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From Newsletter #1

Dear Colleague,

This newsletter follows a three-day Conference to Examine Mathematics as a Humanistic Disci-
pline in Claremont 1986 supported by the Exxon Education Foundation, and a special session at the
AMS-MAA meeting in San Antonio January 1987. A common response of the thirty-six mathemati-
cians at the conference was, "l was startled to see so many who shared my feelings."

Two related themes that emerged from the conference were 1) teaching mathematics humanistically,
and 2) teaching humanistic mathematics. The first theme sought to place the student more centrally in
the position of inquirer than is generally the case, while at the same time acknowledging the emo-
tional climate of the activity of learning mathematics. What students could learn from each other and
how they might come to better understand mathematics as a meaningful rather than arbitrary disci-
pline were among the ideas of the first theme.

The second theme focused less upon the nature of the teaching and learning environment and more
upon the need to reconstruct the curriculum and the discipline of mathematics itself. The reconstruc-
tion would relate mathematical discoveries to personal courage, discovery to verification, mathemat-
ics to science, truth to utility, and in general, mathematics to the culture within which it is embedded.

Humanistic dimensions of mathematics discussed at the conference included:

a) An appreciation of the role of intuition, not only in understanding, but in creating concepts that
appear in their finished versions to be "merely technical.”

b) An appreciation for the human dimensions that motivate discovery: competition, cooperation, the
urge for holistic pictures.

¢) An understanding of the value judgments implied in the growth of any discipline. Logic alone
never completely accounts for what is investigated, how it is investigated, and why it is investi-
gated.

d) A need for new teaching/learning formats that will help discourage our students from a view of
knowledge as certain or to-be-received.

e) The opportunity for students to think like mathematicians, including chances to work on tasks of
low definition, generating new problems and participating in controversy over mathematical is-
sues.

f) Opportunities for faculty to do research on issues relating to teaching and be respected for that area
of research.

This newsletter, also supported by Exxon, is part of an effort to fulfill the hopes of the participants.
Others who have heard about the conferences have enthusiastically joined the effort. The newsletter
will help create a network of mathematicians and others who are interested in sharing their ideas and
experiences related to the conference themes. The network will be a community of support extending
over many campuses that will end the isolation that individuals may feel. There are lots of good
ideas, lots of experimentation, and lots of frustration because of isolation and lack of support. In
addition to informally sharing bibliographic references, syllabi, accounts of successes and failures. . .
the network might formally support writing, team-teaching, exchanges, conferences. . . .

Alvin White
August 3, 1987
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From the Editor

The Exxon Education Foundation has been supporting the Humanistic
Mathematics Network Journal for twelve years. EEF supports the pro-
duction, publication, and mailing of HMNJ] free of cost to all libraries
and individuals who request copies.

The HMN] circulation is close to 2000 readers all over the world. The
diverse interest is reflected in the topics of the articles and book reviews
in this issue.

The Production Manager, Matthew Fluet, had to take an unexpected
leave in the middle of the semester. Fortunately, Justin Radick was able
to step in to complete the production of this issue with skill and good
ideas. Justin will work during the summer to produce the next issue,
which will be mailed in September or October.

The Los Angeles Times of June 8 and 9, 1997 published two major ar-
ticles that explored the effect of computers in school classrooms. The
verdict is mixed: much excitement, little effect on traditional education
such as reading, writing, and math.

An interesting newsletter that explores the theme of the L.A. Times ar-
ticles is Mathematics and Technology in the Classroom: A Moderating Voice,
edited by Kent Bessey. Copies and subscriptions are available from:

Mathematics and Technology
343 South 3™ East
Rexburg, ID 83440

Readers are invited to submit commentary to the Journal. All comments
and letters should be sent to Harold Ness of the University of Wiscon-
sin, Fond du Lac, WI 54935.



WHAT KIND OF A THING IS A NUMBER?
A Talk With Reuben Hersh

Interviewer: John Brockman
New York City

Reben Hersh
University of New Mexico
Albuquerque, NM 87131
rhersh@math.unm.edu
“What is mathematics? It's neither physical nor mental, it's social. It's part of culture, it's part of
history. It's like law, like religion, like money, like all those other things which are very real, but
only as part of collective human consciousness....That's what math is.”

For mathematician Reuben Hersh, mathematics has
existence or reality only as part of human culture.
Despite its seeming timelessness and infallibility, it is
a social-cultural-historic phenomenon. He takes the
long view. He thinks a lot about the ancient problems.
What are numbers? What are triangles, squares and
circles? What are infinite sets? What is the fourth di-
mension? What is the meaning and nature of math-
ematics?

In so doing he explains and criticizes current and past
theories of the nature of mathematics. His main pur-
pose is to confront philosophical problems: In what
sense do mathematical objects exist? How can we have
knowledge of them? Why do mathematicians think
mathematical entities exist forever, independent of
human action and knowledge?

Reuben Hersh is professor emeritus at the University
of New Mexico, Albuquerque. He is the recipient (with
Martin Davis) of the Chauvenet Prize and (with Edgar
Lorch) the Ford Prize. Hersh is the author (with Philip
J. Davis) of The Mathematical Experience, winner of the
National Book Award in 1983. His new book, What is
Mathematics, Really? is forthcoming (Oxford).

JOHN BROCKMAN: Reuben, got an interesting ques-
tion?

REUBEN HERSH: What is a number? Like, what is
two? Or even three? This is sort of a kindergarten ques-
tion, and of course a kindergarten kid would answer
like this: (raising three fingers). Or two (raising two
fingers). That's a good answer and a bad answer. It's
good enough for most purposes, actually. But if you
get way beyond kindergarten, far enough to risk ask-
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ing really deep questions, it becomes: what kind of a
thing is a number?

Now, when you ask "What kind of a thing is a num-
ber?" you can think of two basic answers—either it's
out there some place, like a rock or a ghost; or it's in-
side, a thought in somebody's mind. Philosophers have
defended one or the other of those two answers. It's
really pathetic, because anybody who pays any atten-
tion can see right away that they're both completely
wrong.

A number isn't a thing out there; there isn't any place
that it is, or any thing that it is. Neither is it just a
thought, because after all, two and two is four, whether
you know it or not.

Then you realize that the question is not so easy, so
trivial as it sounds at first. One of the great philoso-
phers of mathematics, Gottlob Frege, made quite an
issue of the fact that mathematicians didn't know the
meaning of One. What is One? Nobody could answer
coherently. Of course Frege answered, but his answer
was no better, or even worse, than the previous ones.
And so it has continued to this very day, strange and
incredible as it is. We know all about so much math-
ematics, but we don't know what it really is.

Of course when I say, "What is a number?" it applies
just as well to a triangle, or a circle, or a differentiable
function, or a self-adjoint operator. You know a lot
about it, but what is it? What kind of a thing is it? Any-
how, that's my question. A long answer to your short
question.

JB: And what's the answer to your question?



HERSH: Oh, you want the answer so quick? You have
to work for the answer! I'll approach the answer by
gradual degrees.

When you say that a mathematical thing, object, en-
tity, is either completely external, independent of hu-
man thought or action, or else internal, a thought in
your mind—you're not just saying something about
numbers, but about existence—that there are only two
kinds of existence. Everything is either internal or ex-
ternal. And given that choice, that polarity or di-
chotomy, numbers don't fit—that's why it's a puzzle.
The question is made difficult by a false presupposi-
tion, that there are only two kinds of things around.

But if you pretend you 're not being philosophical, just
being real, and ask what there is around, well for in-
stance there's the traffic ticket you have to pay, there's
the news on the TV, there's a wedding you have to go
to, there's a bill you have to pay—none of these things
are just thoughts in your mind, and none of them is
external to human thought or activity. They are a dif-
ferent kind of reality, that's the trouble. This kind of
reality has been excluded from metaphysics and on-
tology, even though it's well-known—the sciences of
anthropology and sociology deal with it. But when you
become philosophical, somehow this third answer is
overlooked or rejected.

Now that I've set it up for you, you know what the
answer is. Mathematics is neither physical nor men-
tal, it's social. It's part of culture, it's part of history, it's
like law, like religion, like money, like all those very
real things which are real only as part of collective
human consciousness. Being part of society and cul-
ture, it's both internal and external. Internal to society
and culture as a whole, external to the individual, who
has to learn it from books and in school. That's what
math is.

But for some Platonic mathematicians, that proposi-
tion is so outrageous that it takes a lot of effort even to
begin to consider it.

JB: Reuben, sounds like you're about to push some
political agenda here, and it's not the Republican plat-
form.

HERSH: You're saying my philosophy may be biased
by my politics. Well, it's true! This is one of the many
novel things in my book—looking into the correlation

between political belief and belief about the nature of
mathematics.

JB: Do you have a name for this solution?

HERSH: I call it humanistic philosophy of mathemat-
ics. It's not really a school; no one else has jumped on
the bandwagon with that name, but there are other
people who think in a similar way, who gave it differ-
ent names. I'm not completely a lone wolf here, I'm
one of the mavericks, as we call them. The wolves bay-
ing outside the corral of philosophy.

Anyhow, back to your other question. The second half
of my book is about the history of the philosophy of
mathematics. I found that this was best explained by
separating philosophers of mathematics into two
groups. One group I call mainstream and the other I
call humanists and mavericks. The humanists and mav-
ericks see mathematics as a human activity, and the
mainstream see it as inhuman or superhuman. By the
way, there have been humanists way back; Aristotle
was one. | wondered whether there was any connec-
tion with politics. So I tried to classify each of these
guys as either right-wing or left-wing, in relation to
their own times. Plato was far right; Aristotle was
somewhat liberal. Spinoza was a revolutionary;
Descartes was a royalist, and so on. These are well
known facts. There are some guys that you can't clas-
sify. It came outjust as you are intimating: the human-
ists are predominantly left-wing and the mainstream
predominantly right wing. Any explanation would be
speculative, but intuitively it makes sense. For instance,
one main version of mainstream philosophy of math-
ematics is Platonism. It says that all mathematical ob-
jects, entities, or whatever, including the ones we
haven't discovered yet and the ones we never will dis-
cover—all of them have always existed. There's no
change in the realm of mathematics. We discover
things, our knowledge increases, but the actual math-
ematical universe is completely static. Always was,
always will be. Well, that's kind of conservative, you
know. Fits in with someone who thinks that social in-
stitutions mustn't change.

So this parallel exists. But there are exceptions. For
instance, Bertrand Russell was a Platonist and a so-
cialist. One of my favorite philosophers, Imre Lakatos,
was a right-winger politically, but very radical philo-
sophically. These correlations are loose and statistical,
not binding. You can't tell somebody's philosophy from
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his politics, or vice versa.

I searched for a suitable label for my ideas. There were
several others that had been used for similar points of
view—social constructivism, fallibilism, quasi-empiri-
cism, naturalism. I didn't want to take anybody else's
label, because I was blazing my own trail, and I didn't
want to label myself with someone else's school. The
name that would have been most accurate was social
conceptualism. Mathematics consists of concepts, but
not individually held concepts; socially held concepts.
Maybe I thought of humanism because I belong to a
group called the Humanistic Mathematics Network.
Humanism is appropriate, because it's saying that
math is something human. There's no math without
people. Many people think that ellipses and numbers
and so on are there whether or not any people know
about them; I think that's a confusion.

JB: Sounds like we're talking about an anthropic prin-
ciple of mathematics here.

HERSH: Maybe so; I never thought of that. [ had a
serious argument with a friend of mine at the Univer-
sity of New Mexico, a philosopher of science. She said:
"There are nine planets; there were nine planets be-
fore there were any people. That means there was the
number nine, before we had any people.”

There is a difficulty that has to be clarified. We do see
mathematical things, like small numbers, in physical
reality. And that seems to contradict the idea that num-
bers are social entities. The way to straighten this out
has been pointed out by others also. We use number
words in two different ways: as nouns and adjectives.
This is an important observation. We say nine apples,
nine is an adjective. If it's an objective fact that there
are nine apples on the table, that's just as objective as
the fact that the apples are red, or that they're ripe, or
anything else about them, that's a fact. And there's re-
ally no special difficulty about that. Things become
difficult when we switch unconsciously, and carelessly,
between this real-world adjective interpretation of
math words like nine, and the pure abstraction that
we talk about in math class.

That's not really the same nine, although there's of
course a correlation and a connection. But the number
nine as an abstract object, as part of a number system,
is a human possession, a human creation, it doesn't
exist without us. The possible existence of collections
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of nine objects is a physical thing, which certainly ex-
ists without us. The two kinds of nine are different.

Like I can say a plate is round, an objective fact, but
the conception of roundness, mathematical roundness,
is something else.

Sad to say, philosophy is definitely an optional activ-
ity; most people, including mathematicians, don't even
know if they have a philosophy, or what their philoso-
phy is. Certainly what they do would not be affected
by a philosophical controversy. This is true in many
other fields. To be a practitioner is one thing; to be a
philosopher is another. To justify philosophical activ-
ity one must go to a deeper level, for instance as in
Socrates' remark about the unexamined life. It's pa-
thetic to be a mathematician all your life and never
worry, or think, or care, what that means. Many people
do it. I compare this to a salmon swimming upstream.
He knows how to swim upstream, but he doesn't know
what he's doing or why.

JB: How does having a philosophy of mathematics af-
fect its teaching?

HERSH: The philosophy of mathematics is very per-
tinent to the teaching of mathematics. What's wrong
with mathematics teaching is not particular to this
country. People are very critical about math teaching
in the United States nowadays, as if it was just an
American problem. But even though some other coun-
tries get higher test scores, the fundamental mis-teach-
ing and bad teaching of mathematics is international,
it's standard. In some ways we're not as bad as some
other countries. But I don't want to get into that right
now.

Let me state three possible philosophical attitudes to-
wards mathematics: '

Platonism says mathematics is about some abstract
entities which are independent of humanity.

Formalism says mathematics is nothing but calcula-
tions. There's no meaning to it at all. You just come

out with the right answer by following the rules.

Humanism sees mathematics as part of human culture
and human history.

It's hard to come to rigorous conclusions about this



kind of thing, but I feel it's almost obvious that
Platonism and formalism are anti-educational, and
interfere with understanding, and humanism at least
doesn't hurt and could be beneficial.

Formalism is connected with rote, the traditional
method which is still common in many parts of the
world. Here's an algorithm; practice it for a while; now
here's another one. That's certainly what makes a lot
of people hate mathematics. (I don't mean that math-
ematicians who are formalists advocate teaching by
rote. But the formalist conception of mathematics fits
naturally with the rote method of instruction.)

There are various kinds of Platonists. Some are good
teachers, some are bad. But the Platonist idea, that, as
my friend Phil Davis puts it, pi is in the sky, helps to
make mathematics intimidating and remote. It can be
an excuse for a pupil's failure to learn, or for a teacher's
saying "some people just don't get it."

The humanistic philosophy brings mathematics down
to earth, makes it accessible psychologically, and in-
creases the likelihood that someone can learn it, be-
cause it's just one of the things that people do. This is
a matter of opinion; there's no data, no tests. But I'm
convinced it is the case.

JB: How do you teach humanistic math?

HERSH: I'm going to sidestep that slightly, I'll tell you
my conception of good math teaching. How this con-
nects with the philosophy may be more tenuous.

The essential thing is interaction, communication. Only
in math do you have this typical figure who was sup-
posedly exemplified by Norbert Wiener. He walks into
the classroom, doesn't look at the class, starts writing
on the board, keeps writing until the hour is over and
then departs, still without looking at the class.

A good math teacher starts with examples. He first
asks the question and then gives the answer, instead
of giving the answer without mentioning what the
question was. He is alert to the body language and
eye movements of the class. If they start rolling their
eyes or leaning back, he will stop his proof or his cal-
culation and force them somehow to respond, even to
say "I don't get it." No math class is totally bad if the

students are speaking up. And no math lecture is re-
ally good, no matter how beautiful, if it lets the audi-
ence become simply passive. Some of this applies to
any kind of teaching, but math unfortunately is con-
ducive to bad teaching.

It's so strange. Mathematical theorems may really be
very useful. But nobody knows it. The teacher doen't
mention it, the students don't know it. All they know
is it's part of the course. That's inhuman, isn't it?

Here is an anecdote. I teach a class, which I invented
myself, called Problem Solving for High School and
Junior High School Teachers and Future Teachers. The
idea is to get them into problem solving, having fun at
it, feeling confident at it, in the hope that when they
become teachers they will impart some of that to their
class. The students had assignments; they were sup-
posed to work on something and then come talk about
it in class. One day I called for volunteers. No volun-
teers. Iwaited. Waited. Then, feeling very brave, I went
to the back of the room and sat down and said noth-
ing. For a while. And another while. Then a student
went to the blackboard, and then another one.

It turned out to be a very good class. The key was that
I was willing to shut up. The easy thing, which I had
done hundreds of times, would have been to say,
"Okay, I'll show it to you." That's perhaps the biggest
difficulty for most, nearly all, teachers—not to talk so
much. Be quiet. Don't think the world's coming to an
end if there's silence for two or three minutes.

JB: Earlier you mentioned the word beauty. What's
with beauty?

HERSH: Fortunately, I have an answer to that. My
friend, Gian-Carlo Rota, dealt with that issue in his
new book, Indiscrete Thoughts. He said the desire to
say "How beautiful!" is associated with an insight.
When something unclear or confusing suddenly fits
together, that's beautiful. Maybe there are other situa-
tions that you would say are beautiful besides that,
but I felt when I read that that he really had some-
thing. Because we talk about beauty all the time with-
out being clear what we mean by it; it's purely subjec-
tive. But Rota came very close to it. Order out of con-
fusion, simplicity out of complexity, understanding out
of misunderstanding—that's mathematical beauty.

Humanistic Mathematics Network Journal #15



Math Lingo vs. Plain English: Multiple Entendre

Stephen I. Brown
University at Buffalo
SUNY Buffalo, Amherst NY 14260
EUASTEVE@ubvms.cc.buffalo.edu

Once more, it is ordinary language with all its ambiguity that provides a clue that the concept of
definition in mathematics might not be as monolithic as we are led to believe when the claim is
made that definitions are arbitrary and we can define anything any way we wish.

“Beware the double entendre” would be a good slo-
gan to summarize a recent article by Reuben Hersh—
one that ends by enticing the reader to make up slo-
gans with some words that have technical mathemati-
cal as well as ordinary language meanings.' The point
of his creative exercise is to have the reader encoun-
ter and perhaps internalize what Hersh views as an
important lesson that may account for difficulties stu-
dents have in learning mathematics: that ordinary lan-
guage is not only filled with ambiguous meanings,
but that even when there is no ambiguity in ordinary
language, there is generally either no connection or a
tenuous one between that meaning and the math-
ematical one.

As an example of a tenuous connection, Hersh com-
ments,

If I say “I own a number of calculus
books...,” I don’t mean zero books....I
don’t even mean ore book....] mean
two or more (p.48).

Hersh claims that he now understands that it was not
mere ignorance that accounted for the comment many
years ago by one of his students who asserted that
zero was not a number.

Hersh offers a litany of other ordinary language ex-
pressions that are at odds with mathematical mean-
ing: adding (which in ordinary language always leads
to an increase in number), difference (signaling a com-
parison in ordinary language, but not necessarily sub-
traction), multiplication (repeatedly adding so that one
arrives at something that is bigger than what was ini-
tially the case).

He points out that not only objects and operations but
the logic of requests or demands is problematic as well.
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Thus when we ask someone to show that a number
divisible by six is even, it is surely appropriate in or-
dinary usage to choose one example (like forty-two)
to demonstrate the point rather than to come up with
some general proof.

The connection between mathematics and ordinary
language can be even more tenuous however in ad-
vanced mathematics, as Hersh points out. He com-
ments:

In advanced mathematics, there’s more
linguistic confusion. Surds (absurd),
irrational and imaginary numbers, sin-
gular perturbations, degenerate ker-
nels, strange attractors—all sound dan-
gerous, undesirable, things to avoid
(p.51).

It is true that the mismatch between mathematical and
everyday meanings is significant enough to warrant
our attention, and a disinclination to appreciate this
observation may very well account for problems stu-
dents have in appreciating mathematical meaning.
There are, however, concomitant issues that are either
ignored or distorted by Hersh’s program to clear up
the intended entendre—with the intention of minimiz-
ing ambiguity. They are issues that have deep conse-
quences not only for students attempting to learn new
bodies of knowledge, but for anyone attempting to
appreciate the nature of mathematical thought as well
as its intellectual history.

For this purpose, I would like to suggest the follow-
ing complementary slogans:

1. “BE AWARE OF THE DOUBLE ENTENDRE. "
2. “BE AWARE OF MULTIPLE ENTENDRE.”



BE AWARE OF THE DOUBLE ENTENDRE

Precision of meaning is one thing. An appreciation
for the evolution of ideas and the associated labor
pains is another. The slogan “Be Aware of (rather than
Beware) the Double Entendre” is intended to have an
ameliorative rather than a dismissive quality with re-
gard to the concept of double entendre. What do I have
in mind? While Hersh has found out that some stu-
dents have trouble understanding a concept like that
of irrational or imaginary numbers because they seek
association with such words which “sound danger-
ous, undesirable, things to avoid,” I have discovered
that many are frustrated by a disinclination to take
seriously the ordinary language equivalent.

Take the case of “negative number” for example.
While “negative” surely fits the bill of sounding dan-
gerous and is something to avoid (unless of course it
is associated with a biopsy), the Latin translation of
that concept (which pre-dated the English translation)
was just as foreboding and perhaps more revealing.
These numbers were originally called numeri ficti—
meaning fictitious numbers. The implication here is not
only that these numbers are dangerous, but that they
really do not exist—or if they do, their existence is
shrouded in mystery.

