip as an introduction to the art of M.C.
Escher.5 After experimenting directly with the
Moebius strip, we could understand better the com-
plexity of Escher’s etchings. We had learned from the
Moebius strip that while a strip of paper has two sur-
faces, a simple twist can make it a loop that has one
surface only. Surfaces in architecture are important,

Warren

Pratt

Howe

Whipple Trapezoidal

Bollman

Figure 4
Some of the many kinds of trusses, all based on

triangulation.

Figure 5
M.C. Escher’s impossible stairs in the etching Ascending and

Descending. All M.C.Escher’s works copyright Cordon Art B.V. -
Baarn - the Netherlands. Reproduced by permission.
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too, as they enclose the
architectural space.
Could the students imag-
ine what might happen if
we distorted the surfaces
in architecture? Escher
did just that in some of
his other etchings. At the
beginning of his career
Escher studied architec-
ture in Holland, and he
remained a very careful
observer of architecture,
often depicting it in his
work. We looked at some
of his etchings of “impos-
sible” architecture, in
which, for instance, he
depicts stairs that lead
both up and down at
once (Fig. 5). He creates
this illusion by depicting
surfaces and shapes that
appear at first to be nor-
mal. Upon closer exami-
nation, however, it can be
seen that it is by distort-
ing the shapes that he cre-
ates his illusions. This
then led to the discussion
of the importance of
shape in architecture,
much as I had discussed
it with the younger stu-
dents.

As a first exercise for the
middle school children,
we examined some of the
buildings in our town to
see if we could identify
shapes in them (Fig. 6a
and Fig. 6b).6 Afterwards,
the students were given
the random collection of
shapes and asked to de-
sign their first building.

The subject of the second
lesson was proportion.

Proportion is a compara-
tive relation between sizes
of elements. We used their
first compositions as a
starting point to discuss
what proportion is- how
big is a window in relation
to the door, and how big
is the door in relation to
the whole wall? Propor-
tion determines the rela-
tionships between parts of
a building. Sometimes
proportions are important
in making sure that a
building has, as Vitruvius
says, firmness. If a build-
ing is many stories tall, its
columns must be heavier
to support its greater
weight. If it is only one
story high, the columns
can be proportionately
lighter. Proper propor-
tions can help satisfy
Vitruvius’ requirement
that architecture have
“commodity:” the wall
must be bigger than a
door, but a door can be ei-
ther bigger or smaller
than a window.

Proportion is also impor-
tant because some shapes
are believed to be natu-
rally more beautiful than
others. How were these
shapes discovered? An-
cient architects used to
compare the proportions
of architecture to those of
the human body. Just as
we can tell in our own
drawings of a person
when we have made the
head too big or the arms
too long, the architect
could tell when the col-
umns were too tall or the

Figures 6a and 6b
The facade of the church of S. Maria delle Vedute in Fucecchio

and the analysis of its shapes.

Figure 7
The proportional system of shapes created from paper folding.
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doorways too nar-
row. Over time, ar-
chitects analyzed
what they consid-
ered to be the
most beautiful
buildings in order
to be able to
record in numbers
what the perfect
proportions were.
These special pro-
portions were
used to satisfy
Vitruvius’ essen-
tial requirement
that architecture
be beautiful.

Finally, if the architect designs his whole building
using a proportional system, he can also make sure
that all the parts fit together. Having the parts fit means
that the building will work well structurally and func-
tionally and also be beautiful.

One way to create a proportional system is by coordi-
nating all the shapes we use in the composition. This
provides us with a “vocabulary of shapes.” Just as we
use a vocabulary of words to make up a sentence, we
can use a vocabulary of shapes to design a building.
As an exercise, we created a proportional system
through paper folding. Starting with a regular piece
of construction paper, we folded one comer down to
create a perfect square, then cut or carefully tore the
remaining rectangle away, (With standard European
paper, it isn’t necessary to discard the remaining rect-
angle, because A4-format paper has the shape of a
root-2 rectangle). We folded this “reference square”
into four smaller squares; these were then subdivided
into either two triangles, two rectangles, or four
smaller squares. Finally, we said that circles could be
cut out from any square as needed (Fig.7). These co-
ordinated shapes became our “vocabulary of forms.”
By examining our shapes, we discovered that some
of them could be added together to make a shape we
already had (such a using two rectangles to make a
square) but also that some of them could be added to
make new shapes (as when we added a square to a
rectangle to make a longer, narrower rectangle). With
the older students, I reintroduced the idea of the irra-

