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Abstract
We study evolutionary dynamics in a population whose structure is given by two graphs: the
interaction graph determines who plays with whom in an evolutionary game; the replacement graph
specifies the geometry of evolutionary competition and updating. First, we calculate the fixation
probabilities of frequency dependent selection between two strategies or phenotypes. We consider
three different update mechanisms: birth-death, death-birth and imitation. Then, as a particular
example, we explore the evolution of cooperation. Suppose the interaction graph is a regular graph
of degree h, the replacement graph is a regular graph of degree g and the overlap between the two
graphs is a regular graph of degree l. We show that cooperation is favored by natural selection if b/
c > hg/l. Here, b and c denote the benefit and cost of the altruistic act. This result holds for death-
birth updating, weak selection and large population size. Note that the optimum population structure
for cooperators is given by maximum overlap between the interaction and the replacement graph
(g = h = l), which means that the two graphs are identical. We also prove that a modified replicator
equation can describe how the expected values of the frequencies of an arbitrary number of strategies
change on replacement and interaction graphs: the two graphs induce a transformation of the payoff
matrix.

Keywords
Evolutionary dynamics; evolutionary game theory; population structure; evolutionary graph theory;
replicator equation; cooperation

1 Introduction
Evolutionary game theory is a general description of evolutionary dynamics whenever the
fitness of individuals is not constant but frequency dependent (Maynard Smith 1982, Nowak
& Sigmund 2004, Nowak 2006). Many concepts of evolutionary game theory have their
equivalent formulations in mathematical ecology (May 1973, Hofbauer & Sigmund 1998). The
classical approach to evolutionary game dynamics is given by the replicator equation, which
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describes deterministic evolutionary dynamics in infinitely large populations (Taylor & Jonker
1978, Hofbauer et al. 1979, Zeeman 1980, Weibull 1995, Hofbauer & Sigmund 1998, 2003,
Nowak & Sigmund 2004). More recently there have been many investigations into stochastic
evolutionary game dynamics of finite populations (Nowak et al. 2004, Taylor et al. 2004, Wild
& Taylor 2004, Imhof et al. 2005, Traulsen et al. 2005, Antal & Scheuring 2006a, Antal et al.
2006b, Imhof & Nowak 2006, Traulsen et al. 2006a,b,c,d, Fudenberg et al. 2006).

Evolutionary graph theory (Lieberman et al. 2005, Ohtsuki et al. 2006) is a powerful new
method to study the effect of population structure or social networks on evolutionary dynamics.
This approach is based on the long standing interest of how spatial effects influence
evolutionary and ecological dynamics (Levin & Paine 1974, Nowak & May 1992, Ellison
1993, Durrett & Levin 1994, Hassell et al. 1994, Killingback & Doebeli 1996, Nakamaru et
al. 1997, 1998, Tilman & Karieva 1997, Szabó & Tőke 1998, van Baalen & Rand 1998, Eshel
et al. 1999, Liggett 1999, Irwin & Taylor 2001, Hauert et al. 2002, Szabó & Hauert 2002, Le
Galliard et al. 2003, Hauert & Doebeli 2004, Ifti et al. 2004, May 2006). Spatial games can
lead to evolutionary kaleidoscopes, deterministic chaos as well as the stable coexistence of
cooperators and defectors in the Prisoner's Dilemma (Nowak & May 1992, 1993). For games
on graphs we have found a very simple rule that specifies evolution of cooperation: if the
benefit-to-cost ratio of an altruistic act exceeds the average number of neighbors, b/c > k, then
selection on graphs favors cooperators (Ohtsuki et al. 2006). This phenomenon is called
‘network reciprocity’.

Here we extend our investigations of evolutionary graph theory by placing the members of a
population on the vertices of two graphs. The interaction graph, H, determines who-meets-
whom in an evolutionary game. The replacement graph, G, specifies evolutionary updating.
Both graphs have the same vertices. Each vertex is occupied by one individual. There are no
empty vertices. The population size and therefore the number of vertices of each graph is given
by N. The graphs H and G may differ in their edges. For the analytic calculations we only
consider (random) regular graphs, which are defined by the property that all vertices have the
same degree (= number of edges). The degrees of H and G are respectively given by h and g.
For analytical treatment we require g ≥ 3 throughout the paper.

The intersection of the sets of edges of graphs H and G defines the graph L. We only consider
situations where L is again a random regular graph. The degree of L is given by l. Note that l
cannot be larger than h or g. Therefore, we have l ≤ min{h, g}. Figure 1 shows two examples.

Note that our analytic methods can only deal with regular graphs. Therefore, in this paper we
restrict our attention to regular graphs. In a previous study, however, we have observed that
the analytic results for regular graphs are also good approximations for non-regular graphs,
such as random graphs and scale-free networks (Ohtsuki et al. 2006).

This paper is organized as follows. Section 2 describes our basic model. In Section 3 we study
stochastic game dynamics on replacement and interaction graphs for finite populations and
show numerical simulations for the Prisoner's Dilemma. These simulations further validate the
nature of the approximations used in our analytical treatment. Section 4 investigates replicator
dynamics on these graphs, which can be obtained by taking the infinite-population limit.
Discussion and conclusions are provided in Section 5.

