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From the Editor

I want to welcome and introduce the new Production Manager,
Matthew Fluet, who was Assistant Production Manager last year.
Matthew is a sophomore at Harvey Mudd College and a very
capable production manager, which is evident from the appear-
ance of the printed journal and the graphics. We are very fortu-
nate to have Matthew on the job.

Our friend and colleague, Thomas Tymoczko of Smith College
died last August after a brief battle with stomach cancer. Many
will know Tom from his two essays in Essays in Humaninstic Math-
ematics (MAA Notes #32), "Humanistic and Utilitarian Aspects
of Mathematics,"” and "Value Judgement in Mathematics: Can We
Treat Mathematics as an Art?" Two of his books were New Direc-
tions in the Philosophy of Mathematics and Sweet Reason: A Field
Guide to Modern Logic (with Jim Henle). His paper "The Four-
Color Problem and its Philosophical Significance" argued that
the increasing use of computers was changing the nature of math-
ematical proof.

Tom was one of the thirty who gathered at the 1986 conference in
Claremont to consider whether mathematics is a humanistic dis-
cipline, and launched the HMN].

He was a student of Hilary Putman at Harvard and is survived
by his wife and three children.

He will be greatly missed.



What's all the Fuss about?

S. K. Stein
University of California at Davis
Davis, CA

The proposal to hold this conference says that, "the
teaching of calculus is in a state of disarray and near
crisis . . . [with a] failure rate of nearly half at many
colleges and universities." An alarm was sounded
earlier by the January, 1985 AMS/MAA joint panel,
"Calculus instruction, crucial but ailing” [1].

This came as a surprise to me. Why is the teaching
only of calculus under scrutiny? Are we doing such a
wonderful job with discrete mathematics, linear alge-
bra, differential equations, complex variables, or up-
per division algebra? Perplexed, I asked some of my
colleagues, good mathematicians and fine teachers all,
"What's your impression of the teaching of calculus,
here and elsewhere?” One professor suggested that
we might drop a couple of topics, maybe some inte-
gration techniques. Another said, we should meet five
times a week instead of four but he doesn't want to.
Finding no sense of calamity, I talked to colleasuies in
the physics and engineering departments. Tt TQ;’?EfSu
what we do, but urged us to do more of it in the first
quarter, especially differentials, vectors, e* , Stokes'
theorem, and certain differential equations.

Then I went to the placement office, which helps un-
dergraduates obtain summer internships and seniors
getjobs. "Whathave you heard about calculus?" They
were not aware that calculus is in disarray and ailing.
I asked what employers were looking for. The an-
swer was clear, "Students who can communicate orally
and in writing, think, are not afraid of numbers, with
a little touch of the computer.” Still no complaint about
calculus.

[ asked my engineer son-in-law what he looks for
when he recruits. His answer: "People who can deal
with questions on their own." He seeks recommen-
dations from a professor who regularly assigns his
class a few open-ended problems. Though not hard
in the sense that their solutions requires the insight of
a genius, they are not directly related to the day's les-
son. One year not one of the professor's three hun-
dred students could solve his problems. My son-in-
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law did not blame calculus for this tragedy, though it
was clear to me that we do little to prevent it.

So I picked up a calculus market research report that
McGraw-Hill had done in 1981, based on a question-
naire sent to mathematics professors in over 200 col-
leges and universities of all sizes. According to the
poll, 83 percent of the students in first semester calcu-
lus complete the three semester sequence. That was
reassuring. Furthermore, if there was a feeling that
something was wrong it should show up in the re-
spondents’ comments on the texts they were using.
But of the 227 replies 170 judged their text's complete-
ness to be "good” or "excellent” and only 47 called it
"poor” or "adequate.” They seemed quite satisfied
with "topic sequence as well" with 173 out of 227 call-
ing it "good" or "excellent.”

In snite of these calming numbers, I still felt that there
15 mdeed something in disarray in calculus teaching,
something ailing. Whatever it is, we can't blame the
publishers. The books they offer us respond to such
polls; the manuscripts are read by a panel of indepen-
dent, conscientious reviewers. We get the texts we
ask for. The problem lies with us. Mathematics, the
only discipline where all the cards can be laid on the
table, and which therefore should be the best taught,
is often among the worst taught subjects. One reason
is that we haven't decided what we are teaching.

This uncertainty is visible, in the discussion, The In-
troductory Mathematics Curriculum, presented in [1].
There we find such statements as, "We must instead
teach how to create mathematics” (R W. Hamming, p.
388); "Even more essential is the creation of courses
that focus on concepts. Ideas and problem solving are
the really critical part" (Robert Davis, p. 391); "Our
teaching fails to provide students with the Joy of us-
ing mathematics to cope with challenging problems”
(Wade Ellis, p. 393); "The main fault of the introduc-
tory curriculum . . . is an issue of pedagogy as much
as of the content” (Patrick Thompson, p. 394); "Cur-
riculum change must be accompanied by severe ques-



tions of current teaching methods" (John Mason, p.
395). Though appearing as asides to the main debate,
they call attention to what I feel is the central issue.

Before we propose the medicine, we had better agree
on the diagnosis. The diagnosis depends on what we
mean by "health," that is, what we are trying to ac-
complish in our introductory courses. That may de-
pend to some extent on whether the course serves
other majors or our own. (According to the McGraw-
Hill poll, enroliment in the basic calculus runs about
60% physical science-engineering, 20 percent life sci-
ence-biology-economics, 12 percent math, and 8 per-
cent others.) In large schools the second group often
has its own calculus sequence; at Davis, with its strong
biological emphasis, more students enroll in the short
calculus than in the engineering sequence. So the main
calculus sequence we are talking about serves simul-
taneously engineers, physicists, computer scientists,
and math majors. That is a boundary condition that
any solution must satisfy. Butitis notasrestrictive as
it may appear, since there seems to be a consensus
that the students in these varied majors should learn
to write, read, and think. The dean of computer sci-
entists, E. W. Dijkstra, has written that the most im-
portant requirement for a computer scientist is mas-
tery of his native tongue. And my computer-science
colleagues urge us to expect well written answers and
proofs in our sophomore course on sets, relations,
functions, and induction.

But what about calculus, where the texts have settled
into a fairly uniform table of contents? There are al-
ways a few sections that the instructor may delete,
such as Kepler's laws or Lagrange multipliers. But
the instructor could consider deleting some more top-
ics, such as some formal integration techniques or even
related rates. Authors have less choice, for if they omit
someone's favorite topic, their books will not be
adopted and soon will be out of print. After all, cal-
culus committees meet in order to reject books, much
in the same way that canneries sort tomatoes. Label-
ling a section "optional” will surely offend someone
who feels his students will then not treat it seriously
if he covers it. It seems that a calculus author has the
freedom to make only two decisions: Where to put
analytic geometry and whether the title should be
Calculus with Analytic Geometry or Calculus and Ana-
Iytic Geometry. Thus the major revolution in calculus
texts in the last decade has been the introduction of a

ta

second color. (In high school texts, the number of col-
ors has reached four.) Whatever proposals this con-
ference may make, I predict calculus will begin with
functions, limits, derivatives, extrema, integrals, the
fundamental theorem, go on to more applications,
series, and then reach at least partial derivatives and
multiple integrals. Still, there are options, and per-
haps this conference will encourage publishers and
professors to be more flexible when developing a table
of contents or a course syllabus.

The fundamental question is not, "Should discrete
mathematics precede calculus, follow it, be woven into
it, or be separate and simultaneous.” The question
should be, "What are we trying to do in calculus and
discrete mathematic courses other than cover some
definitions, facts, and algorithms?" If the answer is
"nothing”, then we make no basic changes. If we also
want the student to learn to "think" (this is now called
‘problem solving' and 'heuristics’) and to write, then
we should act accordingly. The last thing we should
do is ask for texts that mix discrete mathematics and
calculus, for invariably, when two subjects are put
between the covers of one book either the book grows
unacceptably large or one of the two is sacrificed to
the other, or both are shortchanged. Witness the fate
of analytic geometry in our calculus books or of both
algebra and its applications in our applied algebra
books.

My own proposals may appear mild. Indeed, the first
one is, but the second could encourage a change in
emphasis.

The first is specific, and concerns calculus and dis-
crete mathematics. I suggest that a discrete course of
a quarter or semester be available to freshman (if that
is successful, then iater it could be extended). It could
be taken simultaneously with beginning calculus, or
alone, or, in the case of non-engineering students, with
the calculus delayed. Such a course could help de-
velop maturity and thus prepare students for calcu-
lus. It could, incidentally, weed out those who are
not ready to go on. (All campuses of the University
of California already require passing an exam on high
school algebra and trig for entry to calculus.) It would
also broaden the student's mathematical perspective
earlier.

My second suggestion applies to our curriculum in
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general and is a response to what I see as the disarray
and the ailment. Implementing this suggestion does
not require new courses, nor radically new texts.
However, if enough of us act on this suggestion, we
may provide the quorum to support certain changes
in the texts.

It too is modest, for I find that proposals for abrupt
major reform tend to be carried out in form but not in
substance, or viewed as something for someone else
to implement.

My suggestion is rooted in my definitions of the words
"curriculum" and "syllabus." Usually, "curriculum”
describes the courses offered and "syllabus” lists the
topics in a course. Both "curriculum” and "syllabus”
call attention to the material treated. They do not re-
fer to the way it is treated and certainly they do not
mention what should be our main goal: to develop
the student's ability to read, analyze, write and speak.
We easily lose sight of this objective, for facts tend to
displace process. We see this bias both in the class-
room and in texts. I hope that the reform suggested
by this conference gives process at least equal billing
with content. And I'hope that authors maintain a simi-
lar perspective as they try to implement our recom-
mendations.

My suggestion is only a modest step toward rescuing
process from subservience to content.

[ propose that in whatever course we teach we include
a significant number of what might be called "open-
ended” or "exploratory problems." Though not rou-
tine, they should not be difficult in the sense of a
Putnam problem. I mean that when a student sees
the solution, he will say "I should have gotten it."
These problems should encourage experimentation
and independent work. The answer should require
the student to write coherent sentences. That means
that the instructor or some other qualified person
should read and evaluate what is turned in. He should
demand suitable revision. The solution should not
be in the solutions manual; it should not be closely
tied to the particular section in the book that is being
covered in class. The assignment should not be due
the next day, so that the student will have time to mull
1t over.

Some examples will bring this proposal down to earth.
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To demonstrate my neutrality on the relative merits
of calculus and discrete mathematics, I will choose
some examples from both disciplines. I begin with
examples that parallel the standard calculus.

Example 1: Let f(x) = ax’ + b be a polynomial of de-
gree 2. Is there a polynomial g of degree 3 such that
the two compositions, fog and gof, are equal?

Remarks: If the students have trouble, then you might
suggest that they look at a specific f(x). Little in their
earlier education has suggested such a bold step. The
computations involve nothing more than cubing a
quadratic or squaring a cubic. The algebra is not
mysterious and the final result is both elegant and
surprising. Moreover, the student should be urged to
write the solution with more than a string of equa-
tions. We have a right to expect an introduction and a
conclusion. We should demand that a sentence be-
gins with capital letter and ends with a period. The
left margin should be straighter than the right mar-
gin. The student may complain that such request are
inappropriate in a math course. But that same stu-
dent may one day be writing software manuals and
internal memoranda. For us to demand less is to short-
change our students.

Example 2: Are there continuous functions f such that
f(x + y) = f(x) + f(y) for all real numbers x and y?

Remarks: The student may or may not come up with
some examples. You may have to steer him out of a
rut. If he finds f(x) = kx, you might then ask, "Are
there more?" (In a discrete course, the domain could
be Z instead of R.) Of course one could also ask for
solutions of f(xy) = f(x) f(y).

Such exercises are usually delayed until the Junior
year, but they are appropriate during the lower divi-
sion courses as well. Perhaps we could delete a few
topics from the standard curriculum, whether calcu-
lus or discrete mathematics, lowering the pressure so
students would have more time for this type of prob-
lem.

Example 3: Let R be a bounded plane convex set. Is
there a chord that bisects its area?

Remarks: For us this is a trivial exercise in the inter-
mediate value theorem, but most students will need

L



help. They cannot turn back a couple of pages for the
example that's just like this exercise. After this prob-
lem is solved one might ask whether there is a chord
that bisects the area and the perimeter at the same
time.

Example 4: What happens to x when x and y are near
0 but positive?

Example 5: Which polynomials of degree at most 3
have inflection points?

Remarks: Much is lost in a more conventional word-
ing, such as, "Show that every polynomial of degree 3
has an inflection point." One might then ask about
polynomials of degree 5.

Example 6: Let f be an increasing positive function on
the interval [0,1]. What, if anything, can we say about
the centroid of the region R under the graph of f and
above [0,1]?

Remarks: A variant is to demand that f also be differ-
entiable and concave down and ask about the cen-
troid of its graph. Or we could ask whether there is
any relation between the centroid of R and the cen-
troid of the solid of revolution obtained by revolving
R around the x axis.

Example 7: Let R be a bounded plane convex set and
P apointin R. Assume that each chord of R through
P has length at most a. What can be said about the
area of R?

Remarks: This question ultimately takes the student
back to the formula for area in polar coordinates and
extrema problems. For a discussion of this example
see [2].

Now for some illustrations in discrete mathematics.

Example 8: You could compute x with five multipli-
cations by writing x* = x(x(x(x(xx)))). But you could
also write x* = (x>x?)x?, which requires only three dis-
tinct multiplications. (Assume that once a multipli-
cation is done, the result remains available.) Investi-
gate the smallest number of multiplications needed
to compute x".

Remarks: The exact formula is not known, though

eventually students can show, with the aid of an in-
duction, that the number is at least log,n and equals
log.,n when n is a power of 2.

Example 9: In which linear graphs can we find a path
that passes through each edge exactly once?

Remarks: This is usually given in the "theorem and
proof" form, but I think it far more instructive for the
students to discover the result themselves. When [
have raised the question in a liberal arts class, it isn't
long before students observe that the vertices of odd
degree give trouble and find the necessary condition
quickly. Of course, sufficiency is harder to demon-
strate.

Example 10: Let f be a permutation or a finite set. Is
there necessarily a positive integer k such that f* is the
identity function of that set?

Remarks: The approach may depend on whether this
is given before or after the cycle decomposition of a
permutation. In the first case the student will be more
likely to experiment. That means choosing some spe-
cific sets and functions, again a traumatic experience
for students not used to such freedom and responsi-
bility.

Example 11: In a finite graph is there anything that
one can say about the number of vertices of even de-
gree or about the number of vertices of odd degree?

Remarks: This exercise usually appears as a theorem.
Too often we ask a question and then answer it before
the student has had a chance to live with the ques-
tion. By answering our own questions we turn the
students into spectators, putting a barrier between
them and the material. The temptation to do this is
usually irresistable and is often justified by the "need
to cover the syllabus." But what if the syllabus in-
cludes "teach students how to explore, to make con-
jectures, to write clearly?"

Example 12: Is there any relation between the num-
ber of vertices and the number of edges in a finite tree?

Remarks: The comments on Example 11 apply to this
example as well. In both cases we can ask the stu-
dents to prove their conjectures. There are several
ways to justify both, including induction. These there-
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fore serve as legitimate induction problems. The
sooner we reduce the number of traditional induc-
tion problems like, "Show by induction that 1+ 2 + ..
.+ n =n(n+1)(2n+1)/6", the better. In a realistic in-
duction problem, the student should propose the state-
ment to be proved. (Recall Example 8.)

The next exercise gives students far more trouble than
might be expected, both in carrying out their experi-
ments and in explaining their conclusions.

Example 13: The function of f: A — B induces func-
tions F: P(A) — P(B) and G: P(B) — P(A). For which f
is

(a) F one-to-one?

(b) F onto?

(c) G one-to-one?

(d) G onto?

More examples discussed from a slightly different
perspective are to be found in [2], but it is not hard to
make up your own. Some can be derived from the
statements of theorems. In some only an exploration
and a conjecture are to be expected. In some a com-
plete argument would be in order.

[t may be easier to offer individual guidance and feed-
back in a smaller class than in a large one, but the
organizational challenge in a large class should be
negotiable. Though we might prefer to think our task
done when we give a clear lecture, we may have to
acknowledge that giving good feedback is equally
important. Grading homework and examinations,
which usually just offers the student the guidance of
a number, is hardly adequate feedback. I suspect we,
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charmed by the clarity of our lectures, could go
through an entire semester and never see a single page
of a student’s work. (I confess that this has happened
with me.) It therefore may be necessary to give some
time to see what the students write. It may be advis-
able to sacrifice content to achieve other goals.

