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Summary

A statistical test for the difference in the amounts of DNA variation between two populations is

developed. The test statistic involves the covariance of the amount of variation between two

populations, which is given by a function of their divergence time, T
!
. Accordingly, the power

(rejection probability) of the test depends on T
!
. In this article, T

!
is treated as unknown because it

is very difficult to estimate. The test is most conservative when T
!
¯¢ is assumed because the

covariance is zero. If T
!
¯ 0 is assumed, the largest value of the rejection probability is obtained.

Thus, the test provides a range of rejection probability unless we have a reliable estimate of T
!
.

The test is applied to the PgiC region in three mustard species : Lea�enworthia stylosa, L. crassa

and L. uniflora. The results of our test show that the level of variation in L. stylosa is significantly

higher than those in the other species.

1. Introduction

The amount of DNA variation varies among species,

even among local populations in the same species

(Kimura, 1983; Nei, 1987; Gillespie, 1991). In

addition to random genetic drift, there are many

possible reasons for such a difference. One is the

difference in the population size and}or mutation

rate, because the expectation of the amount of

variation depends on the product of the population

size and mutation rate under the neutral theory

(Kimura, 1968, 1983). Natural selection also affects

the level of DNA variation. For example, a recent

selective sweep event reduces the amount of variation

dramatically.

The purpose of this article is to develop a statistical

test that examines whether or not the observed

difference in the amounts of variation can be explained

by random genetic drift alone. A test statistic is

introduced, which is based on the observed numbers

of segregating sites in two populations. As the reason

for having to account for the positive correlation of
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the amounts of variation between two populations

(Takahata & Nei, 1985; Wakeley, 1996; Wakeley &

Hey, 1997), the test statistic involves their covariance.

We develop a recurrence formula to calculate the

covariance.

The test is applied to DNA polymorphism data of

three mustard species. Liu et al. (1999) investigated

DNA variation in the PgiC region of Lea�enworthia

stylosa, L. crassa and L. uniflora. The interaction

between the amount of variation and breeding system

was studied. These three species have different

breeding systems. L. stylosa is an outcrossing species,

while L. uniflora is a selfer. The rate of selfing in L.

crassa is moderate. As expected from the difference in

breeding system, the observed levels of nucleotide

variations in these three species are different, but it is

not clear whether the difference is statistically signifi-

cant. The application of our test reveals that the

amount of variation in L. stylosa is significantly larger

than those in the other species.

2. Model and statistical test

To test whether the difference in the amounts of

nucleotide variation between two populations can be

explained by random genetic drift alone, a simple two-
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Fig. 1. Model. The open circles represent sampled
sequences from population I, and the shaded circles those
from population II. The filled circle represents the most
recent common ancestor of the whole sample.
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Fig. 2. Test statistic G(T
!
) for n

"
¯ n

#
¯ 5 and 20. G(T

!
)

was calculated by (3).

population model is considered (Fig. 1). Each popu-

lation consists of N diploid individuals. The two

populations are derived from their ancestral popu-

lation with the same size N, and the divergence time is

given by T
!

(the unit is 4N generations). Random

mating is assumed and random mutations occur at a

constant rate, µ, per sequence per generation.
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Fig. 3. Critical values of G(T
!
) obtained by computer

simulations with 50000 replications. (A) Results for n
"
¯

n
#
¯ 5. (B) Results for n

"
¯ n

#
¯ 20.

Consider that n
"
and n

#
DNA sequences are sampled

from the two populations, I and II, respectively.

Under the neutral infinite site model (Kimura, 1969;

Watterson, 1975), the amount of nucleotide variation,

θ (¯ 4Nµ), can be estimated from the number of

segregating sites. Let S
"

and S
#

be the observed

number of segregating sites in populations I and II,

respectively. From S
"

and S
#
, estimates of θ in

populations I and II are

θW
"
¯S

"
}a

"
and θW

#
¯S

#
}a

#
, (1)

where

a
"
¯ 3

n
"
−"

k="

1

k
and a

#
¯ 3

n
#
−"

k="

1

k
(2)

(Watterson, 1975).
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Fig. 4. Power of the test. The rejection probability was investigated when S
"
S