2 The basic model
Let us consider a 2 × 2 game with two pure strategies, A and B. The payoff matrix of the game
is given by
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(1)

The entries represent the payoffs for the row player. Each individual uses either strategy A or
B. We do not consider mixed strategies.

Individuals play the game with all of their h neighbors in the interaction graph, H. These
interactions determine the total payoff, P, of each player. The fitness is given by

(2)

Here 0 ≤ w ≤ 1 represents the relative contribution of the game to fitness. If w = 1 then the
payoff is equal to fitness. This is the case of ‘strong selection’. If w = 0 then the game is
irrelevant for fitness; all players have the same fitness. This is the case of ‘neutral drift’.
Throughout this paper we study the case w ≪ 1, which is the limit of ‘weak selection’ (Nowak
et al. 2004).

Studying this limit can be justified in two different ways. First, in most real life situations we
are involved in many different games, and each particular game only makes a small contribution
to our overall performance. Second, weak selection leads to analytic insights which are not
possible for strong selection. Numerical simulations suggest that these results are usually good
approximations for larger values of w (Ohtsuki et al. 2006). When studying finite populations
in Section 3, we require that the population size, N, fulfills the inequalities N ≫ max{h, g} and
N ≪ 1/w (Traulsen et al. 2006b). For infinite populations, studied in Section 4, we take the
limit N → ∞, keeping w fixed (w ≪ 1).

The evolutionary dynamics are determined by the ‘update-rules’ which govern how the
population changes over time. As in previous papers (Ohtsuki et al. 2006, Ohtsuki & Nowak
2006a,b), we consider three different update rules:

• Birth-Death (BD) updating. An individual is chosen for reproduction proportional
to fitness; the offspring replaces at random one of the g neighbors on the replacement
graph.

• Death-Birth (DB) updating. A random individual is chosen to die; the g neighbors
of the replacement graph compete for the empty site proportional to their fitness.

• Imitation (IM) updating. A random player is chosen for updating his strategy; he
either adopts a strategy of one of the g neighbors in the replacement graph or remains
with his own strategy, proportional to fitness.

An elementary step of updating is an event where an individual is potentially replaced by
another individual (or where an individual potentially changes his strategy). Reproduction can
be genetic or cultural (Cavalli-Sforza & Feldman 1981, Boyd & Richerson 1985). Strategies
breed true: we do not explicitly consider mutations. But we calculate the probability that a
resident population is invaded and replaced by a mutant strategy.

The evolutionary outcomes are dependent on the updating rules. Our three updating rules are
only a small subset of the possible dynamics on graphs. For example, some rules might use
synchronous updating but others asynchronous updating (Nowak & May 1992, 1993, Nowak
et al. 1994). The BD, DB, and IM updating rules assume ‘fertility-selection’ where the payoffs
of the game affect the fertility (reproductive success) of players. However, one can also imagine
‘viability-selection’ where the payoffs affect the survival of players. For instance, in the score-
dependent viability model of Nakamaru et al. (1997, 1998) and Nakamaru & Iwasa (2005,
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2006), an individual is chosen to die according to his payoff (strictly speaking, a candidate is
randomly chosen and he can die according to his payoff) and then one of the neighbors takes
over the vacancy at random (while their so-called ‘score-dependent fertility model’
corresponds to our DB updating). This subtle change can lead to very different dynamics on
graphs. We will discuss the effect of different updating rules in Section 5.

3 Fixation probabilities for games on replacement and interaction graphs
One of the most important quantities in stochastic game dynamics is the fixation probability,
defined as the probability that a mutant invading a population of N − 1 resident individuals
will produce a lineage which takes over the whole population (Nowak et al. 2004, Taylor et
al. 2004, Imhof & Nowak 2006). We denote the fixation probability of strategy A in a B-
population by ρA. We denote the fixation probability of strategy B in an A-population by ρB.

The fixation probability of a neutral mutant is given by the inverse of the population size, 1/
N. If ρA > 1/N, then natural selection favors the fixation of strategy A.

In frequency-dependent selection, ρA > 1/N does not necessarily imply that ρB < 1/N (Nowak
et al. 2004). We are also interested in deriving conditions for ρA > ρB, which means that the
fixation of A is more likely than the fixation of B. Under recurrent but rare mutations, if ρA >
ρB then strategy A dominates the population more often than strategy B (Fudenberg et al.
2006).

To estimate the fixation probabilities we use diffusion theory (Kimura 1962, Crow & Kimura
1970, Ewens 2004). For analytical convenience we assume that the population size, N satisfies
N ≫ max{h, g} and N ≪ 1/w, where w ≪ 1 is the intensity of selection. Let xX denote the

global density of strategy X (=A or B). Let  be the probability that the number of A-
strategists increases (decreases) by one in an elementary step of updating. These probabilities
are defined as

(3)

We assume that N updating steps occur per unit time (Δt = 1/N). In this sense, the unit of time
is considered to be one generation. The probability φA(yA) that strategy A ultimately takes over
the whole population, when its initial frequency is yA, is given as the solution of the following
backward Kolmogorov equation (Ewens 2004):

(4)

Here, the mean of the increment of xA per unit time, m(xA), is given by

(5)

The variance of the increment of xA per unit time, v(xA), is given by
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(6)

From eq.(4), the fixation probability is calculated as ρA = φA(1/N). Hence, we need to calculate
 and .