What can students learn not by disassociating from
an English translation, but by embracing such trans-
lations with an historical and multicultural perspec-
tive? Perhaps the deepest lesson to learn is that they
are not fools if they do not immediately understand
what the concept is all about. Not singly, but taken as
a whole, words like “negative,” “imaginary,” “irra-
tional,” “complex” with regard to numbers signal
something very important. That is, they suggest that
these concepts evolved against considerable resis-
tance. They may come to appreciate that in a quite
deep sense, “ontogeny recapitulates phylogeny.” If our
students have trouble understanding how numbers
are extended, then it would be a significant source of
solace for them to appreciate that they are merely ex-
periencing the labor pains of these ideas historically.

And why should these ideas have had such a labor
intensive birth? Why were they not just accepted as
reasonable extensions of existing knowledge? What
does it mean to say, as Hersh points out, that math-
ematicians appreciate that zero may have meaning in
the above context while ordinary language suggests

the opposite? Who are these mathematicians that ap-
preciate the meaning? Are we referring to those who
gave birth to the ideas and found themselves walk-
ing on a tight-rope, or are we referring to a twentieth
century embodiment of “mathematician?” Are there
present day mathematicians who would have diffi-
culty with the concept of zero defining a number of
real world objects? Should there be?

One reason that each of the extensions of numbers
(beyond natural numbers—those that Kronecker
spoke of as God-given, but which Russell and Frege
attempted to humanize by establishing them on a set-
theoretic foundation) met with such resistance among
professionals is that there was an important and
healthy kind of confusion that had to be unraveled
over time. It is a sort of confusion that is not easily
conquered once and for all, but is perhaps built into
the human mind, and reappears with each new dis-
covery in all fields of inquiry. That is, in viewing an
extension of already existing concepts, how do we
connect with what exists? What do we expect of the
newly emerging idea that is in common with the pre-
vious one?

Obviously a concept (of number, for example) which
derives from an earlier one has something in common
with the earlier one. Just as obviously, however, it dif-
fers from the original one. Each extension requires that
we decide how much we want the emerging idea to
deviate from the original. At what point is the devia-
tion so significant that we can no longer speak of the
two concepts in the same breath?

With each extension of number, mathematicians had
to ask themselves what there was that was so funda-
mental about the concept from which it was to be de-
rived that had to be held intact—such that letting it
go would completely destroy the concept.

At early stages in the history of mathematics, exten-
sions were characterized by mathematicians’ search
for a “visible” thread—something linked to the real
world, or perhaps a model of some sort that might be
a bit more abstract than what could be touched or seen.
Just as mathematicians who were confronted with the
search for some reality that linked the emerging con-
cept of numerificti to the earthiness of the natural num-
bers, so our students experience discomfort when they
cannot rely upon familiar models in a number sys-
tem that is supposedly an extension of what is already
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comfortable.

We sometimes get the impression that an axiomatic
formulation of mathematics was a watershed that
enabled mathematicians to resolve this problem once
and for all. We thus might conclude erroneously that
it is our students’ inability to appreciate an axiomatic
perspective that accounts for their reluctance to ac-
cept some of these extensions. We might believe that
the culprit then is an overly “concrete” hold on the
prior number system, and furthermore that the con-
crete hold is rooted in an effort to connect each idea
with ordinary language usage. Thus if natural num-
ber is associated with objects you can see or touch,
then it surely is understandable that our students
would have a problem that mathematicians do not
have with zero or negative elements being numbers
at all.

But the problem does not (and did not) disappear with
the creation of an axiomatic perspective. If we think
of the natural numbers as a system satisfying Peano’s
postulates, then we know that there are certain axi-
oms that such a system must satisfy. But as we extend
this system, we find out that some of the properties
must be relinquished. It is not just that we cannot
“touch” negative numbers that is problematic, but
rather that the extended system loses some proper-
ties of number that are associated with the positive
integers and such properties are cherished by differ-
ent people in different ways. If the extension from
positive integers to integers enables us to solve some
new equations, it also raises some eyebrows. Thus, in
the extended system we can no longer hold on to
mathematical induction (a loss felt perhaps more dra-
matically in guise of the equivalent well-ordering
property). Not every subset of the new system has a
least element. Similarly, an awareness that is perhaps
more intuitively understood (with machinery that
may sound less technical than mathematical induc-
tion) is challenged to the hilt when an extension from
positive to negative rationals leads us to reject the
strongly held belief that a smaller number divided by
a larger number cannot equal a larger number divided
by a smaller one (asin-1/1 = 1/-1).

When do we reach a point of no return—such that we
no longer think of the newly derived system as being
a number system at all? We know that the deeply
embedded property of commutativity had to be re-
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linquished under matrix multiplication. Yet, we have
come to think of matrices as being a number system
of sorts.

As we depict the actual evolution of number systems,
we can share with our students the historical debates
that took place regarding the legitimacy of purported
extensions. But we can do more. If we engage them in
creating alternative extensions—ones that challenge
some of their own cherished properties—at what point
do our students get their backs up and say that the
system being created no longer reflects what numbers
are “really about”?

That’s the sort of question that can engage our stu-
dents, once we encourage them not to by-pass the am-
biguity of ordinary language and to place mathemat-
ics on a different sort of pedestal, but rather to see
how the presence of language in the evolution of ideas
is a testimony to the most human problems of cogni-
tion and emotion as well: How badly do we want
something that opens up totally new avenues to ex-
plore, and at what price will we buy it?

BE AWARE OF MULTIPLE ENTENDRE

So far, we have shown how attention to double
entendre can be advantageous not from the point of
view of making each new concept more easily under-
stood, but rather as a tool in enabling us to better un-
derstand the problematic nature of an entire collec-
tion of concepts.

There is however another way in which attention to
ordinary language can be enlightening. This has to
do less with the translation (and mistranslations) of a
family of words and grammatical uses in the domains
of ordinary language vs. mathematics, and more with
an awareness of certain concepts that are embedded
in our culture in general.

It leads us to an issue alluded to in the above section,
but it puts a totally new slant on the issue. I begin
with the story of a classroom event of several years
ago.

I was teaching a talented group (sic) of graduate stu-
dents who had previously been exposed to a number
of different strategies for extending number systems.
Thus, they had postulated newly extended number
systems; they had derived new systems from old ones



making use of concepts such as ordered pairs of ele-
ments from the old ones; they had proved all sorts of
things about the new systems in relation to the old
ones; they knew what the concept of equivalence re-
lation was all about and had seen the relevance of that
concept to extensions; they had been exposed to the
concept of new systems having a subset isomorphic
to the old; they had been exposed to alternative his-
torical development of the real numbers as in the case
of Dedekind’s cuts vs. Weierstrass’ limits.

I then proposed the following (what I thought was)
simple dilemma:

The real numbers can be characterized in an axi-
omatic way (essentially an Archimedean ordered
field, but I was careful to lay out the properties). I
reviewed for them that within that system, it is
possible to prove that there does not exist a num-
ber x so that x*=-1.

I then told them that one “popular” way of viewing
the set of complex numbers is to define that set as a
one that satisfies all the properties of the previous set,
but in addition has the following property:

There exists a number x so that x*=-1.
Question: How is such a contradiction possible?

I found their answers perplexing. Many of them
claimed that the new set, the complex numbers, was
a different set than the previous one—the real num-
bers—so that there was no implied contradiction.?
Some people seemed to believe that the problem was
resolved by naming the new system—as if such an act
in and of itself had the power to dissolve a contradic-
tion. Some claimed that it is not surprising to find out
that what we previously held to be impossible was in
fact possible since that is analogous to what growing
up and being educated is all about.

Many other interesting comments were made, and in
fact, encouraging students to analyze this sort of ques-
tion in a non-threatening way served as a wonderful
Rorschach test. By examining anomalies in a specific
rather than in a global context, instructors may un-
earth some interesting student misconceptions. That
is, if asked whether or not it would be acceptable to
have a system that satisfies the two propositions X

and not X simultaneously, they most likely would
claim that such is not possible, and in fact is an im-
portant element in the arsenal of mathematical argu-
ments.

Now there is a grain of truth in the students’ reac-
tions, and I perhaps misinterpreted their efforts to re-
solve the problem, but I still found it difficult to un-
derstand how they could not be bothered by what
appeared to be an obvious contradiction. In fact, no
one mentioned that the new system of complex num-
bers is not merely an add-on to the old system in the
sense that everything that was assumed in the old
system was also introduced into the new.

It is not that no one pointed out that in the new sys-
tem, an important property of the old one must be
relinquished (that of order), but rather that no one
even entertained the possibility that something might
be lost even if they could not name what it was.

Why is that? It took me a long time to come to appre-
ciate what might have been going on, and I have fi-
nally come to an hypothesis that seems worth taking
seriously. That is, | have come to believe that their dis-
inclination to consider the possibility that something
had to be relinquished is a function of one rather spe-
cific notion of progress in our culture. Adapting a
phrase of Piaget’s that has a slightly different conno-
tation, I have dubbed this notion of progress The
American Phenomenon. While there are multiple mean-
ings of progress in ordinary language, a dominant one
seems to assume that progress involves getting more
and more of what you find desirable (like being able to
get a solution to x*= -1 when it did not previously
exist) without ever losing anything that you previously
held worthwhile.

The fact that an extension of a number system pro-
vides you with something new and desirable but may
at the same time deprive you of something you pre-
viously found desirable is not well understood. But
why so? It may not be a result of the fact that the tech-
nical process of extension is poorly understood from
a mathematical point of view, but rather because the
concept of progress in general is filled with so many
unexplored myths.

So, I am suggesting that it is not that we need to dis-
tinguish (and divorce) ordinary language from pre-
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cise mathematical language in order to create a more
accurate understanding of mathematical ideas. Rather
it is worth doing some analysis of words and concepts
in ordinary language that do not at allhave mathemati-
cal counterparts, but that strongly influence the way
in which our students think about mathematics and
mathematical development in the first place. Progress
is one such concept but there are others.

What is needed in order to fully appreciate that ex-
tension of systems may have a price to pay is not only
an issue of mathematical logic. It requires simulta-
neously that we do some excavation on a concept of
ordinary language that is popularly viewed as unam-
biguous: the concept of progress. Once more, what
we need is to seek greater rather than lesser ambigu-
ity in order to arrive finally at a view of the concept of
progress that illuminates the interesting discomfort
we feel when popularly held principles have to be
relinquished.

I conclude with one other concept that is a meta-math-
ematical rather than a mathematical one. Sometimes
it is our inability to appreciate fully the ambiguity of
ordinary language that prevents us from understand-
ing not only a particular mathematical concept or an
array of concepts, but rather the nature of mathemati-
cal thought itself. Consider the concept of definition.
Most of my students believe that definitions in math-
ematics are arbitrary. That is, they tell me that you
can define things any way you want.

Holding on to a narrow and unambiguous notion of
definition, they essentially see its application in math-
ematics as the replacement of one arbitrary English
word with some mathematical formulation. Thus the
slope of a line in a Cartesian co-ordinate system is
meant to be a shorthand way of replacing the change
in y values divided by the change in x values for any
two points on a straight line.

What the concept of arbitrary definition neglects to
appreciate is first of all that no one goes around just
defining things arbitrarily and that considerable spade
work is necessary in order to decide what is worth
defining in the first place. That is, definitions single
out objects with a purpose in mind, and frequently that
purpose is arrived at as a culminating act of inquiry
rather than as a first step (as most texts would have
us believe). In addition, of course, there are logical
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criteria that need to be unearthed before definitions
are accepted. For example, in most circumstances, we
do not select definitions that we believe would lead
to contradictions. Thus the concept of the slope of a
straight line would make little sense if slope changed
in value depending upon which points were selected
along the line. |

But there is something deeper about the concept of
definition which does borrow from ordinary language
use of definition. That is, there are occasions upon
which definitions even in mathematics serve some
function other than that of stipulating one expression
for some other. That is, there are occasions upon which
definitions are descriptive in nature.? Far from being
arbitrary, these definitions are intended to convey with
a degree of accuracy what it is that accords intuitively
with our beliefs.

So, for example, there are many different ways of de-
fining a circle in precise mathematical terms. Though,
as Hersh would point out, common language usage
might not distinguish carefully between points along
the rim and interior points (for example), in no case
would we expect that what we previously defined as
slope would satisfy the definition of circle. Such a
definition would not accord with our prior sense of
what a circle “really is.” To adopt the notion of defini-
tion in mathematics as arbitrary is to show a lack of
appreciation for the interesting range of ways the con-
cept of definition functions in ordinary language. It is
to act as if the Socratic search for “justice” or “beauty”
is a pointless venture on the grounds that any short-
hand expression would do.

Once more, it is ordinary language with all its ambi-
guity that provides a clue that the concept of defini-
tion in mathematics might not be as monolithic as we
are led to believe when the claim is made that defini-
tions are arbitrary and we can define anything any
way we wish.

CONCLUSION

So Hersh, in his delightful essay, reminds us that or-
dinary language can be misleading and can interfere
with students’ understanding of mathematical ideas.
That lesson itself, however, is misleading if we do not
also take into consideration that ambiguity of lan-
guage can be an asset, especially when the goal is not
necessarily to unearth the precise meaning of a rela-



tively narrow mathematical concept (like negative
integer), but rather to appreciate how it is that an ar-
ray of related concepts (like number) has evolved.

Itis by looking at the array of ordinary language mean-
ings (and concomitant emotional baggage) associated
with numbers that we can begin to imagine a state of
mind that was behind Kronecker’s reaction to
Lindemann’s demonstration of the transcendental
nature of pi: Just a little over a century ago, he said:

What good is your beautiful investiga-
tion regarding pi? Why study such
problems, since irrational numbers do
not exist?*

The pedagogical issues are complicated here and I
have made no effort to spell this awareness out in

terms of any teaching program. Furthermore, I have
intentionally focused narrowly on the concept of num-
ber rather than upon the range of interesting specific
concepts that Hersh has explored. I have also not ex-
plored in general the role that ordinary language plays
in thinking, nor have I delved in particular into the
role of metaphorical thinking in mathematics—a
thinking that might account for the variety and rich-
ness of systems described by language such as “ring,”
“field,” “ideal,” and even “manifold” and “commu-
tator.””

While what I have claimed does not negate Hersh’s
argument, I have attempted to point out that the am-
biguity of ordinary language serves a number of in-
teresting functions beyond the antiseptic one of iden-
tifying and delimiting (sic again) its potential in un-
derstanding mathematics.
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Abe Shenitzer at 75

Hardy Grant
539 Highland Avenue,
Ottawa ON R2A 2J8, Canada
hgrant@freenet.carlaton.ca

Widely recognized as a tireless crusader for "human-
istic" approaches to mathematics, Abe Shenitzer ear-
lier this year completed the third quarter of his first
century. To mark the birthday, a celebratory confer-
ence in Abe's honor was held on October 5™ at York
University in Toronto, his home institution since 1969.

Abe was born in Warsaw but grew up in Sosnowiec,
an industrial city in southwestern Poland. He says that
in his school days he liked mathematics and was good
at it but did not yet sense its cultural significance. He
inclined at that time to prefer the study of languages,
which indeed has remained one of his great loves. A
deep sensitivity for linguistic nuance lies behind the
success of his many translations of mathematical (and
other) books and articles from Russian, German and
Polish. (This activity he continues to pursue; his next
major project is a translation of Detlef Laugwitz's re-
cent intellectual biography of Riemann.)

Between 1943 and his liberation from Bergen-Belsen
at the end of World War II Abe was in several labor
and concentration camps. He continues to share his
thoughts on the Holocaust by invitation with many
groups, especially of high-school students. He came
to the United States in 1946. He had by this time taught
himself English, using the famous Langenscheidt
method that based the study on a literary masterpiece
(in this case A Christmas Carol). He took an under-
graduate degree in mathematics at Brooklyn College,
then went on to earn his Ph.D. at New York Univer-
sity. His supervisor was the late Wilhelm Magnus,
whom Abe remembers as "a man of towering intel-
lect and wonderful kindness.” It was while at NYU
that he met the wise and gracious lady who became
his wife; he and Sarah now have two grown daugh-
ters and two grandsons.

A brief stint at a Bell Telephone research laboratory
convinced him that his future lay in academia. He
taught at Rutgers University in New Jersey for a year
and a half, then at Adelphi University on Long Island
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until his move to Toronto. His classroom career was
crowned by his winning of a prestigious Ontario-wide
award for teaching excellence; the testimonials cited
not only his command of his subject and his commu-
nicative skills but also his concern for his students as
people. He retired officially from York University a
few years ago, but now is busier than ever with schol-
arly pursuits. He has of course many interests and
passions outside mathematics. Two of his recent trans-
lations from Polish are of books about literature. He
is among other things a lover of good music (with a
special reverence for Bach), an enthusiastic skier, and
a skilled craftsman in wood.

The conference marking Abe's 75" birthday was su-
perbly organized by two of his York colleagues and
longtime friends, Israel Kleiner and Martin Muldoon.
Five speakers graced the program, and the diversity
of their themes mirrored the breadth of the guest of
honor's mathematical interests. Ed Barbeau (Univer-
sity of Toronto) spoke on "Fourier Series"; Harold
Edwards (New York University) on "The Fundamen-
tal Theorem of Algebra"; Peter Hilton (University of
Central Florida and SUNY at Binghampton) on "From
Geometry to Algebra: Reflections on the Birth of Ho-
mological Algebra"; Walter Littman (University of
Minnesota) on "The Two-Way Street Between Control
Theory and Partial Differential Equations"; and Hel-
ena Pycior (University of Wisconsin at Milwaukee)
on "George Berkeley, Mathematics and Philosophy:
Berkeleian Scholarship into the 1990s." Tributes to Abe
at the ensuing banquet were glowing, but luckily his
sense of humor and his sense of perspective, both of
which are quite out of the ordinary, should ensure that
he will be able to go on wearing the same hats as be-
fore.

Abe Shenitzer's work consistently champions what he
calls the intellectual aspects of mathematics as op-
posed to the merely technical. His many talks and ar-
ticles strive always to close the gap between these two
facets of the subject. Specialization, he has written, "is
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the price we pay for creative achievements”, but it
entails that "the 'average’ productive mathematician
sometimes knows little about mathematical ideas out-
side his speciality and even less about their evolution
and role.” He once contrasted this narrowness of vi-
sion among mathematicians with the situation in a
discipline such as English literature. "The term 'En-
glish major," he wrote, "implies some historical, philo-
sophical and evaluative training and competence. It
is sad but true that the term 'mathematician' does not
imply corresponding training and competence.”

These concerns underlie Abe's approach to the col-
umn, called "The Evolution of ...," which he has ed-
ited for the American Mathematical Monthly since Janu-
ary 1994. The column'’s articles are chosen for their
ability to expand readers’ mathematical horizons by
paying special attention to (as Abe puts it) "ideas and
issues that overlap different domains of mathemat-
ics, or overlap mathematics and other disciplines, such
as physics, philosophy and so on." The articles have
solid mathematical substance, with an emphasis on
developments since 1700; but always the goal is to

shed light on larger themes. This policy should make
the column especially valuable to teachers, whose ef-
fectiveness can be much increased by awareness of
their curriculum'’s wider mathematical and cultural
context.

Itis difficult for me to write dispassionately about Abe
Shenitzer—so I hope that it is not necessary. For more
than a quarter of a century he has figured in my life
as colleague, collaborator, guru, travelling compan-
ion and much more; ours is a friendship with many
dimensions. I can echo the several people at the con-
ference in his honor who said, privately or publicly,
that they count Abe among their greatest teachers
though they never sat in one of his classrooms. 1 owe
him debts that are not easy to express, let alone to
repay—and I know that many others would say the
same. Itisa joy to report that at 75 he enjoys a mental
and physical robustness scarcely if at all diminished
by time. That is a lucky state of affairs for the cause of
humanistic mathematics, which Abe has served so de-
votedly and so well.

A Brief Tribute to =t

J.D. Phillips
Saint Mary's College
Morgana, CA 94575-3517
phillips@stmarys-ca.edu
So close, yet so far away
3.14159265358979323846264

12

Humanistic Mathematics Network Journal #15



Reminiscences of Paul Erdés (1913-1996)

Melvin Henriksen
Harvey Mudd College
Claremont CA 91711
Henriksen@hmc.edu
Reprinted from the Mathematical Association of America website :

http://www.maa.org/features/erdos.htm|

[ met Paul Erdos shortly after his 40th birthday in April
1953 at Purdue University in West Lafayette, Indiana.
Hewas already a living legend because of his substan-
tial contributions to the theory of numbers, the theory
of sets, what is now called discrete mathematics, as
well as to many other areas of mathematics. (For ex-
ample, although he had little interest in topology, his
name appears in most topology texts as the first per-
son to give an example of totally disconnected topo-
logical space that is not zero-dimensional.) I was a 26-
year old instructor in my first year at Purdue. Many
of my colleagues knew him well. He had been a visit-
ing research associate at Purdue for a couple of years
during World War II, and had visited so many uni-
versities and attended so many conferences that he
was well known to most of the others. Those that were
active in research admired his mathematical accom-
plishments, while others on the faculty were amused
by his eccentricities. What I remember most clearly is
his announcement to everyone that “death begins at
40”.

I am not qualified to write a biography of Erdos, but
some background seems necessary. There is an excel-
lently written and accurate obituary of him by Gina
Kolata in the Sept. 21, 1996 issue of the New York
Times, beginning on page 1. An interview conducted
in 1979 which reveals much of his personality ap-
peared in the volume Mathematical People edited by
D.]. Albers and G.L. Alexanderson (Birkhauser 1985).
The Mathematical Association of America (MAA) sells
two videos of Erdos, and Ronald Graham, a long time
collaborator, has edited together with Jarik Nesetril
two volumes on his mathematical work and life. (Both
volumes have been published by Springer-Verlag and
were available in January 1997. They include a de-
tailed biographical article by Bella Bollobas.)