#
¯ 200. (A) Results for n

"
¯ n

#
¯ 5. (B)

Results for n
"
¯ n

#
¯ 20.

To examine whether the difference between θ#
"

and

θ#
#

can be explained by random genetic drift alone, a

test statistic is developed:

G(T
!
)¯

rθW
"
®θW

#
r

oVar(θW
"
®θW

#
)
, (3)

where Var(θ#
"
®θ#

#
) is the variance of θ#

"
®θ#

#
. G(T

!
) is

given by a function of T
!

because T
!

affects the

variance. The derivations of Var(θ#
"
®θ#

#
) are shown in

Appendixes A and B. Fig. 2 shows numerical examples

of G(T
!
) for n

"
¯ n

#
¯ 5 and 20. The test statistics

decrease with increasing T
!
, and their distributions are

almost flat when T
!
"1 because the covariance

between θ#
"

and θ#
#

is nearly zero.

Computer simulations are carried out to investigate

the distribution of G(T
!
), which may depend on θ, n

"
,

n
#

and T
!
. The standard coalescent process without

recombination is used in the simulations (Griffiths,

1980; Kingman, 1982; Hudson, 1983; Tajima, 1983).

In each replication of the simulation, first, a random

genealogy of n
"

sequences in population I was

simulated backward in time from 0 to T
!
, and we

determine the number of sequences, n
",!

, at T
!

(Fig.

1B). In the same way, a random genealogy of n
#

sequences in population II is constructed, and the

number of sequences, n
#,!

, at T
!
is determined. Next a

random genealogy of n
",!

n
#,!

sequences in the

ancestral population is constructed (Fig. 1A). After

giving random mutations on the genealogy, S
"
and S

#

are obtained. Using (1)–(3), G(T
!
) is calculated given

T
!
. In the calculation, (θ#

"
θ#

#
)}2 is used as an estimate

of θ(θ# ).
Fig. 3 shows the results of computer simulations for

n
"
¯ n

#
¯ 5 and 20. The critical values at the 5% and

1% levels are shown for θ¯ 2, 5, 10, 20 and 50. In the

case of n
"
¯ n

#
¯ 5 (Fig. 3A), the critical values

decrease with increasing T
!
, and the curves become

almost flat when T
!
"1. When θ¯ 2 and 5, the

critical values are smaller than those for θ¯10, 20

and 50. The distributions of the critical values for θ¯
10, 20 and 50 are similar. When n

"
¯ n

#
¯ 20 (Fig.

3B), the critical values at the 1% level decrease with

increasing T
!
, while the distributions of the 5%

critical values have peaks at T
!
E 0±1. The distribu-

tions of critical values for θ¯ 2 and 5 are not much

smaller than those for the others. It is indicated that

the effect of θ on the distribution of G(T
!
) is not large

unless θ is very small.

The effect of T
!

on the power of the test is

investigated when n
"
¯ n

#
¯ 5 and 20. Given S

"
and

S
#
, the probability that rejects the null hypothesis (θ

"

¯ θ
#
) is obtained for T

!
¯ 0, 0±05, 0±1, 0±15, … , 1.

G(T
!
) is calculated for each value of T

!
, and the P

value for each G(T
!
) is determined by a computer

simulation. The results for (S
"
, S

#
)¯ (130, 70), (135,

75), … , (165, 35), (170, 30) are shown in Fig. 4. The

P value increases with increasing T
!

because the

covariance between S
"
and S

#
decreases. For example,
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Table 1. Critical �alues of G(T
!
) for T

!
¯¢ and 0

n
"