tional quantities, looking at the diagonals of the rect-
angles as a way of creating new forms. We discov-
ered that by dividing one of the squares along its di-
agonals into 4 triangles and rearranging them, we
could create larger squares that were not related to
the rational lengths of the original reference square, a
system often used by Roman architects known as ad
quadratum (Fig. 8). We could also create rectangles that
had one rational side and one irrational side.

At the end of the second lesson, the students were
invited to make new compositions with the new “vo-
cabulary of shapes.” These compositions were more
refined than the first, due to the more sophisticated
set of forms as well as to the confidence the children
had gained from their first compositions.

The fifty compositions that resulted from the time
spent with all the children were exhibited in the re-
stored medieval palace where the conference was held
(Figs. 9 and 10). Some days before the conference
opened we had an “art opening” for the students and
their parents and teachers. The experiment was
deemed a success from all points of view. The stu-
dents were very interested in architecture and the fact

Figure 8
The ad quadratum proportional
system is based on ever-larger

squares created from the
diagonals of smaller squares.

Figure 9
An example of the students’ work.
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that mathematics isn’t just something that has to be
studied in the classroom, but is of great value as a
creative tool as well. We also found the lessons pro-
vided a new way for the children to understand the
built environment, using mathematical tools that are
part of their normal curriculum. This is especially
important because there is little or no architectural
education at the levels of elementary and middle
schools. The teachers were very pleased with a dem-

onstration of geometric principles applied to a “real”
activity. I was more than gratified by the enthusiasm
of the students, not only for this activity, but for all
facets of my work as an architect. The drawings re-
mained on display during the conference, and were

very much appreciated by all conference participants.
Who could help but admire such “mathematical” ar-
chitecture?

NOTES
1. For a review of the collection of essays that resulted from this
conference, cf. Joseph Malkevitch “Book Review: Nexus: Archi-
tecture and Mathematics,” Humanistic Mathematics Network Jour-
nal, 16 (November 1997), 52-53.

2. Cf. Vitruvius, The Ten Books on Architecture,
Morris Hicky Morgan, trans. (New York: Dover
Publications, Inc., 1960) book I, chap. III, sect.
2, 17. In this translation, “firmness, commodity
and delight” are rendered “durability, conve-
nience and beauty.”

3. This experiment was described in Kim Will-
iams, “How Buildings Take Shape,” Highlights
for Children. For the technique of building with
drinking straws and paper clips, I am indebted
to Howard Jacobs, Mathematics: A Human En-
deavor, 2nd ed. (New York: W.H. Freeman,
1982) 267-269.

4. There are other ways of demonstrating struc-
tural rigidity through form through experiments
with simple pieces of paper. Cf. Mario Salvadori,
The Art of Construction, 3rd ed. (Chicago: Chi-
cago Review Press, 1990), 109-118.

5. Some hands-on experiments with the
Moebius strips are described in Jacobs, Math-
ematics: A Human Endeavor, 605-606.

6. This experiment can be done without leaving the classroom,
by showing slides or xeroxed photographs of buildings and ask-
ing the students to analyze the facades in terms of shape.

Figure 10
Another example of the students’ work.
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Changing Ways of Thinking About Mathematics by Teaching
Game Theory

Ein-ya Gura
Hebrew University of Jerusalem

Givat Ram, Jerusalem

“It saddens me that educated people don’t
even know that my subject exists.”

Paul R. Halmos

Halmos’ words (1968), which served as the motto of
the article, “Mathematics Today” (Steen, 1978), are
equally relevant to this present project.  It originated
with the recognition of the narrow and limited con-
ception of mathematics prevalent among the general
public.  Very few have any idea of what mathematics
really is.