My proposal is simply an attempt to respond to the
concerns expressed by Hamming, Davis, Ellis, Thomp-
son, and Mason that I cited. [ want us to consider the
goals of our teaching. Do they go beyond transmit-
ting content? If not, we should say so in our catalogs
and encourage others to introduce "problem-solving"
courses to compensate for the narrowness of our mis-
s10n.

If we want our students to be able to think on their
own and to express their thoughts, we should give
them a chance, even in the introductory curriculum,
whether calculus or discrete mathematics, even in ser-
vice courses even if we propose only two or three
open-ended problems in a semester. If enough of us
urge publishers to include an ample supply of such
problems, with variations and solutions discussed
only in the instructor's manual, they will comply. But
we don't need to wait for them.

REFERENCES

1. The infroductory mathematics curriculum: misleading, outdated,
and unfair, College Mathematics Journal, Vol. 15, November 1984,
383 - 399.

2. S. K. Stein, Routine Problems, ibid, Vol. 16, November 1985,
383 - 385.
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The Triex: Explore, Extract, Explain

S. K. Stein
University of Califonia at Davis
Davis, CA

Often as I walk into my classroom and run through
what I will do, a recurrent image haunts me. I think
of that cliche: Chinese must be an easy language since
in China ,so many children can speak it. I know that
if those same children had been born here and were-
to study Chinese in high school or college, many
would flunk out and give up. This image reminds
me that students who fail with my approach might
do very well under a radically different regimen.

For this reason I am open to alternatives to the stan-
dard lecture approach, where the focus is too much
on the teacher. I would like to provide an environ-
ment in mathematics analogous to that which helps
Chinese children learn Chinese: pernaps the Moore
method is the way, or semester-long projects, or
greater one-to-one contact. But with the boundary
conditions that I face, I cannot turn to any of them.

Instead, over the past few years | have been gradu-
ally developing a modest alternative, which I will
describe even though I am sure it has been often pro-
posed and just as often been disregarded. I know that
education is like death or love -- the important things
that can be said about it have already been said. One
need only browse through old volumes of the Journal
of the National Education Association to be convinced of
this. For instance, in its 1935 volume we find the re-
port of an experiment in which pupils did not begin
arithmetic until the sixth grade [1]. It turns out that
within one year they caught up with pupils who had
a three-year head start. If such a major discovery can
vanish with scarcely a trace, I am sure that my pro-
posal, couched in different terms, lies similarly aban-
doned in the archives.

My suggestion is "humanistic” in that I believe a hu-
manistic education develops a student's ability to read,
write, and analyze -- in short, to think. Of course,
such an education should also develop an awareness
of the origins of civilizations, East and West, and a
love of classical music and literature, but [ would be

content if it just produced a critical self reliance.

However, no college catalog that I've read places read-
ing, writing, or thinking at the core of its curriculum.
Instead it lists courses and their topics, for instance,
Linear Algebra: vector space, base, dimension, linear
transformation, eigenvalue. The textbooks also reflect
this inversion of emphasis. By the time we prepare
our first lecture of the semester, most of us -- no mat-
ter how vehemently we have cried, "This is not a trade
school,” and, "Facts are secondary,” -- lose sight of
our real goal and rush to get through the syllabus. As
surely as the debased coin displaces the good coin,
routine problems drive out significant problems. By
a significant problem I mean one that gives students
a chance to explore on their own, to develop self con-
fidence and independence, to carry on, so to speak, a
miniature research project, and to write up their con-
clusions in complete sentences.

I am not going to propose a vast reform. I will de-
scribe only what I have been doing, timidly at first
but recently more boldly. When I presented my ideas
at one conference [3], the older participants said, "Old
hat," but the younger ones asked such questions as:
How do you make up this type of problem? How
many problems do you give? How much time do you
allow? Do they count in the grade? If so, how?

I propose that we offer our classes what I call "triex"
problems; "triex" stands for, "Explore, Extract, Ex-
plain.” Such problems do not begin with, "show that,"
"prove that,” or "verify that.” Instead, they begin with
an opportunity for experimenting. The experiments
should suggest a plausible conjecture to most students,
even though at first glance the answer should not be
atall evident. The conjecture should be easy enough
for many of the students to prove. Even students who
do not complete the third step of a triex are at least
primed to appreciate the explanation when given by
the instructor or by another student.
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Such an exercise puts the emphasis on exploring, ex-
tracting, explaining, writing. Therefore the exercise
need not relate directly to the course in which the stu-
dent is enrolled. For instance, in the second or third
semester of calculus, it may be drawn from the first
semester. The focus is on process, not on fact; the cen-
ter of responsibility moves from the teacher to the stu-
dent. In[2] and [3] I presented several examples. Now
I will describe three more in some detail to make the
idea of the triex more concrete.

Example 1: Let y = f(x) be a
nondecreasing function defined on
[0,1], with f(0) = 0 and f(1) = 1. LetR
be the region below the graph of f and
above the x axis. How low can the cen-
troid of R be? How high? How far to
the left? How far to the right?

Note first that the student cannot immediately guess
the answers. However, there are accessible experi-
ments, for instance, testing the curves y = x" or step
functions. The first part, exploring, is not hard, though
students must get used to accepting this responsibil-
ity. (If students get stuck, a hint may get them out of
arut.) The second stage is "extract.” (It turns out that
x is between 1/2 and 1 and that y is between O and 1/
2.) The final step, "explain,” involves only a symme-
try argument. (As a follow-up one could ask whether
the centroid of R lies in R.)

Example 2: Diocles, in the year 190
B.C., in the book On Burning Mirrors,
studied the reflecting property of a
spherical surface that subtends an
angle of 60°. When this surface is
aimed at the sun, the rays of light ar-
rive parallel to the axis, bounce off the
inner surface of the sphere, and pass
through the axis. How much of the
axis is illuminated by the reflected
rays?

The solution involves nothing more than trigonom-
etry or, perhaps I'Hopital’s rule (depending on how
the problem is solved). As a follow-up, which requires
the derivative, one could ask, "Describe the variation
in the amount of light that strikes in the vicinity of
each point of the illuminated part of the axis "
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The next example is appropriate in an elementary dis-
crete mathematics course, for it requires an induction
or the use of binomial coefficients.

Example 3: How many ways can you
list the integers 1, 2, . . ., n such that
each integer after the first one you list
differs by 1 from an integer that you
have already listed? (For n = 5, 32415
is one such list.)

This exercise satisfies the triex criteria: the answer is
not immediately obvious; exploration through ex-
amples is feasible; the resulting conjecture is simple;
the proof is not difficult and its write-up requires ex-
position, not just a string of equations.

I may require that a triex be turned in at the next meet-
ing or perhaps in a week. If I am not satisfied with
the solution or a student is stuck, I will comment on
the paper and return it for further work. There may
be a class discussion of Step 1 to catch errors which
were interfering with Step 2. How often I assign such
problems depends on the size of the class and the time
I have to read the papers. These problems are sepa-
rate from the regular homework which is read by an
undergraduate.

Often a standard exercise can easily be reworded to
become a triex problem. Consider the exercise, "Show
that for any odd integer n, the number n?- 1 is a mul-
tiple of 8." As it stands, Steps 1 and 2 of a triex are
missing. Such an exercise minimizes the involvement
and responsibility of the student. It alienates by in-
sinuating that mathematics is discovered by an elite
and is merely checked by the masses. However, that
same problem, rephrased, easily turns into this triex:
"What is the largest fixed integer that divides n*- 1 for
all odd integers n?" Clearly the three steps are now
present.

Even the simple exercise, "Prove that x + 1 divides x*
+ 1 for every positive odd integer n," can be trans-
formed to a triex, namely, "For which positive inte-
gers n does x+ 1 divide x* + 1?" This triex, in turn,
generalizes to, "For which positive integers m and n
does x™ + 1 divide x* + 1?" and to, "For which positive
integers m and n does x™ - 1 divide x*- 17"

A triex creates the environment of a miniature research
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problem, whether applied or theoretical. It puts more
responsibility on the student. I expect (but have not
tried to prove) that it develops self reliance and self
esteem. It certainly exploits a key feature of math-
ematics, which such disciplines as physics and his-
tory lack: all the cards can be laid on the table -- the
student need not depend on facts transmitted by an
authority. The use of the triex may reduce the alien-
ation and passivity which develop through years
spent on plug-in problems.

The triex is one of my responses to that image of little
children speaking fluent Chinese. Through itI try to

place process above fact. [ suggest that more teachers
try a few triexes in class in order to become familiar
with them and their implications.
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Noesis

Lee Goldstein

Emication of thought is not love,
Because it has no exteriority;
Yet whatever is muted willfully

Has a countenance;
Nay, the autoptic —----

relativistic range of things

Can be a beauteous species,
If thought can be transmuted,

Even as in a mirror,

By law, and homologically into strings.
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Puzzles, Patterns, Drums:
the Dawn of Mathematics in Rwanda and Burundi.

D. Huylebrouck
Aartshertogstraat 42
8400 Qostende, Belgium.

1. INTRODUCTION.

Douglas R. Hofstadter received the 1980 Pulitzer Prize
for his book Gédel, Escher, Bach: An Eternal Golden Braid.
It wedded the mathematical results of Kurt Godel, the
graphical art of Escher and the music composed by
Bach. Hofstadter showed how a common idea seemed
to emerge in three different modes of expression, eas-
ing access to the more arduous mathematical part by
suggesting the reader to solve a Godel problem (see
[Hof] and [Swa]). Drawings by Escher were alternated
by excerpts from Bach's score and dialogues between
the imaginary actors Achilles and Tortoise served as
intermezzos.

Hofstadter elucidated one of the apogees of modern
mathematics, Godel's theorem, but maybe at another
era in history analogous similarities can be discov-
ered between mathematical, graphical and musical
expressions. Inventing names for numbers, adding
them, making geometric and numeral combinations
with pawns, with lines or through music, might have
been a comparable summit for humanity, in the times
of the dawn of science.

In the middle of Africa, two small countries lived un-
til recently in such an epoch. On the tops and flanks
of the almost round hills of Rwanda and Burundi,
lived one of the most dense populations of Africa, from
agriculture and cattle breeding. There are many simi-
larities between their populations of Hutus, the vast
majority of peasants, Tutsis, the former aristocratic
cattle-breeders and Twas, the more marginal potters.
Their Kinyarwanda and Kirundi languages, their tra-
dition and social history are closely related. Some
pretend that, if the word Rwanda could be interpreted
as the vast territory, (B)urundi would simply mean the
other [country].

Historically, small kingdoms existed in this region
within living memory, and each had its own sacred
symbols, like for example a little drum. There were a
multitude of these little principalities dispersed in the
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mountains, until the legendary Gihanga descended
from the heavens, along with the thunder, as did other
emperors in Sumeria, Mesopotamia or Creta. Besides
cattle and seed, he brought fire to the mortals; the
memory of this Promethean event would only extin-

-]

, Ethiopia

Figure 1

guish in 1933, when the king was converted to Ca-
tholicism. Gihanga also created the cult of the large
drums, a very visible sign of his monarchy. These
wooden emblems had a symbolic value comparable
to the respect a scepter and a national flag have in
other nations. The royal drums at the Rwanda court
were not beaten but only touched when an important
decision had to be to justified through the resonance
of their deep bass sound.

There were 4 sacred drums, of about six feet high.



These wooden cylinders were covered by a brown
cow-hide and each contained a crystal of quartz, their
soul. The most magnificent had been called Ruoga,
but it was lost in the 15th century. This was believed
to be the cause of eleven years of distress, until a de-
termined king could restore its shape by his knowledge
of numbers. The new sacred drum Karinga or warrant
for hope was placed in the hut of worship close to two
others and next the oldest drum of all, called the king
is the owner of science'.

The sacred drums could not be regarded in absence
of the king. Partition-walls protected them from the
eyes of the mortals and as a security measure, other
non-sacred drums were used when the king had to
travel. Still, on other batteries music was indeed per-
formed, for pleasure. It was not the only delectation,
since playing on the igisoro-board was another favor-
ite diversion, as were the Homeric riddles and puzzles
that were told during the nocturnal drum gatherings
where milk was drunk from jars with decorative pat-
terns of all kinds.

Important differences between the Rwanda and
Burundi culture exist. In this paper we will mainly
focus on examples from the former, although the gen-
eral principles of most topics apply likewise to
Burundi, as can be seen from Figures 2, 3 and 4.

2. AN IGISORO-PUZZLE.

Two elements, the traditional igisoro-game and some
facts about counting without writing, will together
provide the setup for the formulation of a puzzle. The
idea to propose a problem, to make the reader famil-

v uirl

Figure 2

Figure 4
The igisoro-board around the A drum player in Burundi (see
hearth in Burundi (see [Acq]). [Acq]).

iar with some characteristic difficulties, was inspired
by Hofstadter's book. An answer to the enigma will
be given in §6.

The traditional igisoro-game (see [Cou-Ben] and
[Mer]) is played by two opponents on a rectangular
wooden board. It is about 2 feet by 1, and has 32 cir-
cular cavities, arranged in 4 rows and 8 columns di-
vided in 2 parts (see Figure 5). The players move
around with 64 pawns (little stones, seeds or beans)
to get enough pawns of the adversary to prevent him
from taking pawns on his turn.

The players move their pawns on their own half of
the board, following the indicated direction (opposite,
as we would say, to the direction of the hands of a
watch). A move can start at any cavity containing at
least two pawns by collecting all the pawns in it and
consists in dropping the pawns one by one in every
cavity, after the cavity where the pawns were taken.
If the last pawn is dropped in an empty cavity, the
move stops. Otherwise, the player may go on by col-
lecting these pawns and doing another similar move;
this is called a bridge.

Pawns of the adversary may be captured if a move
ends in a cavity on the lower row, containing at least
one pawn, as should the opponent's two cavities in
the same column. Taking pawns is obligatory, if it is
possible. If a player has indeed captured some pawns

(
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Figure 3
A decorative pattern called abashi or wooden support (see [Cel]
and [Pau]) from the border region of Rwanda, Tanzania and
Burundi.
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Figure 5
The igisoro-board with a few denominations.

Figure 6
Taking pawns: only if player South could manage to end a
move by dropping the last pawn in c2, he could take his
oppenent's pawns. For instance, starting at d5, a bridge at c6
reaches to ¢c2. The player goes on with the pawns from a2 and
b2, starting at ¢5.

Figure 7
An easy opening in igisoro is called madondi, meaning to deal
dry and repetitive whips. The move starts at ¢3 (above). Itis
followed by another move starting from d3, with a bridge in d1
(below).
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of his adversary, he goes on playing with the pawns
he took. He drops, one by one, the pawns he cap-
tured in the next cavity after the one where he started
the last simple move (or after the last bridge if there
has been one) before taking his opponent's pawns (see
Figure 6).

There is a particular rule about the direction of move-
ment: if one starts a move or if one makes a bridge at
cavities called nteba (b2, b7, c2, c7) or ugutwi (al, a8,
d1, d8), and if one can, by doing so, get into a situa-
tion of capturing pawns by a simple move, without
bridging, then the player may reverse the direction.

When a game starts, there are 4 pawns in each of the
middle rows (as in Figure 5), and both players begin
their opening moves simultaneously. There are dif-
ferent kinds of openings, sometimes with amusing
names (see Figure 7), and like in chess they each have
their reasons for being used. If one of the players has
finished the second movement of his opening, the
opponent has the right to take his pawns, and the
winner of the previous game starts an attack (if it is
the first game they play together, it is a matter of tac-
tics to choose who starts). Each player makes a move,
until one of them does not have enough pawns to con-
tinue. The game has to be played fast and sanctions
are foreseen for a player who hesitates or cheats.

Note that these rules define the igisoro-game as it is
known in one particular region, and that different
versions exist, even within the region of Rwanda and
Burundi. Traveling farther, larger variations are en-
countered. In East Africa, in Tanzania, a similar soro
or boa game is played, while farther North, the Kabaka
of Uganda play the okweso, and going to the West, the
Nigerian Yoruba call their version Ayo. North of the
Equator, the game is often performed on a board with
only two rows instead of four, while three rows seem
to be the tradition in Ethiopia. There may be from six
up to fifty holes in a row.

Counting in Burundi and Rwanda was done using a
base 10 system, and even for numbers as large as
1,999,999,999 words existed (see [Huy]). It must be
pointed out that no consensus about these facts exists
among historians®, but this does not, of course, pre-
vent mathematicians to admire the feat of inventing
words for large numbers. There were no written ex-
pressions, and one can wonder how the slightest ar-
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ithmetical operations could ever be executed.