n
#

T
!
¯¢ T

!
¯ 0

5% 2±5% 1% 5% 2±5% 1%

5 5 1±67 1±82 1±98 2±41 2±77 3±07
5 6 1±69 1±85 2±03 2±47 2±84 3±23
5 7 1±70 1±88 2±04 2±49 2±86 3±26
5 8 1±70 1±87 2±04 2±50 2±88 3±26
5 9 1±72 1±90 2±08 2±48 2±90 3±32
5 10 1±71 1±89 2±08 2±50 2±97 3±36
5 12 1±74 1±92 2±13 2±47 2±96 3±36
5 14 1±74 1±94 2±15 2±48 3±00 3±48
6 6 1±70 1±88 2±05 2±53 2±91 3±33
6 7 1±71 1±90 2±05 2±52 2±96 3±40
6 8 1±71 1±89 2±07 2±55 3±03 3±49
6 9 1±71 1±90 2±08 2±54 3±04 3±56
6 10 1±73 1±93 2±14 2±53 3±01 3±56
6 12 1±74 1±92 2±14 2±54 3±03 3±55
6 14 1±75 1±93 2±16 2±50 3±04 3±57
6 16 1±77 1±97 2±17 2±51 3±06 3±59
7 7 1±70 1±90 2±09 2±56 3±05 3±55
7 8 1±72 1±91 2±10 2±57 3±08 3±61

7 9 1±73 1±90 2±10 2±54 3±06 3±60
7 10 1±74 1±92 2±13 2±58 3±19 3±69
7 12 1±76 1±94 2±15 2±55 3±16 3±70
7 14 1±75 1±95 2±18 2±54 3±12 3±69
7 16 1±78 1±98 2±18 2±54 3±11 3±73
7 18 1±76 1±96 2±19 2±56 3±07 3±74
8 8 1±73 1±89 2±08 2±56 3±09 3±60
8 9 1±75 1±94 2±11 2±55 3±10 3±74
8 10 1±73 1±93 2±12 2±56 3±12 3±73
8 12 1±75 1±95 2±14 2±55 3±16 3±79
8 14 1±74 1±94 2±17 2±57 3±18 3±85
8 16 1±75 1±95 2±17 2±55 3±18 3±79
8 18 1±75 1±97 2±18 2±52 3±14 3±81

8 20 1±75 1±96 2±19 2±53 3±14 3±80
9 9 1±74 1±91 2±09 2±54 3±09 3±70
9 10 1±74 1±94 2±14 2±59 3±25 3±79
9 12 1±75 1±95 2±17 2±57 3±24 3±83
9 14 1±77 1±97 2±17 2±59 3±24 3±91

9 16 1±77 1±97 2±18 2±55 3±24 3±93
9 18 1±77 1±99 2±20 2±51 3±23 3±98
9 20 1±77 1±99 2±22 2±58 3±21 3±88
9 25 1±79 2±00 2±24 2±45 3±11 3±82

10 10 1±74 1±95 2±15 2±54 3±24 3±88
10 12 1±75 1±94 2±17 2±58 3±22 4±00
10 14 1±75 1±96 2±16 2±55 3±28 3±98
10 16 1±75 1±96 2±18 2±55 3±26 4±00
10 18 1±77 1±97 2±19 2±56 3±28 4±05
10 20 1±76 1±98 2±22 2±53 3±32 4±06
10 25 1±79 2±02 2±22 2±48 3±20 3±95
10 30 1±79 2±02 2±25 2±47 3±14 3±93
12 12 1±76 1±96 2±19 2±48 3±25 4±02
12 14 1±76 1±99 2±19 2±47 3±26 4±08
12 16 1±76 1±98 2±19 2±53 3±31 4±16
12 18 1±77 1±99 2±19 2±49 3±35 4±18
12 20 1±75 1±99 2±21 2±45 3±18 4±13
12 25 1±79 2±01 2±25 2±38 3±19 4±13
12 30 1±77 1±99 2±26 2±37 3±20 4±01

14 14 1±76 1±96 2±20 2±34 3±27 4±01

14 16 1±76 1±98 2±20 2±41 3±32 4±17
14 18 1±77 1±99 2±23 2±43 3±33 4±19
14 20 1±77 2±00 2±22 2±54 3±34 4±18
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Table 1. (cont.)

n
"

n
#

T
!
¯¢ T

!
¯ 0

5% 2±5% 1% 5% 2±5% 1%

14 25 1±79 2±02 2±25 2±46 3±28 4±20
14 30 1±82 2±04 2±29 2±40 3±27 4±28
16 16 1±79 1±99 2±24 2±33 3±28 4±03
16 18 1±80 1±99 2±25 2±46 3±29 4±19
16 20 1±79 1±99 2±24 2±39 3±40 4±29
16 25 1±81 2±04 2±27 2±36 3±37 4±46
16 30 1±83 2±04 2±27 2±29 3±30 4±41