Erdos was born in Budapest in 1913 of parents who

were Jewish intellectuals. His brilliance was evident
by the time he was three years old. For this reason,
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and perhaps because two older sisters died of scarlet
fever shortly before he was born, his parents shielded
him almost completely from the everyday problems
of life. For example, he never had to tie his own shoe-
laces until he was 14 years old, and never buttered
his own toast until he was 21 years old in Cambridge,
England. In return for the freedom to concentrate al-
most exclusively on intellectual pursuits, he paid the
price of not learning the social skills that are expected
of all of us and usually acquired in childhood.

He became internationally famous at the age of 20
when he got a simple proof of a theorem that was origi-
nally conjectured by Bertrand and later proved by
Tchebychev: For every positive integer n, there is a
prime between 1 and 2n. Tchebychev’s proof was quite
hard! Erdos completed the requirements for the Ph.D.
at the University of Budapest about a year later, but
had no chance of getting a position in Hungary be-
cause he was a Jew living under a right wing dicta-
torship allied with Nazi Germany. He spent some time
at Cambridge University in 1935. There, his life as a
wandering mathematician began. In fact, he had vis-
ited Cambridge three times the year before. He liked
traveling and had no trouble working while doing so.
He liked people, and except for those who could not
tolerate his ignorance of the social graces, they liked
him. He tried his best to be pleasant to everyone and
was generous in giving credit and respect to his col-
laborators.

I do not know when he first came to the United States,
but he spent the years of World War II here, two of
them at Purdue. Nor can I give a list of the many uni-
versities he visited for any substantial length of time.
By the time I met him, he had written joint papers
with many mathematicians most of whom had estab-
lished research reputations before working with
Erdos. The only Erdds collaborator who worked with
him unwillingly was Atle Selberg. In the late 1940s,
both of them, working independently, had obtained
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“elementary” proofs (meaning: proofs that did not use
complex analysis) of the prime number theorem. The
theorem states that the number of primes less than or
equal to (a positive real number) x is asymptotically
equal to x/log(x). This had been conjectured by Gauss
and Legendre based on empirical data, but it had only
been proved many years later, by two French math-
ematicians, Jacques Hadamard and Charles de la
Vallée Poussin (also working independently). Both
proofs depended heavily on complex analysis. What
Selberg and Erdos did in their “elementary” proofs
was to avoid using complex analysis (the proofs were
in no sense “easy”). In those pre-email days, the fast-
est courier of mathematical news was Paul Erd6s. He
told anyone who would listen that Selberg and he had
devised an elementary proof of the prime number
theorem.

Almost every number theorist knew of Erdos, while
few had heard of the young Norwegian Selberg. So
when the news traveled back to Selberg, it appeared
that Erdos had claimed all the credit for himself. The
ensuing bitterness was not healed by the two of them
writing a joint paper. Selberg later published another
elementary proof on his own,and went on to a bril-
liant mathematical career, eventually becoming a per-
manent member of the Institute for Advanced Study
in Princeton, the Valhalla for mathematicians. Erdos
had been a visitor there earlier, but was not offered a
membership. Exactly what happened is controversial
to this day, and reading the article by Bollobas will
shed more light on this matter than this short sum-
mary carn.

Erdos spent the academic year 1953-54 at the Univer-
sity of Notre Dame in South Bend, Indiana. Arnold
Ross, the chairman of the Mathematics Department,
had arranged for him to teach only one (advanced)
course, and supplied an assistant who could take over
his class if he had the urge to travel to talk with a col-
laborator. Erdds had rejected organized religion as a
young man, and had been persecuted in Roman
Catholic Hungary. So we teased him about working
at a Catholic institution. He said in all seriousness that
he liked being there very much, and especially en-
joyed discussions with the Dominicans. “The only
thing that bothers me,” he said, “there are too many
plus signs.” He came by bus to West Lafayette fairly
often for short periods because he had so many friends
there and because he liked the mathematical atmo-
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sphere.

At that time, Leonard Gillman and I were trying to
study the structure of the residue class fields of rings
of real-valued continuous functions on a topological
space modulo maximal ideals. We had learned quite
a bit about them, but had run into serious set-theo-
retic difficulties. Erdds had little interest in abstract
algebra or topology, but was a master of set-theoretic
constructions. Without bothering him with our moti-
vation for asking them, we asked him a series of ques-
tions about set theory, which he managed to answer
while we could not.

He was not terribly interested when we supplied him
with the motivation, and I have often said that Erdos
never understood our paper; all he did was the hard
part. This paper by Erdds, Gillman and Henriksen was
published in the Annals of Mathematics in 1955. With-
out any of us realizing it in advance, it became one of
the pioneering papers in nonstandard analysis, and
was often credited to Erdds, et al.

Erdos got an offer allowing him to stay indefinitely at
Notre Dame on the same generous basis. His friends
urged him to accept. “Paul”, we said “how much
longer can you keep up a life of being a traveling
mathematician?” (Little did we suspect that the an-
swer was going to turn out to be “more than 40 years.”)
Erdos thanked Ross, but turned him down. As it
turned out, he would not have been at Notre Dame
the next year whatever his answer had been.

The cold war was in full swing, the United States was
in the grip of paranoia about communism, and many
regarded unconventional behavior as evidence of dis-
loyalty. Erd6s had never applied for citizenship any-
where he lived, and had acquired Hungarian citizen-
ship only by accident of birth. He belonged to no po-
litical party, but had a fierce belief in the freedom of
individuals as long as they did no harm to anyone
else. All countries who failed to follow this were clas-
sified as imperialist and given a name that began with
a small letter. For example, the U.S. was samland and
the Soviet Union was joedom (after Joseph Stalin). He
talked of an organization called the f.b.u—a combi-
nation of the FB.I and O.G.P.U (which later became
the K.G.B) and conjectured that their agents were of-
ten interchanged.

In 1954, Erdos wanted to go the International Con-
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gress of Mathematicians (held every four years), which
was to be in Amsterdam that August. As a non-citi-
zen leaving the U.S. with plans to return, he had to
apply for a re-entry permit. After being interviewed
by an INS agent in South Bend in early 1954, he re-
ceived a letter saying that re-entry would be denied if
he left the U.S. He hired a lawyer and appealed only
to be turned down again. No reason was ever given,
but his lawyer was permitted to examine a portion of
Erdos’ file and found recorded the following facts:

*He corresponded with a Chinese number theorist
named Hua who had left his position at the Uni-
versity of Illinois to return to (red) China in 1949.
(A typical Erdos letter would have begun: Dear Hua,
Let p be an odd prime...)

*He had blundered onto a radar installation on
Long island in 1942 while discussing mathematics
with two other non-citizens.

*His mother worked for the Hungarian Academy
of Sciences, and had had to join the communist party
to hold her position.

To Erdos, being denied the right to travel was like
being denied the right to breathe, so he went to
Amsterdam anyway. He was confident that he could
easily obtain a Dutch and an English visa. The Dutch
gave him a visa good for only a few months, and En-
gland would not let him come, likely because if they
chose to deport him, the only country obligated to
accept him was communist Hungary. By then, Erdos
was a member of the Hungarian Academy of Sciences,
but he would go to Hungary only if his friends could
assure him that he would be permitted to leave. At
this point, he swallowed his pride and obtained a
passport from israel (note the punctuation) which
served to give him freedom to travel anywhere in
western Europe. He was permitted to return to the
United States in the summer of 1959 on a temporary
visa to attend a month long conference on number
theory in Boulder, Colorado. He stopped at Purdue
on his way back to Europe to give a colloquium talk.
When I picked him up at the airport, what struck me
first was that he had a suitcase! For many years, he
traveled only with a small leather briefcase contain-
ing a change of socks and underwear in addition to a
wash-and-wear shirt, together with some paper and
a few reprints. About a year later, the United States
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government lost its fear of Erdos and gave him resi-
dent alien status once more. He never had trouble
going in or out of the U.S. again. Erdos had lived from
hand to mouth most of the time until the late 1950s.
When the Russians sent Sputnik into orbit and the
space race began, there was a vast increase in govern-
ment support of research. This made it possible for
his many friends and co-authors to give him research
stipends. This had little effect on his lifestyle. His suit-
case was rarely more than half full, and he gave away
most of his money to help talented young mathema-
ticians or to offer cash prizes for solving research prob-
lems of varying degrees of difficulty. (The cash prizes
were not as costly as he had expected. The winners
would often frame his checks without cashing them.
Solving a $1000 problem would make you interna-
tionally famous, and being able to say that you solved
any of his prize problems enhanced your reputation.)
Around 1965, Casper Goffman concocted the idea of
an Erdés number. If you had written a joint paper with
him, your Erdés number was 1. If you had written a
joint paper with someone with Erdés number 1, your
Erdds number is 2, and so on inductively. There is now
an Erdos Number Project home page on the web
where you can see a list of all who have an Edos num-
ber of 1 (there are 462 of us) and 2 (all 4566 of them,
including Albert Einstein). All in all, Erdés wrote about
1500 research papers, and 50 or so more will appear
after his death.

While we did no more joint research, we often met at
conferences or when we were both visiting the same
university. Sometimes I could hardly talk to him be-
cause he was surrounded by mathematicians eager
to ask him questions, but when I could, he inquired
about mutual friends and asked about follow-up work
on our paper and progress about solving the open
problems we had posed. While he devoted his life to
mathematics, he was widely read in many areas and |
almost always learned a great deal talking to him
about many non-mathematical ideas. I saw him last
in Budapest last Sept. 4. He attended the first half of a
talk I gave about separate vs. joint continuity. He
apologized in advance about having to leave early
because he had made an appointment he could not
break before he knew I would be speaking. Even then,
he made two helpful comments while present. Before
I left the Academy of Sciences, I stopped to say good-
bye and saw him going over a paper with a young
Hungarian mathematician. He died in Warsaw of a
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heart attack on Sept. 20. He worked on what he loved
to do to the last!

Erdos had a special vocabulary that he concocted and
used consistently in his speech. Some samples are:

¢Children are Epsilons

*Women are Bosses

*Men are Slaves

eMarried Men have been Captured
¢ Alcoholic Drinks are Poison
¢God is The Supreme Fascist or SF
*Music is Noise.

Examples:

I asked Barbara Piranian (President of the League of
Women Voters in Ann Arbor, Michigan in the early
1950s) “When will you bosses take the vote away from
the slaves?” Answer :”"There is no need; we tell them
how to vote anyway.”

“Wine, women, and song” becomes “Poison, bosses,
and noise”.

Erdos said that the SF had a Book containing elegant
proofs of all the important theorems, and when a
mathematician worked very hard, the SF could be
distracted long enough to allow her or him to take a
brief peek. Particularly elegant proofs were described
as fit to be placed in the Book.

There are many Erdos stories that were embellished
over the years and made more delightful than the
truth. For example, consider the story about blunder-
ing into a radar installation in 1942:

eEmbellished version: Erdos, Hochschild (a Ger-
man) and Kakutani (a Japanese) drove a car out onto
Long Island and held an animated mathematical
conversation in German. They walked onto a radar
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installation and were apprehended by a guard who
was convinced that he had caught a group of for-
eign spies. They were questioned closely by mili-
tary intelligence and released with a warning when
they promised never to do such a thing again.

* Actual version: The car was driven by Arthur
Stone (an Englishman). Hochschild was supposed
to come,but did not because he had a date. They
were speaking English because it was their only
western language understood by Kakutani. The
guard was satisfied as soon as they presented proper
identification, and they were visited individually
and briefly a few days later by military intelligence
agents.

Erdos liked to tell many stories about himself. In par-
ticular, when he grew older, he claimed to be two bil-
lion years old because when he was in high school,
he was taught that the earth was two and a half bil-
lion years old—but now we know it is four and a half
billion years old.

Because he seemed to be in a state of Brownian mo-
tion, it was often hard to locate him at any given time.
Erdos visited Claremont twice in the 1970s and could
often be found at UCLA. For many years the way to
contact him was to call Ron Graham of Bell Labs on
the east coast, Paul Bateman of the University of Illi-
nois, or Ernst Strauss at UCLA to find out where he
was. Strauss died in 1983 and was replaced by Bruce
Rothschild. Paul Bateman retired. Although Ron Gra-
ham himself traveled a great deal, until the end he
was the person most likely to know of Erdés” where-
abouts.

With Erdos” death we have lost one of the great math-
ematicians and free spirits of this century and it is hard
to imagine that we will see anyone like him again. I
feel fortunate to have had the privilege of knowing
and working with him.
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Sand Songs: The Formal Languages of Warlpiri Iconography

James V. Rauff
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Decatur, IL 62522

jrauff@mail.millikin.edu

This essay is an investigation into the mathematical
ideas implicit, if not explicit, in the iconographic de-
signs (sand scenes, yawalyu, site-path designs, and
guruwari) from the point of view of formal language
theory and provides short formal grammars that gen-
erate the languages of the designs. The essay closes
with a suggestion of the pedagogical value of view-
ing Walpiri iconography as mathematics and whether
or not the iconographic system may be properly
termed "mathematics."

1. THE WARLPIRI

Historically, the Warlpiri' were a group of
seminomadic hunters and gatherers who wandered
the desert of Central Australia. Today they live in out-
stations and towns in their ancestral homelands. Many
have claimed their traditional land and established
small homesteads near larger settlements. The
Warlpiri treasure their traditions and still teach their
children the techniques of survival in the desert. Their
sand stories and iconographical designs play an im-
portant role in keeping their nomadic traditions alive.
Because these iconographical designs, their composi-
tion, and the stories they tell are my primary concerns,
my description of Warlpiri culture will be of their tra-
ditional culture.

The western desert region of central Australia is a
harsh place. It is a place of limited diversity and re-
sources. Sand ridges often stretch for miles separated
by flat sand plains. The most prevalent plant-life are
pale green spiny grasses. Occasionally this pattern is
broken by red gravel cliffs upon which various spe-
cies of wattle grow. Pervading this rather desolate
landscape is a scarcity of water. Rainfall is unreliable
and unevenly distributed; when it comes it averages
less than twenty centimeters per year.” Drinking wa-
ter collects in waterholes while the few lakes, usually
dry, hold undrinkable saltwater after heavy rains. Fred
Myers describes the situation succinctly for the
Pintupi, another Australian aboriginal people.
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For hunters and gatherers, the
unreliability of water supplies poses
the fundamental subsistence chal-
lenge. It is important to understand the
nature of this resource. Although there
are no permanent surface waters in the
area, the Pintupi have found it possible
to exploit other types of water supply.
They have used large, shallow, tran-
sient pools formed by heavy rain; clay-
pans and rock reservoirs in the hills
that might be filled from lighter rain-
falls; soakage wells in sandy creek
beds; and 'wells' in the sand or in the
rock between the sand ridges.’

Living off of this land is challenging, but the Warlpiri,
like the Pintupi, have adapted to it, obtaining a vari-
ety of food substances from grass seeds to kangaroos
as they move from water hole to water hole. This en-
vironment of the western desert, although not a
determiner of Warlpiri culture, has a profound influ-
ence on their cosmology and their sand stories.

The Warlpiri trace descent from totemic ancestors who
are personified environmental entities like rain, the
honey ant, fire, and the yam. The wanderings of these
ancestors created the present day features of the desert
landscape. All of the Warlpiri ancestors traveled routes
that can still be located. Indeed, major features of the
landscape are the result of ancestral footprints, im-
prints from an ancestor sitting or lying down, or trans-
formations of parts of an ancestor's body into a geo-
logical or topographical feature. Rock formations are
metamorphosed limbs and genitals, water holes were
dug by ancestral beings looking for food, and dried
river beds were cut when an ancestral being dragged
his tail or some object along the ground.

These geology-altering and geology-creating events
took place in the time the Warlpiri call the Jukurrpa, or
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Sand story signs.

the Dreaming. The Dreaming, which is not unique to
the Warlpiri, is arguably the most well-known and
most enigmatic aspect of Australian aboriginal cul-
ture. The Dreaming refers to the time of the creation
of people and of the world. Stories of the Dreaming
are invariably tales of journeys. People and creatures
and spiritual beings traverse the landscape, creating
new landscapes, beginning traditions, defining clas-
sifications, and providing the reasons for why things
in the natural world are the way they are. When a
story about the Dreaming is told, it is considered a
true story, a fact, a description of what is.

The Dreaming is a time of the creation of the world,
butitis also the present. Itis always there. The Dream-
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ing is real, an accurate description of the world and a
true history of what happened. The Dreaming is sym-
bolic, a structure of ideas, values, and social norms.

2. FORMAL MODELS OF WARLPIRI ICONOGRAPHY

The iconographic designs of the Warlpiri reflect the
Dreaming metaphysic, represent the ancestral actors
of the Dreaming, and relate the Dreaming stories. Here
I will examine four categories of Walpiri iconography
from a formal algebraic point of view.* My analysis
sees the iconographic systems as formal languages.
Formal languages are algebraic systems consisting of
two sets. One set is a finite set of symbols called the
alphabet of the language, and the other is a set of words.
The words of the language are created by combining
symbols of the alphabet in certain specified ways. (The
analogy with human languages is intentional!) It is
usually the case that some combinations of alphabet
symbols are words of the language and some are not.
For example, if we consider English to be a formal
language, then elephant is certainly a word of the lan-
guage, whereas the string of English alphabet letters
glpoki is not.

For formal languages, strings of alphabet symbols
which are words are separated from those which are
not by something called a formal grammar. Formal
grammars provide the rules for constructing words
and for excluding non-word combinations. The most
familiar formal grammars are those of computer pro-
gramming languages which provide the legal syntax
from statements. The formal grammar of the computer
language BASIC will allow us to write A=C + 10, but
not=CAT10 +.

As an example of a formal language and its grammar,
consider the infinite set of words {01, 0011, 000111,
00001111, ...}. This language has the set {0,1} as its al-
phabet. Its set of words includes only those strings
that begin with one or more zeros and end with a like
number of ones. Its grammar can be expressed with
these rules:

1.5:=01
2.5:=0A1
3.A:=01
4. A:=0A1

The letter S is a special symbol called the start symbol.
We may generate words in the language by beginning
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with any rule that has S on its left side (Rules 1 and 2
in this example). If we select Rule 1 we get the word
01. If we select Rule 2 then we get 0A1. Because A is
not in the alphabet (symbols not in the alphabet are
called nonterminals) we do not yet have a word. Thus,
we must select a rule with A on its left side and re-
place A by the right side of that rule. For example, if
we apply Rule 3, the string 0A1 becomes the word
0011. On the other hand, if we apply Rule 4, 0A1 be-
comes the string 00A11. We continue to apply rules
until a string consisting only of alphabet elements (i.e.
a word) results. It is easy to see that the four rules
given above will produce only the words in the set
{01, 0011, 000111, 00001111, ... }.

It is customary in formal language theory to combine
rules that have the same left hand side into one rule
with the options separated by pipes (|). Using this
convention, our grammar becomes the two rule gram-
mar:

1.5:=0A1 | 01
2.A:=0A1101

In my discussion of Warlpiri iconography, Iwill sug-
gest a formal grammar for the formation of icono-
graphic complexes. To provide cultural context, I will
also discuss the use of the iconography by the Warlpiri.
It should be kept in mind that the algebraic analysis
is intended as a model of the iconographic systems
and is not necessarily the way the Warlpiri view their
system. Whether or not the iconographic systems are
actually formal algebraic systems is discussed in Sec-
tion 3.

2.1 Sand Stories

Sand stories are usually told by women. A patch of
ground is swept clean by hand and a story is related
by drawing figures in the sand, singing correspond-
ing songs, and providing minimal narration. The sand
stories are about ancestral events and the Dreaming,.
Sand stories involve the patterns of daily life like gath-
ering food, traveling, interpersonal relationships,
birth, death, and ceremonies.

The nature of the sand story signs reflects the medium
in which they appear. The signs are drawn in the sand
with the fingers and thus consist of simple lines, and
curves. Figure 1 shows the basic sand story signs.
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Spear, fighting stick, digging stick, human
actor lying down, animal stretched out

Actor lying down on side

Boomerangs

Shelter
Grove of trees

Hut

Actor sitting or standing

Creek bed, blanket, bed

Food or water scoop, shield, baby carrier,
spear thrower

Nest, hole, water hole, fruits & yams,
tree, hill, prepared food, fire, egg, curled
sleeping dog

Figure 2

Range of meaning of single signs.
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Sand story scenes.

These signs are combined in a finite number of ways
to create sand story scenes. The scenes are then se-
quenced to form the sand story. The ranges of mean-
ings of the single signs are given in Figure 2. A for-
mal language can be described that takes the basic
story signs as its alphabet and produces sand story
scenes as words.” Some typical sand story scenes are
shown in Figure 3.°

A formal language of the sand stories, which I will
call SAND, may be defined as follows. I use the de-
scriptive titles from Figure 1.

SAND: The alphabet is the set {small segment,
long Segment, bent segment, bumps, small
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circle, large Circle, small arc, large Arc, U-
shaped, Incomplete enclosure, ellipse, [ ], { },
< >}. The bold letters will be used as alphabet
symbols in the grammar. Thus, stc signifies a
segment followed by a bent segment followed
by a circle. Like this:

| )s

It is also necessary to introduce special symbols (like
accent or punctuation marks) to specify how the com-
binations are to be constructed. So, I've added the
following symbols to my alphabet”:

[ ] indicates that the enclosed string is below the
previous symbol

{} indicates that the enclosed string is inset into
the previous symbol

< > indicates that the enclosed string converges
on the previous symbol

For example, A[SSS] represents the scene:

e

1|
[11]

and c<S[S[S]]> represents:

I{ss} represents:

The formal grammar for SAND is given by the fol-
lowing rules:

1. Start := Camp | Forage | Finale

2. Forage := ¢[U] | ¢[U] Forage
3. Camp := Regular | Ceremonial
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4. Regular := A [P]
5.P:=P1 | P21 P31 b[b]
6. P3:=P1P2
7.P2:=P1P1

8.