An example of a procedure for executing complicated
multiplications without any notation, can be found
with the Yoruba (see [Jos]). They have a number sys-
tem with base 20 and often use substractions to de-
scribe numbers. For example, nineteen (nine plus teen)
is expressed as ookandinlogun, meaning one less than
twenty (ookan = one, dinl = minus, ogun = twenty). Simi-
larly, the appellation of 525 corresponds to 80 less then
600 plus 5,0r (20 x 3) - (20 x 4) + 5. Astory from 1887
tells about a counter who used cowry shells. To mul-
tiply 19 and 17, he started forming twenty piles of
twenty shells each. Next, he took one shell from each
pile, and then put three piles aside. These three heaps
were rearranged by taking two shells from one of
them, and adding it to the two others, the objective
being to reduce the involved numbers to twenty:
400 —20 — (20 x 2) — (20 —3) = (400 — 80) + 3 =323

The Yoruba example shows some arithmetic opera-
tions were indeed done even in civilizations where
no form of notation existed: representations with cow-
ries replaced the written symbols.

Before turning again to the igisoro-board, we need a
more convenient multiplication method, called the
Russian peasant method. It was already known in an-
cient Egypt and in Greece, and is said to have found
its way during the Middle Ages to Russia, the Middle
East and finally back to Africa, in Ethiopia (see [Nell).
To multiply two numbers, like for example 241 and
17, one proceeds in this method as follows: divide 241
by 2, until 1 is reached; if an odd number is encoun-
tered, first subtract 1:

241 -5 120560 —-30>15-7—>3—>1
The other number, 17, is multiplied as many times by
2
17— 34 - 68 > 136 > 272 — 544 — 1088 — 2176
The numbers in this last row, corresponding to odd
numbers in the previous row, are added:

17+ 272+ 544 + 1088 + 2176 = 4097

This is the desired result: 4097 =241 x17!

The puzzle: could the reader find out how to perform
such a multiplication without writing down any aux-
iliary calculations, and use but an igisoro-board? In
other words, a description is asked, of numbers with
pawns placed in cavities, and a way for translating
the Russian peasant multiplication into this represen-
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tation. The mathematical justification of the method
will be given at the end of the text. It is not quite
necessary for solving the puzzle, but could be useful
to find an indication. In the next paragraphs, some
additional information is given first, to render the
proposed answer more plausible.

Note that we do not mean to suggest that multiplica-
tions were traditionally done on an igisoro-board, but
playing with seeds on a piece of wood to solve an
arithmetic question may be a diverting and instruc-
tive exercise to get an idea about the necessary intel-
lectual efforts needed to realize a mathematical
achievement in a given cultural environment.

3. PATTERNS.

The previous paragraph was probably not very help-
ful to discover a primary explanation on the how and
why about the dawn of mathematics. Indeed, the
igisoro-game is played in different countries, and so it
might be conjectured it was introduced from other
cultures. However, the genesis of the idea of decorat-
ing walls with geometric patterns, can be traced back
to its very origin. Indeed, an oral account relates why
suddenly someone preferred to decorate his hut by
geometric patterns instead of figurative images.

Figure 8
Paintings givin in [Cel]; all have descriptive names in
Kinyarwanda. For example, the first is called umuheha, or
tube.
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Figure 9
Explanations of the patterns by Celis.

In [Cel] the authors published their discovery of origi-
nal paintings on enclosures of huts, in an isolated re-
gion in Rwanda (see Figure 8). It is difficult to access
and hence, most paintings are believed to be tradi-
tional concepts, and not the result of an exchange with
other cultures, nor the consequence of the ever pro-
gressing phenomenon of acculturation. The phenom-
enon of decorating a hut by the so-called imigongo
seems to go back in the past for about three centuries,
and the oral narration still relates how the legendary
notable Kakira ka Kimenyi came to install the tradition
of embellishing walls:

Numerous acts in his life proved Kakira
ka Kimenyi was possessed by neatness;
his cattle were held in huts and were
slaughtered there, so that no fly would
ever touch it. [...] He hated mud and
sat on a rock during heavy rainfall. His
neatness was so legendary it became a
locution to say isuku ni ya Kakira (neat
like Kakira). Plenty of initiatives, Kakira
would have made these paintings for
pleasure, and by solicitude of neatness;
first, he made them for his father [...],
and then in his own hut. [...] Having
made these paintings, he encouraged
young girls -- of the aristocracy -- to
imitate him. In this way, these paint-
ings spread.

In other regions of Rwanda and Burundi, drawings

and patterns were, of course, made too, but then it
was on enclosures or walls in the huts, on small bas-
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Zaslavasky's symmetry example.

kets, covers of milk jars and decorated drums (see Fig-
ure 11). On one of the previous pages (Figure 3), three
drawings of the pattern abashi are imigongo paintings
(reported in [Cel]) while the two on the right were
found elsewhere in Rwanda on enclosures in huts (re-
produced from [Pau]).

G. and T. Celis noted that the patterns they found, are
combinations based on just a few elementary construc-
tions. Only vertical, horizontal and three skew direc-
tions together with their symmetric directions along
the vertical, are enough to form all the motives (see
Figure 9). The imigongo can be classified by these 8
directions into just a few cases since only parallel lines,
isosceles or equilateral triangles and kites are in-
volved. Incidentally, these geometrical observations
also led them to reject some other paintings as non-
traditional.

A discussion about the use of some Chinese, Arabic
and African drawings in the curriculum of pupils from
6 to 16 age was given by J. Williams (see [Nel]). Her
comments apply to the present drawings from
Rwanda:

The classification of patterns by their
symmetry groups is studied by crys-
tallographers, and can be pursued
through multicultural sources of pat-
terns and design. Zaslavsky (see [Zas])
reproduces a picture of embroidered
cloths from Kuba, Zaire (now in the
British Museum) which provides a
complete set of seven different one-di-
mensional strip patterns. These pat-
terns involve transformations in one
dimension, such as 180° rotations and
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Figure 11
Decorations on baskets, jars and enclosures (from [Paul]).
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Figure 12
Percussion staffs; cf. [Nke].

horizontal and vertical reflections.
Group theory can be used to prove that
only seven such patterns can exist.

Williams also gave the above drawing (Figure 10),
showing two strip patterns with rotational symmetry
of order 2, but only one of these has horizontal and
vertical lines of symmetry. It is a more mathematical
way of appreciating geometric figures: it illustrates
that any pattern with two perpendicular reflectional
symmetries must have a rotational symmetry of or-
der 2.

4. DRUMS

Some structure was apparent is the igisoro-game be-
cause of the presence of counters obeying well-defined
rules, and in the previous paragraph the reader was
invited to cerebrate an igisoro-framework for the Ethio-
pian multiplication method. However, when hear-
ing African music, recognition of some logical basis
seems even more difficult. Giinther relates that, at
the end of the 50's, the royal drums of Rwanda came
to the world fair in Brussels. The Belgian audience
was not prepared: the 24 drummers made the impres-
sion, said one listener, of insistent, horrendous banging.
Others confessed more politely that after a while the
din overcame one's power of concentration.

However, ignorance of the underlying structure may

have been the main reason for the latter conclusion.
Of course, if someone is familiarized to some kind of
art, the knowledge about how some craft was accom-
plished is not necessary to appreciate it, though some-

~one who went to an academy is more likely to appre-

ciate Bach's music. Three rules seem to govern the
percussion music in Rwanda and Burundi: the
hemiola effect, the additive rhythm, and the Gestalt
phenomenon.

Hemiola is about the pro- gy
portions of rhythmic doddd
models in their organiza- J 443 /3137
tion of the rigorous mea-

sures of time. Fixed inter- 1 4 1) 2 4
vals of time are subdi- oS
vided in an equal number

of subintervals by con- Figure 13

secutive beats. Possible Hemiola; cf. [Nke].

subdivisions of the inter-
vals of time are two, four,
eight or sixteen impulses or else three, six, twelve or
twenty-four impulses, even if one starts with the same
base interval. This, of course, implies that the pro-
portion of the period between the pulses in both cases
is 2:3. Usually, an intermediate rhythm of 4 or 6 beats
follows, accentuated by slapping the hand, and by
beating wooden sticks: this is called simple idiophony.
Sometimes, the slow rhythm of 2 or respectively 3
drum-beats is used to reinforce this base rhythm. The
faster cadences, of 8 or 16 and 12 or 24 pulses, are the
bases for more melodic or percussional rhythms. They
form the basic elements of the structure.

Yet, there are often subdivisions that cannot be placed
in either this basis 2 or the basis 3-form. One can imag-
ine these as proportions of an alternating basis 2 or
basis 3 -form, and so as a successive realization of the
proportion 2:3. This drum-beat structure is called
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Figure 14

A piece of Rwanda drum music with Hemiola; cf. [Bra].
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hemiola. It is the serial combination of a 2 or 3 subdi-
vision, each of the same length, possibly with still more
subdivisions. R. Brandel (see [Bra]) points out that
reversed sectional change, that is, from 2-grouping to
3-grouping, is also encountered. His main example
is precisely a piece of music from the royal drums in
Rwanda:

Here the 2/8 groups are organized in
3/4 measures (17 measures in this sec-
tion), and the 3/8 groups are organized
in 3/8 measures (22 measures in this
section). Again the true hemiola is evi-
dent, provided two 3/8 measures are
combined.

The consulted references ([Bra], [Nke], [Mic], [Giin])
agree that this hemiola-rhythm makes African music
so different from Occidental patterns, although alli-
ance with Middle Eastern and Hindu rhythms cer-
tainly does not make it unique. The five-unit hemiola
of Ancient Greece also contained this 2:3 leader-beat
contrast, but the rapid succession of unequal leader-
beats in a 2:3 length-ratio is the typical African hemiola
change: the music is distinguished by immediate ex-
changes of leader-beat: many changes occur within a
short space, usually within a measure.

Additive rthythms differ from the more Occidental
division rhythms, although they both are ways of sub-
dividing an interval of time. The use of unequal
groupings is preferred in African music. This attitude
of asymmetry is the domain of excellence of the per-
cussion.

To describe what additive rhythms are about, consider
an interval with 12 pulses. It can be grouped in two
groups of 6+6, but also into 7+5 or 5+7. Also, a mea-

sure of 8 beats can be decomposed as 5+3 or 3+5, and
as 3+2+3, 2+3+3, or 3+3+2. Inside an interval of time,
an equal duration can thus be lengthened or short-
ened, but of course all pieces should add up to the
given number (here, 12 or 8). On a staff, this is written
as follows:
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Figure 15

Additive rhythm; cf. [Nke].

Gestaltvariation is the third remarkable feature in the
drum-batteries of Rwanda (see [Bral):

The coincidence of hemiolic lines in-
evitably carries with it some kind of
Gestalt effect, almost as if a new rhyth-
mic pattern, resulting from the com-
posite interplay of all the lines,
emerged. Very often the preponder-
ance through timbre, pitch, etc. of one
line over the others makes it suitable
for single-line listening no matter how
complex the entire work.

The indications of this Gestaltvariation again point to-
wards a similarity with Mediterranean and Asian
music, notes Giinther (see [Giin]), and others again
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Figure 16
A piece of Rwanda drum music with Hemiola; cf. [Bra].
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Figure 17
A more involved example of Rwanda drum music; cf. [Bra].

see a link with Ancient Greece. In the example of Fig-
ure 14, the deeper toned drums in the ensemble
changed from 2-grouping, 3/4, to 3-grouping, 3/8.
The leader-drum continued its 2/8 figure (see Figure
16) but is overshadowed by the basses.

Yet, [says Brandel] because of its lesser
obtrusiveness, the listener does not re-
ally hear the total counter-rhythm -- he
merely feels it. The dynamic accent in
the leader drum is almost lacking and
the 2/8 grouping is achieved by means
of very subtle timbre contrast.

Finally, all these constructions can be put together as
in the following piece of percussion from the royal
drums in Rwanda. It is more complicated to under-
stand for the non-initiated:

Despite the galloping strength of the
lowest line, the 3-grouping of the top
line somehow makes itself quite appar-
ent, and the eventual result is complex
pull in two directions.

In contrast to the remarks made at the Belgian '50
world exposition, given in the beginning of this sec-
tion, it is therefore not the lack of structure and logi-
cal constructions that make this music difficult to ac-
cess for Western listeners, but rather its abundance.
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5. INTERMEZZO.

In Hofstadter's masterpiece Gddel, Esher, Bach, conver-
sations between Achilles, the Tortoise, and the Tapir
alternated the tougher mathematical reasonings that
explained the Godelian concepts. The well-known
paradox of Zeno was the inspiration for the creation
of these imaginary personages. In the context of
Rwanda, actors exchanging Aristotelian sophisms
were created by Kagame (see [Kagl]). He called them
Gama and Kama, and some of the exchanges of ideas
of the players Kagame invented, suit well to provide
us a Hofstadter-like intermezzo. The following excerpt
contains riddles related to the present topic about the
dawn of mathematical reflection:

It would be convenient to examine if
the bantu-rwandean philosophy has
elements related to the notion of
"time”. Ithink, at this very moment,
about that woman of the Court, who
lived under the reign of Mibambuwe I11
'Sentabyo, in the XVIIIth century.
One attributes the following reflec-
tion to her. It passed afterward onto
the common language like a pro-
found adage: Ko bucya bukira,
amaherezo azaba ayahe?, that is Since
there is day and night, and the end of
times, what will there be?

One can apply this sentence, as you
know, upon the events that go on and

Gama:
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18

on, without interruption, even when
one expects it to end. That woman
certainly had thought profoundly
about the progress of "time"! Don't
you think, like myself that her reflec-
tion merits the qualification of
"philosophical"?

Up to a certain degree, yes. However,

there is much better in this domain.
Did you ever hear about the riddles
that were solved by Ngoma, the son
of Sacyega? 1 do not want to confirm
that these two personalities have re-
ally existed. The solved riddles have
been grouped under the name of
Ngoma, as some lies were gathered
under the name of Semuhanuka; in the
same way the gourmet anecdotes
were attributed to Rugarukirampfizi
and the sly puns to Semikizi.

That is the way it goes with our tradi-

tions presenting a certain literary
value, characterizing a numinous
turn, and of which the various au-
thors are forgotten. Our narrators
grouped them in series, and each se-
ries got a single, but maybe faithless,
name.

Correct! So one day, our Ngoma had to

solve another riddle. His father was
in debt with the Death about a head
of cattle. Thus, it is clearly an in-
vented story, the work of someone
regarded as a thinker. The terrible
creditor went one day to see Sacyega
and declared:

"The debt has to be paid
without hesitancy!
However, I demand
that you pay me a head
of cattle, that is nor a
bull nor a cow! Failing
that head of cattle, I will
sacrifice yourself!"

"You ask me something

completely impos-
sible!" Sacyega begged;
"A head of cattle always
is a bull or a cow, be-
cause one never sees
one that is nor the first
nor the latter!"

"Your problem!"” an-
swered the Death; "or
you find me that head
of cattle, or you can
within eight days from
today arrange your af-
fairs."

Informed about this terrible dilemma,

Ngoma answered his father as fol-
lows:

"It is not so difficult! It
suffices to put the
Death in the impossi-
bility to claim his in-
compatible head of
cattle. When he will
show up at the agreed
day, answer him by the
words: 'l finally have
found what my
arrearages are. Yet, to
seize it, you cannot
come during the day
nor at night. At day-
time one can see the
stars, and at night they
are visible. So come
between both events
and you will get your
cattle."

The narrators do not tell the continua-

tion and they did not need to. The
inventor of the problem only had in
mind to formulate two impossibili-
ties and to oppose them one another.

In fact, the solution attributed to Ngoma

has an obvious philosophical signifi-
cance. It points very precisely to the
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moment whose duration is as impos-
sible to evaluate as it is impossible
to meet cattle without genus.

Yet it is clear that the narrators did not
recall the entire depth of this point
of view. They do not conceive this
limit between the day and the night,
explicitly based on the passage of
non-being to being, as we envisage:

"non-being of light of
the stars" to "being of
light of the stars".

This solution corresponds exactly to
the well-known principle of the great
meta-physicists: between the being
and the non-being there is no third
way.

The above quote from Kagame obeys the tradition of
the smiths of intelligence, the narrators at the royal court
who memorized thousands of verses relating a poetic
version of the history of Rwanda from about the year
1100 up to the beginning of our century. To ease
memorization, a rigorous formal structure based on
rhyme, rhythm and tone, was imposed on the text, as

in the Homeric verses.

In other poems too, a unit of vocalic quantity could
be discovered: the mora (see [Cou-Kam]). It consists
of one short vowel or half a long vowel, and 9, 10 or
12 moras form the basis for the main type of verses.
Studies in Kirundi poetry (see [Coul), confirm these
findings about the rigorous formal structure of the
poetry in the culture of this region.

