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Abstract: The liver plays a vital role in biotransforming and extricating xenobiotics and is 

thus prone to their toxicities. Short-term administration of carbon tetrachloride (CCl
4
) causes 

hepatic inflammation by enhancing cellular reactive oxygen species (ROS) level, promoting 

mitochondrial dysfunction, and inducing cellular apoptosis. Curcumin is well accepted for its 

antioxidative and anti-inflammatory properties and can be considered as an effective therapeu-

tic agent against hepatotoxicity. However, its therapeutic efficacy is compromised due to its 

insolubility in water. Vesicular delivery of curcumin can address this limitation and thereby 

enhance its effectiveness. In this study, it was observed that both liposomal and nanoparticu-

lated formulations of curcumin could increase its efficacy significantly against hepatotoxicity 

by preventing cellular oxidative stress. However, the best protection could be obtained through 

the polymeric nanoparticle-mediated delivery of curcumin. Mitochondria have a pivotal role in 

ROS homeostasis and cell survivability. Along with the maintenance of cellular ROS levels, 

nanoparticulated curcumin also significantly (P,0.0001) increased cellular antioxidant enzymes, 

averted excessive mitochondrial destruction, and prevented total liver damage in CCl
4
-treated 

rats. The therapy not only prevented cells from oxidative damage but also arrested the intrinsic 

apoptotic pathway. In addition, it also decreased the fatty changes in hepatocytes, centrizonal 

necrosis, and portal inflammation evident from the histopathological analysis. To conclude, 

curcumin-loaded polymeric nanoparticles are more effective in comparison to liposomal cur-

cumin in preventing CCl
4
-induced oxidative stress–mediated hepatocellular damage and thereby 

can be considered as an effective therapeutic strategy.

Keywords: reactive oxygen species, mitochondria, apoptosis, antioxidants, histopathology, 

Western blot

Introduction
Hepatotoxicity, harmful liver damage, is generally induced by different toxic chemi-

cals like alcohol, carbon tetrachloride (CCl
4
), aspirin, arsenic, diethylnitrosamine, etc. 

The liver plays a pivotal role in biotransforming and clearing these chemicals, and 

thus becomes susceptible to their toxicities. There are four stages of liver damage – 

inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Short-term administra-

tion of CCl
4
 causes hepatic injury, centrilobular necrosis, steatosis, and inflammation.1 

Since human liver metabolizes CCl
4
 like that of rodents, CCl

4
-induced liver injury in 

rats can be an appropriate model for chemical-induced liver injury. The biotransforma-

tion of CCl
4
 takes place in liver, mainly catalyzed by different isotypes of cytochrome 
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P450 such as CYP2E1, CYP2B1, CYP2B2, and CYP3A. In 

humans, CYP2E1 metabolizes at environmentally relevant 

concentrations, but, at higher concentrations, CYP3A makes 

a notable contribution in the breakdown of CCl
4
. Breakdown 

of CCl
4
 produces trichloromethyl (CCl

3
*) and trichlorom-

ethyl peroxy (CCl
3
OO*) radicals. These highly reactive 

radicals preferentially bind with membrane phospholipids of 

different subcellular organelles like endoplasmic reticulum, 

mitochondria, and golgi apparatus of hepatocytes and cause 

lipid peroxidation and disruption of intracellular calcium 

homeostasis, resulting in the production of other reactive 

oxygen species (ROS).2,3 Mitochondria, the powerhouse of 

the cell, function as the principal source of ROS, which in 

turn damages mitochondria by forming lipohydroperoxide in 

mitochondrial membrane. This damage of the mitochondrial 

membrane causes opening of mitochondria permeability 

transition pores, disruption of mitochondrial membrane 

potential, and hindrance in normal electron transport chain 

and oxidative phosphorylation. These alterations in turn 

accelerate the oxidative stress in the hepatocytes. Further-

more, the extensive mitochondrial damage releases cyto-

chrome c from mitochondrial membrane, which activates 

the caspase-mediated apoptotic death as well as cellular 

necrosis.

Curcumin (Cur) [diferuloylmethane] is a polyphenolic 

compound obtained from the rhizomes of Curcuma longa. 

Over the past few decades, extensive studies have been car-

ried out to explore different pharmacological effects of this 

polyphenol, which demonstrates excellent antioxidant, anti-

inflammatory, and anticarcinogenic properties.4–7 Despite 

having multiple medicinal benefits, poor gastrointestinal 

(GI) absorption and lower oral bioavailability of this partially 

water-soluble compound restrict its use for effective therapy.8 

Recent evidences show that heat-treated curcumin and its dif-

ferent water-soluble analogs can address the issue of stability 

and solubility in aqueous environment.9,10 However, the best 

bioavailability can be achieved through various drug delivery 

vehicles like nanoparticles, liposomes, micelles, etc, which 

have shown promising results by improving circulation time, 

increasing cellular permeability, and shielding the drug from 

metabolic degradation.11

Among the different drug delivery vehicles, liposomes 

and polymeric nanoparticles are considered the most ben-

eficial for their high entrapment efficacy for both hydropho-

bic and hydrophilic substances and sustained and precise 

drug targeting.12 Recently, the polymeric nanoparticles 

have emerged as an attractive alternative to liposomes. 