P1 :=Sleep | Sit

9.Sleep:=S 1 Sc|cS|SclS[c]lt

10. Sit := U | U{c} | U{Uc}

11. Ceremonial := A[b[b]] | (ccecc)[C{c}] | dance
12. dance := dancers [singers]

13. dancers := b | bldancers]

14. singers := U[U[U]] | singers[U]

15. Finale := F<S[S[S]]>

16.F:=c | C{c} | U | C{U}

The SAND grammar can be seen to produce each of
the sand story scenes in Figure 3 as well as many oth-
ers. For example, the camp scene:

may be generated by the following sequence of gram-
mar rules:

Rule 1: Start := Camp
Rule 3: Camp := Regular
Rule 4: Regular := A[P] A

'

Rule 5: P :=P3
Rule 6: P3:=P1 P2
Rule 8: P’1 := Sleep

Rule 9: Sleep := ¢S AlcS]
2N
|

Rule 10: P2:=P1 P1

Rule 8: P’1 := Sleep

Rule 9: Sleep := S[c] Al[cSSlc]]
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Rule 8: P1 := Sleep

Rule 9: Sleep := Sc A[cSS[c]Sc]

Considered as a formal language, SAND has several
interesting features that reveal something about the
iconography it models. For example, the rules per-
taining to the ceremonial dances (Rules 11 -14) are
infinitely recursive allowing any number of singers
and dancers. Actual sand stories known to me go no
larger than three rows of dancers (bump sequences)
and five singers (U-shapes), but although there are
certain practical limits, there appears to be no poten-
tial limit to the size of this scene.

In contrast to the dances, there is a definite upper limit
on the number of people occupying a campsite enclo-
sure. This is reflected in the grammar by the bounded
derivations possible through Rule 5 which limits en-
closures to three adult inhabitants.

We now turn to the female designs known as yawalyu.
Nancy Munn® has shown the iconographic relation-
ships between sand stories and yawalyu. Here we will
investigate their formal properties.

2.2 Yawalyu

Yawalyu designs are generally revealed to women in
dreams. A ceremony is usually performed to reveal a
new design and the presentation of the design is ac-
companied by songs. The yawalyu dream is a story
about the Dreaming. How the Warlpiri view these
dreams is summed up by Nancy Munn:

The Warlpiri view is certainly not that
"life is like a dream" but more nearly
the opposite: that whenever event se-
quences are cut off from the world of
everyday life so that they seem to con-

21



U8
v

Rain

Yawagi berry

=

v v
Yawagi berry Yawagi berry
&} 3
\N 4‘:‘
0=0
Managidiji berry Managidji berry
& == - f
SIS |
Opossum Honey ant
Figure 4
Yawalyu designs.

stitute a closed totality of their own and
can be "talked about” but not "lived
through" in the day-to-day involve-
ment of social life, then such events are
djugurba—stories, dreams, the ances-
tral past.’

Yawalyu designs represent specific totemic species

that refer to ancestors. Some typical yawalyu designs
are shown in Figure 4.
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Notice that the number of signs in yawalyu designs is
much less that that of the sand story scenes. (Figure 5
shows the basic yawalyu design elements.”) Conse-
quently, my formal language for yawalyu designs,
which I will call YAW, has a very small alphabet. Spe-
cifically, the formal language for yawalyu designs may
be given as follows.

YAW: The alphabet is {U-shaped, Ring, Circle,
Stick, Parallel line segments, Hooked seg-
ment, [ ], {}}.

As was the case with the language SAND, it will be
necessary to introduce special symbols (like accent or
punctuation marks) to specify how the combinations
are to be constructed. I use the same conventional sym-
bols as I did with the sand story language. Thus,
[ ] indicates that the enclosed string is below the
previous symbol
{ } indicates that the enclosed string is inset into
the previous symbol

The grammar for YAW has the following rules:

1. Start:= Arch | Locus | Path | Triad | R{R{EE}}
2. Arch := Cover[Attached]
3.Cover:=P | E | Bar

4. Attached := ABA | P[UU] | UCU

5. A := P[E]

6. E := R{C)

7. Bar := E Pseg

8. B :=U{C}

9. Locus := U[U Core U][U]
10.Core:=P | S

11. Path := Pseg Path | P | Pseg Pseg P
12. Pseg := PE

13. Triad := R{H} Center R{H}
14.Center:=R | S | P

These rules will generate the yawalyu designs shown
in Figure 4 as well as many more, including some that
have not been reported in the literature. An interest-
ing test of the model would be to see if the grammar
can predict yawalyu designs not yet dreamt.

A rule of particular interest is Rule 11 which gener-
ates site path designs, a fundamental and popular
Warlpiri design that appears in contexts other that
yawalyu designs. I turn my attention to these designs
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Ring
(rock hole, hole, enclosure)

U-shaped
(actor sitting)

77

Parallel line segments
(falling rain, paths,
headbands, teeth,
yawalyu designs)

0 =

‘Stick
(fighting stick, actor lying
down, charcoal, ligtning)

Circle
(fruits, stone)

]

Hooked segment
(lightning)

Figure 5
Basic yawalyu elements with range of meanings.

now.

2.3 Site-Path Designs

Site-path designs, usually drawn by men but some-
times occurring in yawalyu designs, depict the vari-
ous routes taken by ancestral beings in the Dreaming.
Consisting almost entirely of parallel lines and con-
centric circles, site path designs appear in Australian
aborigine rock art, body painting, on shields and other
artifacts, and in contemporary art for sale." A typical
example of a site-path design appears in Figure 6.7

Site-path designs are clearly reminiscent of formal
graphs with the concentric circles serving as vertices
and the parallel line segments as edges. One signifi-
cant difference between mathematical graphs and
Warlpiri site-path designs is that the Warlpiri designs
allow for free edges connected to only a single vertex.
My formal language for site-path designs, which I will
call SITE, is as follows.

SITE: The alphabet for SITE has only two Warlpiri
elements, but also contains some special sym-
bols and the natural numbers. The alphabet is

{Parallel lines, Concentric circles, :, (), $, 1, 2,
3,4,5,..}.
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I'll use the numerals, parentheses, and colons to ex-
press complex linkages. A PC sequence preceded by
anumeral k and a colon and enclosed in parentheses
is attached to the kth concentric circle of the preced-
ing or following sequence. Multiple numerals indi-
cate multiple attachments. Thus, we have the follow-
ing notations:

CPCPC for:

C==E

(2:CP)CPCPC(2:PC) for:
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and (1:2:3:CP)CPCPC(1:2:3:CP) for:

Free edges attached to the same concentric circle are
denoted by repeating the P symbol. Thus, we have
the following notation:

PPPPC for:

The dollar sign, $, applied to a site path sequence en-
closed in parentheses attaches a copy of that sequence
via corresponding concentric circles. Thus, we have
the following notations:

(CPCPQO)$ for:

=0

We may then give the grammar rules for SITE as fol-
lows.
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1. Start := Road | Star | Poly | Net | Five

2. Road := CPCPC | Road PC

3. Star := Free | Jack

4. Free := PPC | P Free

5. Jack := (2:CP)Road (2:PC)

6. Poly := (1:2:PC)CPC | (1:3:PC)CPCPC

7.Net:= (Road) $ | Net$

8. Five := (1:2:3:CP) CPCPC (1:2:3:CP) | (1:2:3CP)
((1:2:PC)CPC)

Rules 6 and 8 are poten-
tially families of rules.
Larger polygons and com-
plete graphs may be speci-
fied by using longer
"Roads" and changing the
numerals in the parentheti-
cal attachments. The alter-
native to the family of rules
is a context sensitive gram-
mar or some sort of regu-
lated rewriting system."
However, the site path de-
signs known to me are
small in size and only the "Roads” and "Nets" seem to
be potentially infinitely extendable.

Figure 6
A Site-Path Design

2.4 Guruwari

Guruwari are men's ancestral designs. Guruwari are
painted on ceremonial regalia, boards, stones, the
ground, and on bodies. They tell the stories of the
ancestors, their travels, the founding of the clans, his-
tory, ecology, geography, and geology of Warlpiri
country. Guruwari designs are powerfully charged
with dream value. They originate in dreams and tell
about the Dreaming,.

Figure 7 presents a sampling of men's ancestral de-
signs. Notice that the designs, like the sand story
scenes and the yawalyu, are complexes composed of
a small set of basic signs. The basic signs are variables,
taking on a variety of semantic values. The undulat-
ing line can represent both "snake” and "lightning" and
the dots may be "eggs" or "ants."

Also, notice that the undulating line and straight line
serve as base symbols which are flanked on both sides
by the satellite symbols (dots, small circles, short pairs
of parallel lines, etc.). These patterns make the formal
language of men'’s ancestral designs, I'll call it GURU,
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relatively straightforward.

GURU: The alphabet for the formal language of
guruwari designs is {Snake line, Dots, Circle,
dAshes, seGment, Footprints, &, (), {}, [ 1}.
Figure 8 shows each of these alphabetic ele-
ments.

I will also use the braces to denote inset symbols and
the square brackets to denote positioning under a sym-
bol as I did in the SAND grammar. In addition, no-
tice that the guruwari designs often include a scatter-
ing of an arbitrary number of basic elements as in Fig-
ure 7c (honey ants). To denote this scattering, GURU
includes the symbol & as a prefix to denote scatter-
ing. Thus, Figure 7c may be represented as &DG&D.

The grammar of GURU consists of the following rules:

1. Start := Adjunct Core B
2.Core:=S | G | c[plelplcllll]

3. ¢:=C{C}

4.p=GG

5. Adjunct := &D | &C | &F | &A
6. &D Core B := &D Core &D

7. &C Core B := &C Core &C

8. &A Core B ;= &A Core &A

9, &F Core B := &F Core &F

Rules 6-9 are context-sensitive rules that are neces-
sary to insure that the left adjunct is the same symbol
as the right adjunct.

We have seen how various subsets of Warlpiri iconog-
raphy may be modeled as formal languages with con-
text-free or context-sensitive rules. It is natural to ask
at this point if this is but an empty exercise or is the
Warlpiri iconography a mathematical system of some
sort. A beginning of an answer to that question is the
topic of the next section.

3.1S WARLPIRI ICONOGRAPHY MATHEMATICS?

Originally, I began to think of Warlpiri iconography
as a formal language in an attempt to provide an in-
teresting, but manageable, formal language model-
ing examples for my computer science and mathemat-
ics students. The Warlpiri designs are appealing in
their own right, just unusual enough to engage stu-
dents, much more interesting than arbitrary sequences
of letters, and smaller in scope than natural languages
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Snake with ribs and footprints Snake with eggs

Central passage with honey
ants

Lightning with rain clouds

Rain
Figure 7
Guruwari.

or computer languages. Additionally, Warlpiri designs
are a real set of objects with an uncoverable formal
algebraic structure. As such they provide an entry to
the mathematical modeling of human artifacts.

My students were successful in producing formal lan-
guages with grammars for selected collections of
Warlpiri designs.' However, the question of whether
or not the iconographic system of the Warlpiri is a
Warlpiri mathematics arose frequently in our discus-
sions. That is, can we say that the iconographic sys-
tem of the Warlpiri is a mathematical system?

A short answer to the question, in my opinion, is a
tentative yes, the Warlpiri iconographic system is
mathematics. The Warlpiri iconographic system has
the components that we expect of an algebra interact-
ing in a way that is only slightly different from the



abstract algebra we learned.

The visual algebraic components of Warlpiri iconog-
raphy are obvious. We have a finite set of symbols
and the symbols may be combined to make more com-
plex structures according to a finite set of rules. Com-
pare this to the formation of equations in college al-
gebra where the letters x and y, the integers 2 and 3,
and the symbols =, + ,*, and ”* combine to make the
complex notion of a quadratic function: y = x"2 + 3x.

Beyond what we see in the iconography is its power
to model the real world of the Warlpiri. The icono-
graphic designs are, to a large extent, models of the
Dreaming, the fundamental reality of the Warlpiri.
The Warlpiri iconographic system can, in this way, be
seen as a mathematical model of aspects of reality
parallel in form and function to the mathematical
models of trajectories we study in college algebra.

The Warlpiri recognize the components and rules of
their iconography and they recognize its modeling
functions. What they don't seem to have is a "theory
of iconography"” that abstracts general patterns from
the sand scenes, yawalyu, and guruwari. Here we may
question whether or not the iconography is mathemat-
ics. Perhaps we are safer to say, as Marcia Ascher has
suggested, that the Warlpiri iconography be called
"mathematical ideas" rather than mathematics.”

I prefer to leave the question open at this time. Obvi-
ously, that we can model the iconography with math-
ematics does not imply that the iconography is math-
ematics, but neither does it imply that it isn't. The
quandary may be resolved by researchers working in
the field of ethnomathematics.

Ethnomathematics includes "all practices of a math-
ematical nature, such as sorting, classifying, count-
ing, and measuring, which are performed in different
cultural settings, through the use of practices acquired,
developed, and transmitted through generations.™*®

The Austrian mathematician Roland Fischer provides
a way of viewing mathematics that is helpful in un-
derstanding "ethnomathematics.” Fischer writes,

Mathematics provides a means for in-

dividuals to explain and control com-
plex situations of the natural and of the
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Footprints Segment

Figure 8
Guruwari alphabet.

artificial environment and to commu-
nicate about those situations. On the
other hand, mathematics is a system of
concepts, algorithms and rules, embod-
ied in us, in our thinking and doing; we
are subject to this system, it determines
parts of our identity."”

When mathematics is viewed as a means and as a sys-
tem embedded within a culture, our understanding
of what mathematics enlarges to encompass much
more than formal school mathematics. Instead, math-
ematics includes a multitude of practices that are char-
acterized by algorithms, formal processes, and abstrac-
tion. In this context, the Warlpiri iconography emerges
as an ethnomathematical system.

Whatever our position on the mathematical nature of
Warlpiri iconography, one thing, however, is clear. The
Warlpiri have developed a sophisticated symbolic
system for describing their world.

A pervasive myth in the history of mathematics is that
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the Australian aborigines are one of the least compe-
tent mathematical thinkers in the world. These argu-
ments arise from early anthropological reports of the
simplicity and lack of power of aboriginal counting
systems. These reports were misguided at best, reflec-
tions of a cultural superiority complex at worst. It has
been shown that the aboriginal people can count per-
fectly well if they want to. However, traditional ab-

NOTES
'Ethnographic information on the Warlpiri is from Nancy Munn's
Walbiri Iconography (Chicago: University of Chicago Press, 1986).

2See Aboriginal Man in Australia, edited by D. Mulvaney and J.
Golson (Canberra: Australian National University Press, 1971).

3See p.26 of Fred Myers ethnography of the Pintupi, Pintupi Coun-
try, Pintupi Self (Berkeley: University of California Press, 1991).

“The categories of Warlpiri iconographic designs and the typical
examples are from Nancy Munn's Waripiri Iconography (Chicago:
University of Chicago Press, 1986).
5The sand stories themselves may be considered a subset of the
nth order Cartesian product on the set of sand story scenes or as
a formal language in their own right.

fAdapted from Warlpiri lconography by Nancy Munn (Chicago:
University of Chicago Press, 1986), pp.70-71.

The sand stories are supplemented by finger movements show-
ing direction of action. These non-pictorial signs, although impor-
tant aspects of the sand story are not dealt with in my grammar
which focuses on the static aspects of Warlpiri iconography.
*Op. Cit. pp. 89-118.

%Ibid. p.117.

'"Nancy Munn (Ibid. p.104) sees five basic elements, but in my
opinion her data clearly show six.

""See Rockman, Peggy and Napaljarri Cataldi, Waripiri Dreamings
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original culture had no need for counting because it
did not value possessions. If they counted at all, ab-
origines counted for purposes of sharing or sorting.”
The case of Warlpiri iconography suggests that the
simplicity may have been on the part of the European
anthropologists. They were looking for counting and
arithmetic in Aboriginal culture, but they missed ab-
stract algebra!

and Histories (San Francisco: HarperCollins, 1994); Layton, Rob-
ert, Australian Rock Art: A New Synthesis (Cambridge: Cambridge
University Press, 1992); and Morphy, Howard, Ancestral Connec-
tions (Chicago: University of Chicago Press, 1991).

12Adapted from Rockman and Cataldi, Op. Cit., Plate 4.

'3See Dassow, J. and G. Paun, Regulated Rewriting in Formal
Language Theory (Berlin: Springer-Verlag, 1989).

" Also successful in this endeavor were a group of junior high
students faced with the same task. The resuits of this little experi-
ment leads me to believe that similar formal language writing tasks
may offer an earlier entry into modeling with abstract algebras.

"*Personal communication, February 1996.

'*D'Ambrosio, Ubiratan "Ethnomathematics: A Research Program
on the History and Philosophy of Mathematics with Pedagogical
Implications,” Notices of the American Mathematical Society, Vol-
ume 39, No. 10, pp.1183-1185 (1992).

""Fischer, Roland. "Mathematics as a means and as a system".
In Restivo, Sal; van Bendegem, Jean Paul; and Roland Fischer,
Eds. Math Worlds: Philosophical and Social Studies of Mathemat-
ics and Mathematics Education (Albany: State University of New
York Press, 1993), pp.113-133.

'®Several detailed discussions of Ausiralian Aboriginal counting
systems and practices may be found in the Work Papers of SIL-
AAB, Series B, Volume 8, Language and Culture, edited by S.
Hargrave (Darwin: Summer Institute of Linguistics, Australian ab-
origine Branch, 1982).
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Book Review: The Crest of the Peacock: Non-European Roots of Math-
ematics, by George Gheverghese Joseph

Bernadette A. Berken
St. Norbert College
De Pere, Wisconsin 54115

"It is a pioneering book that celebrates the magnificent heritage of non-Western mathematics and
challenges the reader to cast off limiting European bias and see mathematics and its development
as the product of civilizations from every corner of the globe."

The Crest of the Peacock: Non-European Roots of Math-
ematics. George Gheverghese Joseph. Penguin Books:
London, 1990. 371 pp, ISBN 0-14-012529-9.

An exciting global mathematical journey awaits the
reader of George Gheverghese Joseph’s The Crest of
the Peacock-Non-European Roots of Mathematics. Joseph
is an apt mathematical tour guide and leads his read-
ers on an intellectual journey to the four corners of
the earth in search of an accurate understanding of
the historical development of mathematics. What
makes Joseph particularly suited for this challenging
task of weaving a solid tapestry of mathematical his-
tory is the rich and diverse background that he pos-
sesses. He is the product of four different heritages:
He was born in Kerala, Southern India, and spent the
first nine years of his life there, steeped in the music,
customs, and the rich diversity of Indian culture. Com-
ing from a family of Syrian Orthodox Christians brings
a second perspective to his background. Living and
growing up in Mombasa, Kenya with a rich mixture
of African and Arab influences adds a third aspect to
his background while his studies in Britain at the
University of Leicester and the University of Manches-
ter furnishes his final Western heritage. In addition to
these four significant and diverse heritages, Joseph's
many travels and job experiences abroad contribute
to his inclusive perspective of the global development
and history of mathematics.

This inclusive perspective compels Joseph to clearly
state that the capacity to 'make’ science and technol-
ogy (and mathematics) is not the prerogative of one
culture alone. His book diverges sharply from the typi-
cal treatment of the history and development of math-
ematics that tends toward an extreme bias in favor of
the early contributions of the Greeks and the subse-
quent domination of mathematical development by
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Europe and her cultural dependencies. Instead, Joseph
substantiates the development of mathematics before
the Greeks and celebrates the contributions of peoples
from many diverse cultures around the world. Addi-
tionally, based on sound evidence, he proposes alter-
native perspectives for the development of mathemat-
ics and the diverse transmission of mathematical
knowledge across cultures emphasizing the global
nature of mathematical pursuits and suggesting the
possibility of independent mathematical development
within each culture.

After a short chapter introducing the reader to the
global perspective of mathematical development, Jo-
seph begins his global mathematical journey with a
brief chapter that explores proto-mathematics, the
mathematics that existed when no written records
were available. Here he includes an examination of
and conjectures about some very early bone artifacts
that may well exhibit some of the earliest evidence of
numerical recording. Inca quipus and the Inca abacus
compose a majority of this chapter where Joseph ex-
plains the logic and usefulness of both. Counting sys-
tems and Mayan numeration and calendrics round
out the chapter. Although some people may argue that
these considerations should not be included in an ex-
amination of mathematical development, Joseph
soundly refutes objections to their inclusion.

Throughout his book, Joseph emphasizes the global
nature of mathematical pursuits. Nevertheless, he is
unable to include every culture within the book. It
would be unrealistic to expect anything else. Joseph
does not include the mathematical experiences of na-
tive North America, Korea, Japan, or most of Africa.
Nor does he elaborate on Hellenistic mathematics
since Greek mathematics is the usual fare of most other
books of this type. Instead, he chooses to focus on the
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development of mathematics in Egypt, Babylonia,
China, India, and the Arab world.

In each of these cultures, Joseph explores mathemati-
cal development chronologically yet within the social,
historical, and religious context of the particular cul-
ture. Further, he makes numerous connections among
the various cultures so that the reader easily perceives
the interactions that occurred between cultures and
the process by which mathematical knowledge was
transmitted and grew. Using available primary
sources, Joseph examines each culture’s counting sys-
tem, including bases and numerals, as well as the al-
gebraic, geometric, and trigonometric pursuits of each.
In addition, he includes the significant or unique con-
tributions of the culture. Frequently Joseph poses
questions that challenge familiar and commonly held
opinions that stem from a narrow Euro-centric bias.