Parenthetically, the illustration below comes from a
book of modern Kinyarwanda poetry (see [Kag2]).
The poem glorifies the creation of the almighty Imana,
but here the bard does not ask if God plays dice: the
divine hand covers an igisoro-game.

6. COMMENTS.

Returning to the §2 igisoro-puzzle, here is first an ex-
planation for numerical example of the Russian peas-
ant method given in that section. The number 241 is
written as a sum of powers of 2:
241=1x2"+0x2"+0x2"+0x 2" +1x2* +1x 2" +1x2° 4 1 x 27
The product of 241 and 17 follows from a term by term
multiplication:

4117 = (1% 2" +0x 2 +0x 27+ 022"+ 12 4 1w 2 5 122 41272 1T

=172 F 1T 0% 2 417202 w1702 1T %2 4 1T 22 4 17w 2" e [T 2
EAVE D VAR T S AR R L S B el i v el
=17+272+ 544 + 10BR+ 2176

= 4057

In §2, 241 was first di-

Figure 18

An illustrationfrom a tome ([Kag?]) of modern Kinyarwanda poems.

vided in halves, with the
condition to subtract 1 in
case of an odd quotient.
This first row of opera-
tions allowed to get the
non-zero coefficients in
the decomposition of 241
as a sum of powers of 2,
while the second row,
where 17 was doubled,
served to obtain the cor-
responding numbers that
had to be added: 17, 272,
544, 1088 and 2176.

The proposed igisoro-
puzzle asked for a repre-
sentation of this multipli-
cation diagram on an
igisoro-board, without us-
ing any notation to re-
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Figure 19
Imaginary representations of 241, North, and 17, South.

member the operations. A possible solution goes as
follows: imagine a pawn in the first cavity (b1 or d1)
would represent 70, one in the second (b2 or d2)
would stand for 7!, and so on, until the last one (al or
c1), o5, is reached. Then, in Figure 19, North would

Figure 20
Halving 241 in North and doubling 17 in South; the pawns of 17
are withheld (white) , the result being 34 (black).

represent the first number, 241, while South would be
the second, 17. This is merely a recreating idea by the
author, inspired by the Yoruba cowry calculations and
the principles of the igisoro-game; it does not corre-
spond to any historical data.

Following the Russian peasant method, 241 should now
be divided 2. Each pawn in the representation of 241
is replaced by two pawns in the previous cavity, and
only half of them are withheld (see North, in Figure
20). 17 is doubled simultaneously by moving its
pawns 1 step to the right. There was a problem with
the remainder 1 of the division of 241 by 2, since it
could not be represented adequately. This fact re-
minds us we should keep track of the initial value 17,
before it was doubled (cf. Figure 20, South, white
pawns).

The next consecutive divisions by 2 yield no problem,
since the remainder is 0, and thus the results of those
multiplications by 2 are not withheld. Note that the
operations of halving and doubling are easily ex-
ecuted: it is enough-to move the pawns one cavity to
the left or the right, respectively. Yet, when 4 pawns
on a row are obtained, in b1, b2, b3 and b4, represent-
ing the number 15, one has to keep in mind that for
the next doubling in South, the initial pawns should
again be withheld (see Figure 21).

Finally, when there is only 1 pawn left in North, the
procedure stops. In South, the withheld pawnsin dl,
d5 (2 pawns), d6, d7, d8, c8, ¢7, c6 and d5 correspond
to the numbers 17, 272, 544, 1088 and 2176 and these
should be added (see Figure 22).

Figure 21
Halving 15 in North and doubling 272 in South; the pawns of
272 are withheld (white), the result being 544 (black).

Figure 22
Finally, only 1 pawn remains in North and 10 in South; the latter
should be added.

20
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Figure 23
The final result: 1 + 4096 = 4097.

The addition of the 2 pawns in d5 is straightforward:
they are replaced by a single one in d6. Now there
are 2 pawns in d6, and the procedure continues until
every cavity contains but a single pawn. The de-
manded product can be read off: 1 (the pawn in d1)
plus 4096 (1 pawn in c4) yield the required 4097.

An objection to this apparently very easy method
could be that the example works so smoothly because
of the choice of the numbers 17 and 241. This is in-
deed partially true: if there are many pawns left to be
added, a harder mental computation is necessary in
the last step (Figure 23) to convert the answer in base
2 to the final result in base 10.

A final wink to Gddel, Escher, Bach is the observation
that Hofstadter liked to refer to computer problems,
although the subject of his book was a topic out of the
domain of the purest mathematics of all. His favorite
computer savant was Babbage, but in the present case
it might have been entertaining to say a few more
words about N. Wirth, the creator of PASCAL. In-
deed, instead of puzzling about the multiplication
procedure on an igisoro-board, one could imagine that
the cavities corresponded to computer switches. A
pawn in a cavity means the switch is closed. Thus,
doubling a number by transferring pawns one cavity
to the right, corresponds exactly to a computer shift.
Of course, the reality is not that simple, but even N.
Wirth explained the importance of converting a mul-
tiplication to an operation of doubling in his success-
ful book on programming fundamentals (see [Wir]).
Note that the prestigious Massachusetts Institute of
Technology expressed its appreciation for the igisoro-
concept by programming it on a computer. They re-
stricted their study to one of the most simple igisoro-
versions with only 2 rows of 6 holes and 36 counters.
Nevertheless, there are still about 1024 possibilities in
this very simple situation. Thus, it is a good test case
for trying out heuristic methods, applying only ad-
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vantageous moves. R. C. Bell's classification of igisoro

among the world's nine best games seems amply jus-
tified (see [Zas]).

The design by computer of geometric patterns, as
those found in Africa, was the subject of Williams' text
entitled Geometry and Art (see [Nel]). This author pro-
posed the following key lines of a computer program
to form patterns of TRIANGLESs separated by GAPs:

FOR N=1 TO ENDX;
NEWY=0;
FOR M=1 TO ENDY;
NEWY=0OLDY+GAPY(M);
PROCTRIANGLE(NEWX,NEWY);
NEXT M;
NEWX=OLDX+GAPX(N);
NEXT N.

Musicians like computer toggling too: Frank Michiels,
a researcher at the prestigious Belgian Museum for
Central Africa in Tervuren and a recognized percus-
sionist, plays on African drums for his computer. The
electronics transform the recorded music into notes
of any kind, from organ to violin. And still, the Afri-
can musical structure remains irrefutable!

The summary given in Table 1 is easily completed
from the present paper. The words in italics refer to
some striking terms or names used in the text.

Expression —
4 Representation Puzzles Pallarns Drums
Without wriling Igisora -board Kakira-drawing Additive hemiala
Written 241x17=4097 Symmetry-groups Stafls-sinuctures
Willkiams® computer F Michiels’ violin-
Computer-screen Shift swiiches ssion
Table 1
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INTRODUCTION

As a child, music played a big role in my life. My fa-
ther is a musician, and he tried to expose my brother,
sister, and me to as much music as possible. Each of
us was given the opportunity to play a musical in-
strument and encouraged to perform whenever given
the chance. Although my brother and sister excelled
with their instruments, I chose not to continue with
lessons after the seventh grade. I enjoyed music im-
mensely, but playing a musical instrument was really
not my forte. In high school, I found something else
that made me get excited: Mathematics. I enjoyed it
so much that I decided to major in it when I went to
college. Now I am here, and both music and math-
ematics continue to play a big role in my life. Instead
of playing a musical instrument, I listen to music while
doing my mathematics.

This semester I was given the opportunity to do an
independent study in the mathematics department
focusing on any topic that I desired. I now had a
chance to combine two driving forces in my life, and
to try to find some connection between them. I chose
to investigate the relation of music and mathematics.

The focus for this paper is to find the commonalities
between music and mathematics, with the hope that
beauty will abound within this connection.

NOISE VS. MUSIC

First, we must establish that noise and music are two
different entities. As defined in the tenth edition of
Merriam Webster’s Collegiate Dictionary, noise is a sound
that "lacks agreeable musical quality or is noticeably
unpleasant” [5]. The same dictionary defines music
as "the science or art of ordering tones or sounds in
succession, in combination, and in temporal relation-
ships to produce a composition having unity and con-
tinuity" [4].

Sound waves are produced by vibrating matter. The

sound waves produced by irregular vibrations in
matter are called noise, whereas the sound waves pro-
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duced by regular vibrations in matter are classified as
musical sounds. These regular vibrations are the
simple harmonic motion that can be represented
graphically by adding a sufficient number of sine
waves [1] (see Figure 1). Jean-Baptiste Fourier is the
man credited for this discovery. The frequency of the
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vibration determines the pitch of the musical sound,
represented on the graph by the number of waves per
unit time. The wave's amplitude, which indicates the
intensity of the sound, is represented by the height of
each crest.

A Fourier representation of a sound would consist of
a series of simple, regular sine waves that, when
added, represent the sound being analyzed. As the
number of individual sine wave graphs increases, so
does the complexity of the sound. Fourier analysis is
useful for describing long, regular sounds in a very
concise way [7].

Fourier, who studied mathematical vibration analy-
sis circa 1800, knew that there was a flaw in his repre-
sentation. He realized that a sound could not exist
unchanged unless that sound was infinite in its dura-
tion. Because musical sound has a beginning and an
end, the graphical representation of that sound must
also be discrete [8]. Fourier analysis fails to repro-
duce accurately the timing of a sound when focusing
on its pitch [7]. That is, there is a problem determin-
ing the time when a particular sound occurred.



It is now possible to represent both the pitch and the
timing of musical sounds, thanks to Ingrid
Daubechies. Daubechies uses a method that breaks
down complex signals into what are called wavelets.
The length of each wavelet represents the pitch of the
sound -- the higher the pitch, the briefer the wavelet.
Unlike Fourier representation, wavelets have no re-
dundancy. With redundancy comes unnecessary in-
formation needed for reconstructing a sound. When
using wavelets for analysis, "each wavelet is an es-
sential component of the complex signal it represents"”
[7]. Wavelets are not only useful for representing
sounds heard individually, but they are so precise that
they can be used to single-out sounds in a graph of
several simultaneous sounds.

Research in this area is very new. Because of this, the
information regarding waveless is limited. Keep your
eyes open; information on this topic is bound to ex-
plode!

HARMONY OF MUSIC

Its Frequency, Intensity, and Duration

As many of us may know, Pythagoras is the man cred-
ited with being the first to discover the relationship
between musical harmony and mathematics [2]. It
all happened one day, or so the story goes, when
Pythagoras was considering whether it was possible
to systematize musical sounds. He thought: sight is
made precise with tools like the compass and ruler,
as is touch by measures and balances. While think-
ing about this, he passed by a brazier's shop where he
heard hammers beating on a piece of iron. Some
sounds produced by hitting the same piece of iron
were harmonious; others were not [3].

Later, after considering what he heard, Pythagoras
went back to the brazier's shop to investigate how
hammers beating on the same piece of iron could pro-
duce harmonious sounds. He discovered something
astounding! When comparing the hammers, he found
that they were of different weights. There was a six,
eight, nine, and twelve pound hammer. When using
the six and twelve pound hammers together, where
the first hammer was half the weight of the second,
the sound was harmonious. Harmony resulted when
using the eight and twelve pound hammers together
as well. But the hammers that were eight and nine
pounds, when used together, produced a sound that
did not harmonize [3].
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The relationship between the weights of the hammers

and harmonious sounds can be represented by using

any musical instrument. For ease of explanation, I

will discuss the representation in reference to a

stringed instrument. The procedure is as follows:

1. A single stretched string vibrating as a whole pro-
duces a ground note. The frequency of the vibra-
tion determines the pitch of the musical sound.

2. Allow only half the string to vibrate, and the pitch
will rise an octave above the ground note.

3. Allow 2/3 of the string to vibrate, and the pitch
will rise a fifth above the one produced by the to-
tal length.

4.3/4 - tone is a fourth higher.

5.8/9 - tone is a whole step higher.

etc.

If the still point on the string, called the node, is not at
one of these exact divisions, the sound is discordant.
As we continue to divide the string, the fractions be-
come more complex, and the two notes represented
by the resulting intervals become more dissonant, or
unpleasant, when they are sounded together. The
smaller the whole numbers in the fractions, the more
consonant, or pleasing, the sound is [2]. This is the
reason Pythagoras felt that the six and twelve pound
hammers sounded harmonious together, but the eight
and nine pound hammers did not. Eventually, the
fractions of the vibrating portions of the string became
expressed as ratios. For example, the octave was ex-
pressed as a ration of 1:2.

The frequencies of intervals between the tones of a
musical scale can also be represented as a ratio. The
frequency of middle C is 261 cycles per second. The
ratio of | : 2 describes the interval of an octave, so by

doubling that frequency, we obtain a note defined by
522 cycles per second, or C one octave above middle

The chromatic scale, used in western music, consists
of twelve intervals. Because of this, each tone in the

scale has a frequency ratio of 13/2 ~ 1.0595 to the next
tone (where the two comes from the ratio of an oc-
tave). It is with this ratio (] . 2/2) that frequency in-

tervals are spread equally over the twelve tone inter-
vals of the octave. The break down of one octave is
shown in Table 1. Because all twelve tones are neces-
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sary to construct musical scales, we can now find the
frequency of any note in any octave [1]. The intensity
of a tone is determined by the rate at which sound
energy flows through a unit area. Intensity can sim-
ply be thought of as the loudness of a tone. The dura-
tion of a tone refers to how long a tone exists. With
these three properties specifically stated, a musical
sound can be duplicated.

ANALYSIS OF A COMPOSITION

When writing a piece of music, composers usually do
not write a mathematical function and then compose
the piece around the function. Instead, the composer
might hear music in her head and then record that
thought on paper. Whatever the process, I believe it
is safe to say that mathematics is generally not the
motivation for a composition. What is amazing is the
fact that music is very organized. We have seen how
harmony is made. We understand the idea of conso-
nance and dissonance. Now let us investigate the
mathematics of a composition.

First, let us look at a single, generic sound. Our sound
will be an event that is considered as a whole and will
be considered neither pleasant nor unpleasant. We
can consider the abstract relations within the event or

Nots Aggfgxﬁl?;n
middle C 261
cHDe 276.5199
D 292.9626
D¥/E? 310.3831
E 328.8394
F 348.3932
FHGe 369.1087
G 391.0581
Gf/A® 4143117
A 438.9479
Ax/B® 465.0491
B 492.7024
C 522

Table 1
Notes and Frequency Approximations of an Octave

Humanistic Mathematics Network Journal #14

between several events, and the logical operations that
may be imposed on them. Our event will be denoted
as q.

Properties :

1. If the sound is emitted once, all we have is its single
existence that appears and then disappears. Here,
we only have q.

2. If the sound is emitted several times in succession
and compared, all that we can conclude is that they
are identical.

Now we can say that repetition implies the no-

tion of identity, or tautology:
avavav..va=a

where v/ is the logical operator "or", disregarding

time.

3. Modulation of time imposed on the sound.

When the element of time is considered, our sound
takes on new meaning. Instead of just a sound, we
now have potential for a code. For example, the Morse
Code is an emission of a single sound that varies in
duration. It is the duration of the sound, rather than
the sound itself, which gives meaning to the code. For
this reason, we will disregard the modulation of time
and consider the case of two or more generic sound.

Let g, p,and ¢ be distinct, easily recognizable sounds
(a#b+c)

Properties :

l.avb=bva
Since time is not considered, our events are com-
mutative.

2.(avb)ve=av(bvce)
If we combine two elements, the combination can
be considered as forming another element, or an
entity, in relation to the third. This combination
will allow our events to be associative.

When we exclude the time factor in composition, we
end up with the commutative and associative laws of
composition outside-time [9]. If we do consider the
element of time (denoted with the logical operator T),
then the sonic events, when played in

succession, have a new meaning.

aTh = bTc

The comutative law no longer holds. Because our
events are distinct and easily recognizable, it follows
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that g played before  sounds different from p played
before a.

With these properties of sound, we can now investi-
gate the concept of the interval. As defined in the
Norton/Grove Concise Encyclopedia of Music, an inter-
val is simply "the distance between two pitches" [6].
An interval is described according to the number of
steps between notes, inclusive. For example, from C
up to D, the interval is a major second. From G down
to C, the interval is a perfect fifth.

With this in mind, let us consider a set of pitch inter-

vals, P= ( j ), and the binary relation > mean-
ing greater than or equal to.

Then:

lL. p2p,VpeP
- reflexive

2. p, 2 p, # Py 2 P, €xceplt for p, = p,
- antisymmetric

3. PaZPy APy 2P > P, 2P,
- transitive

So, the set of pitch intervals, p, with the binary rela-
tion > ( p, >), forms a partially ordered set.

