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The maximal regular ideal of some commutative rings

Emad Abu Osba, Melvin Henriksen, Osama Alkam, F.A. Smith

Abstract. In 1950 in volume 1 of Proc. Amer. Math. Soc., B. Brown and N. McCoy

showed that every (not necessarily commutative) ring R has an ideal M(R) consisting
of elements a for which there is an x such that axa = a, and maximal with respect to
this property. Considering only the case when R is commutative and has an identity
element, it is often not easy to determine when M(R) is not just the zero ideal. We
determine when this happens in a number of cases: Namely when at least one of a or
1 − a has a von Neumann inverse, when R is a product of local rings (e.g., when R is
Zn or Zn[i]), when R is a polynomial or a power series ring, and when R is the ring of

all real-valued continuous functions on a topological space.

Keywords: commutative rings, von Neumann regular rings, von Neumann local rings,
Gelfand rings, polynomial rings, power series rings, rings of Gaussian integers (mod n),
prime and maximal ideals, maximal regular ideals, pure ideals, quadratic residues, Stone-

Čech compactification, C(X), zerosets, cozerosets, P -spaces

Classification: 13A, 13FXX, 54G10, 10A10

1. Introduction

Throughout R will denote a commutative ring with identity element 1 unless
the contrary is stated explicitly, and the notation of [AHA04] will be followed.

1.1 Definition. An element a ∈ R is called regular if there is a b ∈ R such that
a = a2b. Let vr(R) = {a ∈ R : a is regular} and nvr(R) = R \ vr(R). An ideal
I of R is called a regular ideal if I ⊂ vr(R). The element a is called m-regular if
the ideal generated by a is a regular ideal. Let M(R) = {a ∈ R : a is m-regular}.
A ring R is called von Neumann regular ring (VNR ring) if R = vr(R).

This terminology is motivated in part by a theorem of Brown and McCoy in
which they show that M(R) is a regular ideal. Indeed it is the largest regular
ideal or R. See [BM50]. R may contain regular elements which are not m-regular,
as one can see easily that 3 ∈ vr(Z4) \ M(Z4). (As usual, Zn denotes the ring Z

of integers mod n for a positive integer n.)

If S ⊂ R, then Ann(S) denotes {a ∈ R : aS = {0}}, the set of maximal ideals
of R is denoted by Max(R), and their intersection J(R) is the Jacobson radical
of R. In [BM50], the following is also established.
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1.2 Lemma.

M(R�M(R)) = {0}.
M(R) ∩ J(R) = {0}.
M(R) ⊂ Ann(J(R)).
M(R) ∩Ann(M(R)) = {0}.

If R�J(R) is VNR-ring, then M(R) = {0} if and only if Ann(J(R)) ⊂ J(R).
If R satisfies the descending chain condition on ideals, then R = M(R) +

Ann(M(R)).
For each ideal I of R, let mI = {a ∈ I : a ∈ aI} = {a ∈ R : I +Ann(a) = R}.

ThenmI is called the pure part of I. An ideal I is called a pure ideal if I = mI. It
is clear that a ∈ mM for an M ∈ Max(R), if and only if Ann(a) is not contained
in M .
The following description of M(R) will be used frequently below.

1.3 Theorem. If R is not a von Neumann regular ring, then M(R) =
⋂

{mM :
M ∈ Max(R) and M 6= mM} is the intersection of the pure parts of those
maximal ideals M of R that are not pure.

Proof: If a /∈ M(R), then there is an x ∈ R such that ax /∈ vr(R). So by
Theorem 2.4 of [AHA04], there is an N ∈ Max(R) such that ax ∈ N \ mN . It
follows that N is not pure and a /∈

⋂

{mM :M ∈ Max(R) and M 6= mM}. Thus
⋂

{mM :M ∈ Max(R) and M 6= mM} ⊂ M(R).
If instead a ∈ M(R) and there is an M ∈ Max(R) and an x ∈ M \ mM ,

then ax ∈ mM and so as noted above, there is a b /∈ M such that bax = 0. So
ba ∈ Ann(x) which is contained in M because this maximal ideal in not pure.
But M is a prime ideal, so a ∈ M . Thus M(R) ⊂ mM . Hence M(R) ⊂