One of the main purposes of teaching mathematics in
schools is to contribute to
the enrichment of the math-
ematical world-view of the
students.  As in any scien-
tific discipline, a math-
ematical world-view is
formed by means of per-
sonal experience.  The
broader and richer the
individual’s experience, the
more enriched and pro-
found will be the corresponding world-view.  Accord-
ingly, the more diversified the encounter with math-
ematics, the richer the mathematical world-view.

Schools act as the crucible in which the student’s
world-view of scientific disciplines is formed: they are
responsible for the impoverished mathematical world-
view common among students and graduates.  When
the subject is art or “the arts” (music, painting, sculp-
ture, literature), teachers make every effort to ensure
that students experience art in the broadest sense.
They try to introduce them to as many kinds of art as
possible; in the teaching of mathematics, however, no
real concern is shown for what mathematics really is.

We agree with Aumann (1985) that “the case for think-
ing of mathematics itself as an art form is quite clear”

and “if one thinks of mathematics as art, then one can
think of pure mathematics as abstract art, like a Bach
fugue or a Pollock canvas . . . ; whereas game theory
and mathematical economics would be expressive art,
like a cubist painting or Tolstoy’s War and Peace.”

In order to help students to sense the spirit of math-
ematics, effort must be made to introduce them to as
many kinds of mathematics as possible.  This may be
accomplished by means of new curricula and new ap-
proaches to instruction.  In Israel, a mathematics cur-
riculum for high school upper grades composed of a
combination of compulsory courses and 90 hours of

elective studies was ap-
proved in 1975.  The change
in curriculum structure
gave rise to the idea of cre-
ating an elective in game
theory.  Game theory both
satisfies the criteria of the
elective mathematics cur-
riculum and exemplifies a
branch of the discipline
which may contribute to a

change in attitudes and approaches to mathematics.

A course in game theory was created such that it is
constructed of four topics dissimilar in character and
bearing little mathematical relation to each other.  The
four topics were elected on the basis of their being of
special interest beyond their mathematical content, not
demanding specific prerequisite knowledge in math-
ematics, and providing general knowledge about
game theory and its concerns (see Gura, 1995).

The first chapter of the course is called “Mathemati-
cal Matchmaking” and deals with the stable marriage
problem that was raised by Gale and Shapley (1962).
They concluded their paper with the following com-
ment:

❝When the subject is art or “the arts”...teachers
make every effort to ensure that students experi-
ence art in the broadest sense...in the teaching of
mathematics, however, no real concern is shown
for what mathematics really is.



Finally, we call attention to one additional as
pect of the preceding analysis which may be 
of interest to teachers of mathematics. This is 
the fact that our result provides a handy 
counterexample to some of the stereotypes 
which non-mathematicfi believe mathematics 
to be concemed with. Most mathematicians 
at one time or another have probably found 
themselves in the position of trying to refute 
the notion that they are people with 'a head 
for figures' or that they 'know a lot of formu
lae.' At such time it will be convenient to have 
an illustration at hand to show that mathemat
ics need not be concemed with figures, either 
numerical or geometrical . . . . What, then, to 
raise the old question once more, is mathemat
ics? The answer, it appears, is that any argu
ment which is carried out with sufficient pre
cision is mathematics. 

Following Gale and Shapley, we strove to create a 
course which would employ a predominantly verbal 
mode of presentation and which, at the same time, 
would be sufficiently varied in content and level of 
explication. 

RESEARCH 
Game theory as a high school course is new to the 
existing curricula; therefore, the research requires the 
methodology of a case study. We carefully examined 
whether game theory can be taught at the high school 
or equivalent level and, if so, at what level of explica
tion? At what depth? In order to answer these ques-
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Initial Grade Final Grade 
Class N - -

X X 

C1 22 50.0 66.1 

C2* 19 52.9 78.3 

C3 22 52.9 71.8 

C4 20 56.1 74.8 

Table 1 :Average grade (in percentages) of the c level (the 
lowest) classes in the pre-academic courses, 1897 