18 18 1±79 2±01 2±25 2±33 3±36 4±32
18 20 1±79 2±03 2±27 2±38 3±30 4±38
18 25 1±82 2±03 2±27 2±28 3±23 4±39
18 30 1±80 2±05 2±28 2±21 3±23 4±38
20 20 1±84 2±03 2±27 2±33 3±33 4±39
20 25 1±82 2±05 2±29 2±22 3±21 4±37
20 30 1±83 2±04 2±29 2±21 3±23 4±46
25 25 1±84 2±06 2±28 2±23 3±21 4±58
25 30 1±84 2±07 2±31 2±17 3±24 4±71

30 30 1±84 2±09 2±32 2±15 3±28 4±74

For a parameter set (n
"
, n

#
and T

!
), coalescent simulations with 10000 replications

were conducted for θ¯ 2, 3, 5, 10, 20, 30 and 50, and the most conserved values
are shown. The simulation program is available on request from the authors.

when n
"
¯ n

#
¯ 20 and (S

"
, S

#
)¯ (145, 55), P is

smaller than 0±05 when T
!
% 0±35, while P is larger

than 0±05 when T
!
& 0±4.

Here, we show how to evaluate the P value for a

given DNA sequence data set when T
!

is unknown.

Since the power of the test decreases with increasing

T
!
, we can conduct themost conservative test assuming

T
!
¯¢. This test may be useful because it is usually

very difficult to obtain a reliable estimate of T
!

from

DNA sequence data. The covariance between S
"
and

S
#
is zero when T

!
¯¢ so that calculation of G(¢) is

easy. Table 1 shows the critical values of G(¢) at the

5%, 2±5% and 1% levels, which are determined by

computer simulations. Following Fu & Li (1993), for

a given parameter set of n
"
, n

#
and T

!
, the critical

values are investigated for θ¯ 2, 3, 5, 10, 20, 30 and

50, and the most conservative one is shown. Since the

effect of θ on the distribution of the test statistic is not

very large (see Fig. 3), the critical values in Table 1 are

not very conservative. However, as pointed out by Fu

(1996), the critical values obtained from a simulation

with an estimate of θ from the data may be more

powerful, especially when θ and sample size are small

(see Fig. 3). If the result of this most conservative test

is significant, the observed difference is significant

with no condition. For example, in the cases of

(S
"
, S

#
)¯ (150, 50), (155, 45), (160, 40), (165, 35) and

(170, 30) when n
"
¯ n

#
¯ 20, the test is significant at

the 5% level for any value of T
!

(Fig. 4B).

On the other hand, the smallest P value is given

when T
!

is assumed to be 0. Table 1 also shows the

critical values of G(0) at the 5%, 2±5% and 1% levels.

When G(0) is not significant, the null hypothesis

cannot be rejected for any value of T
!
. When G(0) is

significantly large (e.g. at the 5% level), it indicates

that there is possibility that the null hypothesis is

rejected even if G(¢) is not significant. For example,

the cases of (S
"
, S

#
)¯ (130, 70), (135, 65), (140, 60)

and (145, 55) when n
"
¯ n

#
¯ 20 are in this situation

(Fig. 4B), and the rejection of the null hypothesis

depends on T
!
.

Thus, our test provides a range of P values for a

given data set. Let P(T
!
) be the P value for G(T

!
). The

maximum and minimum P values, P
max

and P
min

, are

given by P
max

¯P(¢) and P
min

¯P(0), respectively.

As an example, consider when (S
"
, S

#
)¯ (130, 70)

and n
"
¯ n

#
¯ 20, where G(¢)¯1±15 and G(0)¯

3±08. Computer simulations show that P
max

and P
min

are 0±215 and 0±030, respectively, indicating 0±030!P

! 0±215. From additional simulations with T
!
¯ 0±01,

0±02, 0±03, … , we obtain P(0±03)¯ 0±049 and P

(0±04)¯ 0±055, indicating that T
!

that gives P(T
!
)¯

0±05 is about 0±03. We refer to such T
!

as T
!,&

%. It is

indicated that the difference is significantly large if the

real divergence time is smaller than T
!,&

% E 0±03.