However, the state of the population cannot be fully described by global densities of strategies,
xA and xB. A particular configuration of the population corresponds to a two-coloring of the
vertices. Each vertex can be either occupied by an A or a B individual. There are 2N possible
configurations on a graph, which is a huge number for large N. Therefore, in order to calculate

 and , we must make approximations. Here we adopt the pair-approximation method
(Matsuda et al. 1987, Nakamaru et al. 1997, 1998, Keeling 1999, Haraguchi & Sasaki 2000,
van Baalen 2000) in order to describe the local configurations of strategies on graphs. Pair-
approximation considers not only frequencies of strategies, but also frequencies of (connected)
strategy-pairs which enables us to estimate the correlation of strategies in two adjacent nodes.
We must take into account that we have three different types of pairs: pairs connected only
through the replacement graph, those connected only through the interaction graph, and those
connected through both graphs. We label each of them (G), (H), or (L), respectively.

Let qX|Y denote the conditional probability that the focal node is occupied by strategy X (=A
or B) given that strategy Y (=A or B) occupies the adjacent node. This conditional probability

depends on the type of edges connecting X and Y. Therefore, we need to distinguish ,

, and . In the weak-selection limit, we expect these ‘local’ frequencies to equilibrate
much faster than global frequencies of strategies, xX. Hence, we are able to decouple the
dynamics of local frequencies and that of global frequencies. In other words, the system reaches
a local steady state while the global frequencies remain constant.

We first derive differential equations for the local frequencies, qX|Y. In order to do so, we count
the increase and/or decrease of the number of X–Y pairs for each type of edges, (G), (H), and

(L). Equations (A.1) in Appendix show the dynamics of , , and  for BD updating.
For DB and IM updating we have the same equations as eqs.(A.1) except for different constants
in front of the equation, which does not change the position of equilibrium. Hence from eqs.
(A.1), the steady state values of the local frequencies are given by

(7)

for all three updating mechanisms.
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An intuitive interpretation of eqs.(7) is as follows. It is obvious that correlations between two
adjacent nodes build up only through reproduction, and not through interaction. Consequently,
we obtain no local correlations through interaction-only edges, (H). Hence, the local frequency

of strategy X, , is equal to its global frequency, xX. Regarding the other edges, (G) and
(L), with probability 1/(g − 1) a player shares a common ancestor with his neighbor. With the
remaining probability, (g − 2)/(g − 1), his neighbor is a random individual.

Assuming that local frequencies are at steady state, we can now calculate the dynamics of
global frequencies: that is, we can calculate  and . The details of the calculation are shown
in Appendix. Then by solving eq.(4) we derive the fixation probabilities, ρA and ρB. For BD
updating we obtain

(8)

and

(9)

For DB updating we obtain

(10)

and

(11)

For IM updating we obtain

(12)

and

(13)

All results hold for weak selection, w ≪ 1, and large population size, N ≫ h, g ≥ l. Moreover,
we need Nw ≪ 1. Note that we always have g ≥ 3.

There is an exceptional case in which we do not require Nw ≪ 1 for the results (8-13) to hold.
We show in Appendix that if a − c = b − d holds then the eqs.(8-13) remain true for any values
of Nw as long as w ≪ 1 and N ≫ h, g ≥ l are satisfied. The condition a − c = b − d is called
‘equal gains from switching’ (Nowak & Sigmund 1990).

3.1 The limit of well-mixed populations
Nowak et al. (2004) studied evolutionary game dynamics in finite and well-mixed populations.
For the 2 × 2 game given by eq.(1), they found that for large population size and weak selection,
the following results hold:

(14)

(15)
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These results, which hold for the well-mixed population, are obtained from our results for the
three different update rules on replacement and interaction graphs (8-13) in three different
limiting cases: (i) g ≫ h, (ii) h ≫ g, and (iii) l → 0. All three update rules, BD, DB, and IM,
lead to the results of the well-mixed population (14, 15) for any of the three limits (i-iii).
Therefore, the population becomes essentially well-mixed if the degree of the overlap, l,
becomes small relative to either h or g.

3.2 The Prisoner's Dilemma
As a particular example, we explore the interaction between cooperators and defectors. Let us
study a simplified Prisoner's Dilemma given by two parameters. A cooperator, C, pays a cost
c for every edge, and the partner of this edge receives a benefit b. Defectors, D, pay no cost
and distribute no benefits. We assume b > c otherwise cooperation has no net benefit. The
payoff matrix becomes

(16)

For BD updating, we find from eqs.(8-9) that for any b and c we have ρC < 1/N and ρC < ρD.
Therefore, selection never favors cooperators.

For DB updating, we find from eq.(10) that ρC > 1/N if

(17)

The same condition implies that ρC > ρD.