The versatility of particulate technologies has enabled the 

use of polymeric nanoparticle-based drug delivery systems 

as they have many different advantages such as lower 

particle size, desired pharmacokinetic profile, improved 

bioavailability, and oral route of administration. Among 

the different drug delivery systems available in the market, 

biodegradable polymer poly(d,l-lactide-co-glycolide) 

(PLGA) is most commonly used because of its excellent 

biocompatibility.13

The aim of this study was to formulate curcumin-loaded 

liposomal and polymeric nanoparticulated formulations to 

overcome its solubility issue and improve the therapeutic 

efficacy of curcumin. Here we have shown that although 

liposomal curcumin can provide some protective efficacy 

against CCl
4
-mediated acute liver damage, better protec-

tion could be obtained through polymeric nanoparticulated 

delivery of curcumin. It was also found that nanoparticulated 

formulation could prevent both lethal oxidative stress as well 

as extensive mitochondrial damage. Additionally, protection 

against apoptotic and necrotic cellular damage and hepato-

cyte cellular architectural disruption was best observed in 

the PLGA nanoparticle-treated rats.

Materials and methods
Materials
Bovine serum albumin (BSA), cholesterol, curcumin, dicetyl 

phosphate (DCP), 2,6-dichloroindophenol (DCIP), didode-

cyldimethylammonium bromide (DMAB), phosphatidyle-

thanolamine (PE), poly(d,l-lactide-co-glycolide) (PLGA) 

(Resomer RG 85:15H), phenazine methosulfate (PMS), and 

succinic acid were purchased from Sigma-Aldrich (St Louis, 

MO, USA). CM-H
2
DCFDA was obtained from Thermo 

Fisher Scientific (Waltham, MA, USA). Ethyl acetate (AR 

grade) was procured from Rankem Fine Chemicals (New 

Delhi, India). Chloroform and methanol were purchased 

from E Merck (Darmstadt, Germany). All other reagents 

were of analytical grade.

animals
Adult female Swiss albino rats (with body weight of 

~150 g), used for this study, were kept at laboratory condi-

tions (26°C–28°C, 60%–80% relative humidity, and 12 hours 

light/dark cycle) for 7 days prior to the start of treatment and 

provided with adequate food and drinking water. The study 

was approved by and carried out under the guidelines of the 

Animal Ethics Committee, India (registration number 147/99/

CPC SEA, India). The experiments were performed accord-

ing to the guidelines of “Principles of Laboratory Animal 

Care” (NIH publication number 85-23, 1985).
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Preparation of curcumin-loaded 
liposomes
Liposomes were prepared according to Gregoriadis and 

Ryman’s method14 by solvent evaporation method. In brief, 

PE, cholesterol, DCP, and curcumin (molar ratio 7:1:1:1) 

were dissolved in chloroform and methanol mixture (2:1, v/v) 

in a round-bottom flask. A thin film was prepared by evapo-

rating the organic solvent mixture, and the film was desic-

cated overnight for complete removal of the solvents. Next 

day, the film was suspended in phosphate-buffered saline 

(PBS, pH 7.2) and sonicated for 30 seconds in a probe-type 

sonicator. To separate the liposome from the unencapsulated 

curcumin, the suspension was ultracentrifuged for 1 hour at 

105,000× g (Sorvall WX Ultra 90; Rotor T-890, Thermo 

Fisher Scientific). To ensure the complete removal of unen-

trapped drug, the pellet was washed thoroughly with PBS 

and finally resuspended in 2 mL PBS.

Preparation of curcumin-loaded 
nanoparticles
Curcumin-encapsulated nanoparticles were prepared by a 

modified emulsion–diffusion evaporation method.15 In short, 

71 mg PLGA and 5 mg curcumin were dissolved in 5 and 

1 mL ethyl acetate, respectively. Then, both the solutions were 

mixed and added dropwise to an aqueous phase containing 

1% DMAB. The oil–water emulsion was stirred for 3 hours at 

room temperature, followed by homogenization for 5 minutes 

at 15,000 rpm (high-speed homogenizer; Polytron PT4000; 

Polytron Kinematica, Lucerne, Switzerland). To remove the 

organic solvent completely, the homogenized solution was 

stirred in a water bath at 40°C for 2 hours. Nanoparticles were 

separated by ultracentrifugation (Sorvall WX Ultra 90; Rotor 

T-890, Thermo Fisher Scientific) at 105,000× g for 1 hour. 

To completely remove the unentrapped curcumin from the 

nanoparticulated formulation, the pellet was washed twice 

with PBS and finally resuspended in 2 mL of PBS.16

characterization of curcumin-loaded 
liposomes and nanoparticles
Entrapment efficiency and in vitro release kinetics 
study
The entrapment efficiency of both the formulations was 

measured by spectrophotometry (Rayleigh, UV-2601 

spectrophotometer; Beijing Beifen-Ruili Analytical 

Instrument (Group) Co., Ltd., Beijing, People's Republic 

of China). The pellet of the liposomal solution obtained 

through ultracentrifugation was dissolved in 2 mL methanol 

overnight at 4°C. The same procedure was also followed 

for nanoparticles, where ethyl acetate was used instead of 

methanol. Finally, the amount of curcumin was measured at 

450 nm by using a standard curve. The percentage of drug 

entrapped was calculated by the following formula: 

 
 

Entrapment

efficiency (%)

Total amount of curcumin

in the p
=

eellet 

Initial amount of curcumin taken
×100

 

In vitro drug release study of curcumin from liposomes 

and nanoparticles was performed by direct dispersion method 

at 37°C and pH 7.4.17,18 In brief, a known quantity of both 

curcumin-loaded liposomes and nanoparticles were taken in 

45 mL of 10 mM PBS and each was divided into 45 micro-

centrifuge tubes (15 sets, each having three tubes). Then 

the tubes were kept at 37°C±0.5°C under constant stirring 

at 50 rpm. At different time intervals, one set of tubes were 

taken out, centrifuged at 105,000× g for 1 hour. Both the 

released and entrapped curcumin were measured at 450 nm, 

and a time versus cumulative drug release curve was plotted 

to understand the release kinetics of curcumin.