The ultimate goal of composers, let us assume, is likely
to be the ability to share their musical inclinations with
others. To do this, a composer must tell the musician
exactly what she is thinking or hearing in her head.
In order for a musical sound to be duplicated, all as-
pects of that sound must be considered. These as-
pects include frequency (pitch), intensity, and dura-
tion. With these three elements correctly combined,

any musical sound can be constructed and repeated.
In this case, the number 3 is irreducible.

Structure
When considering the set of pitch intervals, we are

forced to consider the structure within that set. If p,
is a pitch interval going from C up to D (a major sec-
ond), and p, is a pitch interval going from D up to F
(a minor third), then a third element, p_, can be made
to correspond when combining p, and p,. The ele-
ment p_would then be a pitch interval going from C
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up to F (a perfect fourth). Xenakis refers to this as the
"law of internal composition” (consecutive pitch in-

tervals, p,, p, € P, can be made to correspond to a
third pitch interval, p. € P, by the composite of p,

by p, and is denoted as p, + p, = p_) [9]. With this in
mind, and once again disregarding time, we can say:

1. The law of internal composition for conjuncted in-
tervals is addition.
2. The law is associative:

(Pa+Py)+ P =pu+(p, +P.)
3. Vp, € P, dp, € P, a neutral element, such that:

PotP, =P, tPy =P,
4. Vp, € P, 3p. € P, called the inverse of p,, such
that:

PP, =P, +P, =Dy
5. The law is commutative:

P, TP, =D+ P,

These five axioms hold for pitch outside-time. This
example of pitch intervals can be extended to inten-
sity intervals and durations, the other two fundamen-
tal factors of musical sound. It should be noted that
the sets form an Abelian additive group structure.

So far, it has been established that the idea of sound
possesses a structure outside-time. The element of
time forms a temporal structure. When we combine
these two structures, the result is a structure in-time,
or an actual composition.

Before considering a musical composition, let us first
consider the notes that a composer uses. The only
limitation imposed on what notes and in which oc-
taves are usable is with the instruments that the com-
poser chooses to use. If the piece is written for a bas-
soon, then only the notes in the available octaves can
be used. The composition would not be written in
the same octave as, say, the upper register of a pic-
colo.

APPLICATION
For a composition with one instrument
Let

R= {aH the notes of a particular instrument |

A= {a certain choice of notes of the instrument |
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B= {anorher choice of notes of the fnstrumenr}
Where 4 and B are subsets of the universal set R.

If we firsthear 4, and then g, and then compare the
two sets, we can establish some relationships between
them.

1. If certain notes are common to both sets 4 and 3,
the sets intersect (see Figure 2a).

2.If no elements are common between the chosen sets,
they are disjoint (see Figure 2b).

3.1If all the elements of B are common to one part of
B, then our set B is included in 4 (see Figure
2¢).

4. If all the elements of 4 are found in B and all the
elements of B are found in 4, then the two sets
are indistinguishable, or equal (see Figure 2d).

Now that we understand the basic relationships be-
tween sets, we can investigate a method of creating
new sets given existing sets. When we choose 4 and
B so that they have some elements in common, we
can then establish those new sets.

1. If we hear the notes in common between 4 and 3,
we are using the operation of intersection (con-

common elements:
A-BorB-A4
2.If we hear the notes of both sets and interpret them
as a mixture of the elements of 4 and B, we have
a new set formed using the operation of union

(disjunction):

A+Bor B+ A4
This set consists of all the elements of set 4 and
set B.

3. If we are allowed to hear all the notes in our uni-
versal set R except those of 4, then we have a
new set defined by the negation 4 with respect
to R:

A
4. In music, there is another set which is represented

by silence. This set is equivalent to the empty set,
and is called a rest.

With a proper choice of notes for each set, and a proper
grouping of these sets, we can write a mathematical
function to represent a composition. When given three
sets, 4, B,and ( we can write a Boolean function in
the form called disjunctive cannonic:

8
Z ok,
i=1

junction) to form a new set consisting only of those  yhere,
A B A B
R R
a b
A A B
R R
C d
Figure 2

Relationships Between Sets
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o =01

i

and

k=A4-B-C,4-B-C,A-B-C,A-B-C,AB-C,4A-B-C,4-B-C,4-B.C

A Boolean function can always be written in a way
that brings a maximum of operations using (+), (.),

and (), equal to 3,.2"2 _1, where » is the number
of sets Dbeing wused. In this
3.3.2°2-1=9.2-1=17 9]

case,

v

Figure 3
Example Venn Diagram

For example, if we use the function:

F=A-B-C+A-B-C+A4-B-C+4-B-C
we will notice that 17 operations are being used. The
Venn diagram representing this function is shown in
Figure 3.

Of course, we can simplify the original function to
obtain a function that only requires 10 operations:

F=(4-B+4-B)-C+(4-B+4-B)-C
but by doing this, we will change the procedure in
the composition.

I must stress that this mathematical model deals only
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with which notes in a composition are played. It does
not deal with other variables such as intensity or du-
ration.

Figure 4
Challenge Venn Diagram

Finally, I leave you with the following.

Let
4={A,B,C" G|
B:{B,C**,D,E}
C= {B, E,F”,G}
and let
2% 4. B:C+2*%4.B-C+2*A-B-C+2*4. B C+
2*4.B-.C+2*A-B-C+2*A-B-C+2*A-B-C+
F_z*Z-B-C+2*Z-B-E+2*A-B-hzm-s-m
2% 4.B-C+2*A-B-C+2*A4-B-C+2*A-B-C+
2¥*A.B-.C+2*A-B-C+2*A4A-B-C+2*4-B-C+

2¥A-B-C+2*A-B-C+2*4-B-C+2*4-B-C

where 2 * means that a certain note is played twice,
sequentially, and + is the transition from one note to
another. The corresponding Venn diagram is shown
in Figure 4.

Here is the challenge: Interpret the function (deter-
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mine the sequence of notes), and give the interpreta-
tion to a musician. Ask her to play it, and try to name
that tune!
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The Humanistic Mathematics Network
has organized a panel at the San Diego
Joint Math Meetings.

Saturday, January 11, 1997, 2:30 - 3:50 PM.

"Art, Literature, Music and Math: Degrees
of Similarities."

Speakers will be Annalisa Crannell,
Leonard Gillman, JoAnne Growney:.

Moderated by Alvin White.
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Book Review: Emblems of Mind, The Inner Life of Music and Mathematics,
by Edward Rothstein
Sandra Z. Keith

St. Cloud State University
St. Cloud, MN 56304

We associate beauty with music, but not often enough with mathematics...

Emblems of Mind: The Inner Life of Music and Mathemat-
ics. Edward Rothstein. Avon Books: New York, 1996.
263 pp, ISBN 0-380-72747-1.

As a graduate student in mathematics with a serious
second interest in piano, I often heard the platitude
that mathematics and music go hand in hand. My
own informal research was leading me to conclude
that while composers had their mathematical work
staked out for them and most of my mathematician
friends loved music, nevertheless musicians very of-
ten disliked mathematics; moreover, the music loved
by a mathematician was liable to extend as far as a
mechanically-played Bach fugue. We might agree that
those contrapuntal voices were . . . mathematical! But
was there a mathematician, l wondered, who had feel-
ings for the work of Scriabin or Brahms, or who
wanted to discourse on Mozart's laughter through
sorrow (or was it sorrow through laughter?) or the
profound harmonies of Beethoven? The predominat-
ing hobbies among our mathematics group were chess
and baseball. I gave up on comparisons that I felt
were superficial — there was even a saying among
my musician friends that people who talk about mu-
sic can'tdo it. (Later I found that musicians talk about
musicians.) At any rate, I decided that the best one
could say is that both subjects are non-verbal, possi-
bly indicating a brain deficiency, and I married an
English major.

In Emblems of Mind, Edward Rothstein creates a gal-
axy of connections between mathematics and music.
Analogies are everywhere. The title derives from
Wordsworth's poem, "Prelude,” a key statement of the
romantic movement regarding the nature of art, in
which the poet, walking up a mountain, is over-
whelmed by the moon and the surrounding panorama
of nature.

30

...Edward Rothstein

"There, | beheld the emblem of a mind

The power, which all

Acknowledge when thus moved, which Nature thus
To bodily sense exhibits, is the express

Resemblance of that glorious faculty

that higher minds bear with them as their own.”

Thus the "emblem of a mind" may be seen as the moon
or something more -- a symbol of the outer world in-
teracting with the artist's inner world vision, creating
a sense of harmony or unity within the universe.
Rothstein's plan is to explore the metaphors shared by
music and mathematics, with emphasis on the process
of discovering, comparing, and contrasting their na-
tures. With this approach, we are very much engaged
with the project of interacting with Rothstein's mind,
but the journey is smoother than that found in many
books which feature interpreters or guides; Rothstein’s
voice is always serene and poised, never capricious,
cynical or evangelical. While he may be pointing the
way up the poet's mountain, he never falls into the
trap of lecturing, which is admirable, considering the
scope of the book. Experts might recognize the influ-
ence of the University of Chicago, and in fact,
Rothstein was on the Committee on Social Thought
there, where he combined studies of music, philoso-
phy and literature. If the Committee influenced his
ideas, the book itself grew out of an essay which
Rothstein a music critic for The New York Times, wrote
about his "'two strongest intellectual passions.™

My greatest challenge with the book, explained a little
by my own history, was to bear through introductory
formalistic explanations that seemed to deny music
the emotional vocabulary I required. (The book is
Emblems of Mind after all...but s this really how a music
critic thinks?) It was not until halfway through the
book that I saw that Rothstein perceives music with
much more than an eagle eye. For example, when
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Rothstein talks about music formalistically, it may
sound like this -- describing the initial phrase in Bach's
D# minor fugue:

"it begins with a leap upward, but it is
felt less as a leap than an unfolding. It
should be heard as if the second note
grows out of the first, opposing it but
also connected to it. The theme then
turns with a plaintive caress, and, as if
taking a breath, gently echoes its own
beginning before sadly returning step
by step, to its origins. The gesture's
two parts have almost different char-
acters--an excursion and return. . . ."

To the author the phrase is a living and breathing or-
ganism; however, I am still on the sidelines wonder-
ing about the faith and determination, loneliness and
peace, fortitude and acquiescence in Bach. Until Chap-
ter 4 where the book suddenly seems to melt in the
warmth of its discussion of beauty, Rothstein is apt
merely to shroud that which cannot be explained by
reason, like the poet's moon, with the label, "mystery."
Thus, the reader is advised to be patient.

In fact, Rothstein claims early on, that emotion is too
simplistic a basis on which to found a definition of
music. For example, the Indian rage may bring about
meditative states, while chanting music may provide
energy for hoeing a field, or a drum beat serve up the
background language for a culturally expressive
dance. A crescendo in Palestrina may be there to send
us to heaven and not on any passionate route. These
examples are slightly unfair, since the music Rothstein
spends effort analyzing is definitely western, and clas-
sical or romantic at that -- never even contemporary.
Eventually, Rothstein will pull out all the stops and
will not only acknowledge the emotional countenance
of music but will demonstrate ways in which music
goes beyond what Thomas Mann calls 'cow warmth,’
to the topic of music's power to affect our lives. But
even while he is avoiding dipping into the emotional
pool and is maintaining an arm's length (or mind's
length) on his subject, the author always manages to
convey his exuberant joy in these twin stars of the
galaxy, these 'kindred mutations." He convinces us
that both subjects achieve their value when seen as a
process; thus we have multiple layerings of processes
in this book, recursion at play. Mathematically speak-
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ing, mathematics and music are functions, and his job
is to attempt to give a metaphor for the mapping (or
fugue) between these functions (or voices); in this pro-
cess we map onto Rothstein's mind, or the author's
mind onto us. ;

In introducing the similarities between marhematics
and music, Rothstein offers up the gamut. For ex-
ample, he notes that both subjects are represented as
languages encrypted in special notation which does
not necessarily read linearly. They are subjects in
which one talks of "giftedness," subjects with quasi
religious roots ("mystery"), and which carry epical
tales of their heroes. Some of the mathematicians
(Pythagoras, Aristotle, Euler, Kepler, Galileo, etc.) we
recognize as being at the job of trying to link math-
ematics and music long ago. The tritone (an aug-
mented fourth -- from C to F#, an impossible interval
for singers, best remembered by the opening two notes
in the song Maria, from "West Side Story") was re-
garded as "unutterable,” the diabolus in musica in the
Western church, just as the irrational number /2 was

regarded as alogon, or unutterable, by the Greeks.
(Rothstein does not push the parallel by pointing out

. .. mathematics and music are functions, and his job
is to attempt to give a metaphor for the mapping (or
fugue) between these functions (or voices)

that F# is practically halfway up the logarithmic scale,
giving it a relative frequency of just about /2 .) Math-
ematics and music also share levels of complexity, a
sense of space, the creation of order, a reliance on axi-
oms governing a style, and fundamental building
blocks such as groups (in music, groups of tones).
Rothstein disclaims "very little of what I say about
mathematics will be news to mathematicians and very
little of what I say about music will be news to musi-
cians and composers. The hope is that much of what
I have to say will still be of interest because of the
juxtapositions I make and the hypotheses I propose.”
Since the translation is not exact, and there is no for-
mula for the mapping, we find ourselves delightfully
orbiting around a central premise, from time to time
struck by meteoric insights. I marvel at the artful con-
struction of the book; it is a virtual playground for
seeking out connections. For example I have just no-



ticed that Rothstein begins with a description of num-
bers and introduces the musical scale as a ladder of dis-
crete tones; in his summarizing chapter, titled "Cho-
rale," he discusses Socrates' hierarchical ranking of
levels of thinking about the world.

To hone in on the connections he wants to make,
Rothstein first dialectically divides his subjects, with
chapters on the inner natures of mathematics and
music. In the mathematical chapter, dubbed "Partita”
we are treated to a seamless transitional linking of
mathematical topics where mathematics flows like a
stream into a river, from numbers to the concept of
the irrational, to the infinitesimal, and from there, to
spaces characterized by their axioms, or styles. (A
partita is a suite of dances.) A few parallels with mu-
sic are thrown out, but the reader is probably already
able to make his or her own connections, the choice
of terms is so suggestive. In the chapter on the defini-
tional character of music, "Sonata", Rothstein suggests
that music exists for particular audiences and as such,
is "modeled.” Think, he suggests, how music accepted
as appropriate in a horror film might be received in a
concert hall or church.

But in music neither the model nor the
object nor the map is clear. How could
music possibly progress in its under-
standing of a concept or an experience?
I spoke metaphorically about film
scores 'modeling' an emotion and
about a piece of music serving as a
'model’ but what can this mean? Mu-
sic does not even seem to be looking
for something to model from the
world; nor does it seem to involve the
sort of reasoning we find in mathemat-
ics. In music we don't see the act of
construction taking place . . . we are
submerged in a realm in which at least
at first, 'knowing' seems irrelevant.

He then returns to the argument that the product of
mathematics too is more of a process than a result --
something which we probably forget all too often in
our teaching. "There is,” he claims, "a life to the ideas
within a mathematical proof." In other words, the
message is the modeling, mathematics itself is a model
of mathematical activity.

Contemporary composers have used mathematics via
computers to output random music or to model and
blend styles, to fractalize a Bach fugue or to paint a
page with notes in chaotic or planned patterns;
Rothstein ignores these connections. But I confess to
being at a loss when he follows on the trail of musi-
cologists such as Heinrich Schenker and David Lewin
with dizzying phrase-by-phrase and note-by-note dis-
sections of musical pieces or phrases to make his
points. Every corner of "'muso-mathematics" is probed
here: distance, connection, contraction and expansion,
equilibrium, the vertical and horizontal, modulations,
patterns, symmetry, variations, contradictions, as-
cending sequences, leaps, disorientations, pulsings --
it would hardly matter what conclusions are made
with this tsunamic force of words. At least no one

... the product of mathematics too is more of a
process than aresult ... mathematics itself is a
model of mathematical activity.

will be left believing that composers are not in pos-
session of mathematical minds.

Itis a deserved pleasure when Rothstein climbs higher
on the poet's mountain, to discuss what mathematics
and music share as art forms. In Chapter 4, "Theme
and Variations," he investigates the meanings of
beauty and truth.

There is something about beauty that
is both private -- because it involves
silent feeling -- and public --because it
makes us feel asif it is revealing some-
thing universal. It emphasizes both
our isolation and our feelings of com-
mon sense and sensibility. For the
same reason it can also risk inspiring
contemplative withdrawal or impas-
sioned absolutism. The judgment of
beauty is not idiosyncratic -- or so we
think and feel -- but something more
fundamental. Beauty feels like an as-
pect of public knowledge. We may not
actually assert that everyone will agree
with our proclamation of beauty, but
beauty inspires a feeling that everyone
should agree. The feeling makes a claim
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not only on us, as we view the beauti-
ful object but on our sense of others.
(This is the origin of snobbery.) Of
course we haven't proved that taste is
universal or that beauty is objective;
the only assertion is that the judgment
of beauty is treated as universal and felt
as objective. . . .