*studied game theory 

tions, we focused on topic selection and the teaching 
of these topics. We planned an intensive study which 
would investigate the teaching of game theory in its 
natural environment, the classroom. There were no 
special control conditions, only the tools of the class
room framework- exams, written work and ques
tionnaires. In order to obtain convincing results and 
conclusions, the research was conducted on three dif
ferent types of classes -one high-level mathematics 
high school class, two pre-academic preparatory 
classes studying equivalent low-level high school 
mathematics and one teachers' college class majoring 
in arithmetic instruction for elementary school classes 
studying at high school level mathematics. The struc
ture of the research corresponded to Yin's (1984) defi
nition of a case study. It was an empirical study in
vestigating the teaching of game theory within the 
framework of the real context, the classroom, in which 
the boundaries between content, quality of teaching, 
approaches to teaching, the class situation and teacher
student interaction are quite vague. 

Data were gathered via exams, questionnaires, and 
detailed joumals of what went on during the lessons. 
Our primary interest was qualitative information, al
though we also compiled quantitative results. There 
were only four small classes and therefore the statis
tical analysis is limited; emphasis was placed on the 
qualitative analysis. From teaching in the classroom, 
we leamed that several topics in game theory can be 
taught at both levels of mathematics. Although there 
were difficulties, students at all levels were success
ful in dealing with the course material. In the two 

Initial Grade Final Grade 
Class N - -

X X 

C1 20 70.2 80.9 

C2 19 76.7 74.4 

C3 18 72.4 81.9 

C4* 16 75.3 88.7 

Table 2 :Average grade (in percentages) of the c level classes 
in the pre-academic courses, 1988 

*studied game theory 
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Class a Class b. Class c Class d 
Total 

pos. neg. pas. neg . pas. neg. p as. neg. 

Before the 3 11 13 7 12 7 2 6 
60 

Course 21 .4 78.6 65.0 35.0 61.1 68.9 25.0 75.0 

After the 1 9 6 14 5 11 0 8 
54 

Cou rse 10.0 90.0 30.0 70.0 31.2 68.8 0.0 100.0 

Total 4 20 19 21 16 18 2 14 114 

Table 3 :The distribution of positive and negative answers to 
question 1 (in absolute numbers and percentages) before and 

after the course 

preparatory classes we also were able to compare the 
average grade in mathematics of four parallel classes 
when three of the classes did not study game theory. 

Note that the class which studied game theory did 
not have a higher grade average from the start but 
had the highest average final grade. Variance analy
sis shows: 

Table 1: F = 10.660 with significance level of 0.001 
Table 2: F = 16.706 with significance level of 0.001 

The game theory courses indirectly contributed to 
raising the level of grades in mathematics in general. 
The object of my discussion here is to offer some of 
the results which point out the effect of this course in 
game theory on changing ways of thinking about 
mathematics. The results are gathered from a ques
tionnaire designed to ascertain the subject's world
view of mathematics and from an attitude survey. 

First, two questions from the questionnaire which was 
filled out by students before and after the course will 
be discussed: 

1. What is your opinion about the statement that is 
often heard that the activities of the mathemati
cian are based on computations? 

2. What is your opinion about the statement that 
mathematics is nothing but a game of symbols and 
formulas that were invented by the human mind? 

The table indicates that there is a connection between 
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Class a Class b. Class c Class d 
Total 

pas. neg. pas. neg. pas. neg. pos. neg. 

Before the 0 14 13 7 16 6 5 3 
60 

Course 0.0 100.0 65.0 35.0 66.7 62.5 62.5 37.5 

After the 0 10 7 13 6 10 z 6 
54 Course 0.0 100.0 35.0 65.0 37.5 62.5 25 .0 75 .0 

Total 0 24 20 20 18 16 7 9 114 

Table 4 : The distrubution of positive and negative answers to 
question 2 (in absolute numbers and percentages) before and 

after the course 

the type of answer (positive or negative) and the time 
it was answered (before or after the course). Calcu
lating X2 for the whole population shows X2 = 7.274 
with significance at level of 0.01. We may say, there
fore, that there is a significant relation between the 
type of answer and the time it was given. It would 
appear that the course in game theory contributes to 
reducing the number of students who relate to math
ematics as mainly technical. 