Morphological features of curcumin-loaded 
liposomes and nanoparticles
The size and morphological features of curcumin-loaded 

liposomal and nanoparticulated formulations were ana-

lyzed using an atomic force microscopic system (Pico plus 

5500 AFM; Agilent Technologies, Santa Clara, CA, USA). 

In brief, samples were deposited onto a mica sheet, dried 

for 30 minutes, and then scanned by microfabricated silicon 

cantilevers. Images were processed using Pico view 1.10.1 

software (Agilent Technologies). The histogram indicated 

the height of the sample from the mica sheet.19

Pharmacokinetics study of free curcumin, curcumin-
loaded liposomes, and nanoparticles
Eighteen female Swiss albino rats were divided in three 

groups, with each group containing six animals. Two groups 

of rats received free curcumin (8.98 µmol curcumin dissolved 

in 0.5 mL aqueous suspension containing 0.2% dimethyl 

sulfoxide (DMSO) or 22 mg/kg body weight) and nanopar-

ticulated curcumin (0.5 mL suspension contains 8.98 µmol 

curcumin or 22 mg/kg body weight) orally. The rats in the 

third group were administered liposomal curcumin intrave-

nously through tail vein at the same dose (0.5 mL suspension 

contains 8.98 µmol curcumin or 22 mg/kg body weight). They 

were fasted overnight before dosing. Animals had access to 

food and water only after 4 hours of drug administration. 
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Blood was collected into heparinized tubes by retro-orbital 

puncture at 15 and 30 minutes and 1, 2, 4, 10, 20, 25, and 30 

hours after administration of curcumin. Plasma was isolated 

from blood by centrifugation and stored at -20°C prior to high 

performance liquid chromatography (HPLC) analysis.20

HPLC was performed using an XBridge™ C
18

 column 

(4.6×250 mm, 5 µm particle size, Waters, Milford, MA, 

USA) with a mobile phase composed of acetonotrile-5% 

acetic acid (75:25 v/v) at a flow rate of 1.0 mL/min. The 

wavelength for detection was 450 nm, injection volume was 

50 µL, and analysis time was 10 min/sample.

The calculations were done using the Kinetic software 

(Kinetica 5.0, Thermo Fisher Scientific). The area under the 

curve (AUC) was calculated using the trapezoidal method.

stability of the curcumin-loaded liposomes and 
nanoparticles
Stability of curcumin-loaded liposomes and nanoparticles 

were studied according to change in their encapsulation effi-

ciency at two different temperatures, 37°C and 4°C. In short, 

known amounts of each the formulation were taken in 36 mL 

of 10 mM PBS. They were divided into 36 microcentrifuge 

tubes (two sets each with 18 tubes). These two sets were 

incubated at two different temperatures (37°C and 4°C). At 

predetermined time points (0, 1, 2, 7, 14, and 21 days), three 

tubes were taken out from both the temperatures for both the 

formulations and encapsulation efficacies were calculated as 

already described. Then, time versus encapsulation efficacy 

was plotted to determine the stability of the formulations.21

Induction of hepatotoxicity
Hepatotoxicity was induced in all the rats (except the normal 

control group) through a single subcutaneous (SC) injection 

of CCl
4
 (40% v/v in olive oil, 1 mL/kg body weight). Normal 

control animals were injected with a single dose of olive oil 

(1 mL/kg body weight). Free curcumin (8.98 µmol curcumin 

dissolved in 0.5 mL aqueous suspension containing 0.2% 

DMSO), empty and curcumin-loaded nanoparticles (0.5 mL 

suspension contains 8.98 µmol curcumin) were administered 

orally, while empty and curcumin-loaded liposomes (0.5 mL 

suspension contains 8.98 µmol curcumin) were injected into 

the tail vein 2 hours prior to CCl
4
 administration.

After 24 hours of CCl
4
 administration, animals were 

sacrificed, and blood and liver were collected.22 Serum was 

isolated from the blood, and different liver toxicity marker 

enzymes (serum aspartate transaminase [AST], alkaline phos-

phatise [AP], and serum alanine transaminase [ALT]) were 

measured using SGOT(ASAT) Kit (Reitman & Frankel's 

method); Alkaline Phosphatase Kit (Mod. Kind and King's 

method); SGPT(ALAT) Kit (Reitman and Frankel’s method) 

(Coral Clinical Systems, Goa, India).19 The liver was divided 

into two parts: one was fixed in 10% formalin solution for 

histopathological analysis, while the other part was utilized 

for preparation of mitochondrial and cytosolic extract.23

Preparation of mitochondria and 
submitochondrial particles
Conventional differential centrifugation method was chosen 

for isolation of liver mitochondria and submitochondrial 

particles according to the method of Navarro and Boveris.24 

All the biochemical studies were performed within 5 hours 

of mitochondrial isolation.