For IM updating, we find from eq.(12) that ρC > 1/N if

(18)

The same condition implies that ρC > ρD.

The inequalities (17) and (18) suggest that the optimum configuration for evolution of
cooperation is h = g = l. The degree l of the overlap should be as large as possible, while the
degrees h and g should be as small as possible. This optimum is reached when the replacement
graph and the interaction graph are identical. In this limit we recover our previous condition,
b/c > k (using k = h = g = l) (Ohtsuki et al. 2006). Any deviation from the identity between the
interaction and the replacement graphs makes evolution of cooperation more difficult. Note
that cooperation is never favored if the overlap between interaction and replacement graph is
empty (l = 0).

Note that for DB updating the critical threshold condition (17) is symmetric in the degrees of
the replacement and interaction graph, g and h. Therefore, a highly connected replacement
graph (large g) and a sparsely connected interaction graph (small h) have the same threshold
as the reverse situation (for a fixed overlap l). The symmetry is broken for IM updating. Here
it is better to have a smaller degree for the interaction graph than for the replacement graph.

For a general 2 × 2 game with payoff matrix given by (1), we can prove that the degrees of the
replacement and interaction graphs play a symmetric role in eq.(10) for DB updating if and
only if a − c = b − d holds, which is the condition for ‘equal gains from switching’ (Nowak &
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Sigmund 1990). We can easily confirm that the Prisoner's Dilemma game with the payoff
matrix (16) satisfies this condition.

Strictly speaking pair approximation is only valid for infinite Bethe lattices (or Cayley trees)
where each node has exactly the same number of links and there are no loops or leaves. The
performance of pair-approximation and its limitation have been studied by several authors
(Matsuda et al. 1992, Harada & Iwasa 1994, Nakamaru et al. 1997, 1998, Keeling 1999, van
Baalen 2000). Under weak selection, Ohtsuki et al. (2006) found that pair-approximation is in
excellent agreement with computer simulations for random regular graphs and other structures.

3.3 Numerical simulations on random regular graphs
We will now test our analytic results with numerical simulations on random regular graphs.
The procedure to generate those graphs is straightforward: given values of h, g, l, we start by
constructing a random regular graph (Santos et al. 2005) of degree g, ensuring that it is
connected. Subsequently, we augment this graph by increasing the connectivity of all nodes
by h − l, such that G has connectivity g, while H has connectivity h and L has connectivity l.
In general, it is not always possible to generate a graph in this way, due to the stochastic nature
of the construction algorithm. However, the algorithm for generation of each homogeneous
random graph (Santos et al. 2005) is very efficient, and a few attempts have proven sufficient
for generating the plethora of graphs that we used to compute the fixation probabilities by
means of numerical simulations.

Players interact on H and reproduce on G. We consider only two update rules for reproduction:
DB and IM, since, for weak selection, the BD update rule never provides an evolutionary
advantage for cooperators in the Prisoner's Dilemma. The fitness of each individual is related
to its payoff by eq.(2). In all numerical simulations, we use w = 0.1. We start by stipulating
given values for the connectivities (h, g, l), as well as for the cost to benefit ratio c/b.
Subsequently we generate 3000 graphs G and H compatible with the fixed (h, g, l), and run
5000 simulations for each graph, reaching a grand total of 15000000 simulations for each set
of parameters (N, h, g, l, b, c).

Simulations always start with a population consisting of only defectors and a single randomly
placed cooperator. Its location is changing from simulation to simulation. By changing the
initial location of the cooperator and by changing the specific graph realization for given (h,
g, l), we compute the average fixation probability of a single cooperator in a population of
defectors. Simulations stop when one of the two absorbing states is reached: either 100%
cooperators (fixation) or 100% defectors (extinction). We scan regions of the ratio c/b in order
to find the critical value below which cooperators become advantageous mutants. We consider
populations of size N = 100 and N = 500. Therefore we have Nw = 10 and Nw = 50. Remember
that for games of ‘equal gains from switching’, such as the Prisoner's Dilemma (16), our
analytical predictions (8-13), hence the conditions (17, 18), are valid for any values of Nw, as
long as w ≪ 1 and N ≫ h, g ≥ l hold.

The results are shown in Figs. 2 and 3 for the DB-updating and in Figs. 4 and 5 for the IM-
updating. Excellent agreement with the theoretical predictions is obtained. In particular, the
numerical simulations confirm the invariance of the condition above for DB-updating upon
exchange of h and g (cf. Fig. 2), showing also how this symmetry is broken under IM-updating
(cf. Fig. 4). Yet, for IM-updating, new combinations of h and g lead to the same threshold
condition, a feature nicely corroborated by the results of computer simulations.

A perfect agreement between theory and computer simulations would imply that the simulation
results cross the 1/N horizontal line exactly at the point where this line crosses each appropriate
vertical line. What we observe for N = 100 is a rigid shift of ≈ 0.018 towards lower values of
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c/b between the simulation results and the theoretical predictions (note the numerical shift of
data by this amount in Figs. 2 and 4). This constant shift turns out to be a population size-effect.
For N = 500 (Figs. 3 and 5), we find an entirely equivalent scenario with a reduced shift of
0.0035.