Question 2 explores whether the approach to math
ematics is a formalistic one. A positive answer would 
attest to a formalistic, at least to some degree, approach 
to mathematics. The table shows that after the course 
in game theory the number of answers representing a 
formalistic approach to mathematics decreased. A X2 

test calculated for the whole population shows X2 = 
4.954 with the significance at a level of 0.05. Clearly, 
there is a significant relationship between the rejec
tion of the formalistic approach to mathematics and 
the studying of the course in game theory. 

A real change in students' attitudes and approaches 
to learning mathematics was also observed and is best 
illustrated in the following questions from the atti
tude survey: 

1. Was the course in game theory very interesting, 
interesting or not interesting? 

2. Did the introduction of a new mathematical sub
ject change anything in your overall approach to 
mathematics? If so specify what sort of change. 

3. Do you think that the course in game theory can 
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help you in areas which require abstract thinking 
and are not connected to mathematics? Explain. 

Answers to question 1 indicate the student's degree 
of interest in the course and those aspects of the course 
which stimulated this interest. In their answers the 
students relate to the technical aspect of mathemat
ics, its relevance to life, to the different way of think
ing- the very components that are significant in the 
overall mathematical world-view. 

Examples of answers to question 1: 
1. "Very interesting- a different approach from the 

usual one at school; the emphasis is on mathemati
cal principles in addition to techniques." 

2. "The course was very interesting because it was a 
new subject and because it deals with aspects of 
life which are concrete and more attractive to me." 

3. "The course was interesting, more than any other 
subject I have studied in mathematics so far." 

4. "Very interesting. This course enabled me to be
come acquainted with a 'different' mathematics 
and think in a different way." 

5. "Interesting, different from other mathematics 
courses, theoretical and requires logical thinking." 

The answers to question 2 revealed that more than 60 
percent of the students changed their approach to 
mathematics following the course in game theory. 

Examples of answers to question 2: 
1. "The introduction to a new mathematical subject 

changed my attitude towards mathematics be
cause I saw that mathematics is not just numbers 
and arithmetic operations, but there is something 
deeper and it is much more developed than I ever 
thought." 

2. "Yes, by understanding the idea of proofs as a basis 
for mathematics." 

3. "Yes, it changed my attitude because I understood 
that mathematics may be found in almost every 
area; mathematics is not just plain drill." 

4. "To some extent yes, because the idea of math
ematics being a useful instrument to the social sci
ences is new to me. I feel the same way about the 
use of verbal explanations alongside numbers. " 

5. "Yes, I don't like mathematics because it says noth
ing to me, but game theory interests me because 
in game theory there are real life subiects and 
therefore it is easier for me and it is more interest-
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in g .. . suddenly ... " 
6. "Yes. This subject was more interesting than any 

other subject I've studied and has given me a 
strong desire to study more subjects of this kind 
in mathematics." 

7. "I did not change. I've always loved mathemat
ics." 

8. "I did not change but my interest in the subject 
was strengthened." 

9. "The introduction of a new subject based on math
ematics did not change my attitude but familiar
ized me with mathematics as a whole which was 
much broader than I'd realized." 

10. "No change. In fact it is hard for me to accept 
game theory as mathematics." 

Answers 7-9 were given primarily by students study
ing high-level mathematics, who brought with them 
an interest in mathematics from the outset. The change 
in attitude was more pronounced in those students 
studying low-level mathematics. 

Examples of answers to question 3: 
1. "Yes. The course helped me see that ev-~ 

ery problem has several relevant aspects. 
I also understood that there are several approaches 
to a solution and that sometimes one has to choose 
a specific one. I think that the course developed 
abstract thinking." 

2. "Of course. Game theory requires abstract and 
analytic thinking in order to discover proofs and 
corresponding processes to prestated principles." 

3. "Yes. Game theory enables me to look at a subject 
from a wide perspective, that is from above, from 
different angles and various possibilities." 

4. "The course helped me realize that mathematics 
can be brought closer to the social sciences with 
t:l).e help of mathematical thinking which gives 
precise results." 