⋂

{mM :
M ∈ Max(R) and M 6= mM}. �

In this article, we determine when M(R) is not the zero ideal for a number of
classes of rings. In Section 2, we study rings in which at least one of a or 1 − a
has a von Neumann inverse. Section 3 is devoted to the study of products of local
rings (e.g., the ring Zn of integers modulo an integer n ≥ 2 and to Zn[i]). The
complicated conditions needed to describe when M(Zn[i]) 6= {0} hint at why it
may be quite difficult to describe when the maximal regular ideal of a finite ring is
nonzero. In Section 4, it is shown that the maximal regular ideal of a polynomial
or powers series ring is the zero ideal, and in Section 5, it is determined when
the maximal regular ideal of the ring of all continuous functions on a topological
space is nonzero.

2. Von Neumann local and strong von Neumann local rings

Recall from [AHA04] that R is called a von Neumann local (VNL) ring if
a ∈ vr(R) or 1− a ∈ vr(R) for each a ∈ R. It is easy to see that VNR rings and
local rings are VNL rings. R is called a strong von Neumann local (SVNL) ring if
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whenever the ideal 〈S〉 generated by a subset S of R is all of R, then some element
of S is in vr(R), or equivalently if 〈nvr(R)〉 6= R. Clearly every SVNL ring is a
VNL ring, but the validity of the converse remains an open problem. R is called
a Gelfand ring or a PM ring if each of its proper prime ideals is contained in a
unique maximal ideal. IfM is a maximal ideal of R, then OM denotes intersection
of all of the (minimal) prime ideals of R that are contained in M .

2.1 Lemma. Every VNL ring R is a Gelfand ring and if R is also reduced, then
mM = OM whenever M ∈ Max(R).

Proof: The first assertion is shown in [C84]. (Combine in that paper Propo-
sition 4.4, Theorems 3.2 and 2.4 with Proposition 1.1.) The second assertion is
shown in Proposition 3 of [H77]. �

See also [DO71].
Next, we make use of Theorem 1.1 above.
In Theorem 2.6 of [AHA04] it is shown that R is an SVNL ring that is not a

VNR ring if and only if it has exactly one maximal ideal that fails to be pure.
Combining this with Theorem 1.3 yields:

2.2 Theorem. If R is an SVNL ring that is not a VNR ring, then it has a unique
maximal N that is not pure. Moreover M(R) = mN = OM .

Proof: The first assertion is part of Theorem 2.6 of [AHA04], and the second is
immediate from Theorem 1.3 and Lemma 2.1. �

Next we begin to exhibit a class of rings whose maximal regular ideal is not
the zero ideal.

2.3 Lemma. If R and S are commutative rings with identity whose direct sum
R ⊕ S is a VNL ring, then at least one of R and S is a VNR ring.

Proof: Suppose instead that there are r ∈ R and s ∈ S that are not von
Neumann regular. Then neither (r, 1 − s) nor (1, 1) − (r, 1 − s) = (1 − r, s) are
von Neumann regular in R ⊕ S, so the conclusion follows. �

2.4 Theorem. If R is a VNL ring that is neither local nor a VNR ring, then
M(R) contains fR for some idempotent f not in {0, 1} and hence is not the zero
ideal.

Proof: By Theorem 4.6 of [AHA04], a nonlocal VNL ring has an idempotent
e /∈ {0, 1}, so R = eR ⊕ (1 − e)R. Thus by Lemma 2.3, exactly one of these two
summands must be a VNR ring, which is a nonzero ideal included in M(R). �

3. Products of local rings

In this section, it will be determined when a direct product of local rings has
a nonzero maximal regular ideal.
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It is an exercise to show that a local VNR ring is a field. Moreover, if M is
the unique maximal ideal of R, and a = am ∈ mM for some m ∈ M , then a = 0
since 1− m in invertible. Because each element of M(R) is in mM , we conclude
from Theorem 1.3 that:

3.1 Lemma. If R is a local ring, then R is a field or M(R) = {0}.

3.2 Lemma. If R =
∏

i∈I Ri is the direct product of rings Ri with identity, then

(1) (ri)i∈I ∈ vr(R) if and only if ri ∈ vr(Ri) for each i ∈ I, and
(2) (ri)i∈I ∈ M(R) if and only if ri ∈ M(Ri) for each i ∈ I.