Preparation of cytosolic fraction
The cytosolic fraction from the liver was prepared by 

homogenizing the organ in 0.25 M sucrose solution, fol-

lowed by two-step centrifugation at 8,200× g and 105,000× g, 

respectively.25

Biochemical analysis and enzymatic 
studies
Mitochondrial rOs level
ROS level in mitochondrial fraction was analyzed spectrofluri-

metrically (LS 3B, PerkinElmer, Waltham, MA, USA) using a 

cell permeable probe, CM-H
2
DCFDA [5-(and-6)-chloromethyl-

2′,7′-dichlorodihydro-fluorescein diacetate acetyl ester].26 The 

values obtained in experimental groups were compared with 

the normal group, considering normal as 100%.

Mitochondrial lipid peroxidation
The conjugated diene/lipohydroperoxide formed in the mem-

brane reflects lipid peroxidation level. First, the mitochon-

drial membrane was extracted with chloroform–methanol 

(2:1, v/v) mixture, and then the lipohydroperoxide level was 

evaluated according to the method of Mandal et al.27

Mitochondrial membrane fluidity
Mitochondrial membrane fluidity was studied spectrofluri-

metrically by measuring the intensity of the fluorescence 

probe diphenyl hexatriene (DPH) both in parallel (I
II
) and 

perpendicular (I⊥) directions of the polarization of the excited 

light. Microviscosity (r) was calculated using the equation, 

r = (I
II 

- I⊥)/(I
II
 + 2I⊥).28

succinate dehydrogenase (sDh) and nicotinamide 
adenine dinucleotide (NaDh) oxidase activity
SDH and NADH oxidase activities were evaluated from 

liver submitochondrial particles. In brief, PMS-mediated 
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reduction of DCIP at different time points was measured 

to estimate SDH activity according to Reddy and Weber’s 

method.29 NADH oxidase activity depends on the oxidation 

of NADH at 340 nm.30

reduced glutathione (gsh) and other cellular 
antioxidants status estimation
Reduced glutathione level in cytosolic fraction was deter-

mined spectrophotometrically following the method of 

Davila et al.31 Superoxide dismutase (SOD) (EC 1.15.1.1) 

was assessed by detecting pyrogallol autoxidation according 

to Marklund and Marklund’s method.32 Catalase activity was 

determined by H
2
O

2
 consumption rate, and enzyme activity 

was expressed as the amount of H
2
O

2
 reduced/min/mg 

of protein.33 By measuring the rate of NADH oxidation 

spectrophotometrically at 340 nm, glutathione reductase 

(GR) was assayed.34 Glutathione-S-transferase (GST) and 

glutathione-6-phosphate dehydrogenase (G6PDH) activi-

ties were measured according to the methods of Maiti and 

Chatterjee35 and Ghosh et al,25 respectively.

Western blot analysis of i-NOs, caspase 3, caspase 9, 
and ParP
For immunoblotting analysis, the cytosolic fraction contain-

ing protease and phosphatidase inhibitor was first prepared, 

followed by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE). The proteins were transferred 

(15 V, 20 minutes) to a polyvinylidene fluoride membrane 

using semidry transfer apparatus (Transblot, Bio-Rad Labo-

ratories Inc., Hercules, CA, USA). After blocking with 4% 

BSA overnight, the membranes were incubated with primary 

inducible nitric oxide synthase (i-NOS), caspase 3, caspase 

9, and PARP antibodies. Alkaline phosphatase-conjugated 

secondary antibody was used. Bands were visualized by using 

Sigma premixed 5-bromo-4-chloro-3-indolyl-phoshate/nitro-

blue tetrazolium substrate solution.

statistical analysis
All the results were expressed as mean ± standard devia-

tion (SD) for five replicates. The significance of differences 

between mean values was calculated by Student’s t-test 

using GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, 

CA, USA), and it was considered significant only when 

P,0.05.

Results
characterization of nanoparticles
The physicochemical characteristics of a formulation deter-

mine the efficacy of the drug delivery vehicle. Investigation 

of the size and surface morphology of curcumin-loaded 

liposomes and nanoparticles by AFM revealed that the lipo-

somes are much larger in size (140±60 nm) in comparison 

to the nanoparticulated formulation of curcumin (35±9 nm; 

Figure 1 and Table 1). Both the particles were spherical in 

shape. The morphology was intact, no cracks and pores were 

observed, and no significant aggregation was noticed. The 

nanoparticles showed narrower size distribution in com-

parison to liposomes. The topological analysis showed that 

the heights of liposomes were more (4 nm) than that of the 

nanoparticles (2 nm). The encapsulation of curcumin was 

higher in liposomes (84%±3%) in comparison to nanopar-

ticles (72%±5%; Table 1).

Study of the in vitro drug release kinetics showed a 

burst in the release of approximately 37% of the drug in the 

first 20 hours in the case of nanoparticulated formulation, 

and after that a sustained release pattern was observed. The 

liposomal formulation, on the other hand, showed a steady 

release pattern till 48 hours (Figure 2).