In other words, as the population size increases, the agreement between the pair-approximation-
based predictions and computer simulations improves in the Prisoner's Dilemma (16). For a
given finite value of N we need b/c to be slightly larger than the thresholds (17) and (18).

4 The replicator equation for games on replacement and interaction graphs
In the limit of N → ∞ with w ≪ 1 held constant, we obtain deterministic game dynamics on
our two graphs. The key equation will be a replicator equation with a modified payoff matrix.
We note that this deterministic equation gives a good approximation for the stochastic process
on two graphs with large population size N ≫ max{h, g} and weak selection w ≪ 1 when
Nw ≫ 1 holds.

Consider a game with n strategies, i = 1, …, n. The payoff for strategy i versus strategy j is
aij. The payoff matrix is given by A = (aij). Let xi denote the global frequency of strategy i. We

have . In a well-mixed population, strategy i meets strategy j with probability xj.

The average payoff of an i-player is given by , where ei is the i-th unit
column vector, x = (x1, …, xn)T, and the dot denotes inner product. From this we obtain the
replicator equation in a well-mixed population as

(19)

Here  is the average payoff of the population (Taylor
& Jonker 1978, Hofbauer & Sigmund 1998). This equation is defined on the simplex Sn =
{(x1, … xn) | x1 + … + xn = 1, xi ≥ 0}. Each face of the simplex is invariant under the dynamics.

If, however, the population is structured according to the two graphs, the probability that
strategy i meets strategy j is no longer equal to xj. We will show that the replicator equation
on graphs has the form:

(20)

The matrix B = (bij) contains the effect of local interactions. The matrix B is calculated from
A and satisfies x · Bx = 0.

Consider the n × n game with payoff matrix A = (aij). Each individual plays the game with h
neighbors on the interaction graph, H, and gains a total payoff which translates into biological
fitness by eq.(2). The reproduction of strategies occurs on the replacement graph G. We
consider the same update rules as before. We assume that an individual updates its strategy on
average once per unit time. We also assume weak-selection, w ≪ 1. We require g ≥ 3 throughout
our calculation.

First, we estimate the local frequencies of strategies in a given environment, using the pair-
approximation method. Let qi|j denote the conditional probability that the focal node is occupied
by strategy i given strategy j is in an adjacent node. For each of three different types of edges,
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(G), (H), and (L), we consider such probabilities, denoted by ,  and , respectively.
Then the equilibrium values of these probabilities are calculated as (see Appendix)

(21)

Here δij is one if i = j and zero otherwise.

Let  denote the probability that the number of i-strategists increases (decreases) by one
in an elementary step of updating. From

(22)

we obtain the equations for the rate of change of global frequencies, which have the form of a
replicator equation on graphs.

For BD updating we obtain

(23)

where B = (bij) is given by

(24)

By re-scaling the time and neglecting w2 and higher order terms we obtain

(25)

For DB updating, we also recover this form after neglecting a constant, but in this case the
matrix B is given by

(26)

Similarly, for IM updating the matrix B is given by

(27)

In each of three different limits, (i) g ≫ h, (ii) h ≫ g, and (iii) l → 0, the correction term bij
in eqs.(24, 26, 27) vanishes to zero and we obtain the standard replicator equation describing
a well-mixed population.

4.1 Prisoner's Dilemma
We study the Prisoner's Dilemma (16) using the replicator equation on graphs, (20).

For BD updating, we find that defectors always dominate cooperators, as predicted for a well-
mixed population. For DB updating, cooperators dominate defectors if
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(28)

In this case, ‘network reciprocity’ favors cooperators over defectors: the relative abundance of
cooperators converges to unity from any initial fraction. Interestingly, the condition (28) is
exactly the same as the one for ρC > 1/N (eq.(17)).

For IM updating, the equivalent condition is found to be

(29)

which is the same as eq.(18).

4.2 The Snow-drift game
The Snow-drift game is given by the payoff matrix

(30)

Two drivers are trapped on either side of a snow drift. Cooperation means getting out of the
car and shovel. Defection means to remain in the car and let the other driver shovel. The benefit
of getting home is b, which is larger than the cost of shoveling, c. If both cooperate the cost is
halved for each person. If both defect neither can go home, and both drivers obtain zero payoff
(Hauert & Doebeli 2004). In a well-mixed population, the traditional replicator equation (19)
predicts stable coexistence of cooperators and defectors at an equilibrium where the relative
abundance of cooperators is given by .

Let us consider the Snow-drift game played on graphs. We use the replicator equation on graphs
(20). From eqs.(24), (26), and (27), the matrix B is calculated as

(31)

For BD updating, we obtain

(32)

For DB updating, we obtain

(33)

For IM updating, we obtain

(34)

We can show that the existence of the fixed point is not affected by the graph structure, but its
location changes. From eq.(31) it is obvious that cooperation is favored on graphs compared
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to well-mixed populations if and only if χ is positive. For BD updating this condition is b/c >
3/2. For DB and IM updating this condition is always satisfied whenever g ≥ 3 and l > 0. If
there is no overlap between replacement graph and interaction graph (i.e. l = 0) then χ is equal
to zero, which leaves the dynamics unchanged with respect to that in a well-mixed population.