Numerous maps, charts, tables, photos, and sketches
contribute important detail to the text. Throughout
the book, Joseph copiously sprinkles in examples
taken from the original sources to illustrate important
mathematical ideas. Although many scholars of the
history of mathematics tend to label all mathematics
before the Greeks merely as utilitarian and pre-scien-
tific, Joseph dispels this view often in his exposition
where numerous contributions by non-Hellenistic
ancients around the globe are shown to be quite re-
markable; what we today might call "awesome."

Because Joseph so competently incorporates a great
variety of convincing evidence from a number of his-
torical sources, the reader easily sees the unity of what
we call mathematics. The strong historical profile that
Joseph provides for each culture allows the reader to
more fully understand why a specific culture focused
its efforts on particular mathematical pursuits.

This superb book is a clearly written treatise that is an
outstanding contribution to a true and more complete
understanding of what comprises mathematics and
the process by which mathematical knowledge came
to be. It is a pioneering book that celebrates the mag-
nificent heritage of non-Western mathematics and
challenges the reader to cast off limiting European bias
and see mathematics and its development as the prod-
uct of civilizations from every corner of the globe. This
literary work of art offers the reader both truth and
beauty. Don’t miss out on reading it!
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Poetry

Sascha Cohen, sixth grade
Hale Middle School, Los Angeles, CA
Submitted by Margaret Schaffer, teacher

Red and blue

bumpy grass

sharp

an angle

measuring a wide 140 degrees
is close up by two thin acute corners
they make up the pointed yellow
obtuse triangles

that look like Swiss cheese
scattered in this design

and there is

a little green hexagon.

Framing each of the polygon's
six sides

are

deep purple

rectangles

all with

four straight parallel

lines

that form

90 degree angles.

Their lines are side

by side

connected

only to shape

a glorious

decagon

and around that

is an outer ring of

diamonds and

rhombuses.

And then the squares!

Each congruent square

was more beautiful than the last.
It grew more confusing

and less symmetrical

with each set

of patterns

and geometric figures

little green hexagon in the middle
sitting still

my mind now twisted

my eyes stretched as |

stand back and look at this
immense stained glass window.
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Al-Khawarizmi's Algebra:
The First Paradigm in Algebra

Murad Jurdak
American University of Beirut
Beirut, Lebanon
The rationalist historians of mathematics consider the history of mathematics as the history of
homogeneous growth of mathematical knowledge using essentially the unchanged axiomatic
method. The fallibilists regard the growth of mathematics as a result of a dialectical process in
which counter-examples to conjectures (theorems) lead to restructuring knowledge in mathemat-

ics or in its sub-fields.

INTRODUCTION

This paper addresses the question of the first para-
digm in algebra, an achievement universally recog-
nized to be that of the Arab mathematician
Mohammed Ibn Musa Al-Khawarizmi (first half of the
ninth century AD). First, the paper will discuss the
usefulness of Kuhn's concept of paradigm in describ-
ing major developments in mathematics and educa-
tion. Second, it will describe the pre-Al-Khawarizmi
paradigm in algebra (henceforth, referred to as the pre-
historic paradigm). Third, Al-Khawarizmi's algebra
will be described. Then fourth, Al-khawarzmi'’s alge-
bra will be analyzed as a paradigm, and finally some
pedagogical implications will be discussed.

KUHN’S PARADIGM

Kuhn' contends that the development of science pro-
ceeds in paradigm shifts which involve revolution-
ary transitions. For Kuhn, "a paradigm is what the
members of a scientific community share, and, con-
versely, a scientific community consists of men who
share a paradigm" (p. 176). In the first sense (i.e. what
a scientific community shares) a paradigm may be
viewed as a "disciplinary matrix" whose components
include:

1. Symbolic generalizations (expressions univer-
sally accepted by members of a scientific commu-

nity).

2. Shared commitments to certain beliefs among
members.

3. Values which are widely shared among differ-
ent communities belonging to the same discipline.

4.Shared examples of concrete problem-solutions
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found in laboratories, textbooks, examinations,
and journals (p. 182).

In the second sense, a paradigm is viewed as the
shared examples themselves which provide the basis
for acquired similarity relations that enable the mem-
bers of a scientific community to regard similar situa-
tions as subjects for applying the same scientific law.
According to Kuhn, a revolution is a special "sort of
change involving a certain sort of reconstruction of
group commitments” (p. 181). Kuhn argues that in
normative science, this change is triggered by a crisis
generated by incompatible ways of practicing the dis-
cipline by the particular scientific community.

To what extent do the constructs of paradigm and para-
digm shift describe mathematics and its historical de-
velopment? The paradigm construct seems to be
applicable to mathematics in both meanings of para-
digm. Mathematicians have always constituted a well-
defined group that has shared a sophisticated system
of symbolic generalizations, commitments to accepted
beliefs and values, and a distinct body of examples
with highly structured relations.

When it comes to the description of the historical de-
velopment of mathematics, sharp disagreements arise.
One can recognize two schools of thought in this re-
gard. The rationalist historians of mathematics con-
sider the history of mathematics as the history of ho-
mogeneous growth of mathematical knowledge us-
ing essentially the unchanged axiomatic method. The
fallibilists regard the growth of mathematics as a re-
sult of a dialectical process in which counter-examples
to conjectures (theorems) lead to restructuring knowl-
edge in mathematics or in its sub-fields. To Lakatos?,
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who has best articulated the fallibilists' position, the
inconsistencies and their refutations have led to
changes in the dominant theory resulting in the reor-
ganization of our knowledge. Thus, for instance, "the
paradoxicality, and, indeed, seeming inconsistency of
arithmetic induced the Greeks to abandon arithmetic

In a sense, these revolutions in education may be looked
at as paradigm shifts not so much in the research con-
cepts and methodology as in the conception and prac-
tices of education.

as the dominant theory and replace it by geometry”
(p. 125). Lakatos's interpretation of the history of math-
ematics seems to be consistent with Kuhn's concept
of paradigm shift in science.

Education, however, is a different matter. It is very
difficult to argue for a paradigm in education in
Kuhn's sense. Historically, educators have neither
formed a distinct group with shared symbolic gener-
alizations, beliefs, values and exemplars, nor have the
latter constituted a well-defined basis for theory-build-
ing. Nevertheless, there have been throughout history
basic changes in education resulting in revolutions in
educational concepts and practices. Examples of such
revolutions are: the introduction of the alphabet, the
shift of responsibility for teaching from home to
school, and the introduction of printing. A fourth revo-
lution is predicted as a result of computer technol-
ogy. In a sense, these revolutions in education may be
looked at as paradigm shifts not so much in the re-
search concepts and methodology as in the concep-
tion and practices of education.

THE PRE-HISTORIC PARADIGM

Whatever algebra existed before Al-Khawarizmi had
neither a specific form nor a specific name to distin-
guish it from other fields of knowledge. What actu-
ally existed was rudimentary knowledge of some con-
cepts and techniques involved in quadratic equations
not so much as independent and distinct techniques
but rather as incidental solutions of specific and iso-
lated problems. In the paragraph that follows, we
present a brief historical account of algebraic analysis
before Al-Khawarizmi. More details are given in
Karpinski®.

Simple equations of the first degree in one unknown

are found in the oldest mathematical textbook, the
Ahmes Papyrus of about 1700 B.C. Later quadratic
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equations appeared in Egypt in the context of area
measurement. Square numbers such as 3* + 4 =5 were
also used by Egyptians to construct right angles. Con-
temporary with the Egyptians, the ancient Baby-
lonians also constructed tables of squares and cubes.
Greek mathematicians were familiar with geometri-
cal solutions of quadratic equations as early as the fifth
century B.C. as it appears in the solutions of specific
problems in the writings of Pythagoras, Hippocrates,
and Euclid. Analytical solutions of quadratic equa-
tions appear around the beginning of the Christian
Era in the works of Heron of Alexandria. Diophantus,
the great Greek mathematician, solved analytically
(about A.D. 250) the three types of quadratic equa-
tions (ax? + bx = ¢, ax? +c = bx, and ax? = bx + ¢, with
positive coefficients and roots) in the context of solv-
ing other problems. In the fifth century B.C., Hindu
mathematicians gave rules for the numerical solution
of some quadratic equations using the method of com-
pleting the square. Though most of the algebraic ideas
and techniques were known before Al-Khawarizmi,
it is difficult to trace the algebra of Al-Khawarizmi to
any of his predecessors. As Karpinski® comments:

Yet we need to notice that we are deal-
ing with the independent appearances
of algebraic ideas and that the math-
ematics of Babylon, China, Greece, and
India were developing from within (p.
11).

THE ALGEBRA OF AL-KHAWARIZMI

The algebra of Al-Khawarizmi will be briefly de-
scribed using a photocopy (available at the Jafet Li-
brary of the American University of Beirut) of the
English translation by Rosen® of the "Algebra of
Mohammad Ben Musa" (Al-Khawarizmi). Rosen also
included in his translation a printed version of the
Arabic manuscript preserved in the Bodleian collec-
tion at Oxford.

Al-Khawarizmi starts his mathematical treatise by
definitions of his basic mathematical terms: root or
unknown, thing (variable), square (called 'money"), ar-
ithmetical operations, equality, equation. He then pro-
ceeds to define his mathematical concepts: first de-
gree equation in one unknown, second degree equa-
tion in one unknown, binomial, trinomial, solution of
an equation, proof. He ends this section by proving
his first corollary that all six forms of quadratic equa-
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5x x2
25 5x
5 X

(x+5)2= x2+ 10x + 25
=39+ 25
=64

x+5=8
(negative roots were not recognized)

x=3

Figure 1
Geometric proof for the case x? + 10x = 39

tions admissible under the conditions of positive so-
lutions can be reduced to the three standard forms:

X+px=q
xX*+q=px
xX=px+q.

Al-Khawarizmi proceeds next to solve systematically
each of the standard forms of quadratic equations
using the method of completing the square, essentially
in the form one would find in any high school alge-
bra textbook three decades ago.

Geometric proofs are presented for each of the three
cases. Figure 1 shows a geometric proof for the case
of x*+ 10x = 39.

Al-Khawarizmi, then, deals with binomials as num-

bers and introduces the four operations on them. Hav-
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ing developed the theory of quadratic equations, Al-
Khawarizmi proceeds to apply his theory in four ar-
eas: numbers, mercantile transactions, measurement,
and inheritance. The section on inheritance entitled
"legacies" is by far the largest in the Al-Khawarizmi's
book (more than half) and probably the most difficult
to understand from a non-Islamic perspective. Inher-
itance laws are part of the Koran and hence are part
of Islamic jurisdiction even in modern times. These
laws—very sophisticated, detailed, and comprehen-
sive—remain applicable even today. Because of the
vastness of the Arab empire (from Morocco to China),
many different algorithms existed in different parts
of the empire. Developing standard techniques for
dealing with inheritance problems was a priority for
the judicial system of the state in order to work out
inheritance deals and settle disputes. Al-Khawarizmi
included in this section a comprehensive set of inher-
itance problems which model the various situations
which may arise in Islamic inheritance laws. In many
cases, the problems led to quadratic equations.

THE FIRST PARADIGM IN ALGEBRA

Historians of mathematics agree with the statement
made by Karpinski® in the introduction to his transla-
tion to English of Chester's Latin manuscript:

The activity of the great Arabic math-
ematicians Abu Abdallah Mohammed
Ibn Musa Al-Khawarizmi marks the
beginning of that period of mathemati-
cal history in which analysis assumed
a place on a level with geometry; and
his algebra gave a definite form to the
ideas which we have been setting forth
(p.13).

The work of Al-Khawarizmi in algebra constituted a core
shared by a new scientific community of algebraists.

The prehistoric paradigm (prior to Al-Khawarizmi)
was not a paradigm in Kuhn's sense. For instance, it is
hard to establish that whatever algebraic knowledge
had existed in the pre-historic period constituted a
disciplinary matrix. None of the components of a dis-
ciplinary matrix as defined by Kuhn' is identifiable in
the pre-historic algebraic paradigm. For one, no sym-
bolic generalizations belonging to algebra had devel-
oped to be universally accepted by members of an
identifiable scientific community. Not even a name
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existed to describe the rudimentary and isolated alge-
braic knowledge that Greeks, Hindus, and Arabs had
possessed in the pre-historic period. Since there was
no distinct and independent body of knowledge in
algebra in the pre-historic paradigm, one can safely
say that there was no distinct scientific community
(algebraists) identifiable within each of the cultures in
which algebraic ideas were independently emerging.
We present and provide support to the hypothesis that
Al-Khawarizmi's algebra marked the first algebraic
paradigm in Kuhn's sense. First, the technical lan-
guage that Al-Khawarizmi used or developed consti-
tuted a well-defined set of symbolic generalizations
which had been universally accepted by a scientific
community of algebraists through the centuries. One
example of the lasting impact of Al-Khawarizmi's
symbolic generalizations is best represented by the
name he gave to the new fledgling field of knowledge.
Al-Jabr (Arabic root is "jabara" meaning either to "com-
pel" or to "reduce a fracture") has been used to refer to
the field all through the centuries and has been uni-
versally adopted by almost all languages. It is not con-
ceivable to assume that the name algebra would have
been universally adopted were it not for the signifi-
cance of the referent field it denotes. The name alge-
bra is unmistakably of Arabic origin and its etymol-
ogy has been the subject of many investigations.® The
controversy involves whether the meaning of word
"jabr" in ordinary Arabic refers to a specific mathemati-
cal operation or the field of science itself. The work
‘algorithm' itself derives from "Al-Khawarizmi".

The work of Al-Khawarizmi in algebra constituted a
core shared by a new scientific community of alge-
braists. On the Arab side, some algebraists of whom
the best known is Omar Khayyam (about 1045-1123
AD), who tried to extend Al-Khawarizmi's work to
solutions of higher degree equations. Other alge-
braists, of whom Al-Karkhi (died about 1029) is best
known, tried to surpass Al-Khawarizmi's work by at-
tempting to "arithmetize" algebra; i.e., to apply arith-
metical operations on algebraic expressions. For both
trends, the work of Al-Khawarizmi was the starting
point to the extent that many of the equations used
by Al-Khawarizmi (for example, x* + 10x = 39) ap-
peared in the algebras of Arab as well as European
mathematicians®; "When towards the beginning of the
twelfth century European scholars turned to Islam for
light, the works of Mohammad Ibn Musa came to oc-
cupy a prominent place in their studies” (p. 23).
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Mohammad Ibn Musa, of course, refers to Al-
Khawarizmi. The many translations of Al-
Khawarizmi's treatise on algebra attest to its role as
the core of shared algebraic knowledge of a growing
scientific community of algebraists. The best known
Latin translation of Al-Khawarizmi's treatise was done
by Robert of Chester. Translations to other European
languages were based on Chester's translation except
for that of Rosen.* The translated manuscripts consti-
tuted the basic text for the study of algebra and a ref-
erence for scholars in the field.

The scientific community of algebraists came to share
common beliefs and values regarding their field of
study. One such basic belief was that of an existence
of a mathematical system distinct from known math-
ematical systems at the time. The core of the value
system is the appreciation of algebra as an applied
field of mathematics besides being of value to math-
ematics itself. Such belief and value systems could not
have developed in isolation from the work of Al-
Khawarizmi.

Next we turn our attention to the body of knowledge
(shared examples in Kuhn's sense) produced by Al-
Khawarizmi to establish the extent to which this
knowledge represented points of departure from the
then existing mathematical knowledge.

A New Mathematical System

In retrospect, Al-Khawarizmi's algebra seems to be the
first mathematical theory in algebra; i.e., the theory
of the first and second degree equations in one un-
known. An examination of the structure and devel-
opment of Al-Khawarizmi's algebra (refer to section
on "The Algebra of Al-Khawarizmi") will reveal a con-
scious effort to construct a coherent mathematical
theory as we know it now:

1. Al-Khawarizmi’s theory starts with clear defini-
tions of technical terms, the most important of
which for algebra are the concepts of "thing" (vari-
able), "unknown", and "root."” The basic concepts
are then defined in terms of the technical terms
and are independent of any application. The most
significant concepts are those of first and second
degree equations together with the related bino-
mial and trinomial algebraic expressions.

2. Having laid the ground, Al-Khawarizmi charac-
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terizes systematically the types of quadratic equa-
tions whose coefficients are positive rational num-
bers (ax’=bx, ax’=c,bx=car*+bx=c,ax’+c=
bx, ax’ = bx + ¢). This development differs from
pre-historic algebraic practice in that the purpose
of quadratic equations was not to solve a series of
problems but rather to characterize all types of
quadratic equations as mathematical objects to be
investigated independently of any application.

3. The development progresses to a higher level of
abstraction by transforming the six types of qua-
dratic equations to the three canonical forms (x*+

px=q, x*=px +q, x*+ q= px).

4. A general algorithm (completing the square) for
solving the three canonical forms is then pre-
sented. The solution (in the set of positive ratio-
nal numbers) is complete and covers all cases in-
cluding the case of x*+ q = px where Al-
Khawarizmi indicates that "the instance is impos-
sible™ (p.12) when q > (p/2)%.

5. Next, Al-Khawarizmi provides geometric proofs
for each type of quadratic equation. Geometric
proofs were very well known to the Greeks (see
the section "Algebra before Al-Khawarizmi"). The
value of Al-Khawarizmi's contribution in this re-
gard is the systematic utilization of proof to vali-
date statements (algorithms) that followed from
a mathematical system.

6. The last step in the theory is the extension of the
four operations, including the square root, to the
binomial algebraic expressions of the form ax +b.

Algebraic expressions in their full generality are dealt
with as numbers. In other words, we have a new
mathematical system on a new set of mathematical
objects.

A New Representation System

According to Kaput®, a referential extension provides
meaning to a notation system. For example, the mean-
ing of second degree polynomial expressions in one
unknown (a notation system) may be provided by
their graphical referents (x*+ 2x + 3 represents its
graphical referent; i.e., the parabola). When there is a
well-defined correspondence between the syntax of
the notation system A and the syntax of referential
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extension B, "then we often refer to A and B and the
correspondence between them as comprising a rep-
resentation system"” (p.169).

What then are the contributions of Al-Khawarizmi's
algebra to representation systems? One can cite three
specific contributions in this regard. First, Al-
Khawarizmi extended the notation system of positive
rational numbers to include the "unknown" or "root”
and the "square” as new notations (though in words
and not letters) in such a way that the syntax rules of
positive rational numbers apply to the new notations.
It is clear from the opening paragraphs of his book
that such a coherent extension of the notation system
was his first task. His extension of the notation sys-
tem of positive rational numbers to include the "vari-
able" is a milestone in the history of representation
systems. Second, Al-Khawarizmi used natural lan-
guage as a referential extension for his algebra. The
correspondence between the syntax of the notational
system and that of natural language was well-defined
and consistent. The representation system thus devel-
oped was of such power that it dominated algebra
for four centuries and was used not only in the origi-
nal language of the text but also in the languages to
which Al-Khawarizmi's book was translated (Latin
and other European Languages). Third, Al-
Khawarizmi used geometric figures to represent the
extended positive rational numbers (a notation sys-
tem). A number (positive rational or "unknown") was
represented by a line segment and a product by a rect-
angle. The correspondence between the syntactic
structures of the two systems is natural and well-de-
fined. Al-Khawarizmi was not by any means the in-
ventor of this kind of representation because it was
very well known to the Greeks and others. The con-
tribution of Al-Khawarizmi in this regard is that he
pushed the idea of representing numbers by figures
to the level of a well-developed representation sys-
tem.

A Model of a Mathematical System

Up to Al-Khawarizmi's time, the thrust of the devel-
opment of mathematics had been either to develop a
purely mathematical system (Euclidean geometry, for
example) or to find mathematical techniques to deal
with specific types of situations (Egyptian and
Babylonian mathematics). Al-Khawarizmi's work
marks an early and rare example in which the full cycle
of a model was achieved. The algebra of Al-
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Khawarizmi moved from identifying situations to
modeling such situations by a mathematical system
and validating the mathematical system by applying
the latter to a variety of situations much broader than
the one with which he started. That Al-Khawarizmi
had exactly that frame of mind is clear from his manu-
script.* In the preface to his book, he mentions that
his intention was to provide:

What is easiest and most useful in
arithmetic, such as men constantly re-
quire in cases of inheritance, legacies,
partition, law-suits, and trade, and in
all their dealings with one another, or
where the measuring of lands, the dig-
ging of canals, geometrical computa-
tion, and other objects of various sorts
and kinds are concerned-relying on the
goodness of my intention therein...
(p.3).

Next, Al-Khawarizmi proceeds to develop a math-
ematical system which, though motivated by the con-
texts mentioned earlier, transcends these contexts and
is independent of any of them. When the mathemati-
cal system (quadratic equations) is fully developed
it is again applied in a variety of contexts including
those which had motivated the development of the
mathematical system itself.

PEDAGOGICAL IMPLICATIONS

The pedagogical obstacles that students experience in
learning algebra derive, to a large part, from two
sources: prior arithmetical experience and translation
from natural language. Research has indicated many
pedagogical problems arising from prior arithmetical
experience. One example of such difficulties is the
process-product dilemma; i.e., the failure to accept that
the process "x + 3" is itself the final answer (product).”®
Another example of such difficulties is concatenation,
which denotes implicit addition in arithmetic (for ex-
ample, 3 1/2) and multiplication in algebra (for ex-
ample 6x). Among the many difficulties that students
encounter due to the translation of natural language
is the misconception that a letter that represents a
word ("b" for blue) represents a set in natural language
but represents a number in algebra.’