Pharmacokinetics of free, liposomal, and nanoparticilated 

curcumin showed that free curcumin has very low bioavail-

ability in the plasma. Because of the intravenous injection, 

liposomal curcumin showed a high C
max

 value (3.3 µg/mL) 

at an early time point (15 minutes), which decreased signifi-

cantly with time (K
el
: 0.34 hour-1). In comparison, nanopar-

ticulated curcumin has shown a much higher AUC
(0–∞)

 value, 

with significantly lower K
el
 (0.11 hour-1) and with almost 

four times more bioavailability in comparison to liposomal 

curcumin (Figure 3 and Table 2).

Stability studies have indicated that both the 

formulations degrade at 37°C, whereas at 4°C both are 

stable (Figure 4).

effect of curcumin-loaded liposomes 
and nanoparticles in preventing hepatic 
toxicity
As subcutaneous administration of 40% CCl

4
 at 1 mL/kg  

body weight causes steatosis and fatty deposition in liver, 

the levels of three hepatocellular marker enzymes AP, 

AST, and ALT in serum were evaluated in different groups 

of animals (Table 3). A significant increase in these serum 

enzyme levels was observed in CCl
4
-treated group of rats 

as compared to normal rats. Free curcumin mixture and 

empty delivery vehicles (both liposome and nanoparticles) 

exerted no significant protection against hepatotoxicity.  

A significant protection was observed in the case of 

liposomal curcumin-treated animals, but the lowest 

toxicity was observed in nanoparticulated curcumin-treated 

animals.
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effect of curcumin-loaded liposomes 
and nanoparticles on the generation 
of mitochondrial rOs
CCl

4
 exerts its hepatotoxic effects by increasing the level 

of cellular ROS. The excess ROS generated in the cell 

further affects different subcellular organelles including 

mitochondria. Treatment of rats with CCl
4
 led to almost a 

threefold increase in mitochondrial ROS in comparison to 

the normal controls (Figure 5). Although free drug showed 

little or no protection, liposomal curcumin showed significant 

Figure 1 atomic force microscopic images of (A) curumin-loaded liposomes and (B) Plga-coated curcumin nanoparticles. 
Note: Topography indicates the height of liposomes and nanoparticles from the substratum, mica sheet.
Abbreviation: Plga, poly(d,l-lactide-co-glycolide).
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protection against CCl
4
-induced ROS development. How-

ever, the most promising effect was observed in those rats 

that were treated with nanoparticulated curcumin.

effect of curcumin-loaded liposomes and 
nanoparticles against oxidative damage 
of mitochondria and submitochondrial 
particles
Excess generation of ROS causes extensive mitochondrial 

damage by generating conjugated dienes as a result of lipid 

peroxidation and thereby reducing membrane microviscosity. 

The extent of mitochondrial damage was studied by measuring 

the mitochondrial diene formation (Figure 6), mitochondrial 

membrane microviscosity, and SDH and NADH oxidase 

activities (Table 4). CCl
4
 administration accelerated cellular 

diene formation in CCl
4
-treated control animals, thereby 

decreasing mitochondrial membrane potential. The free drug 

showed no significant effect in preventing ROS-mediated 

mitochondrial damage. Liposomal curcumin showed a sig-

nificant protective effect by preventing mitochondrial diene 

formation and thereby preserving mitochondrial membrane 

integrity – as evident from mitochondrial membrane viscosity. 

Studies on other mitochondrial marker enzymes like SDH 

and NADH oxidase also proved that liposomal curcumin 

could provide some protection (Table 4). However, the best 

mitochondrial protection could be obtained in rats treated 

with nanoparticulated curcumin.

effect of curcumin-loaded liposomes and 
nanoparticles on antioxidant status of the 
liver
The body has endogenous antioxidants to combat against 

excess ROS intrinsically. But during oxidative stress, the 

depletion of these cellular antioxidants takes place. GSH, 

the most important intracellular antioxidant, showed a 

marked reduction in CCl
4
-treated control animals. Other 

cellular antioxidants like SOD, catalase, G6PDH, GR, and 

GST showed the same trend. Free and liposomal curcumin 

showed no significant protection in preventing the depletion 

of antioxidants. But very promising results were found in the 

rats treated with nanoparticulated curcumin (Table 5).

Pathomorphology of liver section
Pathomorphology of normal rats (Figure 7A) revealed that 

hepatocytes were arranged in cords around hepatic vein form-

ing hepatic lobules. The portal tracts were also normal. The 

liver section of CCl
4
-injected rats showed marked hepatic 

damage, considerable fatty deposition in the cells along 

with partial periportal fibrosis (Figure 7B), massive portal 

inflammation, and centrizonal necrosis (Figure 7C). Similar 

tissue damage, including fibrosis and steatosis, was also 

evident in free curcumin-treated animals (Figure 7D and E). 

Treatment with liposomal curcumin led to commendable 

prevention of the damage, although some cells with fat 

deposition along with deformed cellular architecture were 

still observed in the histopathological analysis (Figure 7F). 

Liver sections from animals treated with nanoparticulated 

Table 1 Entrapment efficacy and mean particle size of curcumin-
loaded liposomes and nanoparticles

Sample name % encapsulation Mean particle  
size (nm)

curcumin-encapsulated  
liposome

84±3 140±60

curcumin-encapsulated  
nanoparticle

72±5 35±9*

Notes: results are expressed as mean ± sD. Mean particle size of curcumin-
encapsulated nanoparticles was compared with liposomal curcumin and showed 
significant difference (*P,0.01).
Abbreviation: sD, standard deviation.