Music, he asserts, allows us to dwell in a second na-
ture; it intoxicates, it is more powerful than ourselves.
Music is not merely abstract; it reflects the ways in
which we experience the world. Mathematics also
shares these attributes: the mathematical proof that
loses touch with reality and becomes baroquely or-
nate for the sake of itself alone (the ring version of the
Chinese Remainder Theorem) also loses some tradi-
tional notions of beauty. But note: music may not
necessarily be beautiful in the sense of delighting
(Chopin's "Dies Irae" prelude, in A minor); it may "dis-
turb and overwhelm;" it is not so much beautiful, as .
.. here the word "mystery" is converted to the roman-
tic's word: "sublime.” "To our rational minds . . . the
sublime seems to subvert our judgment, perpetrat-
ing, in Kant's words, an 'outrage on the imagination.”
Mathematics as well has this quality of being sublime
in its sheer immensity and depth.

Rothsein's last chapters are refined writing, as he con-
tinues to navigate where many authors might find the
oxygen too thin. Retaining the idea of "metaphor," he
keeps a charted course, scattering thoughts that in
themselves could create books, and distributing won-
derful quotes. Speaking, but not preaching, about the
creative process in mathematics and music, Rothstein
says: "our greatest risk is that our metaphorical inter-
pretations will be willful, arbitrary, unenlightened,
that connections will be made of trivial importance.”
He himself never falls into this trap. Now the topic
has become the power (and soul -- but this is a word
he never mentions) of music and mathematics; the
ability of mathematics to interpret the universe, while
the power of music is interpreted in its equally versa-
tile ability to bear a variety of meanings, its role as
"gesture” which makes it a voice in our cultures. From
the heroic to the sarcastic, the diabolical to the reli-
gious, from the excellent to the inferior, it can present
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us with a narrative of our history and a reflection of
ourselves.

I occasionally felt some pang of regret that the book
presumes a large body of prior understanding about
these subjects. I know I would have enjoyed the book
as a student, but wonder about the reaction of today's
students; would they find the subjects of mathemat-
ics and music so exalted? Much of what I have learned
in the past thirty years that has fascinated me about
mathematics is the ways in which statistics and prob-
ability, chaos and computers have come to the inside
track, and regarding music -- its manifestations out-
side the western classical idiom in the contemporary
and ethno-cultural realms. Thus part of my under-
standing of mathematics and music is not covered in
this book, which is more wrapped in the traditional
and creates something of a backward look, perhaps a
"bridge to the past.” But Emblems of Mind is a tour de
force in writing and thinking the concept of metaphor
providing all of us (not just mathematicians or musi-
cians) a way of seeing how thinking about one disci-
pline can be a useful way to think about another, giv-
ing validity to the act of thinking on many levels. (If
Socrates would have it, these levels would be: intel-
lection, thought, . . . trust, and imagination!) And if the
subjects of mathematics and music are still immuta-
bly divided for me in that mathematics will never have
the emotional heart of music, the warmth of tone in
this book comes as close as anything I have experi-
enced in helping to span that gulf by humanizing
mathematics.

The search for the sublime links music
and mathematics. Both arts seek some-
thing which combined with the beau-
tiful provokes both contemplation and
restlessness, awe and comprehension,
certainty ar.d doubt. . . . The sublime
inspires an almost infinite desire, a
yearning for completion which is al-
ways beyond our reach. But we are
then comforted by the achievements of
reason in having brought us so close
to comprehending a mystery fated to
remain unsolved.
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Book Review: Emblems of Mind: The Inner Life of Music and Mathematics,
by Edward Rothstein

Dan Fitzgerald
Department of Mathematics
Kansas Newman College
Wichita, KS 67213

Emblems of Mind: The Inner Life of Music and Mathemat-
ics. Edward Rothstein. Times Books: New York, 1995.
263 pp, ISBN 0-8129-2560-2.

While many writers have commented on mathemat-
ics and music, this author ultimately pursues a deeper
relationship between those subjects. The connection
that the author describes and promotes is along aes-
thetic, philosophical, even religious lines. Rothstein's
credentials indicate that he is definitely up to the task.
He has studied graduate-level algebra, analysis and
topology as well as music and literature. He is an
award-winning musical critic and chief musical critic
of The New York Times.

To support his arguments, Rothstein calls upon a veri-
table cast of superstars of Western thought and art.
To evoke a feeling for the inner life of the two subjects
the author makes references to the works of Cantor
and Chopin, Dedekind and Debussy, Helmholtz and
Haydn, and many others. Many wonderful quotes

"May not Music be described as the Mathematics of
sense, Mathematics as the Music of reason?"

are sprinkled throughout the book, which give testi-
mony from great thinkers as to a math/music con-
nection. Here is one from James Sylvester: "May not
Music be described as the Mathematic of sense, Math-
ematics as the Music of reason?” From musician Igor
Stravinsky: "The musician should find in mathemat-
ics a study as useful to him as the learning of another
language is to a poet.”

In order to make the connection comprehensible, there

is of necessity a good deal of preliminary spadework.
This is done in the first three chapters, appropriately
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Joel Haack
Department of Mathematics
University of Northern lowa

Cedar Falls, IA 50614

titled, "Prelude", "Partita”, and "Sonata.” In Prelude,
Rothstein adopts as a guiding metaphor for the entire
book, the journey of William Wordsworth to the peak
of Mount Snowdon.

In "Partita”, Rothstein discusses the inner life of math-
ematics. Although the discussion is declared to pro-
ceed heuristically, and to be sparing on details, two
proofs of the infinitude of the set of primes are pre-

"The musician should find in mathematics a study as
useful to him as the learning of another language is to
a poet.”

sented, compared, and contrasted. Additionally, fun-
damental concepts from set theory, analysis, and to-
pology are described. The prerequisite for reading
the book as given in the introduction is: no more than
high school mathematics and no more music than
what is learned in elementary school. A year of col-
lege-level mathematics would seem to be a more suit-
able prerequisite.

One of the longest chapters, titled, "Sonata", presents
the author's opinion of the inner life of music. It is
rich in musical nomenclature and references almost
all the well-known composers of the past as well as
the contemporary musician, David Lewin, who is
described as a musical topologist. Some of the termi-
nology of this chapter is a marriage of mathematical
and musical terms such as, "musical regions with dif-
ferent centers of gravity,” "continuous musical sur-
faces,” and "musical modelling."

One of the goals of Chapter 4 is to convince the reader
that it makes as much sense to call mathematics beau-
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tiful as it does music. Rothstein backs up this premise
with quotes such as this from Hermann Weyl: "My
work always tried to unite truth with the beautiful;
but when I had to choose one or the other, I usually
chose the beautiful." The Cantor set, formulae involv-
ing pi, and several pages on the Golden Ratio are in-
cluded as examples of beauty in mathematics.

In Chapter 5, "Fugue: The Making of Truth," the aes-
thetic/religious natures of mathematics and music are
described to show what the author considers the re-
ally important connections of these subjects. We are

"My work always tried to unite truth with the beautiful;
but when | had to choose one or the other, | usually
chose the beautiful."

reminded that both mathematics and music have been
closely associated with religious ritual. How do math-
ematics and music seem so "other worldly" yet im-
pact our lives daily? This question is not about the
internal workings of the subjects but about how they
"map into" the world - it is a question about meaning

and truth. Rothstein describes mathematical proof as
ritual and uses a quote from G. H. Hardy to support
his contention: "If we were to push it to its extreme,
we should be led to rather a paradoxical conclusion:
that there is, strictly, no such thing as mathematical
proof; that we can, in the last analysis, do nothing but
point; that proofs are . . . gas, rhetorical flourishes de-
signed to affect psychology."

We are finally prepared for the point: The mathemati-
cian, the musician, the poet, all imitate "Nature at
work, reproducing in their creations the emblems that
Nature had bodied forth in hers . . . A mathematician
will spin out a new theory or a composer create a min-
lature sonic universe; a poet will turn an experience
into metaphor, a scene into a source of illumination.
And each creator will, 'mid circumstances awful and
sublime, be as astonished by the result as was Kepler
or Bach."

The book is really a wonderful work which glorifies
two subjects of great importance to any civilization.
It would be excellent as a required or ancillary read-
ing in a Liberal Arts Mathematics course.

Mathematical Rebuses

Florentin Smarandache
Pima Community College
Tuecson, AZ 85709
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Fibonacci Melodies

Robert Lewand
Goucher College
Baltimore, MD 21204

INTRODUCTION

One way in which mathematics has informed mod-
ern musical composition is through the use of algo-
rithms. To compose algorithmically one begins with
a sequence of numbers and maps the terms of the se-
quence into various musical parameters such as pitch,
duration, dynamics and even timbre. Students of
Arnold Schoenberg (1874-1951) and Anton von
Webern (1883-1945) are credited with first using this
composition technique whose incipient stage was
known as serialism [4, p. 544]. More recently compos-
ers have been employing iterated function systems
and chaos theory (e.g., [1], [3], [5]) to produce music.

Little is written, however, about the influence which
music has had on mathematics. This article describes
how the creation of a musical composition suggested
a theorem concerning the Fibonacci sequence:

{1,1,2,3,5,8,13,..}

THE FIBONACCI COMPQSITION

One can create a very simple example of algorithmic
music by associating the terms of the Fibonacci se-
quence with notes on a keyboard. In the example that
follows, no attention is paid to timbre, dynamics, or
duration; unless otherwise specified, each note is taken
to be a quarter note. Of course since there are more
terms in the Fibonacci sequence than there are keys
on a keyboard, a more reasonable association would
map the terms of the Fibonacci sequence modulo
m eZ, the set of integers, to the keyboard keys. Al-
though any value of ;5 > 2 would work, reasonable

x mod 8 0 1 2 3 4 5 ] 7
Note : ¢ D E F G A B
Table 1

Correspondence between integers modulo 8 and
notes on a keyboard
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values include ;; =88 (a piano has 88 keys) and
m = 8 (an octave includes 8 notes). Selecting ,; =g,
one can establish the very straightforward correspon-
dence appearing in Table 1 where x is any positive
integer.

In this example the symbol * is a wildcard and may
be interpreted in any number of ways. Let's agree
that the effect of encountering a * in a string of notes
is to change the duration of the previous note (if one
exists) from a quarter note to a whole note. Another
arbitrary decision concerns the octave in which the
notes will be played. Again let's let that decision be
idiosynchractic, entirely up to the discretion of the
COmposer.

Table 2 reveals the sequence of notes generated in this
manner by the first 24 terms of the Fibonacci sequence.

Term 1 2 3 4 & B 7 B L] 10 1 12
Fibonacc
£
Sequence mod B 1 2 3 ] 5 5 ] 1 ]
Mote c G D E G o G G o B c
Tarm 13 14 15 16 17 18 19 20 4l 2 2 2
Fibonace
a 2 7
Sequence mod & 1 1 2 i (i 5 ] 1 1]
Hole c Cc D E G o G G o B C

Table 2
Notes Generated by the Fibonacci Sequence mod 8

With our conventions concerning octaves, duration,
and the interpretation of the *, and assuming com-
mon (4/4) time, the first four measures of this song
are depicted in Figure 1.

While Figure 1 reveals a surprisingly mellifluous se-

quence of notes, Table 2 invites us to examine the cy-
clic nature of the Fibonacci sequence mod 8. Specifi-
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Figure 1
The First Four Measures of a Fibonacci Song

cally, with f(n) representing the ;% term of the Fi-

bonacci sequence, Table 2 suggests the following con-
jecture:

(1 f(n)mod 8 = f(n+12) mod 8

Before attempting to prove this conjecture, it may be
of interest to examine the effect of changing the modu-
lus from 8 to some other numbers.

It is a simple matter to verify that the Fibonacci se-
quence mod 7 is:
{1.1,2,3,5,1,6,0,6,6,5,4,2,6,1.0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,...f

and that the Fibonacci sequence mod 6 is:
1,1,2,3,5,2,1,3,4.1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1.1,2,3,5,2,...}

These sequences suggest the following conjectures:

2) f(n)mod 7= f(n+16)mod 7
(3) f(n)mod 6 = f(n+24) mod 6

Since all three conjectures involve the terms f(#) and

f(n + x), it may be of interest to examine the relation-
ship between these two expressions.

PROPERTIES OF THE FIBONACCI SEQUENCE
Recall that the Fibonacci sequence is defined recur-
sively by the equations:

=1
f(2)=1
(k)= fle=1)+ f(k=2), for k>2

(4)

Using (4) repeatedly, notice that:
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f(n+x)=fln+x-1)+ f(n+x-2)
“1f(n+x-1)+1f(n+x-2)
=2f(n+x-2)+1f(n+x-3)
) =3f(n+x-3)+2f(n+x-4)
=5f(n+x-4)+3f(n+x-73)

The coefficients of the terms on the right are all Fi-
bonacci numbers and so (5) may be written as:

fln+x)=f2)f(n+x-1)+ () f(n+x-2)
=fB)f(n+x=1)+ f(2)f(n+x-2)
=f(4)f(n+x-2)+ f(3)f(n+x-3)

© _ J(5)f(n+ x=3)+ f4)f(n+x~4)

Equations (6) suggest the following theorem:

Theorem 1:
For n=2 and

fln+x)=f(n)f(x +1)+ f(n=1)f(x).

This theorem can be readily proved by induction on x
[2, p. 289].

Corollary 1:

For %2l if m divides f(x) and
m divides f(x+1)-1, then
f(n)mod m = f(n+x)mod m-.

Proof:

Given any positive integer »n, suppose
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f(n+x)mod m = k. Then there is some ¢ 7 with

(7) fln+x)=cm+k

We wish to show that f{(»n) mod m = k. Since, by hy-

pothesis, m divides f(x +1)—1 and m divides f(x),
there exist r, s € Z with

®  flx+D)-1=rm (ie, f(x+1)=1mod m)
and

©) f(x)=sm (ie., f(x)=0mod m)
Case 1:

Assume ; =]. Then

f(x+n)mod m= f(x+1) mod m
=1modm (from (8))
= f(1) mod m
= f(n) mod m

Case 2:
Assume y > 2. Then from Theorem 1

fn+x)=f(n)f(x+ 1)+ f(n=1)f(x)

(10) = f(n)+ (f(x + 1) =) f(n) + f(n—1)f(x)

from (7), (8), and (9) we have
cm+k = f(n)+(rm)f(n)+ f(n—1)(sm)
s0

f(n)= (C' —rf(n)—sf(n—- l))m +k
f(n)=k mod m

Corollary 1 establishes a condition that is sufficient to

assure that f(n)modm= f(n+x)modm. Ex-
pressed in the musical context in which this investi-
gation originated, this corollary asserts that if a song
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is created using the algorithm described in this paper,

and if m divides f(x)aswellas f(x+1)—1, a string
of notes so generated will repeat indefinitely, i.e., the
song is periodic with period x.

A natural question to raise is whether the sufficient
condition of Corollary 1 is also necessary. The fol-
lowing corollary answers this question affirmatively.

Corollary 2:

If f(n+x)mod m= f(n) for fixed positive integers
x and m and for all positive integers m, then

m divides f(x+1)—1 and m divides f(x).

Proof:
Choosing =1, the hypothesis implies that

f(1+x)mod m = f(1) mod m for fixed positive inte-
gers x and m. So, f(1+x)— f(1)=0mod m, or
f(1+x)-1=0mod m,ie., mdivides f(1+x)-1.

To prove that m divides f(x), begin with (10):

fln+x)=f(n)+(f(x +1)=1)f(n) + f(n = 1)(x)

Rewriting, we get:

Sn=1)f(x)= f(n+x)= f(n) = f(n)f(x+1)~1)

In particular:
J@) = f)f(x) = (A2 +x) - £(2)) - @) f(x+1)~1)

Since by hypothesis f(2 + x)— f(2) = 0 mod m, and
since m divides f(x +1)—1, m divides f(x).