Although the real T
!

is not easy to know, T
!,&

% is a

useful summary of the observed difference in the

amount of variation.

3. Application to Leavenworthia species

The test is applied to the DNA sequence data in the

PgiC intron 12 region of three mustard species :

Lea�enworthia stylosa, L. crassa and L. uniflora (Liu et
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Table 2. Application of the test to Levenworthia species

Species I Species II n
"

n
#

S
"

S
#

θ
"

θ
#

G(¢) P(¢)

L. stylosa L. crassa 26 45 33a 5 8±65 1±14 2±82 0±0009
L. stylosa L. uniflora 26 11 29a 0 7±60 0±00 2±98 0±0001

L. crassa L. uniflora 45 11 5 0 1±14 0±00 1±78 0±1285b

a The difference in S
"
of L. stylosa is due to the difference in the regions used in

the analysis.
b The simulation method of this comparison is different from the other two
because S

"
S

#
is small. See text.

al., 1999). The largest amount of variation is observed

in L. stylosa, an outcrossing species, while a selfer, L.

uniflora, has no nucleotide variation. L. crassa is self-

compatible with an intermediate level of outcrossing,

and the amount of variation in this species is moderate.

First, we investigate the significance of the difference

in the amounts of variation between L. stylosa and L.

crassa. We refer to L. stylosa as species I and L. crassa

as species II (Table 2). The observed numbers of

segregating sites of the two species are 33 and 5, and

estimates of θ are θ#
"
¯ 8±65 and θ#

#
¯1±14. The

absolute value of the difference in θ# is 7±51 and G(¢)

is 2±82. A simulation with θ¯ 4±90 shows P(¢)¯
0±0009, indicating that the difference is highly signifi-

cant.

Next, L. stylosa and L. uniflora are compared. The

observed numbers of segregating sites of the two

species are 29 and 0. G(¢) is 2±98, and P(¢)! 0±0001

is obtained by a simulation with θ¯ 3±80, indicating

that the difference is highly significant.

In the comparison between L. crassa and L. uniflora,

G(¢)¯1±78 is given. In this case, we conducted a

simulation in which S
"
S

#
¯ 5 is fixed, because we

have the observation of S
"
¯S

#
¯ 0 many times in a

simulation with θ¯ 0±57. It is demonstrated that the

probability of (S
"
, S

#
)¯ (5, 0) or (0, 5) is 0±1285 when

T
!
¯¢, indicating the difference is not significant.

Because of a lack of knowledge of T
!
, the test is not

conducted for another smaller value of T
!
.

4. Discussion

(i) Theory and statistical test

The amounts of variation of two populations have

positive correlation unless their divergence time is

very long. A recursion formula is developed to

calculate the covariance between the number of

segregating sites in the two populations. The theory

assumes that the population sizes of two descendant

populations and their ancestral population are the

same, according to our purpose of developing a

statistical test for the difference in the amount of

variation.

Using this theoretical result, a statistical test for the

difference in the amounts of nucleotide variation

between two populations was developed. The test is

based on the fact that we do not know T
!
because an

estimate of T
!
usually has a huge variance. The value

of the test statistic depends on the divergence time of

the two populations, T
!
, because the covariance of the

amounts of variation in the two populations is

involved in the test statistic. The power of the test

increases with decreasing T
!
. Therefore, the test

provides a range of the rejection probability of the

null hypothesis (i.e. P
min

!P!P
max

). For any value

of T
!
the null hypothesis is rejected at the 5% level if

P
max

! 0±05, while the test statistic is not significant

when P
min

" 0±05.

Only when P
min

! 0±05!P
max

does the significance

at the 5% level depends on T
!
. In this case, T

!,&
% is a

useful summary for evaluating the difference. T
!,&

% is

defined such that P(T
!,&

%)¯ 0±05, indicating that the

null hypothesis is rejected when the real T
!
is smaller

than T
!,&

%.

The test assumes no migration after the divergence.

Although the relationship between migration and

coalescent is very difficult (Wakeley, 1996; Rosenberg

& Feldman, 2002), it should be noted that this

assumption makes the test conservative when the

most conservative test with T
!
¯¢ is carried out.