Figures 6a-c show the equilibrium-frequency of cooperators over the benefit-to-cost ratio, b/
c, for each of three update rules. We observe that for fixed g and h the effect of spatial structure
becomes more prominent with increasing degree of overlap, l.

5 Discussion
In the prisoner's dilemma, BD-updating never confers an evolutionary advantage to
cooperators, even in the limit of weak-selection. For DB and IM updating, cooperators can be
favored over defectors by ‘network reciprocity’. Cooperators in clusters earn a higher payoff
than defectors, and therefore the cluster can expand. In Ohtsuki & Nowak (2006a) an intuitive
explanation has been proposed for the difference in behaviour associated with these two classes
of updating, which stems from the fact that both DB and IM explore a larger neighbourhood
than BD updating. In fact, under DB and IM updating the neighbors of a dying/learning
individual, who themselves are not direct neighbors of each other, compete for reproduction.
This favors the assortative correlation between cooperators, thereby enhancing the survival
chances of cooperators. In contrast, under BD updating a player competes against his
immediate neighbors with whom he played the Prisoner's Dilemma. In this case the advantage
of a cooperator resulting from the assortativeness is exactly canceled out by the benefit a
defector receives from the cooperator, thus cooperation never evolves (see also Taylor 1992
and Wilson et al. 1992).

Nakamaru et al. (1997, 1998) and Nakamaru & Iwasa (2005, 2006) compared fertility-selection
and viability-selection. In their score-dependent fertility model, a random death is followed by
reproduction with selection. In their score-dependent viability model, a selective death is
followed by a random birth. For the Prisoner's Dilemma on one- and two-dimensional lattices,
Nakamaru et al. (1997, 1998) found that the former is more favorable to cooperation than the
latter (we note that the citation of the results of Nakamaru et al (1997, 1998) in Ohtsuki &
Nowak (2006) was mistakenly reversed). The observation by Nakamaru et al. is due to the
same reason as the difference between BD and DB updating. In the score-dependent fertility
model, neighbors opposite to the empty site compete, while in the score-dependent viability
model only direct neighbors compete for survival.

In view of this argument, we expect that neither the order of birth and death nor the distinction
between fertility-selection and mortality-selection yields a critical difference. We notice that
in our BD, DB and IM updating rules, and Nakamaru et al's two selection mechanisms, either
birth or death event is under selection and the other is a random process. A crucial difference
stems from the fact whether the second part of the update rule is affected by payoff or purely
random. Cooperation is favored only when a random step is followed by a selective step.

Recently, we have studied the role of population structure in finite (Ohtsuki et al. 2006) and
infinite populations (Ohtsuki & Nowak 2006b), for the case where k = h = g = l. It is therefore
worth investigating the consequences of the present study in the light of these previous findings.
For DB updating, natural selection will favor cooperators whenever the condition b/c > k is
satisfied, a result which assumes that graphs are regular, although numerical simulations have
shown that the applicability of this result extends beyond the theoretical assumptions (Ohtsuki
et al. 2006). In practice, this rule means that smaller connectivities k favor cooperators, in the
sense that smaller clusters of cooperators can play a role at the start of the evolutionary process.
Interestingly, for the DB updating, our present results b/c > hg/l show that cooperation is
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maximally favored whenever h = g = l = k (since g ≥ l and h ≥ l, always). In other words, even
when we separate the interaction from the replacement graph, cooperation is maximized
whenever the two actually coincide, in which case we recover the b/c > k-rule. In retrospect,
this result is intuitive. For the Prisoner's Dilemma, the only means of cooperators to fare better
than defectors is to successfully assortate and to use clustering to collect the benefits from
cooperative interactions. Clearly, assortation is maximal through the replacement graph, since
cooperators breed cooperators and defectors breed defectors. Consequently, in order for
cooperators to benefit from such assortation, the overlap between H and G has to be maximal,
and this leads to k = h = g = l.

Note that b/c > hg/l is symmetric in g and h. Therefore, it does not matter whether the interaction
graph has high connectivity and the replacement has low connectivity or vice versa. This
symmetry is broken for IM updating, which leads to b/c > h(g+2)/l. This result is also easy to
understand: as opposed to DB updating, for IM updating the strategy of the focal individual
also competes for ‘remaining’ in place. This affects exclusively the replacement graph G.
Moreover, one can picture the alluded competition of the own strategy with the others to remain
‘in place’ as if the replacement graph would exhibit an additional ‘loop’ emerging from the
focal individual and ending in the same focal individual. This loop, which does not overlap
with H, leads to an effective connectivity of G which becomes (g + 2). Remarkably, this is
precisely the result given by eq.(18).

So far we have discussed evolutionary dynamics for the special case of the Prisoner's Dilemma.
Our results, however, extend to other 2 × 2 games in finite populations, as well as to n × n
games in infinite populations. In this respect, it is noteworthy that our results, for weak-
selection (for other intensities, cf. Traulsen et al. 2006a,b) also lead to the so-called 1/3-rule
in appropriate limits (Nowak et al. 2004). For example, for DB updating the general condition
for ρA > 1/N implies

(35)

Surprisingly, this condition is equivalent to asking that the abundance of strategy A increases
at frequency xA = 1/3 in the replicator equation on graphs, eq.(20), given the local configuration
of strategies on graphs is at the steady state given by eq.(7).