CONCLUSIONS
This article establishes necessary and sufficient con-

ditions for f(n+x)mod m = f(n) mod m where

f(n)is the ;" term of the Fibonacci sequence. Musi-
cally, the result can be interpreted in terms of when a
sequence of notes generated by the Fibonacci sequence
is periodic. The novelty of the article lies in its dem-
onstration that the relationship between mathemat-
ics and music is a two-way street. Beginning with a
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mathematical algorithm involving the Fibonacci se-
quence and the concept of modularity to compose a
musical piece, we were rather unexpectedly led to a
result in number theory.
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Book Review: Ethnomathematics: A Multicultural View of Mathematical
Ideas, by Marcia Ascher

Bernadette Berken
St. Norbert College
De Pere, Wl 54115

Ethnomathematics: A Mult icultural View of Mathemati-
cal Ideas. Marcia Ascher. Brooks/Cole Publishing,
Co.: Pacific Grove, 1991. 203 pp, ISBN 0-534-14880-8.

Marcia Ascher’s book Ethnomathematics: A
Multicultural View of Mathematical Ideas is a superb trea-
tise on mathematics from a multicultural point of
view. The text focuses on a diverse collection of math-
ematical ideas and applications. Instead of limiting
the scope of her text to the usual Eurocentric discus-
sion, Ms. Ascher introduces the reader to the math-
ematical ideas of peoples who have generally been
excluded from discussions of mathematics and the
development /history of mathematics. These people
are the ones who live in traditional or small-scale cul-
tures, the indigenous peoples who live in places that
were "discovered” and colonized by Europeans and
include such diverse groups as the Iniut, Navajo, and
Iroquois of North America; the Incas of South America;
the Malekula, Warlpiri, Maori and Caroline Islanders
of Oceania; and the Tshokwe, Bushoong and Kpelle
of Africa.

In her introduction, Ms. Ascher sets the stage for her
text. This introductory discussion acknowledges that
"there is no single linear path along which cultures
progress, with some ahead and others behind," that
mathematics has no generally accepted definitions
and that most definitions of mathematics are based
solely on Western experience. Nevertheless, Ascher
is quick to point out that although a particular cul-
ture may not classify an idea as "mathematics," tradi-
tional cultures most definitely express mathematical
ideas in contexts that we westerners might call art,
navigation, religion, record keeping, game playing,
or kin relationships. In addition, Ms. Ascher acknowl-
edges that as one views the mathematical ideas of oth-
ers in their cultural context, one is limited by his or
her own cultural and mathematical frameworks. Fol-
lowing this important introduction, Ms. Ascher guides
the reader on an exciting journey that explores nu-

merous mathematical ideas in a variety of cultural
contexts.

Chapter 1 focuses on the concept of numbers and the
words, symbols, and understanding associated with
them. The sets of number words of several cultures
are examined and the patterns and arithmetic rela-
tionships are described. The importance of language
and its relationship to number words is emphasized
and Ascher includes a clear and informative discus-
sion of numeral classifiers. She devotes a substantive
portion of this chapter to a discussion of the Incas and
the organization and use of quipus within their cul-
ture.

Graph theory is the focus of Chapter 2. It is here that
Ascher examines the sand tracings of the Bushoong
and Tshokwe in Africa, and the drawings of the
Malekula of the South Pacific. She clearly establishes
the fact that many different peoples have pondered
similar mathematical problems relating to Eulerian
paths and provides an excellent background discus-
sion of the Bushoong, Tshokwe and Malekulan cul-
tures as she explores graph theory ideas within the
respective cultures.

In Chapter 3, Ascher explores the important math-
ematical idea of relations or the specified properties
that link pairs of objects. She does this by examining
the logic of kin relations. The native peoples of north-
ern Australia (the Warlpiri) a group with a particu-
larly complex kin system provide an excellent example
that forms the basis for this discussion which draws
upon ideas from group theory.

Games of strategy and chance and the logic of puzzles
provide the basis for Chapter 4. Since every game
can be seen as an expression of a particular culture,
Ascher is careful to identify not just the rules of the
game but also the simple objects used for it, the times
and places for appropriate playing of the game, the
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social settings, the level of concentration, the systems
of rewards and all the other important aspects that
make up the game. She includes an analysis of the
American Indian game of Dish that is clearly rooted
in the area of probability. This chapter also provides
an excellent discussion of the Maori game of strategy
known as Mu torere. Starting with a simpler version,
Ascher leads the reader not only to an understanding
of how to play Mu torere but also to a basic under-
standing of the mathematics connected with this
game. A collection of river crossing puzzles from vari-
ous cultures and the logic behind their solutions pro-
vide the final area of focus for this chapter.

The organization and modeling of space and time
provides the content for Chapter 5. Because notions
of time and space are so basic to the way we perceive,
structure, and interpret our experiences, it is some-
times hard to understand or visualize the space-time
ideas of other cultures. Nevertheless, Ascher success-
fully bridges this potential difficulty by her choice of
examples. She includes apt discussions on the dy-
namic universe of the Navajo, the unique process and
change dimension of the space-time concerns of the
Iniut, and the navigational processes of the Caroline
Islanders.

Spatial configuration is the basis of Chapter 6 which
focuses particularly on symmetric strip decorations.

Ascher includes an introductory discussion of
isometries, symmetry, and symmetry groups and de-
scribes and utilizes a four character naming scheme
for the possible strip patterns. (This scheme was de-
veloped by Russian crystallographers and is now ac-
cepted as the international standard.) A discussion of
perfect coloring is also included in this chapter. Rafter
patterns of the Maori and strip patterns found on Inca
pottery provide beautiful and illustrative examples
for the discussion of strip patterns in this chapter.

The final chapter of the book affords Marcia Ascher
an opportunity to weave together the mathematical
ideas and philosophies that are the basis for her book.
She connects these ideas and issues to mathematics
education, emphasizing the need for a redefinition of
the boundaries of mathematics, and a revision of our
philosophy and history of mathematics.

This outstanding book is a clearly written text that is
well-suited for the college undergraduate level. The
diverse collection of mathematical ideas in their cul-
tural context provides a challenging yet very interest-
ing array of mathematical topics. Ascher provides
extensive notes with appropriate references which
afford the reader additional sources for reading and
scholarship. Marcia Ascher’s book Ethnomathematics:
A Multicultural View of Mathematical Ideas is a rare gem
of a book. Read it!

Psychosis

Lee Goldstein

Nooscopic insociability

Can drive the human intelligence of an incognizable numinosity,
Thenceforward, to the equations of the sphere,

While this programmatic transposition

Can also beget, through the unconscious, an incipient eidos

That splits the personal

And abets an insurgence of psychical energies

Unto the hallucinatory,
That is seeming or chaotic.

nooscopic: pertaining to the examination of the mind
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The Folktale: Linking Story to Mathematical Principles

Audrey Kopp
formerly of Los Angeles Unified School District,
now retired

"Mathematics and Literature" has recently come into
its own as a topic on the mathematics education scene.
Sessions with this name are scheduled at National
Council of Teachers of Mathematics and other orga-
nizational conferences. A department called "Links
to Literature” now appears regularly in Teaching Chil-
dren Mathematics, the NCTM publication dealing
with the lower grades. Most of the articles included
in "Links to Literature" tell how to plan classroom ac-
tivities based on stories read by or read to students.

For instance, "Mathematics and Mother Goose" uses
the familiar rhymes as a springboard to illustrating
prenumeration concepts such as patterning, ordering,
recognizing attributes, and classifying into sets [1].
"Popping Up Number Sense" relates how popping
popcorn was used as a device to bring the concepts
involved in If You Made a Million alive [2, 3]. "Math-
ematics Is Something Good!" tells how a teacher used
Moira's Birthday as a stimulus for a discussion of rate
as her second-graders tried to figure out how fast all
the children Moira invites to her party would take to
eat the cakes she has ordered for her birthday party
[4, 5]. Other titles such as Ten for Dinner and The Story
of Z produce related activities in graphing [6,7]. And,
as implied by the title, How Big is A Foot? can be used
to inspire learning about linear measurement, non-
standard units, and use of a ruler [8].

Counting books are also referenced, and books de-
picting quilt patterns and the history surrounding
them are also used as inspiration for mathematical
investigation.

"Fictional Literature", an article in Mathematics Teach-
ing in the Middle School, makes note that it is difficult
to find middle-level fictional books which mention
mathematics in a positive way [9]. Another article in
the same journal examines heritages from other cul-
tures, such as calendars and names [10], and a recent
article in Humanistic Mathematics Network Journal tells
of a newly-developed Middle School Mathematics
Minor Certification Program course at St. Norbert Col-

lege in Wisconsin which extends the search for math-
ematics into an examination of pottery, beadwork,
textile, art and basketry patterns; archeoastronomy;
comparisons and contrasts in mathematical philoso-
phy; and the mathematical bases for games of chance
- all serving as an avenue for "exploration of human
endeavors within their cultural context" [11]. In ad-
dition, "Mathematics and Poetry" also finds its way
into discussions of the use of literature as well. (N.B.
Many such poems have been published in the Human-
istic Mathematics Network Journal.)

As the reader may observe, the stories noted above
for use in the classroom were all published within the
past twenty-five years. Moreover, it is important to
recognize that for the most part, it required the inge-
niousness of a teacher to relate mathematics to the
story.

But there is yet another way to link mathematics and
story, mathematics and human endeavors, mathemat-
ics and culture — and I suggest that it is as significant
and perhaps more fundamental than any of the ex-
amples noted above.

While searching for folktales to use in my present
work as a storyteller, I have discovered stories which
I believe actually illustrate mathematical principles.
The stories in the articles noted above provide a jump-
ing-off place for exploration of mathematical notions,
but the folktales I have been collecting are themselves
built on mathematical concepts. And therein lies the
difference.

For instance, there is a story involving six young lads
who go off fishing. Just before they are to return home,
Brother Number One decides to count to see if all his
siblings are present. He counts to five (forgetting him-
self) and begins to cry. Brother Number Two asks
what's wrong, and upon hearing the problem, pro-
ceeds to count. He too finds only five brothers...and
so it goes, until a boy comes along and asks if he can
help. He quickly sizes up the situation, and asks each
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brother to count aloud as he squeezes hard a hand
from each brother. They soon find that they really are
six in number, and joyously reward the stranger with
their entire catch. Everyone goes home happy! What
better example of one-to-one correspondence, so
simple that it can easily be appreciated by a six-year-
old [12].

The version recounted above is retold from a tale that
was collected in eighteenth-century England. I have
also found two American, one Middle Eastern and one
African version of this tale, each setting the story
within the context of its own culture. "How the math-
ematical concepts became a part of the folk culture?"
is a challenging question in itself. Did people adapt
the principles and then apply them to events in their
daily lives? Did someone hear the story in a far-off
land and then change it to a more appropriate setting
before recounting the story to family and neighbors?
Or did people in different areas instinctively invent
their own versions? Whatever the sequence, there are
often multiple versions of many folktales, including
those based on mathematical principles, illustrating
again the unversality of mathematics throughout dif-
ferent cultures.

Awonderful introduction to fractions is found in Two
Greedy Bears, a current-day retelling of an old Hun-
garian folktale wherein a fox helps two bears who are
trying to equally divide a cheese into two parts [13].
The fox cleverly keeps dividing the cheese into un-
equal parts, each time nipping off a piece of the larger
part, ostensibly to make the piece even, but always
managing to make one part larger. The fox ends up
leaving only two crumbs for the bears. But the pieces
were equal! A Middle Eastern version, "The Ape and
the Two Cats", describes how two cats steal a cheese,
and then ask an ape to divide it equally, since neither
cat trusts the other to divide the cheese equally. The
ape carries on in a similar fashion to the fox noted
above. He finishes off the cheese, and the cats con-
clude that there is "no wrongdoer who is not afflicted
by a greater wrongdoer" [14].

Amore sophisticated discussion of fractions can arise
readily from a story I heard as a child. It seems that
there was a father who left his herd of seventeen horses
to be divided among his three sons, the oldest to get
one-half, the middle to get one-third, and the young-
est to get one-ninth. A wise neighbor lends them his
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horse to make a total of eighteen. The sons receive
nine, six, and two horses, respectively. The neighbor
takes home his horse, and all are satisfied. Thus far ]
have found only Middle Eastern versions of this story
[15, 16].

Nasreddin, a colorful Middle Eastern character, is
working in his garden. A stranger comes along, en-
gages Nasreddin in conversation, and then asks how
much time it will take to walk to the next town.
Nasreddin does not answer. The stranger politely asks
again, and then shouts his question. But Nasreddin
still does not say a word. Exasperated, the stranger
turns toward the town and begins walking. Suddenly
Nasreddin exclaims, "Fifteen minutes." The stranger,
astonished, turns and asks why Nasreddin did not
say as much before. "Well", replies Nasreddin, "be-
fore, I did not know how fast you were planning to
walk!" [17]. Mathematical thinking at its best!

Then there is the perennial favorite, attributed to both
India and China. A man solves a problem for a rajah
or an emperor. In return he asks merely for grains of
rice, to be granted with the aid of a chessboard: one
grain the first day for the first square, two grains the
next day for the next square, four grains next, then
eight, and so on. The story makes a delightful intro-
duction to the powers of 2 [18].

The folktales cited above have been written down in
books, but were originally from the oral tradition.
Indeed, when I recently told the Ethiopian version of
"The Six Fisherman" to an audience of adults, a fel-
low in the audience told me how he and his family
told a similar story to strangers when asked how many
children were in their family. "I count eight!" was al-
ways the reply from one of the nine children. The
man was from a small town in Ethiopia.

Part of the delight in finding (and telling) folktales
which illustrate mathematical principles is in collect-
ing multiple versions. Each variation invariably re-
flects a way of life peculiar to a particular people or
country. [ invite correspondence from readers who
have such tales to tell:

Audrey Kopp,

P.O. Box 9502

Marina del Rey, CA 90295

<akopp@ucla.edu>
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On the Use of Intelligent Tutoring Systems for Teaching and Learning
Mathematics

M. D. C. Mendes, Department of Mathematics
M. G. V. Nunes, Department of Computer Science
C. A. Andreucci, Department of Mathematics
ICMSG University of Sao Paulo

INTRODUCTION

The idea of using computers in education is far from
new. However, the more naive attempts have not been
considering all the issues involved in such a complex
task. As with any alternative tool, the use of comput-
ers for educational purposes demands caution in or-
der to reach its goals; otherwise such effort can result
in negative outcomes only. While technological ad-
vances continuously bring new design alternatives,
conceptual problems which arise from the peculiari-
ties of this medium seem to be frequently dismissed
by computer scientists. In fact, no one can guarantee
the tutorial system effectiveness (i.e. the student learn-
ing efficacy) only by virtue of its technological state.
Students and human tutors have particular relation-
ships with computers and this fact cannot be ignored
during the design of tutorial systems. The real
system's educational role strongly depends upon the
roles of all other environmental components.

Computers cannot be seen as a panacea for educa-
tional problems. Some enthusiastics in education and
computing areas tend to see technologies as the solu-
tion to most educational problems. Indeed, educa-
tors should not transfer the task of building an effi-
cient automatic tutor to programers and computer
scientists under the risk, among more serious reper-
cussions, of the undermining of their own roles in the
educational process.

First of all it is imperative to precisely determine what
should be done by a computational assistant and what
should be left to the human tutor. Moreover, the way
in which the system is intended to reach its goals must
be carefully designed. Only then, through a controlled
experiment with students and human tutors, could
the computer tasks be judged with regard to their
learning goals.

This paper discusses some issues related to the ben-
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efits of tutoring systems and the care needed in the
domain of mathematics. First, we will argue for a re-
alistic learning environment where tutorial systems
could yeld positive results. The human tutors' and
students' roles will be also discussed. Second, we will
list and discuss some relevant and problematic tutor-
ing systems features. We conclude this paper by ad-
dressing some guidelines related to intelligent tutor-
ing systems design in the domain of mathematics.

INTELLIGENT TUTORING SYSTEMS AND THEIR ROLE IN
EDUCATION

Intelligent Tutoring Systems (ITSs) are education-pur-
pose computer programs that incorporate techniques
from the Artificial Intelligence (AI) community. They
date back to the early 1970s and derive from CAI
(Computer Aided Instruction) programs and differ
from the latter in the use of Al tools in order to know
what they teach, who they teach, and how to teach.
The use of Al techniques presupposes an intention of
producing human-based "good teaching,” since most
Al systems try to simulate human activities. Indeed,
many ITSs are supposed to replicate all the teacher's
activities. ITSs should neither be of naive Skinnerian
type linear programs nor completely take over from
the teacher. One useful role for ITSs ties in their po-
tential of working as intelligent tutoring assistants.
In this framework, Al techniques are welcome and
necessary as well.

The need for better quality teaching and for more ef-
fective results has always been publicized. Teaching
is a very complex task which demands knowledge,
ability, mature thought, intuition, self-confidence,
empathy, capacities of seeing and hearing, and the
capacity of motivating the students, among other hu-
man abilities.