Proof: (1) (ri)i∈I ∈ vr(R) if and only if there exists (xi)i∈I ∈ R such that
(ri)i∈I = ((ri)i∈I)

2 (xi)i∈I = (r
2
i xi)i∈I if and only if ri = r2

i xi for each i ∈ I if
and only if ri ∈ vr(Ri) for each i ∈ I.
(2) Suppose that (ri)i∈I ∈ M(R). Pick rk ∈ Rk and let x ∈ Rk.

Define xi =
{

x i=k
0 i6=k

.

Now, (ri)i∈I(xi)i∈I ∈ vr(R), so there exists (yi)i∈I ∈ R such that (ri)i∈I(xi)i∈I

= ((ri)i∈I(xi)i∈I)
2(yi)i∈I = ((rixi)

2yi)i∈I . In particular rkx = (rkx)2yk. Thus
rk ∈ M(Rk). Conversely, suppose that ri ∈ M(Ri) for each i ∈ I. Let (xi)i∈I ∈ R.
Then rixi ∈ vr(Ri) for each i ∈ I, which implies that there exists yi ∈ Ri such
that rixi = (rixi)

2yi for each i ∈ I. Hence (ri)i∈I(xi)i∈I = ((rixi)
2yi)i∈I =

((ri)i∈I(xi)i∈I)
2(yi)i∈I which implies that (ri)i∈I ∈ M(R). �

It follows that:

3.3 Theorem. If R =
∏

i∈I Ri is the direct product of rings Ri with identity,

then M(R) =
∏

i∈I M(Ri).

Because a local VNR ring is a field and if R is a field, then R = M(R), it
follows that:

3.4 Corollary. If R =
∏

i∈I Ri is the direct product of local rings Ri with

identity, then M(R) 6= {0} if and only if Rj is a field for at least one j ∈ I.

In Chapter VI of [M74], it is shown that every finite commutative ring with
identity element is a direct product of local rings. Hence we have

3.5 Theorem. If R is finite, then M(R) 6= {0} if and only if R is a direct
product of local rings at least one of which is a field.

Much more is said about finite local rings in [M74]. If R is such a ring then
its unique maximal ideal M is nilpotent andM(R) = {0} by Lemma 3.1. Indeed,
every element of R is either nilpotent or invertible.
Next, some examples are considered.
It is well known that if n > 1 is in Z, then Zn is local if and only if n = pk for

some prime p and positive integer k, and is a field if and only if k = 1.
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3.6 Corollary. If n =
∏s

i=1 pki

i is the prime power decomposition of the positive

integer n, then Zn is the direct product of the local rings Z
p

ki

i

and M(R) 6= {0}

if and only if kj = 1 for at least one j ∈ {1, . . . , s}.

3.7 Definition. If i2 = −1 and Z[i] = {a+ ib : a, b ∈ Z} is the ring of Gaussian
integers, then for any integer n > 1, Zn[i] = Z[i]/nZ[i] = {a + ib : a, b ∈ Zn}
denotes the ring of Gaussian integers mod n.

3.8 Lemma. (a) If an element a+ ib of Zn[i] is nilpotent [resp. idempotent]

then a2 + b2 is nilpotent [resp. idempotent] in Zn.

(b) a+ ib is a unit in Zn[i] if and only if a2 + b2 is a unit of Zn.

(c) (a+ ib)2 = a+ ib is a nontrivial idempotent if and only if a2 − b2 = a and
2ab = b in Zn and neither a nor b is zero in Zn.

Proof: (a) If a + ib is nilpotent, then so is (a − ib)(a + ib) = a2 + b2 because
complex conjugation is an automorphism of Zn[i]. The proof for idempotents is
similar.
(b) follows because (a− ib)(a+ ib) = a2+ b2 and any divisor of a unit is a unit.
(c) is an exercise. �

As in Corollary 3.6, if n =
∏s

i=1 pki is the prime power decomposition of the
positive integer n, then Zn[i] is the direct product of the rings Z

p
ki

i

[i]. So by

Theorem 3.3,M(Zn[i]) =
∏s

i=1 M(Z
p

ki

i

[i]) 6= {0} if and only if at least one of the

ideals in this latter product is nonzero. This motivates the question:

(∗) If p and k are positive integers and p is prime, when is M(Zpk [i]) 6= {0}?