In infinite, structured populations, and in the limit of weak-selection, strategies evolve
according to a replicator equation. The effect of population structure is to induce a
transformation of the payoff matrix. Once such a transformation is performed, then evolution
proceeds ‘as if’ the population were well-mixed (unstructured). This remarkable result also
shares many of the peculiarities already found for the case where the replacement and
interaction graphs are identical (Ohtsuki & Nowak 2006b). In particular, the transformation of
the payoff matrix is of the form (for the case of 2 × 2 games)

(36)

The specific form of χ depends on the update rule (cf. eqs.(24,26,27)). Yet, irrespective of the
update rule, the population structure affects only the off-diagonal terms of the payoff-matrix,
that is, population structure only affects the interactions between different strategies. Therefore,
a transformed replicator equation can describe evolutionary dynamics on replacement and
interaction graphs.
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In the present paper we have studied fixed regular graphs. Future directions should include
evolutionary dynamics on graphs of subdivided populations (Maruyama 1970, Slatkin 1981,
Barton 1993), heterogenous graphs (Antal et al. 2006b, Santos et al. 2006b), complex networks
(Nakamaru & Levin 2004, Santos et al. 2005, 2006a, Santos & Pacheco 2005, May 2006), and
dynamic networks (Bala & Goyal 2000, Mohtashemi & Mui 2003, Pacheco et al. 2006, Santos
et al. 2006c).
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Appendix A
In this Appendix, we study the general case of a n × n game whose payoff matrix is given by
A = (aij). Subsequently, we consider the particular case of n = 2, that is, 2 × 2 games, and derive
both the replicator equation for the frequencies of strategies in infinite populations, as well as
the fixation probabilities of strategies for finite populations.

We use the following notations. xi represents the global frequency of strategy i. xij represents
the global frequency of i-j pairs. Since we have three different types of pairs, (G), (H), and

(L) as in the main text, we must consider , , and  separately. The conditional
probability that the focal node is occupied by strategy i given strategy j is next is denoted by

qi|j. Similarly to pair-frequencies, we have , , and . In the pair-approximation we
neglect the effect from nodes that are two or more steps away from the focal one. We shall

frequently make use of the following identities:  and xij = xji, where (*) is a wild-
card for (G), (H), and (L).

A.1 BD updating
First we study BD updating. We determine the rate of change in the number of i-j pairs of the

three different types of pair-frequencies. Using  we obtain

(A.1)
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Here O(w) represents terms which scale as wn (n ≥ 1). From eqs.(A.1) the equilibrium values

of conditional probabilities  are calculated, leading to eq.(21).

Let  be the probability that the number of i-strategists increases (decreases) by one in
an elementary step of BD updating. After some algebra we have

(A.2)

where B = (bij) is given by eq.(24). In infinite populations  is given by .

Hence, neglecting higher order terms with respect to w and re-scaling the time we obtain the
replicator equation on graphs, eq.(20).

Consider a game with n = 2 strategies in finite populations (N < ∞). We rename strategies i =
1 and 2, A and B. For payoffs we substitute a, b, c, and d for a11, a12, a21, and a22 respectively.
From eq.(A.2) we have

(A.3)

where

(A.4)

Solving the backward Kolmogorov equation (4) gives us

(A.5)

where

(A.6)

From ρA = φA(1/N) we obtain ρA. For Nw ≪ 1, equation (A.5) is simplified to

(A.7)

We can calculate ρB in a similar manner. Assuming Nw ≪ 1, from eq.(A.7) we obtain

(A.8)

Therefore we obtain eqs.(8, 9) in the main text.
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From eq.(A.5), we see that when α = 0, or equivalently when a − c = b − d, the inequalities
ρA > 1/N and ρA > ρB hold for any values of Nw if and only if β > 0. Therefore, if a − c = b −
d holds, equations (8, 9) are valid not only for Nw ≪ 1 but also for any Nw values. Note that
we always need weak selection, w ≪ 1, and large population size, N ≫ h, g ≥ l.

A.2 DB and IM updating
Next we study DB and IM updating. For convenience we herein introduce an updating rule
called ‘generalized imitation (GIM)’ updating with resistance r ≥ 0. This is a generalization
of DB and IM updating in the main text. Under this rule a random player is chosen for updating
her strategy, and she either adopts a strategy of one of her g neighbors connected via the
replacement graph or remains with the same strategy, proportionally to fitness with her own
payoff weighted as r, whereas all her neighbours have their payoffs weighted with weight 1.
Without resistance (r = 0) we recover the original DB updating. Choosing r = 1 gives us the
IM updating. Below we will study this GIM updating with resistance r.