Figure 2 In vitro release kinetics profile of liposomal and nanoparticulated 
curcumin.

Figure 3 Plasma concentration of curcumin after treatment with free, liposomal, 
and nanoparticulated curcumin.
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curcumin demonstrated the most efficient prevention against 

CCl
4 
administration, with cellular morphology almost com-

parable to normal rats.

Nitric oxide synthase 2 and intrinsic 
caspase pathway markers immunoblotting
Nitric oxide synthase 2, i-NOS, is one of the key markers 

of free-radical-mediated cellular damage. Administration 

of CCl
4 

increased the expression of i-NOS approximately 

sixfold (Figure 8). While free and liposomal curcumin could 

prevent this stress to a certain extent, nanoparticulated cur-

cumin showed a significant reduction (P,0.001) in i-NOS-

mediated cellular damage.

Mitochondrial damage triggered the intrinsic apoptotic 

pathway, which was evident from the upregulation of 

caspase 3 cleavage, elevated levels of cleaved caspase 9, and 

poly(ADP-ribose) polymerase (PARP) in CCl
4
-administered 

animals (Figure 8). Although liposomal curcumin showed 

some effect in preventing this apoptosis-mediated damage, 

the best protection was observed in nanoparticulated 

curcumin-treated tissue samples, where 2.5-fold lesser 

cleavage of caspase 3 took place. By preventing the cleavage 

of caspase 3, it also prevented further breakage of caspase 9 

and PARP-1, which was reflected in the effect of nanoparticu-

lated curcumin in preventing DNA damage and apoptosis.

Discussion
CCl

4
 is an effective hepatotoxic agent, and even a single 

exposure can promote severe liver toxicity, including necro-

sis and steatosis. Hence, CCl
4
 is widely used as a model for 

evaluating the hepatoprotective activity of new drugs or 

drug formulations.36,37 Our study suggested an enhancement 

of the efficacy of a traditional antioxidant, curcumin, when 

formulated with two delivery devices, liposome and nanopar-

ticle. Both liposomal as well as nanoparticulated curcumin 

have shown better competence in scavenging cellular ROS, 

maintaining cellular antioxidant enzyme levels, preventing 

mitochondrial damage and intrinsic apoptotic pathway, and 

averting i-NOS overexpression. Further evidence suggested 

the nanoparticulated formulation of curcumin to be more 

effective than free and liposomal curcumin in preventing 

CCl
4
-mediated liver damage.

Oxidative stress is a principal aspect of hepatic damage. 

Our group has previously demonstrated that galactose-

grafted liposome encapsulating an antioxidant can provide 

significant protection against CCl
4
-mediated fatty liver 

damage or steatosis.28 We have taken this study forward 

and compared the protective efficacy of curcumin-loaded 

polymeric nanoparticles with curcumin-loaded liposomes. 

Liposomes have several disadvantages for oral delivery as 

the lipid bilayer cannot withstand the harsh conditions in 

the GI tract. Since polymeric nanoparticles can be absorbed 

efficiently through the GI tract, the noninvasive oral delivery 

of polymeric nanoparticles is more advisable. Keeping our 

aim to deliver both the formulations through their best pos-

sible routes in this study, we delivered the curcumin-loaded 

Table 2 Pharmacokinetics parameters of free curcumin and curcumin-loaded liposomes and nanoparticles

Route of administration Free curcumin Liposomal curcumin Nanoparticulated curcumin

Oral Intravenous Oral

Dose (mg/kg b wt) 22 22 22
Cmax (µg/ml) 0.24±0.03 3.30±0.38 1.69±0.22
Tmax (h) 2 0.25 2
Kel (h

-1) 0.20 0.34 0.11

aUc0–∞ (µg/ml/min) 97.5 647.32 2,025.59
Frel (with respect to free curcumin) – 6.64 20.77
Frel (with respect to liposomal curcumin) – – 3.13

Note: Data for Cmax are represented as mean ± sD (n=6).
Abbreviations: Cmax, maximum concentration; Tmax, time at Cmax; Kel, elimination rate constant; aUc, area under the curve; Frel, relative bioavailability; b wt, body weight.

Figure 4 stability study of curcumin-loaded liposomal and nanoparticulated 
formulations at 4°c and 37°c.

°
°

°
°
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Table 3 effect of curcumin-loaded liposomes and nanoparticles on hepatic toxicity in ccl4-induced hepatic damage

Groups Alkaline phosphatase (KA units) Serum AST (IU/L) Serum ALT (IU/L)

Normal 34.5±1.9 112.5±6.3 37.8±3.6
ccl4 treated (a) 89.8±2.3** 247.1±7.9** 116.7±3.5**

a + empty liposome treated 79.8±4.3 242.83±7.5 111.5±4.3

a + empty nanocapsule treated 78.2±3.6 239.3±8.5 109.2±2.0

a + free cur treated 67.9±2.01## 205.8±5.8## 87.5±4.6#

a + liposomal cur treated 59.9±2.2## 176.1±7.9## 59.5±7.2##

a + nanocapsulated cur treated 48.3±1.2## 131.4±7.5## 48.5±3.7##

Notes: results of each group were expressed as mean ± SD of five animals. CCl4-treated controls were compared with normal animals (**P,0.001) and other experimental 
groups showed significant difference (##P,0.001 and #P,0.01) from the ccl4-treated control group (a).
Abbreviations: asT, aspartate transaminase; alT, alanine transaminase; sD, standard deviation.