Clement, Lochhead, and Soloway'* have identified an-
other difficulty which arises from syntactic transla-
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tion from natural language to variable symbols (for
example, "six times as many students as professors”
is very often mistakenly translated into 65 = P, where
S is the number of students and P the number of pro-
fessors).

Algebra and Prior Arithmetical Experience

What lessons can we learn from the early stages of
the evolution of algebra regarding the nature of such
pedagogical obstacles? If one attempts to analyze the
nature of the two pedagogical obstacles arising from
prior arithmetical experience or translation from natu-
ral language, one is likely to observe that both ob-
stacles relate to the representation of algebra. The
pedagogical obstacle associated with prior arithmeti-
cal experience may probably be traced to the miscon-
ception that the symbol system of the alphabet with
its morphology is a representation of algebra. Obvi-
ously, this is not the case because there is no well-de-
fined correspondence between the morphology of the
alphabet and that of algebra. The early algebra of Al-
Khawarizmi provides a helpful insight into the rela-
tionship between arithmetic and algebra. Al-
Khawarizmi views the relationship as that of exten-
sion rather than representation. In other words, the
arithmetical system is extended by adding new sym-
bols for new numbers; i.e., the root and the square.
Consequently the syntax of arithmetic applies to the
extended set in a natural way. In my judgment, this
view of the relationship between arithmetic and alge-
bra is critical in removing many misconceptions in the
early stages of learning and teaching algebra.

Algebra and Natural Language

The relationship of algebra to natural language is an-
other problematic area which may benefit from study-
ing the historical development of algebra. The typical
algebra curriculum has been characterized by an early
introduction of variable and operation symbols. In the
last three decades, a trend has been observed in which
intermediate representations of place-holders are used
as variable symbols in elementary classes in math-
ematics to prepare students for the introduction of the
formal standard algebraic symbols in post-elementary
grades. The early introduction of a symbol system
does not seem to correspond to the historical devel-
opment of algebra which was represented by natural
language by Al-Khawarizmi and subsequently by
other algebraists for four centuries. There is a natural
correspondence between the syntax of the natural lan-
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guage and that of the generalized arithmetic of alge-
bra. According to Kaput®, one major source of math-
ematical meaning is "via translations between math-
ematical representations and non-mathematical sys-
tems" (p.168). It would perhaps be worth considering
the payoff of using natural language to represent in-
troductory algebraic concepts. Natural language is
normally fully developed at the time students start
their study of algebra. It is plausible to assume, there-
fore, that representation via a familiar and well-de-
veloped system is more effective in providing mean-
ing than via an unfamiliar system (like the alphabet).
This possibility ought to be looked into seriously, par-
ticularly because it had served the science of algebra
for more than four centuries.

Geometric Representation of Quadratic Equations

A promising system for representing algebra is the
sub-system of geometry. Al-Khawarizmi adapted this
representation from Greek mathematicians and used
it extensively in providing "proofs" for his algorithms
for solving quadratic equations. The power of this
representation resides in its visual concrete form, a
feature which renders it valuable for beginning alge-
bra students. The correspondence between the two is
simple and natural. Segments represent numbers and
"unknowns" by matching the length of a segment to
the number or "unknown"; addition corresponds to
joining, and multiplication corresponds to the area of
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the rectangle whose sides are the factors. Dienes Blocks
provide a concrete representation system of this kind.
By using a flat square of side x (x square), a flat rect-
angle (one x) and a (1 x 1) small square, trinomials
can be concretely represented." This linkage between
algebra and metric measures of geometric figures is a
powerful pedagogical tool which merits more atten-
tion. It was an efficient tool in the hands of the shaper
of algebra, and there should be no reason why it
should not be as powerful in the hands of a begin-
ning learner of algebra.

Algebra and Applications

One last lesson which may benefit the pedagogy of
algebra is the fact that the genesis of algebra was that
of a science and not of a symbol system. Al-
Khawarizmi's algebra was grounded in the needs of
the society at the time, such as mercantile transactions,
measurement, and inheritance. Although Al-
Khawarizmi elevated his algebra to a theory which
transcended the applications that initially motivated
it, he proceeded to show the power of his theory in
the extensive real-life applications which constituted
more than half his book. Perhaps there is merit in pat-
terning the learning of algebra after that of its histori-
cal development. If this is the case, we might as well
de-emphasize algebra as a symbol system whose syn-
tax is to be mastered in favor of structuring algebra as
a science which is grounded in real life applications.
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A form of art was created in the Islamic world between
the 10" and the 13" centuries that integrated rhyth-
mic geometric patterns, calligraphy, and illumination.
The dynamic geometric forms, infused with light,
were created by artists working in collaboration with
mathematicians. All Islamic monuments, spreading
from Egypt to Spain, were decorated with these pat-
terns. The mathematical basis of infinitely repeating
geometric patterns includes the use of symmetry
transformations like rotations, reflections, translations
and glide reflections. Tessellations were created from
these geometric transformations and an infinite vari-
ety of patterns resulted from the use of such elegant
and simple mathematical laws. Oleg Grabar, a scholar
of Islamic Art, describes this art as follows:

After the 10™ century a second type of
ornament appears alongside the ear-
lier one, emphasizing polygons and
stars. It makes geometric pattern al-
most the only pattern of decoration....
From evidence which is only now be-
ing discovered, it seems that this art
was made possible by a conscious at-
tempt on the part of professional math-
ematicians to explain and to guide the
work of the artisans.

The Alhambra is a walled fortress and one of the mas-
terpieces of Islamic architecture built during the 13"
century in the city of Granada in Spain. Scholars of
Islamic art have referred to the Alhambra as a
“geometer's odyssey” due to the rich variety of illu-
minated geometric designs that decorate the walls and
ceilings of the building.? Islamic art is for the most
part abstract and geometric; illuminated geometry be-
came an important feature of Islamic art and architec-
ture and resulted in an art form that has been charac-
terized as “transcendental.”® Techniques of illumina-
tion evolved over time and included the use of spe-
cial colors embedded into the building material, lus-
ter painting, marble inlays and the use of colored and
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stained glass. In some architecture no medium was
used except abstract geometric forms that allowed the
penetration of sunlight. The stars and polygons dis-
persed the incoming light into geometrical shapes and
projected the illuminated forms into the space en-
closed by the building. The rays of the sun created an
interplay of light and geometry. This subtle design
feature allowed one to experience a sublime interior
light within the enclosures of sacred buildings. Such
buildings as the Alhambra were made radiant with
light in this manner.* Figure 1 is a scene from the in-
terior of the tomb of Itimad al-Dawa built in 1628 in
Agra, India.’ It illustrates the use of illuminated geo-
metric patterns and the interplay of light and geom-
etry in Islamic art.

Exploring visual images of geometric art from the Is-
lamic world is now possible through the Internet. The
Rotch Visual Collections at the MIT library (http:/
nimrod.mit.edu/rvc) has a World Wide Web page on
Islamic art and architecture subtitled "The Aga Khan
Visual Archives" which contains a selection of 167
images representing historic and contemporary art
and architecture from 26 countries. The images can
be indexed by geographic location and architectural
components. A tour through this archive provides an
extensive visual experience of various art forms de-
veloped in the Islamic world. Another impressive web
site is Jan Abas’ Islamic Patterns page (http://
www.bangor.ac.uk/"mas009/islampat.htm) which
contains a mathematical treatment of the subject.

The Dutch artist M.C. Escher studied Islamic art when
he visited the Alhambra palace in 1935. He declared
that the Moorish majolica mosaics in the palace made
a profound impression on him and realized that the
Moors had used exclusively abstract mathematical
motifs for their decorations.f Ischer then decided to
study the mathematical laws that formed the basis of
these patterns. It was pointed out to him by the math-
ematical community that the regular division of the
plane into mathematical congruent figures is part of
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the study of geometric crystallography including sym-
metry transformations and the theory of plane sym-
metry groups. He began to do his artistic composi-
tions based on these mathematical laws. What the
Moorish artists had done with abstract geometric fig-
ures, Escher began to do with figures from nature in-
cluding bird, animal, human and architectural motifs.
In his book Escher on Escher: Exploring the Infinite,
Escher declares that the Moorish artists as well as the
mathematicians, and in particular the crystallogra-
phers, have had a considerable influence on his work
of the last twenty years. With this new style Escher
tried to “approach infinity as purely and as closely as
possible” and expressed by his compositions “the idea
of endlessness, represented on a piece of paper: where
our eyes reach the border of the print, the imagina-
tion must assume the task of the eye.”®
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The use of two dimensional transformation geom-
etry in creating infinitely repeating geometric patterns
was most pronounced in Islamic art. Its application
forms the basis for the creation of rhythmic crystallo-
graphic patterns. This feature of Islamic art makesita
valuable tool for teaching mathematical topics such
as symmetry, transformation and tessellation. It also
allows the possibility of learning and integrating
multiple disciplines including mathematics, art, com-
puter graphics and Islamic culture in a secondary
school curriculum.

The mathematical process involved in creating these
patterns can be realized by applying symmetry trans-
formations on a two dimensional motif that is some-
times referred to as the generating motif for the pat-
tern. Symmetry transformations include rotations,
reflections, glide reflections and translations together
with their compositions. Doris Schattschneider intro-
duces the idea of a plane symmetry group into which
infinitely repeating geometric patterns can be classi-
fied.” A plane symmetry group is a group of symme-
try transformations including rotations, reflections,
glide reflections, translations and their compositions.
Mathematically it has been proven that such patterns
can be classified into seventeen distinct plane sym-
metry groups. All seventeen pattern types were uti-
lized by the Moors in their decoration of the Alhambra
palace although there is no documented evidence that
the artists and mathematicians during that time were
actually familiar with the theory of symmetry groups.?

The practical steps involved in creating these patterns
include: drawing a 2-dimensional generating motif,
applying a symmetry transformation or a combina-
tion of symmetry transformations to create a unit cell,
and then applying further symmetry transformations
like translations in the plane to create a tessellation.
All these operations can be performed by a compass
and straightedge. In recent years the advances in com-
puter technology and geometry software have made
possible the implementation of symmetry transforma-
tions and tessellations in fascinating ways. One such
geometry program is The Geometer's Sketchpad.” It al-
lows the exploration of ideas in transformation ge-
ometry interactively and with ease. The program al-
lows the student to apply the concept of transforma-
tion for creating tessellations and to learn the corre-
sponding mathematical terminology in the process.
Since the program performs the necessary repetitive
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steps involved in creating the unit cells and tessella-
tions the students are able to explore more geometri-
cally complex tessellations and investigate the neces-
sary mathematical ideas that form the basis of Islamic
geometric art and the art of Escher. The following il-
lustrations describe some creations that are possible
with Sketchpad.

The Star-Cross Pattern:

The star cross pattern is a frequently used pattern in
Islamic art. It is found in many areas of the Middle
East as well as in Spain. The pattern exhibits four-fold
symmetry with four-fold rotations and reflections. The
generating motif is a simple polygon and the unit cell
is a square. The tessellation is obtained by translat-
ing the unit cell horizontally and vertically. The stars
are often decorated with poetry and verses from the
Quran and illuminated with luster paint. Islamic art-
ists often integrated symbols like the cross from other
religious traditions into their art. The technique of cre-
ating these patterns with Sketchpad is illustrated in
Figure 1.
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The Andalusian Pattern

This pattern is commonly found in Islamic monu-
ments in Spain. It displays hexagonal symmetry and
the generating motif is composed of a single arc in a
triangular shape. The unit cell is hexagonal and is
formed by performing a six-fold rotaticn of the gen-
erating motif. The tessellation is obtained by translat-
ing the unit cell horizontally and vertically or by rota-
tion and translations. The technique of creating this
pattern with the program is illustrated in Figure 2.

The Star-Hexagon Pattern

This is another repeating pattern that uses stars. The
star is a popular design element in Islamic art and
plays an important role in illuminating the art. The
stars signify heaven; many artists used stars to deco-
rate the ceilings and domes of Islamic monuments. In
this way they created a vision of heaven through their
art. The star hexagon pattern has a six-fold double
hexagonal symmetry with rotations and reflections
performed on a simple generating motif. The steps
involved in creating this pattern with the program are
illustrated in Figure 3.

Sketchpad also allows one to decorate these patterns
with the use of color. Most Islamic patterns are filled
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with brilliant colors dominated by blue and gold. Blue
is a symbol of the infinite and gold symbolizes the
glory of the creator. The patterns were often glazed
with turquoise and cobalt, a common technique of il-
lumination, and decorated with divine inscriptions
and poetry that encompassed divine compassion.

Variations of Patterns and Original Designs

Simple variations of the above patterns can be imple-
mented easily by changing the original motif and cre-
ating the unit cell and tessellation with this new mo-
tif. For example, the Andalusian pattern can be given
a different expression by changing its motif. The re-
sulting pattern is a tonal version of the pattern and
shows how altering the generating motif and apply-
ing the same symmetry transformations gives a dif-
ferent expression to the pattern. The result is shown
in Figure 4.

New designs can also be created by generating an
original motif to create the tessellations. This process
of creating unit cells and tessellations allows the stu-
dent to explore ideas in transformation geometry with
relative ease and since the results are interactively and
visually generated a deeper understanding of the
mathematical concepts becomes possible. Learning
about transformations is an important part of math-
ematical understanding since transformations connect
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ideas from geometry and algebra as well as probabil-
ity theory and statistics. This approach also allows the
possibility of learning multiple disciplines including
mathematics, art, computer graphics, and Islamic cul-
ture.
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SEE-DUCTION
How Scientists & Artists Are Creating A Third Way Of Knowing
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“If we trace out what we behold and what we experience through the language of logic we are
doing science; if we show it in terms whose interrelationships are not accessible to our conscious
thought but are intuitively recognized as meaningful, we are doing art.”

In his 1959 Rede Lectures, C. P. Snow coined a now
famous phrase—The Two Cultures—that has acted as
a cautionary note for much of our modern life: "I be-
lieve the intellectual life of the whole of western soci-
ety is increasingly being split into two polar groups.
Intellectuals at one pole—at the other scientists. Be-
tween the two a gulf of mutual incomprehension—
sometimes hostility and dislike, but most of all lack
of understanding. They have a curious distorted im-
age of each other. Their attitudes are so different that,
even on the level of emotion, they can't find much
common ground." Maybe so, but Lord Snow never
met Brent Collins' or John Conway:

As aboy John Conway was fascinated
by knots. So much so that he spent
weeks whittling complex knots out of
solid blocks of wood so that he could
study their form and shape from ev-
ery conceivable angle. Today, Conway
is still interested in visualizing knots
which he often does by inviting friends
to "dance” while holding different col-
ored ropes. Brent Collins is also inter-
ested in visual representation, but for
Collins the objects have esoteric names
such as 'one-sided surface with op-
posed chiralities' and 'Haken surfaces
of figure eight knots.' Even his expla-
nation of his work is arcane, "The lin-
ear patterns are never arbitrary but is-
sue as abstractions of the logical mo-
tifs constellated in a particular compo-
sition.”

Who's the artist and who's the scientist? Does it really
matter what we choose to call them if they are both
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Albert Einstein

engaged in the same fundamental activity? Not ac-
cording to Collins: "Scientists’ forms are elaborated
through first a collection of data looking for underly-
ing relationships, quantifying them, and then seeing
how they may be visually represented. I go direct to
the visual representation. But clearly the whole mod-
eling process is internalized in the human brain." (In
case you haven't guessed, Conway is a world re-
nowned Princeton mathematician; Collins is a sculp-
tor whose works have been exhibited at Fermi Labs,
the National Center for Supercomputing Applications,
and AAAS.)

What Collins and Conway understand, and what
Snow overlooked, is that not only are scientists and
artists engaged in the same basic task—interpreting
the fundamental nature of both the universe and our
place within it—but they do so by employing the same
essential artistic and scientific skill: seeing and inter-
preting. Furthermore, and Snow could not have fore-
seen this 35 years ago, both of these disciplines are
using computers to discover and experiment with new
observational opportunities, to give form and shape
to dry mathematical equations, and to search for
meaning among seemingly random, chaotic data. In
using the computer as a tool to help us see and make
sense of what we see, artists and scientists are creat-
ing a new and important third way of knowing: see-
duction—the visualization, simulation, and modeling
of real world phenomena using computers. In so do-
ing, see-duction is helping to break down the artificial
barriers between the two cultures.

FROM SCIENCE TO ART

What is the greatest scientific discovery of all time?
Twentieth century denizens might choose the Theory
of Special Relativity which unifies matter and energy
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or the discovery of DNA, the information code for all
life forms. Those with a longer view might select the
Theory of Natural Selection or the Laws of Motion.
Still others might argue that since all science is based
on mathematics, the greatest scientific discoveries
have been mathematical: the invention of zero or the
insight that all geometrical shapes can be numerically
represented. But each of these great intellectual
achievements pales in significance to the correct an-
swer, the discovery that allows all other scientific
achievement to occur—the invention of the scientific
method.

Twenty-five hundred years ago the ancient Greeks in-
vented deduction—a logical system of reasoning that
started with indubitable axioms and employed pre-
cise rules to generate theorems (new knowledge); this
was the birth of mathematics, the first great scientific
way of knowing. Five hundred years ago the early
Renaissance thinkers invented induction—a formal
system of rules governing observation and experimen-
tation designed to give us knowledge of the natural
world; this was the birth of science, the second great
way of knowing. Today, an interdisciplinary group of
revolutionary scientists and mathematicians are in-
venting the third great way of knowing, see-duction:

Bill Thurston is one of the world’s best mathematicians. A
Fields Medal (the Nobel Prize for mathematics) winner and
Director of Berkeley's Mathematical Sciences Research In-
stitute, he is best known for his work establishing a deep
connection between topology and geometry. As one might
expect, his papers (i.e. “Three-dimensional manifolds,”
“Kleinian groups,” and “Hyperbolic geometry”) are not
easy bedtime reading. The pleasant surprise is that one need
not read the paper in order to understand the concepts. The
Geometry Center at the University of Minnesota (Thurston
is also a director there) has produced an award winning
video, Not Knot?, that uses animation to show and explain
the concepts and reasoning behind Thurston's ideas. In fact,

Although it is certainly not a technique without contro-
versy, computer-aided visualization is allowing mathema-
ticians to embrace a long cherished dictum of empirical
science: Seeing is believing (and understanding).

since he has not yet provided a complete paper-and-pencil
proof of his theorem, the video stands as the proof. Although
it is certainly not a technique without controversy, com-
puter-aided visualization is allowing mathematicians to
embrace a long cherished dictum of empirical science: See-
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ing is believing (and understanding).

In 1963 Edward Lorenz sowed the seeds for a scientific revo-
lution when he published a dull-sounding paper (“Deter-
ministic Nonperiodic Flow") in a somewhat obscure jour-
nal (Journal of Atmospheric Sciences). Today, we recog-
nize Lorenz's work as the foundation for chaos theory—the
study of systems governed by nonlinear rules and equa-
tions which can be so sensitive to minor fluctuations that

The flapping of a butterfly's wings in China today may
lead to a tornado in the Midwest next month."

their behavior seems chaotic. The classic statement of such
a system is Lorenz’s, "The flapping of a butterfly’s wings
in China today may lead to a tornado in the Midwest next
month.” Thirty years later, a new generation of climate
modelers is still struggling with chaos, but now they are
aided by a staggering and ever-growing amount of compu-
tational power. The best current model is the National Cen-
ter for Atmospheric Research’'s (NCAR) Community Cli-
mate Model, but competitors with names such as MOM
(Modular Ocean Model) and POP (Parallel Ocean Pro-
gram) are also seeking to develop a coupled atmospheric-
ocean climate model. If the possibility of accurate, long term
weather forecasts is still in question, the utility of visualiz-
ing the output from reams of arcane equations is not. As
scientists continue to simulate increasingly complex phe-
nomena (i.e. ozone depletion, economics), the knowledge
gained from seeing these simulations on a computer screen
will be the truest test of their worth and validity.

There is one image that we never tire of seeing—the image
of the human body. Whether it is Galen's anatomical
sketches, or early x-ray images, or a CAT scan of our own
head, the human form seems endlessly fascinating. But the
body is decidedly three dimensional while each of these ren-
dering techniques yields a two dimensional image. How
much information is lost? You don’t have to be an anato-
mist or computer scientist to realize that the answer must
be "a whole lot.” Researchers at Sandia National Labora-
tory and the Baylor University Medical Center have used
massive parallel supercomputers to turn two dimensional
MRI images into three dimensional views and the results
are startling—the detection of breast tumors that were "in-
visible” to x-ray mammography. But why stop with the
human breast? The Visible Human project seeks nothing
less than a four trillion byte image library that will provide
three dimensional numerical coordinates from which both
internal and external structures can be depicted, rotated,
viewed from any angle and reversibly “dissected.” Early

Humanistic Mathematics Network Journal #15



scientists built physical models. Later scientists employed
conceptual models. Today, scientists in fields as diverse as
psychology, crystallography and medicine are employing
computer models to help them better understand the natu-
ral world’.

Modern day neo-Luddites scoff at the idea that see-
duction is a new way of knowing. "After all," they ar-
gue, "scientists have always used the processes of vi-
sualization, simulation, and modeling. The computer
is just a tool." The trouble with this "argument" is that
it totally fails to understand the power of revolution-
ary tools. Thirty years ago, Marshall McLuhan ob-
served that we shape our tools and thereafter our tools
shape us. The computer, the first meta-tool—or tool
with no specified, overt purpose—and its human
masters are engaged in an endless bootstrapping cycle
of shaping both us and our machines. Truly revolu-
tionary tools pass through three stages: First, they sim-
ply enable us to perform the same old tasks with
greater efficiency (quantitative phase). Second, with
enough speed and efficiency, the old task mutates into
something inventive and unexpected (qualitative
phase). Finally, we find ourselves using the tool to
perform totally new and unforeseen tasks. In effect,
the tool has shaped us so that we think in terms that
would have been impossible without it (revolution-
ary phase). No one who looks at the work of Bill
Thurston or Edward Lorenz or any of the hundreds
of other scientists using the computer to help them-
selves see, can argue that it's simply business as usual.
Today, see-duction is in its infancy, somewhere between
the quantitative and qualitative phases; tomorrow, it
will enable us to think in new ways and usher in a
third scientific revolution.