5. "The course is based on logic and analysis of real 
situations and can therefore help in areas of ab
stract thinking." 

6. "Of course. This material, with its deep proofs, 
develops abstract thinking." 

One could qualify our conclusions by saying that the 
students ' answers do not guarantee an improvement 
in abstract thinking following the course in game 

· theory and therefore this is not factual evidence. How
ever, we must take into account the feelings expressed 
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by the students. 

The range of answers included those ideas which were 
anticipated as a direct result of studying game theory. 
Among the answers: a feeling that mathematics is 
everywhere, an understanding of the usefulness of 
mathematics, its relevance to life, its depth, the proof 
as a basis for mathematics - in general, a change in 
the modification of the mathematical world-view. 
Answer number 10 to question number 2 is atypical, 
but exists nonetheless; the perception of mathematics 
as technical may be so strongly rooted in some people 
that even this course could not change it. The answers 
to the attitude survey seem to validate our choice of 
game theory to enrich and enlarge the student's con
ception of mathematics. 

In conclusion, our hopes for the course were realized. 
As a result of the course, the number of students with 
an open-minded attitude to mathematics increased; 
the students were able to see mathematics as not only 
technical and computational, but also as an expand
ing and developing world of its own. Students dis
covered that the world of mathematics is much richer 
than they had previously thought. Indeed, it appears 
that the very encounter with a new sphere of math
ematics in and of itself creates a new receptivity in 
the students to the assimilation of new concepts and 
values. 

Nine and One Third Circles of 
Rejoicing 

M~haeiCapob~nco 

St. John's University 
Staten Island, New York 
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Alleluia! 
Noble word 

We greet you with joyful 
Jubilations 

You and your three thousand three hundred sixty 
Permutations. 

Let each one inscribed be 
Round a circle on each degree 
Then with clarity will be heard 

The sound of nine circles and a third. 

45 
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Distributed at the math meetings in Baltimore, MD; Janu-
ary, 1998.

All this continued noise and agitation for “Reform”!
We are fed up with it. STOP!

Yes, calculus was, is and will remain alive and appli-
cable. Teaching it is always hard—both a problem and
a pleasure. But it does not require any fashionable
“rethinking.” The insights and the achievements are
always there.

Slogans without substance fly about freely. In actual
fact, the calculus is BOTH a pump and a filter—be-
cause it is both profound and hard.

“Mathematics for all” is about politics, not about ideas.
It may help down under K-12, but even there it is badly
overworked. But all college teachers know that in fact
not all college students will “get it.” Some are not at
all prepared, others are unwilling or unable to learn.
What really matters is a goodly measure of mathemat-
ics for all those who are ready to learn and willing to
study for this end. Not all students succeed. There are
still grades of “F.”

From K to 12 the tradition presents the hopeful intent
that the teacher can bring any and all students to learn.
But beyond 12, a wise tradition states that it is up to

the college student to decide for herself whether and
what to learn. It is this basic location of the initiative
which is behind the much touted economic value of
college education.

Yes, there are many new texts, and the NSF grants
provide funds and other help to produce many more
of them. But getting an NSF grant for such a purpose
is not a certificate of accomplishment or a title to
preach to others—it is just a license to try and to real-
ize that no text has it all. In the old days, Granville’s
calculus was later powered up by Smith and Longley
down at Yale, which then gave way to Thomas and
later to Hille and company and many other bids for
royalties. Consorting with an Ivy League cachet can
now present nothing really new.

The real struggles continue to take place in all those
classrooms where teachers engage and tempt each
generation of new students with the wondrous uses
of limits. The calculus is still there in all its glory, from
definitions to the fundamental theorem connecting
differentiation with integration. The orbits of the plan-
ets and those water pressures on that dam all serve to
illustrate what really gives.

This is where proof, precision and understanding lie,
ready for action. Get off the pulpit and get on to tempt-
ing the students with the ideas!