While it is true that Zn is a local ring whenever n is a power of a prime, this
is not the case for Zn[i] as will be shown next. Recall that if a ring R is finite,
then R is local if and only if its only idempotents are 0 and 1 (which are called
trivial idempotents).

3.9 Theorem. If m = pk for some prime p and positive integer k, then Zm[i] is
local if and only if p = 2 or p ≡ −1(mod 4).

Proof: We will show that if a+ ib is a nontrivial idempotent of Zm[i], then

(i) 2a ≡ 1(mod pk), and

(ii) there is a c such that c2 ≡ −1(mod pk).
To see (i), recall from Lemma 3.8 that if a + ib is an nontrivial idempotent,

then a2 − b2 = a and 2ab = b in Zm and neither a nor b is 0(mod pk). This latter

equation says b(2a − 1) ≡ 0(mod pk). By Lemma 3.8, a2 + b2 is an idempotent
in Zm and hence is congruent to 0, so if p | b, then p | a. It follows that p2 | b

because 2ab = b. A routine induction yields pk | b and hence that b ≡ 0(mod pk);
contrary to the assumption that a+ ib is a nontrivial idempotent. Hence p is not
a divisor of b, i.e. b is a unit in Zm, but b(2a − 1) ≡ 0(mod pk). So (i) holds.
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This shows that there are no nontrivial idempotents in Z2k [i]. So this ring is lo-
cal and is never a field because it contains the nonzero nilpotent ideal (1+i)Z2k [i].
Thus M(Z2k) = {0} for all k.

Assume next that p is odd and note that by (i) and its proof (2b)2 = 4(a2−a) ≡

(2a)2 − 2(2a) = (pk + 1)2 − 2(pk + 1) ≡ −1(mod pk). So c = 2b is the solution
of the equation in (ii). Thus Zm[i] has a nontrivial idempotent exactly when the

equation in (ii) has a solution in which case 1
2 + i c

2 is such an idempotent.

It is noted in Chapter 5 of [L58] that for p odd, the congruence c2 ≡ −1(mod pk)

has a solution, i.e. −1 is a quadratic residue mod pk, when p is odd if and only if
it has one for k = 1. It is shown that −1 is a quadratic residue mod p if and only
if p ≡ 1(mod 4). This completes the proof of the theorem. �

For a more thorough discussion of the topic of the last paragraph, see Sec-
tion 5.8 of [L58].

3.10 Corollary. If p is an odd prime, then Zp[i] is a VNR ring.

Proof: If p ≡ −1(mod 4), then Zp[i] is a field because by Theorem 7.2 of [L58],

the congruence a2 + b2 ≡ 0(mod p) has no solution.

Assume next that p ≡ 1(mod 4). It follows by Theorem 3.9 that Zp[i] is not

local, thus Zp[i] (which has p2 elements) is product of exactly two local rings,
each isomorphic to Zp. Hence Zp[i] is isomorphic to Zp × Zp a product of two
VNR rings. �

3.11 Corollary. If m = pk for some odd prime p and positive integer k, then
M(Zm[i]) 6= {0} if and only if k = 1.

Proof: As noted in the proof of Theorem 3.9,M(Z2k [i]) = {0} for all k. By the
last corollary, if p is an odd prime and k = 1, then M(Zm[i]) 6= {0}.

Now if k > 1 and p ≡ −1(mod 4) or if p = 2, then by Theorem 3.9, Zm[i] is a
local ring which is not a field. So M(Zm[i]) = {0} by Lemma 3.1.

If k > 1, p ≡ 1(mod 4), and a+ib is a nonunit of Zm[i], then a2+b2 ≡ 0(mod p).
If p | a, or p | b, then p divides the other, so p | (a+ ib). Thus a+ ib is a nonzero
nilpotent element of Zm[i] since k > 1. If, instead p fails to divide a or b, then it
is easy to verify that p(a + ib) is a nonzero nilpotent in Zm[i]. Thus no nonzero
nonunit of R can be m-regular, and the existence of the nonzero nilpotent ideal
pR shows that no unit of Zm[i] can be m-regular. HenceM(Zm[i]) = {0} and the
proof is complete. �

In summary we have using Theorem 3.3 and the above:

3.12 Corollary. If n =
∏s

i=1 pki

i is the prime power decomposition of the posi-

tive integer n, then M(Zn[i]) 6= {0} if and only if pj is an odd prime and kj = 1
for at least one j ∈ {1, . . . , s}.
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4. Polynomial and power series rings

For each ring R, we write the polynomial ring as R[x] = {
∑n

i=0 aix
i : ai ∈

R} and the power series ring by R[[x]] = {
∑∞

i=0 aix
i : ai ∈ R} where ad-

dition is coefficientwise, and in each case (
∑

aix
i)(

∑

bjx
j) =

∑

ckxk, where

ck =
∑

i+j=k aibj . The coefficient of x
k in c(x) =

∑

ckxk is denoted by ck. Both
of these rings are commutative and have an identity. The next lemma is well
known. See the first set of exercises in [AM69] and Section 1 of [B81].

4.1 Lemma. (a) u(x) is invertible in R[x] if and only if u0 is invertible and

the coefficient of each nonzero power of x is nilpotent.
(b) u(x) is invertible in R[[x]] if and only if u0 is invertible in R.

Note that if e2 = e is an idempotent, then (1− 2e)2 = 1, so:

4.2 Lemma. If e is an idempotent, then (1− 2e) is a unit of R.

We combine these two lemmas to obtain:

4.3 Lemma. If a(x) is an idempotent in R[x] or R[[x]], then a(x) = a0 ∈ R.

Proof: If a(x) =
∑∞

i=0 aix
i and a(x) = (a(x))2, then

∑

i+j=n aiaj = an for

n = 0, 1, 2, . . . . If n = 0, then a0 = a2
0, so (1− 2a0) is a unit by the last lemma.

Equating coefficients of x yields a1(1 − 2a0) = 0, which implies that a1 = 0.
Doing the same with the coefficients of x2 yields a2(1− 2a0) = −a1a1 = 0, which
implies that a2 = 0. Proceeding inductively, if a1 = a2 = · · · = an−1 = 0, then
an(1 − 2a0) = −

∑

i+j=n aiaj = 0. Thus an = 0 for each n ≥ 1 and hence

a(x) = a0 ∈ R. �

We now characterize von Neumann regular elements in R[x] and R[[x]]. In the
proof of the next theorem, we need the fact that if a is a von Neumann regular
element of a commutative ring, then there is unit u such that a2u = a, and hence
that au is an idempotent. See, for example [AHA04].

4.4 Theorem. Let a(x) =
∑n

i=0 aix
i. Then a(x) is von Neumann regular in

R[x] if and only if a(x) is a product of a von Neumann regular element in R and
a unit in R[x].

Proof: If a(x) ∈ vr(R[x]), then there exists a unit u(x) =
∑m

i=0 uix
i ∈ R[x]

such that a(x) = (a(x))2u(x). Hence by Lemmas 4.1 and 4.3, we have
(iii) a(x)u(x) = a0u0 = (a0u0)

2 and
(iv)

∑

i+j=k aiuj = 0 for k = 1, 2, 3, . . . , n.

By Lemma 4.1, uj is nilpotent if j ≥ 1 and by the equation in (iv) for

k = 1, a1 = −u−1
0 a0u1, which implies that a1 is nilpotent. Similarly, a2 =

−u−1
0 (a0u2+a1u1), which implies that a2 is nilpotent. Proceeding inductively, if

a1, a2, . . . , an−1 are nilpotents, then an = −u−1
0

∑

i+j=n aiuj . So ak is nilpotent
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for each k ≥ 1, while a0 ∈ vr(R) and a(x) = a(x)a(x)u(x) = a(x)a0u0. Let
v(x) = u0+a1u

2
0x+a2u

2
0x

2+ · · · and note that it is a unit of R[x] by Lemma 4.1.
Then:

a(x) =

n
∑

i=0

aia0u0x
i = a2

0u0 + a1a0u0x+ a2a0u0x
2 + · · ·

= a2
0u0 + a1a

2
0u

2
0x+ a2a

2
0u

2
0x

2 + · · · = a2
0v(x)

is the product of an element of vr(R) and a unit of R[x].
The converse is clear. �

A similar argument will establish:

4.5 Theorem. If a(x) =
∑∞

i=0 aix
i, then a(x) is von Neumann regular in R[[x]]

if and only if a(x) is a product of a von Neumann regular element in R and a
unit in R[[x]].