FROM ART TO SCIENCE

Who is the greatest scientist of all time? Twentieth
century denizens might choose Albert Einstein or
Watson and Crick. Those with a longer view might
select Charles Darwin or Isaac Newton. Still others
might argue that since all science is based on math-
ematics, the greatest scientist has to be mathematician.
They might choose Muhammad al-Khwarizmi or
Rene Descartes. But each of these great scientists, as
Newton so aptly pointed out, was only able to pro-
ceed because he already stood on the shoulders of gi-
ants—the shoulders of the inventors of the scientific
method. Pythagoras, Plato, and Aristotle (and later,
Euclid) who invented deduction; Brunelleschi, Alberti,
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and Leonardo (and later, Galileo and Bacon) the in-
ventors of induction. But notice that those individu-
als we recognize as scientists were already building
on the work of philosophers and artists. Revolution
in scientific method has always required a synthesis
of Snow's two cultures. Breaking the scientific para-
digm (as Kuhn so ably documents) has always re-
quired forces outside the scientific community. The
same is true today. See-duction is the work of artists as
much as it is the work of scientists:

Tony Robbin® is an artist with a simple, if incomprehen-
sible, mission—to see and paint the fourth dimension. In
1975, Englebert Shucking, a physicist at NYU, told Robbin
that he had seen the fourth dimension. Shucking said little
else, but it was enough to send Robbin on his mission. Four
years later, Robbin visited Tom Banchoff, a professor of
mathematics at Brown University, and saw his first com-
puter-generated graphics of a hypercube rotating in space.
Today, Robbin has programmed his own computer to allow
him to see the fourth dimension. He has sold his large, 4-D
paintings to private collectors and corporations such as
General Electric and ATET. What's the attraction? Isn’t a
fourth spatial dimension some kind of conjurer’s trick? Not
according to Robbin: "Physics has confirmed what we re-
ally knew all along: three dimensional space is an arbitrary
convention. In the future there will be many works by many
artists based on visual experience of the fourth dimension.
With new works of art and new computers, the tools are
already available to us for learning to see the fourth spatial
dimension that is all around us and hidden from our view
for only a moment. When the fourth dimension becomes
part of our intuition, our understanding will soar.” For
Robbin, visualizing the fourth dimension is analogous to
the work of the Renaissance masters—it is the portal to
knowledge.

Donna Cox is an artist with an unusual institutional
home—the National Center for Supercomputing Applica-
tions at the University of Illinois. Her job, to steal a title
from Ed Tufte’s’ classic book, is envisioning information.
Whether it's the "Motion Analysis of Kink Instabilities in
Supersonic Flow,” "Plastic Injection Molding,” or "Nu-
merical Relativity: Black Hole Space Times,"” her task is
making sure that the graphic displays of the supercomputers
(with artist's names like Klimt, Courbet, and Mondrian)
convey the maximum amount of information possible. But
what rules are to be followed? How can dry equations be
turned into meaningful pictures? Tufte closes Envision-
ing Information with a lament: "The essential dilemma of
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narrative designs is how to reduce the magnificent four-
dimensional reality of time and three-space into little marks
on paper flatlands. Perhaps one day high-resolution com-
puter visualizations, which combine slightly abstracted rep-
resentations along with a dynamic and animated flatland,
will lighten the laborious complexity of encodings -- and
yet still capture some worthwhile part of the subtlety of the
human itinerary.” Cox, and the scores of other artists who
work at the National Computing Centers and proprietary
computing firms around the world, have already taken the
first step in that human itinerary. If a picture is worth a
thousand words, how much information can be contained
in the six minute computer simulation of a thunderstorm?
The answer may just be the hundreds of lives that can be
saved if such simulations enable us to better forecast the
weather.

Aaron is sui generis—the world’s first artist-computer
(not an artist using a computer [a computer-artist], but a
computer that is programmed to be an artist). Aaron is also
the alter-ego of Harold Cohen®, a renowned abstract painter
who gave up painting twenty years ago to enter into a
strange, symbiotic relationship with a computer. What's
the connection between art and computers? Between Harold
and Aaron? For Cohen, art has always been about the rep-
resentation of human knowledge; computer languages are
also a form of representation—a set of rules, algorithms,

"The fact is that art is not, and never has been, con-
cerned primarily with the making of beautiful or inter-
esting patterns. The real power, the real magic, which
remains still in the hands of the elite, rests not in the
making of images, but in the conjuring of meaning."

and heuristics that encompass knowledge and might just
lead to new knowledge. But could a computer program lead
to the kinds of knowledge that an artist requires in order to
create art? Harold has spent the last twenty years imbuing
Aaron with all his painterly knowledge; Aaron’s artwork
speaks for itself. Cohen is emphatic that Aaron’s work is
not computer art: "The fact is that art is not, and never has
been, concerned primarily with the making of beautiful or
interesting patterns. The real power, the real magic, which
remains still in the hands of the elite, rests not in the mak-
ing of images, but in the conjuring of meaning.” By creat-
ing a computer model of himself, Cohen has created a to-
tally new method for cognitive scientists to study the ulti-
mate question of knowledge: How do we mentally repre-
sent the world in order to create meaning?

This time, it's more than just the neo-Luddites who

are scoffing. "How can math, and science, and com-
puters have anything to do with artistic creation?" they
complain. The essence of this plaint was anticipated
almost fifty years ago by the Swiss sculptor Max Bill.
After asserting his belief that "it is possible to evolve
a new form of art in which the artist's work could be
founded to quite a substantial degree on a mathemati-
cal line of approach to its content," Bill set forth what
he believed would be the skeptical response to his
manifesto: "It is objected that art has nothing to do
with mathematics; that mathematics, besides being by
its very nature as dry as dust and as unemotional, is a
branch of speculative thought and as such in direct
antithesis to those emotive values inherent in aesthet-
ics; and finally that anything approaching ratiocina-
tion is repugnant, indeed positively injurious to art,
which is purely a matter of feeling." The trouble with
this "argument” is that it totally fails to understand
art, science, and the longstanding, important relation-
ship between them’.

Far from being independent, these disciplines have
always shared a five stage relationship as they engage
in the same, vital, enterprise—observing and inter-
preting the universe and our place within it:

Shared tools Artists rely on scientific and mathemati-
cal tools to count, measure, design buildings, an-
neal glass and much more; scientists rely on artis-
tic tools to model non-Euclidean spaces, create to-
pological surfaces, enhance photos from space,
and much more.

Mathematical foundations Neither art nor science
could exist without a reliance on fundamental
mathematical concepts. Perspective, proportion,
and symmetry are just three mathematical ideas
that are crucial to the practice of both art and sci-
ence.

Mathematical inspiration There are no limits to what
an artist may choose to depict, so it should not be
surprising to discover that many artists have
found inspiration in mathematical concepts and
ideas: Phidias, Leonardo, Durer, Kandinsky, and
Escher not only created works inspired by math-
ematics, they also wrote treatises explaining the
role of science and mathematics to the arts. To-
day, the CyberArts movement, with its interest in
chaos theory and fractals, is sometimes hardly
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distinguishable from the scientists working on
those very subjects.

Epistemology Scientists and artists are seekers after
the same thing: beautiful, elegant solutions. The
famous British mathematician G.H. Hardy wrote
that "the mathematician's patterns, like the
painter’s or poet's, must be beautiful.” In his Mes-
senger Lectures about the character of physical
laws, Richard Feynman says, "[they] are simple,
and therefore they are beautiful." Perhaps with-
out realizing it, artists and scientists may be
uniquely suited to judge the quality of each other's
work.

Metaphysics Do science and mathematics tell us
more about the inner workings of our own minds
or the outer workings of the universe? Should art-

REFERENCES

'Brent Collins has published a series of papers in Leonardo de-
scribing his mathematically based sculptures. Accepted for future
publication in that journal is an article explaining his collaboration
with Carlo Sequin, a computer scientist ant UC Berkeley.

ZThe Not Knot Video and booklet is available from Jones & Bartlett
Publishers. There is also a wealth of information available on the
University of Minnesota Geometry Center web site.

%In general, much of the most exciting see-duction work is being
communicated through cyberspace. Two of the best sites are the
University of lllinois' National Center for Supercomputing Appli-
cations (see especially the Renaissance Experimental Labora-
tory) and UC San Diego's Supercomputer Center.
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ists be credited for inventing totally new ways of
seeing (i.e. Cubism, 4D) or only with discovering
preexisting modalities? Are the scientists’ quarks
and space-time wormholes really descriptions of
our universe or simply current fictions that we use
to explain our universe?

Such questions may ultimately have no answers, but
this much is clear: artists, scientists, and mathemati-
cians are engaged in the ultimate creative activity—
creating something out of nothing. Today, and increas-
ingly in the future, see-duction will contribute much
to this creative quest.

See-duction is the second of a two part argument | have made
regarding the relationship between art and mathematics. The first
article, "The Art of Mathematics, The Mathematics of Art" appeared
in Leonardo, vol. 27, no. 1, 1994.

“Tony Robbin explains his work in his book Fourfield. The book
also comes with a computer program allowing the user to ma-
nipulate a hypercube in 4-space.

SEd Tufte has self-published three classic books exploring the
relationship between visualization and information. See The Vi-
sual Display of Ouantitative Information, Envisioning Information,
and The Brand New Visual Explanations.

SHarold Cohen's story is told by Pamela McCorduck in Aaron's
Tale.

"The Visual Mind, edited by Michele Emmer (MIT Press) is a first

class collection of articles exploring the relationship between art
and mathematics.
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Curriculum Development via Literary and Musical Forms

Joel K. Haack
Department of Mathematics
University of Northern lowa
Cedar Falls, IA 50614-0506

haack@uni.edu

In addition to the inclusion of humanistic concepts in
the classroom presentation of mathematics and the
assignments/projects that students are asked to com-
plete, Thave found it valuable to structure the courses
I've developed in terms of literary and musical forms.

Mathematical knowledge, as that of many disciplines,
is appropriately regarded as a web of ideas, having a
great many interconnections. This can make it very
difficult to imagine presenting material in a linear fash-
ion—the richness of the discipline can be lost.

Upon reflection, it is clear that structural consider-
ations are not and should not be limited to the devel-
opment of new courses. Whenever we consider a
course that we will teach in the next term, we have
the opportunity of seeking an overarching structure
for the subject.

One way to develop a path through the web of knowl-
edge is to look to other arts for suggestions of ways to
organize material. Two that I have found to be par-
ticularly helpful are literary and musical forms.

As a first example (and one which encouraged me to
think of curriculum this way) a geometry course,
based for example on Martin Jay Greenberg’s Euclid-
ean and Non-Euclidean Geometries', could have the form
of a novel, with its plot the independence of the Eu-
clidean parallel postulate. To this end, one would first
introduce the setting—namely, the origins of geom-
etry, the axiomatic method, Euclid’s first four postu-
lates, and the parallel postulate. This would be fol-
lowed by ideas from logic that establish the context
in which independence can be demonstrated or de-
feated: theorems, proofs, and models. The non-human
characters, namely Hilbert’s Axioms, would then ap-
pear and their consequences and interactions would
be explored, constructing a portion of neutral (abso-
lute) geometry. Demonstrating that a number of state-
ments are equivalent to the parallel postulate would
then show the students what is at stake in its proof or
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refutation. Tension would increase through a chapter
on the history of the parallel postulate, introducing
additional human characters and leading to the dis-
covery of non-Euclidean geometry. Finally the inde-
pendence of the parallel postulate would be estab-
lished through models of hyperbolic geometry; by this
time, the students welcome this as the culmination of
the semester’s story! After this denouement, the philo-
sophical implications of the independence of the par-
allel postulate could be discussed, providing an ad-
ditional reward for the completion of the plot of this
novel.

Compare this description of a course based on
Greenberg’s text with the typical section-by-section,
chapter-by-chapter presentation in most courses.
Highlighting the difference: in a course with the plot
sketched above, it would be unconscionable to run
out of time before finishing the story!

It is worthwhile to let the students know what role
the day’s topic plays in the story of the independence
of the parallel postulate—this helps establish a con-
text for them, again exhibiting a significant difference
from a course without a plot. In fact, when I asked
students on the in-class final to sketch the plot of the
course, all but one were quite successful.

A traditional first-semester calculus course adapts
readily to this idea of structure via a novel. Exactly
what the plot line is and who the major characters are
will depend on the text adopted for the course. In a
traditional calculus course, very often the Fundamen-
tal Theorem of Calculus is the goal of the plot. Almost
every topic preceding this can either be related to the
development of this theorem, or presented as subplots
and asides. In the CCH reformed approach to calcu-
lus based on modeling?, the fundamental theorem may
have become an obvious consequence of the empha-
sis on derivatives as rates of change and integrals as
total change. Now instead, the introductory chapter
introduces the various families of functions as the
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characters in a logically developed sequence of mys-
tery tales and rags-to-riches stories with unlikely he-
roes. Which function is responsible for modelling
some situation, and what evidence can one present
for this? How well can an unlikely hero, a linear func-
tion, perform as an adequate substitute for a more
complicated function in some particular situation?

Another example of the use I've made of a form from
the arts is in developing a portion of a history of math-
ematics course offered for middle grades education
majors through mathematics masters candidates, and
since adapted for inclusion in other survey courses.
The approach taken was that of a novella or tone
poem; within an overall story line, themes reappear.
This story, based on number and numeration systems,
traces ideas from pre-history through the second half
of the twentieth century. Ideas from Eudoxus recur
with Dedekind; prehistoric counting reappears as the
basis of Cantor’s cardinality of sets. The discomfort
caused earlier mathematicians by irrational, negative,
and complex numbers reappears in my students with
an introduction to the infinitesimals of the hyperreal
numbers of Abraham Robinson.

In contrast to a structure modeled after a novella/
musical tone poem, a unit on "Shape" based on the
chapter in On the Shoulders of Giants® took the form of
a theme and variations with some fugal entrances.
Ideas of similarity, dimension, symmetry, dissections,
and combinatorial geometry all appeared and were
interwoven.

A book explicitly constructed in sonata-allegro form
is John McCleary’s Geormetry from a Differentiable View-
point!; a summary of his comments in the introduc-
tion indicate the structure of his text (p.ix-xi). His first
section of five chapters opens with a prelude of spheri-
cal geometry, then introduces some of the main
themes, including Euclid’s parallel postulate. The
eight chapters in the development section establish
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what will be required to provide a rigorous model of
non-Euclidean geometry, and introduce a new theme
of an intrinsic feature of a surface, the Gaussian cur-
vature. In the last three chapters, the recapitulation
and coda, McCleary finishes the development, pro-
vides the climax with the construction of models of
non-Euclidean geometry, and then provides a coda
on the theme of the intrinsic.

In addition to providing an over-arching structure,
there are additional advantages to thinking about
courses in terms of literary or musical forms. Making
the structure apparent to students, providing a con-
ceptual narrative, and reminding them from time to
time where they are in the course helps address the
needs of students who are not in Sheila Tobias’s® "first
tier" (pp.31, 38, 46, 89). Such students often feel dis-
comfort with an unmotivated section-by-section pre-
sentation.

Thinking of the course in these terms also can sug-
gest potential projects and assignments for students
that take a more humanistic approach. For example,
one could ask students to select the most important
theorem from a chapter containing major theorems of
calculus leading up to the fundamental theorem, and
explaining the reason for the choice. As another ex-
ample, one could encourage students to write a poem
after the students have seen hyperreal numbers, re-
acting as a Pythagorean might to the discovery of in-
commensurable magnitudes; a graduate student of
education felt this was the best activity of a two-se-
mester survey course.

Finally, considering over-arching themes for a course
also encourages thought and discussion among fac-
ulty regarding strands in the mathematics curriculum.
As institutional (or external) pressures grow to shorten
(or at least not lengthen) majors, this will become in-
creasingly important to the integrity of an under-
graduate major in mathematics.

Approaches to Numeracy (Washington: National Academy Press,
1990) pp.139-181.

*McCleary, John, Geometry from a Differentiable Viewpoint. (Cam-
bridge: Cambridge University Press, 1994).

STobias, Sheila, They're Not Dumb. They re Different: Stalking the
Second Tier (Tucson: Research Corporation, 1990).
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Algebra Anyone?

Leslie Jones
Cape Cod Community College
West Barnstable, MA 02668
"Solving life's problems is rather like the process of doing algebra. Time, skill, wisdom, and deter-
mination are necessary keys for success in both endeavors.”

INTRODUCTION BY TED PANITZ

Every once in a while a student does something that
makes teaching exhilarating. Those moments under-
score the whole purpose of teaching. I would like to
share one of those with you that I had recently.

Leslie started college last September as a returning
student having raised a family and worked at part
time jobs. She had all the symptoms of a person un-
sure about the world of college, a completely new
experience for her: high anxiety, low self-esteem, and
lots of self doubt. She started in my elementary alge-
bra class and is now completing intermediate algebra
and is ready to take on college level math with a great
deal of confidence.

Leslie responded to my precourse letter of introduc-
tion, where I ask students to write their math autobi-
ography before coming to the first class, by writing a
three page essay. Most students write one page double
spaced, if that. She indicated that she appreciated the
opportunity to write to me since she understood that
form of expression while she couldn’t comprehend
math concepts. She responded to all my writing as-
signments with enthusaism and often mentioned how
they helped her through the course. Throughout the
course she, along with many of her peers, kept asking
the eternal question, "What do I need this for???" My
response was always that it would help her in life.
That usually brought guffaws and giggles from ev-

eryone.

This week, Leslie approached me right before class
and said she had something special for me. "Uh oh!
What could that be??!" I wondered. She wrote an ar-
ticle for our school's literary book, "The Write Stuff,"
which is refereed by faculty, and her article was ac-
cepted. Let me tell you this is one proud student and
one proud teacher. You will see why in a moment.

Leslie has captured the essence of why anyone should
take classes at college. Her inspiration happens to have
come through her experiences with algebra. She has
made a few good friends through our classes and has
learned a lot about herself. [ have had the privilege to
watch her grow and develop into a mature college
student. I attribute her response in large part to her
adapting to and using cooperative learning and a
mastery approach to testing in a supportive, non-
threatening environment which was created by col-
laboration instead of competition.

Leslie has given me permission to duplicate her ar-
ticle for my other classes and to send it out over the
Internet. If you feel it might have an impact on some
of your students, feel free to use it.

This student's response will keep me humming and
smiling down the corridors for some time.

ALGEBRA ANYONE?

When an elementary algebra class is in progress, re-
peated choruses of "Why do we have to take algebra
anyway?" can be heard echoing down the college cor-
ridors. I was an avid member of this chorus in the
early weeks of DE060 (Elementary Algebra) while
struggling to get my aging brain to grasp the basic
concepts. But, as my ability to handle algebraic com-
plexities increased, I gradually became aware of the
benefits of algebra. They have little to do with the
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usefulness of any particular math skills and formulas
in the future and more to do with the reality that solv-
ing life's problems is rather like the process of doing
algebra. Time, skill, wisdom, and determination are
necessary keys for success in both endeavors.

The effort of gaining skills and solving problems,

whether in life or algebra, often takes a sizable invest-
ment of time and energy. Adequate time does not
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magically appear in the crowded schedules of the late
20th century lifestyles; it has to be carved out, some-
times ruthlessly. New priorities have to be established,
if only temporarily, and ways of using time more effi-
ciently will have to be discovered in order to accom-
plish everyday chores more quickly. But first and fore-
most, finding time to learn skills and solve problems
depends on a willingness to invest the required time
and determination to give whatever it takes to accom-
plish the goal at hand. Some of life's problems hardly
seem worth this investment, just like algebra. Doing
so anyway increases discipline, focus, and under-
standing for those times that are critical.

Not only is it necessary to gain knowledge and skill
to effectively solve problems, but wisdom is also
needed to decide which option to choose and when. I
have often thought about this when confronted with
setting up and solving an equation or simplifying an
algebraic expression, especially one that contains a
complex fraction. Invariably, I forget to keep track of
the signs or fail to remember the rules that govern
them, and so I arrive at an incorect solution. There are
so many questions to ask of myself and many that I
forget to ask. Have I reduced or factored enough? Is it

| can forsee that pushing through the dark chapters in
algebra will help when the dark chapters of life occur,
problems for which past experience has not been ad-

equate preparation.

even factorable? Sometimes I forget to factor alto-
gether or forget that eliminating fraction denomina-
tors anywhere but in an equation is not allowed. I love
to get rid of those irritating fractions. When working
on a personal problem, I have often pictured a com-
plicated polynomial expression in my mind's eye and

the confusion of all the rules, terms and variables in-
volved in simplifying it. When I think of an equation,
I am reminded of balance as I remember that what is
done to one side of the equation must be done to the
other. Balance is a good thing to keep in mind when
solving problems. I don't always get my solutions right
in life or in algebra, but the more I practice and un-
derstand my mistakes, the more my wisdom and skill
improve. This is most definitely an advantage.