As in calculations for BD updating, we first explore the dynamics of local frequencies of
strategies. The resulting equations turn out to be the same as eq.(A.1) except that 1/g's in the
r.h.s's of eq.(A.1) has to be replaced by 1/(g + r)'s. As a result, we recover eq.(21) as defining
the equilibrium local frequencies.

Given this fact, we can calculate  and  as follows:

(A.9)

where B = (bij) is given by

(A.10)

In infinite populations  holds. By neglecting higher order terms with respect to
w and by re-scaling the time, we obtain the replicator equation on graphs as in the main text.

For finite populations, let us study the 2 × 2 game with strategies A and B with payoff matrix
given by eq.(1). From (A.9) we obtain

(A.11)

where

(A.12)

Solving the backward Kolmogorov equation (4) gives us
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(A.13)

where

(A.14)

From ρA = φA(1/N) we obtain ρA. For Nw ≪ 1, equation (A.13) is approximated by

(A.15)

We can calculate ρB in a similar manner. Assuming Nw ≪ 1, from eq.(A.15) we obtain

(A.16)

Hence for GIM updating with resistance r we have.

(A.17)

and

(A.18)

By substituting 0 or 1 for r we obtain results for DB or IM updating, eqs.(10-13).

From eq.(A.13), it is easy to see that when α′ = 0, or equivalently when a − c = b − d, the
inequalities ρA > 1/N and ρA > ρB hold for any Nw if and only if β′ > 0. Thus, if a − c = b − d
holds, equations (A.17, A.18) remain true for any Nw values. We note that we always need
weak selection, w ≪ 1, and large population size, N ≫ h, g ≥ l.
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Figure 1.
Possible graph layouts. a) Case when h = l = 2 and g = 4. The interaction graph H corresponds
to the cycle drawn with thick orange lines. The overlap graph L (drawn with thin blue lines)
corresponds to the same cycle (full overlap, L = H). Finally, the replacement graph G adds to
the overlap graph the links drawn with thick blue lines, resulting in a regular graph with g = 4
(thin and thick blue lines). b) The lower panel shows an example in which all graphs are
homogeneous random graphs such that h = g = 3 and l = 1. We use the same color codes as
before. Since graphs G and H are both connected, exchanging their roles leads to another
possible construction which, as discussed in the main text, leads to the same results for DB
updating in what concerns the fixation probability of a given trait in this population structure
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(h = g), as opposed to the graphs in a), where the exchange of G and H would lead to different
threoretical predictions (h ≠ g), as nicely demonstrated in Figs. 2 and 3 below.
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Figure 2.
Results for the fixation probability under DB-updating. For a population size of N = 100, and
for each combination of values (h, g, l), we ran 15000000 simulations starting from a single
cooperator immersed in a sea of defectors. We did so for different values of the ratio c/b. For
each value, we computed the fixation probability as the ratio between those runs in which the
system reached 100% cooperators and the total number of runs. Each symbol represents one
such calculation, whereas the lines provide a guide to the eye. The crossing between the vertical
lines (each with a color corresponding to a different combination of (h, g, l) and the horizontal
line at p = 1/100 indicate the values associated with the theoretical predictions. In all cases the
numerical results have been systematically shifted by a constant factor of 0.018 towards higher
values of c/b in order to bring theory and computer simulations into agreement. This shift
depends on the population size, decreasing with increasing N (see main text for details).
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Figure 3.
Results for the fixation probability under DB-updating. This figure shows the same results as
Fig. 2 but for a population size of N = 500. In all cases the numerical results have been
systematically shifted by a constant factor of 0.0035 towards higher values of c/b in order to
bring theory and computer simulations into agreement. This shift depends on the population
size, decreasing with increasing N (see main text for details).
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Figure 4.
Results for the fixation probability under IM-updating. The population size is N = 100. The
same simulation conditions employed in Fig. 2 also apply here. The only change occurs in
what concerns the update rule which, as predicted theoretically, leads to a different relation for
the critical ratio c/b below which a cooperator mutant becomes advantageous in a population
of defectors. Similarly to Fig. 2, all numerical results have been shifted by the same constant
amount of 0.018, which improves the agreement between theoretical predictions and numerical
results. Note, however, that comparison with Fig. 2, the agreement is not as good, suggesting
that the size-dependent correction term is different for IM-updating.
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Figure 5.
Results for the fixation probability under IM-updating. This figure shows the same results as
Fig. 4 but for a population size of N = 500. In all cases the numerical results have been
systematically shifted by a constant factor of 0.0035 towards higher values of c/b in order to
bring theory and computer simulations into agreement. This shift depends on the population
size, decreasing with increasing N (see main text for details).
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Figure 6.
The frequency of cooperators at the equilibrium in the Snow-drift game played on graphs for
(a) BD, (b) DB, and (c) IM updating. The x-axis represents the benefit-cost ratio of cooperation,
b/c. The degrees of replacement graph and interaction graph are fixed as g = h = 4. We change
the degree of overlap from l = 0 to l = 4. (a) When b/c > 3/2 graph structure favors cooperation
for increasing overlap l. When b/c < 3/2, on the other hand, the opposite is observed. (b,c) The
larger the overlap l between replacement graph and interaction graph, the more cooperation is
favored in DB and IM updating.
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