Figure 5 Values of rOs in liver mitochondria of rats.
Note: ccl4-treated controls were compared with normal animals (***P,0.0001) and other experimental groups showed significant difference (###P,0.0001 and ##P,0.001) 
from the ccl4-treated control group (a).
Abbreviation: rOs, reactive oxygen species.

Figure 6 effect of liposomal and nanoparticulated cur on lipohydroperoxide level in rats liver mitochondria.
Note: ccl4-treated controls were compared with normal animals (**P,0.001) and other experimental groups showed significant difference (#P,0.01) from the ccl4-treated 
control group (a).
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liposomes intravenously and nanoparticulated formulation 

orally.

Curcumin has various biological activities. It has 

been reported to have antioxidative, anticarcinogenic, 

anti-inflammatory, and immunomodulatory properties, with 

insignificant toxicity.38–40 A number of medicinal proper-

ties of curcumin have already been reviewed extensively 

in recent years.41,42 But as curcumin is insoluble in water, it 

has very poor GI absorption and thereby low bioavailability. 

Recent studies have shown that drug delivery devices such 

as nanoparticles and liposomes offer a potential opportunity 

to overcome the challenges associated with insoluble drugs 

like curcumin.43 Studies herein have demonstrated that both 

the delivery devices (liposome and nanoparticle) are spheri-

cal in shape with small particle size and higher encapsula-

tion efficiency (Figure 1 and Table 1). The comparatively 

smaller particle size of nanoparticles (35 nm) over liposomes 

(140 nm) helps in better cellular uptake of the nanopar-

ticulated formulation. Moreover, pharmacokinetics studies 

show that nanoparticulated curcumin remains in the system 

for a much longer time than the liposome-loaded curcumin 

(AUC
0–∞ is higher and K

el
 is lower). Relative bioavailability 

of nanoparticulated formulation is almost four times higher 

than liposomal formulation (Figure 3 and Table 2). Also, 

the initial burst release of the nanoparticulated curcumin as 

compared to a steady release from liposome (Figure 2) may 

provide an added advantage to the nanoparticulated formula-

tion to combat the CCl
4
-mediated cellular damage.

CCl
4 
exerts its hepatotoxic effect through extensive ROS 

production. CCl
4
 is biotransformed by hepatic microsomal 

cytochrome P450 to produce toxic metabolites, trichlo-

romethyl (CCl
3
*) and trichloromethyl peroxy (CCl

3
OO*) 

radicals, which further trigger oxidative stress, cellular 

inflammation, and massive cellular damage. The mitochon-

drion is the bioenergetic and metabolic center of eukaryotic 

cells.36,44 The mitochondrion is the target as well as the source 

of ROS and peroxynitrite. CCl
3
* and CCl

3
OO* exhibit a 

strong affinity for membrane lipids of the cell and different 

subcellular organelles and generate lipohydroperoxide. The 

extensive formation of ROS and reactive nitrogen species 

within the mitochondria triggers the opening of mitochondrial 

membrane permeability transition pores, decrease of mito-

chondrial membrane fluidity, and collapse of mitochondrial 

membrane potential. This extensive mitochondrial damage is 

the critical step in liver injury.45,46 Mitochondrial outer mem-

brane permeabilization leads to the release of mitochondrial 

intermembrane protein cytochrome c into the cytosol. In the 

cytosol, cytochrome c binds to Apaf-1 and activates caspase 9,  

which triggers caspase 3-mediated apoptotic pathway.3 Our 

studies have shown that the mitochondrial lipohydroperox-

ide levels that increased significantly due to CCl
4
 admin-

istration were arrested by liposomal and nanoparticulated 

curcumin treatment. However, the best prevention was seen 

in nanoparticulated curcumin-treated animals (Figure 6). 

Prevention of mitochondrial damage was also evident from 

the levels of mitochondrial membrane microviscosity, ie, the 

fluidity of the membrane and mitochondrial marker enzymes, 

NADH oxidase, and SDH activity (Table 4). Because of 

the protection of the mitochondria and their membranes, 

the cytochrome c-mediated intrinsic apoptotic pathway was 

successfully arrested by treatment with nanoparticulated 

curcumin (Figure 8).

Mitochondrial damage by CCl
4
 further triggers exces-

sive production of other cellular ROS like superoxide (O
2
•), 

hydrogen peroxide (H
2
O

2
), and hydroxyl radicals (•OH) 

and causes cellular necrosis.47 Continuous interaction of 

these free radicals with different cellular components like 

protein, lipid, DNA, carbohydrates, and membrane gener-

ates various cellular adducts that cumulatively cause cel-

lular damage. The prime function of antioxidative defense 

Table 4 effect of curcumin-loaded liposomes and nanoparticles on rOs, NaDh oxidase, and sDh levels in rat liver mitochondria

Groups Membrane microviscosity  
([r°/r -1]-1)

NADH oxidase level (nmol  
of oxidized NADH/min/mg pr)

SDH activity (µL DCIP  
reduced/min/mg pr)