We tried to develop another test that is independent

of T
!
. Using an estimate of T

!
from the data might

make this possible. One of the successful examples is

the HKA test (Hudson et al., 1987). We investigated

the possibility of developing such a test statistic.

Unfortunately, simulations with a number of different

parameter sets (n
"
, n

#
, T

!
, θ) demonstrated that it does

not work well as long as the estimate of T
!

has

variance.

(ii) On the estimation of T
!

It is important to estimate the divergence time to

evaluate the rejection probability of the test, especially

when P
min

! 0±05!P
max

. Several methods have been

developed recently (e.g. Takahata et al., 1995; Nielsen,
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1998; Nielsen et al., 1998; Edwards & Beerli, 2000).

These methods are based on likelihood and take into

account the effect of polymorphism in the ancestral

population. It should be noted that an estimate of T
!

has a huge variance. The only way to reduce this

variance is to use data from a number of independent

(unlinked) loci. Although it may be very laborious to

obtain DNA sequence data from many loci, we can

obtain such data from RFLP (Nei & Li, 1979; Nei,

1987) or AFLP (Vos et al., 1995; Innan et al., 1999)

analyses. RFLP and AFLP can reveal patterns of

polymorphism and divergence of a random set of

many DNA fragments, and we might be able to expect

almost free recombination among fragments. With

Appendix A

The variance of θ#
"
®θ#

#
is written as

Var(θW
"
®θW

#
)¯Var(θW

"
)Var(θW

#
)®2Cov(θW

"
, θW

#
)

¯
Var(S

"
)

a#

"


Var(S

#
)

a#

#

®
2Cov(S

"
, S

#
)

a
"
a
#

, (A1)

where a
"

and a
#

are given by (2). The variances of S
"

and S
#

are given by

Var(S
"
)¯ a

"
θb

"
θ# and Var(S

#
)¯ a

#
θb

#
θ#, (A2)

where

b
"
¯ 3

n
"
−"

k="

1

k#

and b
#
¯ 3

n
#
−"

k="

1

k#

(A3)

(Watterson, 1975).

Here, we consider the covariance between S
"

and S
#
. S

"
is written as

S
"
¯S

",!
S

","
, (A4)

where S
",!

is the number of mutations that occurred in the ancestral population before T
!
and S

","
is the number

occurring in population I after divergence. In the same way, S
#

is given by

S
#
¯S

#,!
S

#,#
, (A5)

where S
#,!

is the number of mutations in the ancestral population and S
#,#

is that in population II. Then, the

covariance between S
"

and S
#

is given by

Cov(S
",
, S

#,
)¯Cov(S

",!
S

","
, S

#,!
S

#,#
)

¯Cov(S
",!

, S
#,!

)Cov(S
",!

, S
#,#

)Cov(S
","

, S
#,!

)Cov(S
","

, S
#,#

)

¯Cov(S
",!

, S
#,!

), (A6)

because Cov(S
",!

, S
#,#

), Cov(S
","

, S
#,!

) and Cov(S
","

, S
#,#

) are 0.

The covariance of S
",!

between S
#,!

is given by

Cov(S
",!

, S
#,!

)¯E(S
",!

S
#,!

)®E(S
",!

)E(S
#,!

), (A7)

and the expectation of S
",!

S
#,!

is written as

E(S
",!

S
#,!

)¯ 3
n
"

n
",!=#

3
n
#

n
#,!=#

P
n
"
,n

",!

P
n
#
,n

#,!

E(S
",!

S
#,!

r n
",!

,n
#,!

). (A8)

P
nj,nj,!

( j¯1, 2) is given by

P
nj,nj,!

¯ 3
nj

k=nj,!

exp ²®k(k®1)T
!
´
(2k®1)(®1)k−nj,!n

j,!(k−")
n
j[k]

n
j,!

!(k®n
j,!

)!n
j(k)

, (A9)

where n
(k)

¯ n(n1) … (nk®1) and n
[k]

¯ n(n®1) … (n®k1). (A9) is from equation (6.1) in Tavare! (1984)

(also see Griffiths, 1979; Watterson, 1982; Takahata & Nei, 1985; Wakeley & Hey, 1997).

data from multiple loci, the above-mentioned methods

give a likelihood function of T
!
, L(T

!
). This function

might be very useful for evaluating the rejection

probability,

P¯&
¢

!