Teaching is a special task since it involves the sharing
of human responsibilities in society. Children, young-



sters, and adults should have their individual natures
taken into account in this process. The teacher's be-
havior must then be adjusted to each student. Learn-
ing, on the other hand, is exclusive to the student, and
no one, least of all, the teacher can take over in that
process. The teacher's task is to provide for the
student's learning by creating good external condi-
tions for the development of the learning capacity.
Learning is then a subjective process and depends on
personal experiences. Two circumstances will deter-
mine its adequacy. The first is the motivation to study
the subject and overcome knowledge difficulties. The
second is the promotion of a safe environment for the
student in which he/she gets more independence by
overcoming his/her own reasoning and knowledge
limits.

Not being a substitute for the teacher, an ITS is a teach-
ing support tool, fitted to the necessities of revision,
diversification, flexibility, problem solving, progress
in content, etc. Moreover, in the classroom, while the
teacher's pace of presentation depends on his/her own
experience, through an ITS, the student can determine
the pace at which the knowledge should be presented.

As a computational assistant, an ITS would comple-
ment teaching activities which are not covered by the
teacher. ITS would be stimulating as long as it can be
different from the traditional classroom model. How-
ever, three main issues can endanger the function of a
computational assistant: its limited capacity for ex-
pansion, its set of teaching methods, and its inability
to understand students’ idiosyncrasies. These limita-
tions, nevertheless, can stimulate new questions,
analogies and corelations which are unusual in tradi-
tional settings. These questions can thus play a role
enhancing discussion inside the classroom.

The individual interaction with an ITS favors the
student's identification of his/her own mistakes -- a
challenge that could imitate a game-like interplay with
the machine. Moreover, the ITS can provide the
teacher with help in the learning by doing approach
which is so difficult to implement in classrooms. This
environment also favors the development of intuitive
reasoning such as the forecast of right answers. What
will be the result? What will be the way to reach it?
These questions will drive the procedures even if a
realistic student-system dialogue is impossible. The
sucess of the use of intuitive reasoning demands the
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use of analytical reasoning, which depends on the
possibility of succeeding and so on.

The teacher's role in such an environment mutates as
long as the students are more participatory, offering
the former opportunities to discuss concepts outside
the realm of the ITS. The teacher is also supposed to
indicate why, when and how much the computational
assistant should be used. The students’ productivity
offers the teacher parameters for the system feedback.

LEARNING MATHEMATICS THROUGH INTELLIGENT TUTORING
SYSTEMS

One of the most insistent problems in mathematics
education is the aversion that many students feel to-
wards this subject. Even students at graduate school
levels in mathematics or computing courses often have
problems related to the disciplines involving some
concepts they are supposed to already be acquainted
with. The literature has many studies concerning er-
rors made by students and the persistence of misun-
derstandings of such errors. There are also other stud-
ies reporting high rates of failure among students in
mathematics. This probably can be attributed to their
experiences in learning mathematics. The use of strat-
egies which minimize rote repetition of algorithms
would be of much value [1]. The repetition approach
probably leads the students to construct an improper
schema to solve the problems by themselves. Such
an improper approach is reinforced by doing a large
list of similar exercises with the same interpretation.

This is an important point that has to be thought of
attentively. The lack of understanding of a concept
may not be due to the concept itself. Itis often due to
an insurmountable barrier for the student which is
not the current concept, but a previous one which is a
prerequisite to that in question.

As teachers we cannot forget that before introducing
a new concept to the class we must have it clear in
our mind what adjacent ideas are also involved. For
example, the lack of understanding quantification is
often a barrier for students in developing a more so-
phisticated understanding of limits and continuity.
This could explain, for example, why students fail to
understand calculus and a really long list of other top-
ics.

This example illustrates the necessity for students to
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be able to express the prerequisites of the concepts
they are supposed to learn. It therefore seems that
finding information about the idiosyncratic learning
methods of understanding concepts we are going to
teach, how they are learned, and what we as teachers
can do to enhance the student's logical thought might
contribute to the goal of improving the students' un-
derstanding of advanced mathematical concepts.

We believe that an effective understanding of a math-
ematical concept depends on individual efforts to con-
struct these ideas by the students themselves. And it
is possible to detect, through research, the different
ways in which this can take place. We also believe
that it is possible to develop computer-implemented
tutors which are designed in order to stimulate the
constructions detected by the research, towards a rea-
sonable acquisition of mathematical concepts. It is
important to notice, however, that a mathematician
has his/her own understanding of the involved con-
cepts and it is up to the teacher to have the awareness
to avoid the bias of that understanding when the
analysis of students' styles of learning is made. It is
true that it is not that easy to completely avoid this
(although implicit) interference; however, an effort
should be made to minimize this as much as possible.

Dubinsky [1] pointed out that it is important to ob-
serve that any description of the concept must not only
be "mathematically wrong" or "mathematically cor-
rect" but must also embody all of the subtleties and
other styles used to understand the subject. We are
sure that all of these variables come to enrich the pro-
cess of analysis of the possible ways of learning, giv-
ing us many ramifications of the concept in question,
reflecting its varying role in the full spectrum of math-
ematical endeavours.

Of course there are several ways to describe a math-
ematical concept. The process of its acquisition can
be determined by observing students in the process
of construction of the concept. The students' successes
and failures can be important clues to the essence of
the ongoing learning process. An accurate analysis
of these components can reveal the defective points
that lead a student to make mistakes, which if appro-
priately explored, would certainly contribute to the
main goal teachers must have: to enhance the student's
performance as a problem solver.

As Dugdale pointed out [2], presently we have the
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possibility of using Al methodologies for the realiza-
tion of expert systems, which permit the use of com-
puters to be extended to fields that some years ago
only human experts could master. One such field
which could paricularly gain from this is mathemat-
ics. We do not refer here to those systems which pro-
vide a one-way teaching interaction, but those which
have a mixed-initiative teaching dialogue, which is
individualized to the needs of the student as an indi-
vidual. In this way, the analysis and the diagnosis
processes must be present as one of the main factors.
The intelligent tutoring system used to help students
in learning mathematics is supposed to act as an as-
sistant to the teacher. Its task is to support both stu-
dentand teacher in the teaching-learing r elationship.

Thus, it is a matter of great weight to have a coopera-
tive environment to help students in learning new
concepts and prerequisites as well. It is important to
emphasize that the ITS must lead the students to domi-
nate their own problems step by step, encouraging
them to become active, creative, and independent
learners. The ITS system may also allow the student
to choose a better way for himself/herself, resulting
in a rich environment for exploration. We believe that
learners will become more and more motivated and
confident; they can find out that the more they learn
the more they are able to do.

DISCUSSION

The questions that arise are if and how computational
assistance can help in teaching mathematics. The pre-
requisite barrier can be overcome by the modelling of
the students' knowledge by the system. But this is
not quite simple. The nature of the students' knowl-
edge to be considered and the rules to manage it are
still major problems of ITS design. Most ITSs use poor
measures of students' knowledge such as numbers for
category levels and quantity of right and wrong exer-
cises. More qualitative measures such as the students'
knowledge about the relationship between concepts
ought to be taken into account. An ideal student
model should be made up of information about the
history of the student-system dialogue, as well as in-
formation about the student's performance during
problem solving. In terms of knowledge representa-
tion formalisms, Al-based models combine a frame-
based schema with production rules and an inference
mechanism for deriving new information about the
student. However, the type of each information set



and the rules connecting them are far from simple to
provide.

However, it is also not simple to detect students' mis-
conceptions. The cause for the students’ errors can
rarely be localized to a unique concept. Indeed, the
method of relating concepts may be the problem fo-
cus. The reasoning method is supposed to supply the
relationship between the concepts that the student
detects in that domain. While the computational arti-
fact seems to be adequate, the qualitative nature of
the information remains open for further research in-
vestigation.

Probably the biggest problem in designing tutorial
systems in the domain of mathematics is the need to
handle reasoning. Beyond concepts, the student is
supposed to learn the underlying reasoning. There-
fore, handling the reasoning requires from the sys-
tem a description or formalization of the knowledge.
The computer should stimulate the student's reason-
ing, while deeper discussions should take place
among classmates and teachers. Once this is done,
another issue remains unsolved, which is the impor-

The computer should stimulate the student's reason-
ing, while deeper discussions should take place
among classmates and teachers.

tance of stimulating the student to develop his/her
own method of reasoning. A useful intelligent assis-
tant should be able to understand and classify that
method, or even learn a new one. However, students
have idiosyncratic methods of solving problems and
even sophisticated systems which know several meth-
ods cannot handle all the existing possibilities [4].
While human teachers are able to learn the students'
methods through dialogues with them, the use of
machine learning -- based approaches is in its early
stages [3].

The imposition of the teacher's way of reasoning can
be avoided through the use of different solution meth-
ods appropriately presented. Since it is not possible
to cover all styles of human thinking, we can start by
associating the methods with the concepts in order to
better present them to the student. However, only
the explicit representation of this knowledge within
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the system can guarantee its capacity of detecting stu-
dents' misconceptions and explaining its tutorial strat-
egies. A still open problem related to this is the need
for a dialogue where the student can explain his/her
way of reasoning. Not only is this useful to enhance
the system's knowledge about the student, but is also
crucial for the student to become conscious of his/
her own failures and successes. Here one should bear
in mind the limitations imposed by the computer in-
terface dialogues, especially natural language-based
ones -- which still do not allow for a cooperative dia-
logue with the student. In a cooperative environment,
the more active the participants are in the discussion,
the more productive and effective the learning pro-
cess is. The computer should stimulate the student's
reasoning, while deeper discussions should take place
among classmates and teachers.

As pointed out above, the computer should be part of
an environment together with the students and the
teacher. Assuch itis not completely true that the stu-
dent is the only ITS user. ITS should be able to inter-
act with teachers and students separately as special
and equally important users. The role of the teacher
as an ITS user must involve two issues: the system
validation and the teacher's evaluation of the student.

By system validation we mean the access to the sys-
tem knowledge bases (domain, student, tutorial) and
to the rules that control them during a special session
targeted to the teacher. As an expert for domain and/
or tutorial knowledge, the teacher should interrogate
the system in order to get a system radiography. The
underlying assumption is that, as a dynamic tool, an
ITS should be constantly adjusted, improved, and
corrected.

The evaluation of the student takes place during or
right after a student session in order to obtain infor-
mation about the student performance. This data in-
cludes the student model information and the system's
justifications for its decisions. System justification has
not been granted enough attention in ITS projects. We
cannot forget, however, that one of the most impor-
tant features -- indeed requisites - for an 'intelligent’
system is its capacity for explaining or talking about
itself. More important than the adequacy of its desig-
nation, this feature gives confidence to its users, the
lack of which can jeopardize the entire learning pro-
cess.
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CONCLUSIONS

A useful computational assistant should know many
presentation methods and know where and when they
should or should not be used. This ‘intelligent’ fea-
ture is mandatory in any ITS and can be supplied by
computer resources. In spite of this, there are some
useful guidelines which should be followed to achieve
successful learning. In mathematics, in particular,
software must be attractive and challenging. This does
not mean that it always must be camouflaged in games
or the like. We do believe that with the cooperation
of students and teachers, and only then, will it be pos-
sible to design useful assistant mathematical
softwares.

Idiosyncratic learning methods demand different sys-
tem characteristics. For example, some students pre-
fer to be constantly evaluated, while others would
prefer more complex evaluation methods; others like
to know the system's teaching methods, while others
would prefer not to see the system as a teacher. When
and how the internal system knowledge should be
presented can be a question of preference to the stu-
dent, but it is mandatory for the teacher who must
have access to the system in order to check its behav-
ior. So the teacher should point out what system in-
formation she or he would like to access and how this
information should be presented .

Students, on the other hand, play a very special role
in the tutoring system design. In addition to express-
ing their preferences, students can determine the
system's success or failure, for they really can say what
and how they have learned. While learning can be
difficult to measure, it is easy to preview that learn-
ing is almost impossible to achieve when the students
are left out of the decision process. The ways through
which the student should participate remain to be
further investigated. Cognitive aspects must be taken
into account in order to detect the students' idiosyn-
cratic methods of reasoning.

Based on the above ideas, we have designed and
implemented a system prototype aimed to support
elementary school students in learning plane geom-
etry. The system TEGRAM provides a set of activities
based on Tangram. The activities include measure and
shapes of plane figures and similarity, among others.
The student can use the system according to his/her
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own cognitive level. The system tries to evaluate the
user through a student model and proposes a new set
of activities made adequate to the detected level. Ini-
tial results point to positive student reactions. The
underlying approach is to allow the student to choose
his/her way to solve the problems, which is what
makes the system quite challenging. However, this
freedom does not prevent the system from suggest-
ing an appropriate sequence of activities for the stu-
dent, based on some knowledge about his/her per-
formance. We are on the point of reiterating that the
process of learning and teaching mathematics has
much to gain from the use of an intelligent tutoring
system as an assistant.
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Comments and Letters

Is protective mathematics humanistic? If so, then what?

Webster defines humanistic as the adjective correlate of humanism, thus relating to: la) classical letters, Ib)
critical spirit, 1c) secular, 2) humanitarianism, 3) attitudes centering on human interests and values.

Humanistic mathematics, as usually viewed, seems to fit Ib) and 3), and possibly Ic), but not la) or 2). Protec-
tive behaviors, such as conserving, guiding, guarding, or even reforming certain human or natural condi-
tions and attitudes, fit 2) and 3), and possibly Ib) and 1c), but not la). It seems to follow that mathematics
relevant to protection should be also humanistic, when used in a protective way. The usage of protection in
conjunction with mathematics may be new.

However, environmental mathematics is too broad, in that it may include short-term efficiency in exploiting
the environment, and also too narrrow, in that protection from organized attacks is not ordinarily included.
Briefly, protective mathematics should include specialties relevant to protection from pollution, flood and
drought, shortages of food, medicine, and drinkable water, habitat degradation, disease, inter-species attack,
criminal, military, or terrorist aggression, or technological faults and accidents. These must be firmly based
on science and technology, and are not normally considered as humanistic pursuits. Nor are the discovery
and measurement of relevant social-psychological parameters so considered. This is not merely a philosophi-
cal issue; the needed training in partial differential equations, stochastic processes, computer programming,
statistical estimation (and relevant sciences) typically leads to industrial employment, of contestable protec-
tive value.

Inclusion of protective mathematics under the humanistic rubric is not only definitionally appropriate, but
also would open up a valuable connection with social and economic concerns, in my opinion. Religious
denominations which concentrate on spirituality, and downplay protection from practical exigencies, tend to
lose public esteem, even if they attend to sin and doctrine.

Students interested in protective mathematics must be aware that the pay is academic (low), the working
hours are like those of engineers (long), the subject is detailed, and the techniques (special functions and
computing) are rather boring. Finally, careerjolting political and ideological attacks are not unusual.

Attraction of undergraduates tends to be limited to idealistic or brash individuals. Some topics of interest, in
my experience, are risk analysis, forensics, DNA, fires, traffic, gang dynamics, resource allocation, demogra-
phy, and geographic information systems. A short-term source of skilled personnel, not always suited to

protection, either in values or income /status expectations, would be displaced Cold War specialists from the
USA and Russia.

The US Bureau of Reclamation, the EPA, and environmental consulting firms deal with many of these issues
on a continuing basis. Some universities are beginning to take protective science and mathematics seriously,
more in specialized institutes than in teaching. Is this a matter for applications specialists only, or should
humanistic mathematicians try to intervene, to provide ethical or philosophical perspectives? Some theolo-
gians are moving on this, but those with little scientific or mathematical capacity are clueless. Planning and
executing a curriculum for protective mathematicians, as a variant of applied mathematics, would seem over-
due.

R. B. Leipnik
Professor of Nonlinear and Environmental Mathematics
University of California, Santa Barbara
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In your May 1996 issue you printed a short essay titled "On Mathematics in Poetry," by John S. Lew. Perhaps
Mr. Lew's explanation of Donne s poem "A Valediction Forbidding Mourning” is not quite accurate. I think
Donne is talking about a speaker who is saying goodbye to his wife or possibly his mistress. In the first stanza
he says they should part as quietly as virtuous men pass very mildly away.

Later in the poem, he compares himself and his wife to the two legs of a compass. He asserts that he will be
the roving foot whereas his wife will be the fixed foot. Thus whenever he makes a move, his wife will
respond with a move of her own and so will always be aware of his direction and movement. In addition, the
figure of the compass means that there will always be a connection between them, and it may suggest in
addition that God is the actual mover of the compass.

I think this explanation catches some of the magnificent abstraction of mathematics. I agree with Mr. Lew
that only John Donne has achieved such integration between mathematics and the "real world."

Charles B. Tinkham
Prof. of English and Philosophy
Purdue University
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