By the last two theorems, xa(x) ∈ vr(R[x]) implies a(x) = 0, so we conclude
this section with:

4.6 Corollary. For each ring R, M(R[x]) = {0} and M(R[[x]]) = {0}.

5. The ring C(X)

All topological spaces X are assumed to be Tychonoff spaces, βX the Stone-
Čech compactification of X and C(X) will denote the algebra of continuous real-
valued functions under the usual pointwise operations. For each f ∈ C(X), we
denote the zeroset of f by Z(f) = {x ∈ X : f(x) = 0}, and the cozeroset
coz(f) = X − Z(f). A point p ∈ X such that for every f ∈ C(X), f(p) = 0
implies p ∈ intZ(f) is called a P -point , and X is called a P -space if each of its
points is a P -point. If x ∈ βX, let Mx = {f ∈ C(X) : x ∈ clβX Z(f)} and
Ox = {f ∈ C(X) : x ∈ intβX [clβX Z(f)]}. The notation and terminology of
[GJ76] is used. In this section we will characterize m-regular elements in C(X),
we will find for what spaces X, M(C(X)) contains non zero elements.
Recall from Section 2 that R is a VNL ring if for each a ∈ R, one of a or 1− a

is von Neumann regular.
The next proposition is established in [AHA04] and in [GJ76].

5.1 Proposition. (a) C(X) is a VNR ring if and only if X is a P -space if and
only if every Gδ-set of X is open.

(b) C(X) is VNL ring if and only if at most one point of X is not a P -point
(in which case X is said to be essentially a P -space).

The next simple lemma will be used below.
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5.2 Lemma. If f ∈ vr(C(X)), then Z(f) is clopen.

Proof: As is noted just above Theorem 4.4, there is a unit u in C(X) such that
f = f(fu) and fu is idempotent. Because the zeroset of an idempotent is clopen,
the conclusion follows. �

Thus we obtain:

5.3 Theorem. A function f is in M(C(X)) \ {0} if and only if coz(f) is a
nonempty clopen P -space.

Proof: Suppose that f ∈ M(C(X)) \ {0}, then f ∈ vr(C(X)) and so coz(f)
is a nonempty clopen set by Lemma 5.2. Let G =

⋂∞
n=1 Gn be a Gδ-set of X

contained in coz(f) and suppose x ∈ G. For each n there exists gn ∈ C(X) such
that gn(x) = 0 and gn(X \Gn) = 1. Let g =

∑∞
n=1(|gn| /2

n), then g ∈ C(X) and
Z(g) = G ⊂ coz(f). Since fg ∈ vr(C(X)), its zeroset is clopen by Lemma 5.2. So,
because Z(fg) = Z(f)∪Z(g), Z(f)∩Z(g) = ∅, and Z(f) is clopen, it follows that
Z(g) and hence coz(g) is clopen. Thus, by Proposition 5.1, coz(f) is a P -space.
Suppose conversely that coz(f) is a nonempty clopen P -space. Then C(X) is

the direct product of C(coz(f)) and C(Z(f)), so f ∈ M(C(X)) \ {0}. �

5.4 Corollary. M(C(X)) 6= {0} if and only if X contains a nonempty clopen
P -space.

By making use of Theorem 1.3, we can describe M(C(X)) more precisely.

If Y is a subset of X, we let OY =
⋂

y∈Y Oy. Let P (X) be the set of all

P -points in X, then it is clear that OX−P (X) =
⋂

y/∈P (X)O
y ⊆ vr(C(X)) and so,

OX−P (X) ⊆ M(C(X)). For each x ∈ βX, mMx = Ox, using this together with
Theorem 1.3 above we conclude that:

5.5 Corollary. M(C(X)) = OX−P (X) for any space X.

We conclude with an interesting example.

5.6 Example. Let X1 = (0, 1) with its usual topology and X2 = N with its

discrete topology. Let X = X1
⊕

X2 and define f(x) =
{

0 x∈X1

1 x∈X2

, then f ∈

M(C(X)) \ {0}, while C(X) is not a VNR ring.
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