P(T
!
)L(T

!
)dT

!
, (4)

so that P can be obtained.
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Since
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the expectation of S
",!

S
#,!

given n
",!

and n
#,!

becomes

E(S
",!

S
#,!

r n
",!

, n
#,!

)¯Cov(S
",!

, S
#,!

r n
",!

, n
#,!

)®E(S
",!

r n
",!

)E(S
#,!

r n
#,!

). (A11)

Then, from (A7), (A8) and (A11), the covariance is given by
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because

3
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indicating that the unconditional covariance between S
",!

and S
#,!

can be calculated given Cov(S
",!

, S
#,!

r
n
",!

, n
#,!

). The derivation for Cov(S
",!

, S
#,!

r n
",!

, n
#,!

) is shown in Appendix B.

Appendix B

To obtain Cov(S
",!

, S
#,!

r n
",!

, n
#,!

), it is helpful to consider the variance of S
",!

S
#,!

given n
",!

and n
#,!

. The

variance of S
",!

S
#,!

can be obtained by using a recurrence formula according to the coalescence scheme as

shown in Fig. B1. This approach is similar to that in Innan & Tajima (1997).

Q(n1,0 –1,0, n2,0) Q(n1,0 –1,1, n2,0 –1) Q(n1,0,0, n2,0 –1)

(   n1,0

    2 ) /(n1,0+ n2,0

      2 ) (   n2,0

    2 ) /(n1,0+ n2,0

      2 )
)/(n1,0+ n2,0

      2
n1,0n2,0

Q(n1,0,0, n2,0)

Q(x–1,y,z) Q(x,y–1,z) Q(x,y,z–1)

Q(x–1,y,z) Q(x,y,z–1) Q(x–1,y+1,z–1)

(x+y+z)2/xz(x+y+z)2/yz(x+y+z)2/xy

Q(x,y,z)

z ) (2 /
x+y+z)2(

x ) (2 /
x+y+z)2( y ) (2 /

x+y+z)2(

(A)

(B)

Fig. B1. Coalescent scheme used to calculate the variance of S
"
S

#
.
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Table B1. Six patterns of coalescent e�ents in Q(x, y, z)

Coalescent event Probability Next state

Within X
P

XX
¯

E

F

x

2

G

H
5

E

F

xyz

2

G

H

Q(x®1, y, z)

Within Y
P

YY
¯

E

F

y

2

G

H
5

E

F

xyz

2

G

H

Q(x, y®1, z)

Within Z
P

ZZ
¯

E

F

z

2

G

H
5

E

F

xyz

2

G

H

Q(x, y, z®1)

Between X and Y
P

XY
¯xy5 E

F

xyz

2

G

H

Q(x®1, y, z)

Between Y and Z
P

YZ
¯ yz5 E

F

xyz

2

G

H

Q(x, y, z®1)

Between X and Z
P

XZ
¯xz5 E

F

xyz

2

G

H

Q(x®1, y1, z®1)

Assume that there are n
",!

and n
#,!

sequences at time T
!
, and consider the genealogical relationship among

these n
",!

n
#,!

sequences in the ancestral population. As shown in Fig. B1A, when n
",!

n
#,!

sequences coalesce

into n
",!

n
#,!

®1 sequences, there are three possible cases : (1) the coalescence occurs within n
",!

sequences from

population I; (2) the coalescence occurs within n
#,!

sequences from population II ; (3) the coalescence occurs

between a sequence from population I and a sequence from population II. The probabilities of these three cases

are

E

F

n
",!

2

G

H

5
E

F

n
",!

n
#,!

2

G

H

,

E

F

n
#,!

2

G

H

5
E

F

n
",!

n
#,!

2

G

H

and n
",!

n
#,!5

E

F

n
",!

n
#,!

2

G

H

,

respectively. Denote the state before the coalescence by Q(n
",!

, 0, n
#,!

), and let the three states after the

coalescence be Q(n
",!

®1, 0, n
#,!

), Q(n
",!

, 0, n
#,!

®1) and Q(n
",!

®1, 1, n
#,!