Finally, algebra is a wonderful opportunity for
strengthening determination and self-confidence,
valuable character traits when faced with a problem.
Itis the only academic subject I have taken where it is
possible to gain some degree of understanding and
confidence only to turn the page to the next chapter
and not have the slightest idea about what the text is
trying to explain. This is disequilibrium.. . . "BIG time."
At its worst, disequilibrium involves fear of the un-
known, of not knowing the right way. At best, it is
simply confusing and frustrating. Either way, the
temptation is to avoid it rather than gather up the cour-
age and patience to stand up on one’s potential and
trust that eventually the light will dawn. I can forsee
that pushing through the dark chapters in algebra will
help when the dark chapters of life occur, problems
for which past experience has not been adequate
preparation.

After satisfying the math and science requirements
for a degree, it may be true that I will never again use
the particular math skills  have learned along the way.
I will not, however, consider the investment of my
energy a waste of time. The reward of improved dis-
cipline, skill, wisdom, and determination will be use-
ful keys of success for the rest of my life, especially
when confronted with the "impossible."

RESPONSE BY WALTER BURLAGE

Thank you for passing along that student's essay re-
garding the importance of algebra. I have felt this way
about algebra for a long time myself, but I find it dif-
ficult to communicate those feelings to my students.
Usually they do not want to believe that doing well
in algebra is going to have some future benefit. It is
taken (by them) a little bit like the promise of orga-
nized religions (i.e., adhere to these beliefs, live ac-
cording to these principles, and you shall be rewarded
somehow). But when the message comes from a fel-
low student, it may have some added credibility.
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I would like to share my story with you and I hope
that you will pass it along to Leslie. When I completed
the requirements for a B.S. degree in 1970, the Viet-
nam confict was going full tilt. A friend told me that
joining the U.S. Marine Corps Reserve was a way to
fulfill my military obligation and probably avoid go-
ing to Vietnam. Just one smail hitch, however, was
that I had to undergo six months of active duty train-
ing (boot camp and beyond) with regular Marines.
Little did I know that this was about to become one of
the greatest challenges of my life.
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When I arrived at Marine Corps Recruit Depot, San
Diego, CA, I was treated like all of the other poor slobs
who had chosen the Marine Corps as their way to full-
fil their military obligation. I felt very intimidated at
first because I was not sure whether I could handle
the physical challenges (running all day, carrying a
30 Ib. pack and a 14 Ib. M-14 rifle). I knew that most of
the other recruits were younger than I and in much
better physical condition.

Imagine my surprise when I discovered after a few
short weeks that not only could I keep up with the
physical challenges, but I was surpassing most of the
younger recruits. It took me a while to figure out why
this was so. I could not immediately see any logical
reason why this was happening. Later, when it finally
dawned on me, I had difficulty believing the truth that
I had discovered.

The truth that I discovered is that Marine Corps Train-
ing, while it is extremely demanding physically, is also
demanding both emotionally and psychologically. The
Marine Corps, after all, is attempting to train its people
to go into the worst of situations (a battlefield where
an adversary is trying to kill you, where you may be
outnumbered and out-gunned, where there is seem-
ingly no hope . . .) and function as a soldier to the best
of your ability. When this emotional/psychological

element is added to the physical challenges, the train-
ing can rapidly become more than many young men
are able to endure and they break down. First, they
break emotionally and then they break physically. If
your head is not in the right space, all of the physical
strength in the world will not pull you through.

The Marine Corps drill instructors are trained to break
recruits emotionally first. They know that they have
succeeded when they begin to see the physical break-
down. Once this occurs, they then begin to rebuild
the recruit emotionally to prepare him to survive the
reality of warfare. Once the emotional component is
back in place, most recruits quickly regain their physi-
cal powers.

I discovered through this experience that all of the
mathematics [ had studied had actually prepared me
to face the "impossible." I already had acquired the
emotional discipline that carried me through those
harried few weeks of boot camp. It sustained me and
carried me through that terrible, nightmarish experi-
ence. As I look back on my life, I can recount other
times when the discipline that I learned in mathemat-
ics truly came to my aid when I was faced with a dif-
ficult life challenge, but few events will compare with
my experience in the Marines.

Mathematical Rebuses

Arthur V. Johnson 1!
Nashua Senior High School
36 Riverside Drive
Nashua, NH 03062
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Book Reviews: Uncommon Sense by Alan Cromer and The Physics of
Immortality by Frank J. Tipler

Harald M. Ness
University of Wisconsin, Centers-Fond du Lac
Fond du Lac, WI 54935
hness@uwcmail.uwc.edu
George Polya, when asked why he became a mathematician, said that he was too good to be a
physicist, and not good enough to be a philosopher.

Uncommon Sense: The Heretical Nature of Science. Alan
Cromer. Oxford University Press: New York,1995.
256p. ISBN 0-19-509636-3.

The Pysics of Immortality: Modern Cosmology, God, and
Resurrection of the Dead. Frank ]. Tipler. Doubleday:
Anchor NY, 1995. ISBN 0-385-46799-0.

This is a pair of interesting books written by physi-
cists. Why, you might ask, are books written by physi-
cists being reviewed in a mathematics journal, in par-
ticular, in a journal dedicated to mathematics as a
humanistic discipline? Well, in the first place, they are
of a mathematical nature. The first is about rational
thought, which we believe we use in mathematics; the
latter has a detailed mathematical development of
theorems leading to the major conclusion. Further-
more, mathematicians and physicists are of the same
ilk. I'm not sure, but I think it was George Polya who,
when asked why he became a mathematician, said
that he was too good to be a physicist, and not good
enough to be a philosopher. I hope these reviews will
make clear why they are appropriate for a humanis-
tic journal.

Alan Cromer is a theoretical nuclear physicist at
Northeastern University who is actively involved in
school science education. When teaching elementary
college physics, he was always troubled by the inabil-
ity of students to follow the rational analytical thought
which, he believed, was necessary for the understand-
ing of basic physics. Well, welcome to the club. Any-
one who has taught high school or beginning college
mathematics or physical science has encountered and
has been troubled by this. Cromer applied more ra-
tional thought than most of us to this problem and
came up with the primary premise of this book. The
reason for the difficulty for most people, he argues, is
that the analytic, rational, deductive thought process
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so necessary, most of us in the business believe, for
success in understanding mathematics, science and,
hence, the universe, is unnatural. He argues that if it
is natural, it would have evolved in most, if not all,
cultures. The only culture where it did evolve was,
according to Cromer, the Greek culture. It is part of
our culture (so-called "Western" culture) because it was
nurtured in Islam and came to Europe in the Euro-
pean Renaissance. Cromer lists seven cultural factors
that stimulated the development of objective think-
ing in the Greek culture: (1) the assembly, where men
first learned to persuade one another by means of ra-
tional debate, (2) the maritime economy, that pre-
vented isolation and parochialism, (3) a widespread
Greek speaking world, (4) an independent merchant
class that could hire its own teachers, (5) the Iliad and
the Odyssey, the epitome of rational thinking, (6) a lit-
erary religion not dominated by priests, and (7) the
persistence of these factors for one thousand years.
His presentation is convincing.

Unlike the egocentricity of other cultures, which
Cromer says is natural, the Greeks were able to sepa-
rate internal thought from external objectivity. In ad-
dition to objective thinking as unnatural, Comer cites
monogamy, honesty, and democratic government. He
says that in the Old and New Testaments, knowledge
is belief. Regarding his beliefs, Comer states, "I be-
lieve that rational civilization, with its science, arts,
and human rights, is humankind’s greatest hope for
nobility. But like Jericho, it’s but an oasis in the midst
of a vast desert of human confusion and irrational-
ity." For elucidation of the last sentence in that quote,
I invite you to peruse the preface of the book.

So, what is to be done about it? Cromer submits that
since our higher rational abilities do not develop spon-
taneously, they must be cultivated by the formal edu-
cational system. He says that since many intelligent
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students are unable to grasp mathematical logic, the
normal sequence does not lead to this ability. He con-
cludes that while physical development, given ad-
equate nutrition, is pretty well programmed in the
genetic make-up, mental growth depends strongly on
the cultural and social environment. We should nur-
ture objective, rational thought in our culture, I would
imagine, through our educational system. Is there
something wrong with this picture? I grew up in a
fairly stable environment. There was very little change

It is not that the use of the computer is bad; it is very
good and absolutely necessary. What is bad is the sub-
stitution of learning by observation for learning by think-
ing, and | think there is too much of that.

in the student population and in the teaching staff.
Yet, when we got to geometry (traditionally, the first
chance at deductive thinking) some of us caught on
early, while every week or so a couple more would
catch on, and, perhaps, a few never did. Of course,
those in the "other track" probably never had the
chance. One of my earliest teaching positions (and a
great experience it was) was in a small village where
there was even less change in the student body and
faculty. These students, as we, were subjected to es-
sentially the same learning environment. Although
with the "new math," I started with deductive pro-
cesses in Algebra I, I still experienced the same thing
with the rate and extent of student development in
deductive abilities. Again, the students in the "other
track” didn’t have the opportunity. Could there be a
gene for relatively quick development of the ability,
one for a slow development of the ability, and one for
no development of the ability? Or could it be testoster-
one, as some have concluded? At any rate, I think
Cromer’s suggestion of an educational environment
that attempts to develop rational thought is a good
one. | fear, however, the trend is in the opposite direc-
tion. One culprit, I believe, is the egalitarian move-
ment which pervades current education; everyone
should get the same education, they demand. Of
course, there were some flaws in the old tracking sys-
tem, but might there not be some middle ground?
Another culprit, I believe, is the extensive use of the
computer. It is not that the use of the computer is bad;
it is very good and absolutely necessary. What is bad
is the substitution of learning by observation for learn-
ing by thinking, and I think there is too much of that.
Cromer presents a broad sweep of criticism of the
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schools in the United States. These broad generaliza-
tions are dangerous; there are many excellent schools
in the U.S. I won’t debate the ideas presented there (I
could write pages about that. In fact, I did, but de-
cided to zap them), but I do agree that in many cases
teachers and parents are not demanding enough and
there is a great need for improved methods of devel-
oping objective, rational thought in students.

Cromer does a nice job of presenting historical and
cultural information pertinent to his case. This is fa-
miliar stuff, I think, to most of us, but I think it is good
to be reminded and to get it from a different perspec-
tive.

My major criticism of this book is the author’s attack
on religion. He is as irrational in his criticism of reli-
gion as he accuses religion to be. I really think this
detracts from his presentation and should have been
left out. Belief in God, Mr. Cromer, is not ego-centric.
God is not an extension of self, but rather, self is an
extension of God. I quote from Albert Einstein, who
was, himself, a fair to middlin’ physicist, "Science
without religion is lame, religion without science is
blind." All of which provides us with a neat segue to
the other book to be reviewed.

Frank Tipler, also a theoretical physicist, has written
a book, albeit a very formidable book, that provides
us with the science that Einstein suggested is needed
for religion. The author uses 339 pages of exposition,
35 pages of notes, and 123 pages of Appendix For Sci-
entists (well, maybe for some scientists) where he pro-
vides the deductive development to prove the immor-

Tipler defines all life forms (including humans) as ma-
chines, the brain as an information processing device,
and the soul as a program being run on a computer
(brain).

tality of all. The concepts he uses in the exposition
and the mathematical model he uses in the deductive
development are quantum field theory. Now, we all
know that for any deductive development, there must
be definitions and postulates. In order to apply phys-
ics to the question, Tipler defines all life forms (in-
cluding humans) as machines, the brain as an infor-
mation processing device, and the soul as a program
being run on a computer (brain); the basic postulate
is that the universe is such that life can continue until
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the end of time. This definition may be somewhat trou-
bling to some. We must not, however, consider it as a
denigration of human life, but rather as necessary for
the mathematical model in order to apply the deduc-
tive process to the question. Assuming that humans
are machines allows for the proof of free will and life
after death in a place that resembles the Heaven of
major religions. Tipler explains that while we are
machines, we differ from the machines we build in
that we have "true free will." He further explains that
the postulate that life can continue until the end of
time is necessary because the Einstein field equations
are maximally chaotic and it is impossible to make
predictions regarding the universe in the near future,
cosmologically speaking. The postulate, which chaos
theory makes plausible, solves the prediction prob-
lem along with other puzzles of physics such as what
boundary conditions to put on the wave function and
why the universe exists, and leads to the conclusion
of immortality.

I quote from the preface:

When I began my career as a cosmolo-
gist some twenty years ago, I was a
convinced atheist. I never in my wild-
est dreams imagined that one day I
would be writing a book purporting
to show that the central claims of
Judeo-Christian theology are in fact
true, that these claims are straight-for-
ward deductions of the laws of phys-
ics as we now understand them. I have
been forced into these conclusions by
the inexorable logic of my own special
branch of physics.

Tipler does a fine job of motivating and explaining
the technical concepts needed for the deductive de-
velopment. One is tempted to try to convey the es-
sentials of this, but soon finds the ideas needed to do
this expanding exponentially. I will, however, attempt
to pass on some of the ideas without adhering to se-
quence or continuity. The postulate that life can con-
tinue until the end of time is made feasible by defin-
ing a living being as any entity which codes informa-
tion. By developing self-replicating computers, it is
possible to accomplish this. Tipler states, "From the
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Berkstein Bound it follows that, using computer
memory capacity of the amount indicated by the
Berkstein Bound, a computer simulation of a
person...will not merely be very good, it will be per-
fect. It will be an emulation....an emulation of an en-
tity is the entity. An emulated human will be made of
emulated human cells, made of emulated molecules,
quarks, and gluons." Since information processed (life)
must diverge to infinity in finite proper time, we had
better get crackin’. Well, you folks had better; I'm re-
tired. Come to think of it, maybe you won’t have to.
Maybe someone out there is already well on the way,
and we are merely simulations (remember New
Mexico). On the other hand, we do have free will.
Don’t we? The devil made me say that. The theory
requires that information, the available energy, the
temperature and density of the universe all diverge
to infinity as the universe converges to a single point
(the Omega point) in finite proper time. Tipler distin-
guishes "proper” time from "subjective” time and re-
lates these to the "tempus” and "aevum" respectively
as described by Thomas Aquinas. He states that the
mathematics of quantum mechanics forces us to ac-
cept the Many Worlds Interpretation. After an hour
in the steel chamber, Schodinger’s cat is in the quan-
tum state—both dead and alive, and we, too, split into
two worlds, observing both the cat dead and the cat
alive. This Omega Point theory results in the exist-
ence of God as creator of the universe and immortal-
ity for all life with God at the Omega Point. The theory
leads to a model of "God who is evolving in His/Her
immanent aspect (the events in space time) and yet is
eternally complete in His/Her transcendent aspect
(the Omega Point, which is neither space nor time nor
matter, but is beyond all of these). According to the
author, the properties of the universal wave function
constrained by the Omega Point Boundary Condition
are those of the biblical Holy Spirit. This all sounds
far out, but I have one caution. Don’t scoff at this or
reject it out of hand without studying this book.

Tipler admits that there are few physicists who un-
derstand quantum field theory. Prior to this book,
belief in everlasting life had to depend on faith. Now,
with Tipler’s proof of the Omega Point Theory, at least
most of us can base our beliefs on, well, faith. I'll see
you all at the Omega Point. If you get there first, draw
a blue line; if I get there first, I'll erase it.
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The First CAMS Project: A Humanistic Endeavor

Barbara A. Wainwright & Homer W. Austin
Department of Mathematics and Computer Science
Salisbury State University
Salisbury, MD 21801

|. INTRODUCTION

One of the current themes in mathematical circles is
humanistic mathematics. Educators want to make
mathematics seem humanistic particularly to non-
mathematics majors. There are various ways in which
faculty at Salisbury State University attempt to do this
in the liberal arts mathematics courses; however, this
paper will describe something a little different. Dur-
ing the 1993-94 academic year Salisbury State Univer-
sity created a Center for Applied Mathematical Sci-
ences (CAMS). The center attempts to connect a client
(from industry) who has a project or problem to be
solved with a team of students and faculty members
who serve as advisors. Although most of the contracted
projects are scientific in nature (physics, mathematics,
computer science, etc.) and require a team of students
knowledgeable in these sciences, there are many hu-
manistic aspects involved in such projects. We share
our experience as directors of the first CAMS project.

IIl. THE FIRST CAMS PROJECT: A SATISFACTION SURVEY

With much emphasis today being placed on account-
ability and how well faculty perform their jobs, the
Director of CAMS thought a survey of the "mature
graduates” of Salisbury State would be a good first
project for a CAMS team. He thought also that such a
survey would be of interest to the president of our
University.

We agreed to co-direct such a project and proceeded
to recruit some of our mathematics majors who were
working toward a concentration in statistics. With
these students we approached the president of the
university and easily convinced him to fund the
project. The president was enthusiastic about the
project because assessment was one of his priorities
for the year.

The first semester we had five students enrolled in
"Directed Consulting," the course name given to a
CAMS project. Four of the five were mathematics
majors with concentrations in statistics and the other
was a liberal studies major with a concentration in
computer science. We decided that "mature graduates"
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would be those alumni who had been out of college
from five to twelve years. We assumed that such gradu-
ates had been out long enough to have either gone to
graduate school or be settled into a job or career. Part
of the agreement with the provost and the president
was that we interview the department chairs and deans
to find out what types of information they would like
to get from the survey of these "mature graduates."

It should be mentioned that the important aspects of a
successful project are teamwork and good communi-
cation skills. This team worked well together and par-
titioned the work load fairly. The first task the team
tackled was deciding who would speak to whom and
then they began their interviews with the department
chairs. These students soon discovered that good com-
munication skills were essential. Many department
chairs did not understand what the "math department"
survey had to do with them. The students decided that
since there is often a small return rate on mail surveys,
they would offer an incentive to the early respondents.
As a team, they agreed that a university mug would
be a nice gift for the first 100 people to respond. They
shopped and compared prices. They also considered
various art designs and talked to administrators on
campus about funding for these mugs.

Next came the development of the survey. Clarity and
political correctness were absolutely necessary. Again,
a great need for good written communication skills
became apparent to the students. The authors each
gave the survey to an upper level class that we were
teaching that semester to serve as a pilot. After receiv-
ing feedback, the students edited and revised the in-
strument. These students were also very concerned
about aesthetic appeal of the survey instrument. They
wanted the appropriate color of paper and arrange-
ment of questions on the page.

Students who participate in a CAMS project must
present the results/conclusions of their project to the
Department of Mathematics and Computer Science
and to the client who contracted the project. At the
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end of the first semester, this first team gave such a
presentation to the department, the president, and
other administrators on campus. This presentation
consisted of their discussing the various tasks they had
performed, sharing of what value this experience had
been for them, and presenting the final project, the
survey instrument. With approval from the president,
we planned for a January mailing.

IIl. MAILING THE SURVEY AND INCENTIVE.

We all agreed that with the semester ending in De-
cember, we should wait until after the holidays to mail
our survey. During winter term we all met for three
days to prepare for bulk mailing. The students were
very concerned that the survey would be put aside
with other papers and overlooked. They believed that
if our survey were colorful it would not be easily mis-
placed. Their choice was to have the survey on gold
paper. The cover letter was pink and the return sheet
(for sending the mugs) was blue. We spent three days
stuffing envelopes, sampling from a sampling frame
of address labels generated by the alumni office and
sorting by zip code for the bulk mail. We really began
to know the students quite well and learned to work
very well as a group.

IV. ANALYSIS AND RESULTS OF SURVEY

As the surveys started coming in we kept track of the
first one hundred received. The blue slips were pulled
from these so as to not have name and/or address as-
sociated with response. Once the first one-hundred re-
sponses were obtained, the team packaged and sent
the mugs.

The second semester two additional members joined
our team. One was a graduate student majoring in
mathematics/secondary education. The other was a
part-time student who was a mathematics major with
a concentration in statistics.

We spent several meetings beginning to code the data
from the surveys. A data file had to be created, and if
each student was to enter data, we had to be particu-
larly careful that everyone used the same format. In
short, the data had to be coded. We had to agree on
the proper numeric codes to represent each possible
response. The students at this point behaved much like
poets and writers. Just as a poet or author wants the
exact word to communicate a thought, the students
were very choosy in their selection of codes.
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With data entry, there had to be a division of labor.
Each student entered approximately 100 surveys. Two
of the students wrote an SPSSx program to analyze
the data. These students were very conscientious about
sticking to the objectives of the survey. There were
many comparisons that could be made but some were
not consistent with the original objectives. Only those
comparisons that were pertinent were included in the
analysis.

The results were written in a report and were given in
a presentation. Two other students used Harvard
Graphics to prepare bar graphs and pie charts for the
responses for various questions. A beautiful color re-
port was prepared and presented to the president of
the University. Again they emphasized the artistic
quality of the report. The colors and style made this
easy to read and understand. These students decided
that the final presentation should be a celebration. We
reserved the great hall on campus. We invited the presi-
dent and other administrators as before. However,
notices were sent around campus notifying everyone
in all departments of the event. CAMS board of trust-
ees and other local business people who may have an
interest for future CAMS projects were invited. Fam-
ily members of the seven team members were also in-
vited. Refreshments were served afterward.

V. REACTION TO THE PRESENTATION AND RESULTS

The presentation was a huge success. Of course the
results were very favorable and certainly what we all
liked to hear. The quality of the presentation was su-
perb. A local businessman told us that he had attended
many conferences and presentations and heard some
very well known people present talks, but none
seemed any more professional than these students.

VI. SUMMARY

Many people feel that mathematics is not humanistic
in nature. They feel that it is different from the arts,
music, literature, and communication. Most mathema-
ticians know that mathematics is an art and that it is
beautiful; however, for those who still believe that
mathematics is only for "solving problems," we hope
we can convince them that even when scientific and/
or mathematical approaches are used to solve prob-
lems, one still needs the arts and communication. This
first CAMS project would not have been successful

without these interconnections between the arts and

mathematics. The success of this project was in large
part due to the humanistic aspects of mathematics.
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