Manifesto on Mathematical Education
Saunders Mac Lane
University of Chicago

Chicago, IL



Humanistic Mathematics Network Journal #18 47

GEOMETRY CLASS

Yesterday, some visitors
interrupted geometry class --
angry voices raged around the room,
unwilling to stay caged within my head,
while I spoke pleasantly
of axioms of incidence,
placements of parallels,
numbers of degrees
in the angles of rectangles.

Wake up. This is not difficult --
no hungry mouths to feed, no
bleeding wounds to heal. Adopt
a polygonal attitude. Examine
an assumption. Abandon the postulate
that says, don’t ever question.
You were not born knowing.
Your mind won’t get dirty
on a tangent of hyperbolic thought.

Open up.
Let one eye watch
the parallels
that meet.
Shift to a point
of perspectivity.
Draw those lines
that cross
at your heart.

My students
ignored these voices,
so I dismissed them
and went on --
politely coaxing
obtuse angles
to square up
and respond.

from My Dance Is Mathematics:
Poems From a Mathematics Teacher

JoAnne Growney
Bloomsburg University

FINDING TIME

Points chase points
around the circle,
anti-clockwise,
fighting time.
You know time’s a circle,
rather than a line.

Make a line a circle!
Pick a center.
Wrap and wrap and wrap
the line around the rim.
How do the ends
get tucked in?

Cut a circle open,
stretch into a line.
Does the cut destroy
a point or fit
between a pair?
If the cut’s midway

from now to Tuesday,
how do I get there?
Do I move on
by going back,
or may I
skip a space?

A square is neither line
nor circle; it’s timeless.
Points don’t chase around
a square. Firm, steady,
it sits there and knows
its place. A circle
won’t be squared.
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I S A M A  9 9I S A M A  9 9
First Interdisciplinary Conference of

The International Society for
The Arts, Mathematics and Architecture

7-11 June 1999
San Sebastian, Spain

I N V I T A T I O N  A N D  C A L L  F O R  P A P E R SI N V I T A T I O N  A N D  C A L L  F O R  P A P E R S

C o n f e r e n c e  D i r e c t o r sC o n f e r e n c e  D i r e c t o r s

Nathaniel Friedman
The University at Albany (SUNY)

Albany, New York (USA)

F i e l d s  o f  I n t e r e s tF i e l d s  o f  I n t e r e s t
The main purpose of ISAMA 99 is to bring together persons interested in relating mathematics with the arts
and architecture. This includes teachers, architects, artists, mathematicians, scientists and engineers. As in
previous conferences, the objective is to share information and discuss common interests. Hopefully new
ideas and partnerships will emerge which can enrich interdisciplinary education. In particular, we believe it
is important to begin interdisciplinary education at an early age, so one component of ISAMA 99 will be
teacher workshops for K-12 in addition to college level courses.

ISAMA will focus on the following fields related to mathematics: Architecture, Computer Design and Fabri-
cation in The Arts and Architecture, Geometric Art and Origami, Music, Sculpture and Tessellations and
Tilings. These fields include graphics interaction, CAD systems, algorithms, fractals and graphics within
mathematical software (Maple, Derive, Mathematica, etc.) There will also be associated teacher workshops.

C a l l  f o r  P a p e r sC a l l  f o r  P a p e r s
Papers are invited on the topics outlined and other topics which fall within the general scope of the Confer-
ence. Abstracts should be submitted to the Conference secretariat by December 15, 1998. Abstracts should not
be longer than 300 words, contain a list of keywords, and clearly state the methodology, purpose, results and
conclusion of the final paper. All lectures will be in English. Participants may wish to give their presentation
in the form of slides and/or video. The final paper should contain explanatory text and a selection of images.

Javier Barrallo
Universidad del Pais Vasco
San Sebastian, Spain

C o n f e r e n c e  S e c r e t a r i a tC o n f e r e n c e  S e c r e t a r i a t

Nathaniel Friedman

Department of Mathematics & Statistics
The University at Albany

Albany, NY 12222 USA

FAX: + 1 518 442 4731
PHONE: + 1 518 442 4621
E-MAIL: artmath@math.albany.edu

C o n f e r e n c e  W e b  S i t eC o n f e r e n c e  W e b  S i t e

http://www.sc.ehu.es/mathema1/ISAMA99
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