®1), respectively. The first number in

parentheses represents the number of sequences from population I, and we call these sequences class X

sequences, which are represented by open circles in Fig. B1A. The third number in the parentheses is the number

of sequences from population II, which we call class Z sequences. In Fig. B1A, the sequences in this class are

represented by shaded circles. The second number in parentheses is the number of sequences which are the

ancestors of the samples from both populations. These sequences are produced by coalescent events between

classes X and Z. We call these sequences class Y sequences, and they are represented by filled circles in Fig. B1A.

This coalescent process becomes more complicated after the first coalescent event (Fig. B1B). Consider a state

Q(x,y,z), where x, y and z represent the number of sequences belonging to classes X, Y and Z, respectively. When

a coalescent event occurs in this state Q(x, y, z) there are six possible patterns, which are summarized in Table

B1. Following this coalescent process, we consider the expectation and variance of S
",!

S
#,!

in Q(x, y, z). Let

A(x, y, z) and V(x, y, z) be the expectation and variance of S
",!

S
#,!

in Q(x, y, z), respectively. The expectation

is easily obtained as

A(x, y, z)¯ 3
x+y−"

k="

1

k
θ 3

y+z−"

k="

1

k
θ (B1)

(Watterson, 1975). Note that xy indicates the number of ancestral sequences of population I and yz

indicates the number of ancestral sequences of population II. We develop a recurrence formula for V(x, y, z) by

using the relationship among the six states Q(x, y, z), Q(x®1, y, z), Q(x, y®1, z)Q(x, y®1, z), Q(x, y, z®1) and

Q(x®1, y1, z®1) as shown in Fig. B1B. First, we consider the case where xy& 2 and yz& 2. V(x, y, z)

is written as

V(x, y, z)¯ (P
XX

P
XY

)
A

B
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Cov
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, (B2)
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where

A{ ¯ (P
XX

P
XY

)A(x®1, y, z)P
YY

A(x, y®1, z)

(P
YZ

P
ZZ

)A(x, y, z®1)P
XZ

A(x®1, y1, z®1), (B3)

V
x+y+z

¯
A

B

θ

(xyz)(xyz®1)


θ#

(xyz)#(xyz®1)#

C

D

(B4)

and

Cov
x+y+z

¯
θ#

(xyz)#(xyz®1)#
. (B5)

See Table B1 for P
XX

, P
YY

, P
ZZ

, P
XY

, P
YZ

and P
XZ

. Note that V
x+y+z

is the variance of the number of mutations

on a branch of the genealogy when xyz sequences coalesce into xyz®1 sequences and Cov
x+y+z

is the

covariance of the number of mutations between a pair of branches. For details, see Tajima (1983) and appendix

B in Innan & Tajima (1997).

Next we consider the case where xy¯1 and yz& 2. In this case, the sequences from population I have

already coalesced into one sequence so that V(x, y, z) is given by

V(x, y, z)¯ 3
y+z−"

k="

1

k
θ 3

y+z−"

k="

1

k#

θ#. (B6)

In the same way, when the sequences from population II have already coalesced into one sequence (xy& 2

and yz¯1), V(x, y, z) is given by

V(x, y, z)¯ 3
x+y−"

k="

1

k
θ 3

x+y−"

k="

1

k#

θ#. (B7)

Finally, the case of xyz¯ 2 is considered, where there are six possible states : Q(2, 0, 0), Q(0, 2, 0),

Q(0, 0, 2), Q(1, 1, 0), Q(0, 1, 1) and Q(1, 0, 1). The variances for these states are given by

V(2, 0, 0)¯V(0, 0, 2)¯ θθ#, (B8a)

V(0, 2, 0)¯ 4θ4θ#, (B8b)

V(1, 1, 0)¯V(0, 1, 1)¯ θθ# (B8c)

and

V(1, 0, 1)¯ 0. (B8d)

From (B2)–(B8), Var(S
",!

S
#,!

r n
",!

, n
#,!

) can be calculated.

The covariance between S
",!

and S
#,!

given n
",!

and n
#,!

, Cov(S
",!

, S
#,!

r n
",!
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#,!

), is obtained from

Var(S
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S
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). Since the relationship between the variance and covariance is given by
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the covariance becomes
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where
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