Normal 0.645±0.051 5.74±0.19 0.69±0.02
ccl4 treated (a) 0.337±0.059*** 7.17±0.76** 0.24±0.02***
a + empty liposome treated 0.329±0.067 7.09±0.69 0.24±0.02
a + empty nanocapsule treated 0.347±0.021 7.09±0.31 0.33±0.05
a + free cur treated 0.422±0.076 6.89±0.52 0.30±0.02
a + liposomal cur treated 0.497±0.065## 6.74±0.19 0.45±0.06###

a + nanocapsule cur treated 0.605±0.037### 5.92±0.32## 0.62±0.05###

Notes: results of each group were expressed as mean ± SD of five animals. CCl4-treated controls were compared with normal animals (***P,0.0001, **P,0.001) and other 
experimental groups showed significant difference (###P,0.0001 and ##P,0.001) from the ccl4-treated control group (a).
Abbreviations: rOs, reactive oxygen species; NaDh, nicotinamide adenine dinucleotide; sDh, succinate dehydrogenase; DcIP, 2,6-dichloroindophenol; sD, standard 
deviation; pr, protein.
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systems is suppression of generation of ROS, scavenging of 

ROS, clearance by neutralization, repairing and reconstitu-

tion of damage, and induction of antioxidant proteins and 

enzymes.48 Reduced glutathione (GSH) plays a critical role 

of coenzyme and participates in the removal of free radicals 

and peroxides, maintains membrane thiols, and also acts as 

a substrate for different antioxidant marker enzymes like 

glutathione peroxidase (GPx), GR, and GST.49 SOD, CAT, 

and GPx mutually constitute a supportive enzyme system 

of the first line of cellular defense against reactive oxidants 

by decomposing O
2
• and H

2
O

2
 to prevent the formation of 

more harmful hydroxyl and alkoxyl radicals.50 The decrease 

of all these antioxidant enzyme levels (Table 5) was due to 

extensive oxidative stress and higher ROS level (Figure 5) 

in the cellular system. Both liposomal and nanoparticulated 

curcumin have shown promising results against this oxidative 

stress by preventing the increase in ROS and maintaining 

cellular antioxidants balance.

Nitric oxide (NO) plays a crucial role as a vasodilator, 

neurotransmitter, and an antimicrobial agent in the normal 

body system.51 However, the role of NO in hepatic dam-

age remains controversial. Although some studies have 

shown that NO protects against CCl
4
-induced liver injury, 

a good number of studies have also shown excessive NO 

production by i-NOS causing extensive hepatocellular 

damage.52–55 The latter hypothesis supported our results 

in which i-NOS expression increased significantly in liver 

homogenate of CCl
4
-intoxicated group, which could be pre-

vented by the administration of nanoparticulated curcumin 

(Figure 8).

Portal inflammation and centrizonal necrosis are other 

most common effect of liver damage by CCl
4
. Hepatocytes 

comprise almost 70%–80% of the liver mass and include 

different cells like endothelial cells, stellate(Ito) cells, and 

mainly, Kupffer cells. Kupffer cells are the hot spot of 

hepatic inflammation as they are mainly involved in anti-

gen presentation and clearance of particulates from portal 

circulation. Initial tissue damage and focal tissue necrosis 

release proinflammatory cytokine, tumor necrosis factor-α, 

and interleukin-1, which may induce apoptosis or initiate 

inflammatory processes, leading to extensive liver damage.56 

Histopathological studies have shown that CCl
4
 administration 

extensively damages the liver cellular architecture, leading 

to centrizonal necrosis, portal fibrosis, and marked steatosis. 

This damage was prevented by liposomal and nanoparticu-

lated curcumin administration. However, the best protection 

was observed with curcumin nanoparticles (Figure 7). The 

downregulation of liver toxicity marker enzymes (namely, T
ab
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Figure 7 hematoxylin–eosin-stained liver section of normal and experimental rats.
Notes: (A) Olive oil-treated control (100×) showing normal liver architecture. ccl4-treated control animals showing partial portal fibrosis () (B) (100×) and a significant 
number of fat-deposited cells () along with portal inflammation and centrizonal necrosis () (C) (100×). (D) ccl4 + free cur-treated animals (100×) showing some 
deformed cellular architecture with a large number of fatty acid-deposited cells, which is much clear with a higher magnification (400×) (E). ccl4 + lipo cur treated (F) (100×) 
also showing some fat-deposited cells. (G) ccl4 + nano cur treated (100×), showing architecture similar to normal.
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Figure 8 Western blot showing expression of inflammatory modulator (i-NOS) and different intrinsic apoptotic pathway markers.
Notes: Fold changes of expression (measured by ImageJ software) have been shown along with the blot. control group (ccl4 treated) was compared with normal, and the 
value was significantly different where **P,0.001, ***P,0.0001, ##P,0.001, and ###P,0.0001 are significantly different from the CCl4-treated control group (a).
Abbreviation: i-NOs, inducible nitric oxide synthase.

β

AP, AST, and ALT) proved that a genuine protection can be 

provided by this nanoparticulated formulation (Table 3).

Conclusion
The results obtained strongly demonstrate the efficacy of 

nanoparticulated curcumin in preventing CCl
4
-mediated 

fatty liver damage or steatosis. Curcumin possesses excellent 

antioxidative and anti-inflammatory properties; however, 

because of low oral bioavailability, curcumin is not an 

effective drug against liver damage. Both liposomal as well 

as nanoparticulated formulations can increase the efficacy 

of curcumin many fold. However because of its small size, 

better cellular absorption, and longer persistence in the 

circulating system, curcumin-loaded nanoparticles can be 

considered as a promising therapeutic strategy against liver 

toxicity.
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