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THE HUBBLE PARAMETER IN A VOID UNIVERSE: EFFECT OF THE PECULIAR VELOCITY
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ABSTRACT

We investigate the distance-redshift relation in a simple void model. As discussed by Moffat and Tatarski, if
an observer stays at the center of the void, the observed Hubble parameter is not so different from the back-
ground Hubble parameter. However, if the position of the observer is not at the center of the void, we must
consider the correction to the redshift due to the peculiar velocity, which is determined by the observed dipole
anisotropy of the cosmic microwave background. This correction of the redshift is crucial to determine the
Hubble parameter, and we shall consider this effect. Further, the results of the N-body simulation of Turner et

al. will be also discussed.

Subject headings: cosmology: theory — distance scale — large-scale structure of universe

1. INTRODUCTION

Recent observation suggests that the Hubble parameter is
large, that is, 80 + 17 km s~! Mpc~! (Freedman et al. 1994). A
low Hubble universe, however, is favored since a small value of
the Hubble parameter is consistent with almost all observa-
tions except for that of the Hubble parameter itself (Bartlett et
al. 1994). One of the theoretical bases for the possibility of a
smaller Hubble parameter than that determined by local
observations is given by Turner, Cen, & Ostriker (1992). They
performed very large scale N-body simulations and con-
structed an ensemble of a universe filled with galaxies that,
roughly speaking, were defined by density peaks of collisionless
particles. Then, one of those galaxies was identified as “our
galaxy,” and they investigated the relation between the dis-
tance from the other galaxies to ours and the relative velocity
corrected for the peculiar velocity of our galaxy only. Their
result suggests that the Hubble parameter determined by such
observations has a scale-dependent variance. In order to
obtain the correct Hubble parameter, we need the observation
of galaxies over a very wide region.

On the other hand, Moffat and Tatarski considered a single
void universe in which the observer was assumed to be at the
center of the void and investigated the effect of the void on the
Hubble parameter determined through the redshift-distance
relation (Moffat & Tatarski 1994). Their result reveals that
when the observer is at the center of the void, the Hubble
parameter is not so different from the true value as long as the
observed region is smaller than the curvature radius inside the
void. This seems to contradict the results of Turner et al.

In this paper, we investigate a void universe but do not
restrict the position of the observer to be at the center of the
void. Our void model is more simplified than that of Moffat
and Tatarski, but it will clarify the effect of the inhomoge-
neities, especially the peculiar velocity, on the determination of
the Hubble parameter.

This paper is organized as follows. In § 2, we shall show the
simple void model and introduce the cosmic microwave back-
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ground radiation (CMB) rest frame inside the void. Here the
CMB rest frame means the coordinate system in which the
CMB is isotropic for an observer moving along the constant
spatial coordinate curve. The peculiar velocity is defined in this
CMB rest frame. In § 3, we investigate the distance-redshift
relation with the correction for the peculiar velocity of a co-
moving observer and discuss the effect of that on the determi-
nation of the Hubble parameter. Further, we shall discuss here
the relation between our result and that of Turner et al. In § 4,
we consider the effect of the void on the anisotropy of the CMB
through the Sachs-Wolfe effect and discuss the constraint on
the scale of the void from the COBE result (Smoot et al. 1992).
Section 5 is devoted to discussion.

2. SIMPLE VOID MODEL AND CMB REST FRAME

We assume that the inside of the void is approximated by
a Friedmann-Robertson-Walker (FRW) universe with the
present density parameter Q, < 1, while the outside is also a
FRW universe but with Q, = 1. The boundary of the void can
be ignored as long as the observer is within the void and
observes only the inside of that. Here we will assume such a
situation. Further, we assume that the age of both the inside
and outside of the void is the same, and hence the time coordi-
nate is the common cosmic time ¢. This assumption corre-
sponds to the fact that the void structure is generated from a
purely growing mode of the initial density perturbation since
the density contrast between the inside and outside of the void
vanishes as t — 0, i.e., at the initial singularity.

The metric within the void is written as

al(t)
1 +(R/R.)?

where R, is the comoving curvature radius and dS?* = d6?
+ sin2 @ dg? is the line element on the unit sphere. We should
note that the center of the void agrees with the origin R, =0,
and hence, as for the time coordinate t, dS? is common to the
inside and outside of the void. As is well known, the scale
factor a, is given by the parametric form using the conformal
time 7:

ds? = —di? + dR? + a}()R7dS*, (1)

ay

Q
20 (coshn—1),
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Q, ,
Hut = 57— o sinb = ), )

21

where H,q, a,0, and Q,, are, respectively, the present Hubble
parameter, the present scale factor, and the present value of the
density parameter, within the void.

On the other hand, we assume that the outside of the void is
a flat FRW universe, and hence its metric is given by

ds* = —dt* + a?(t)(dR? + Rz dS?), @
and the scale factor g, is written as
_EL B 2 s 2 1/3
abo—(4Hb0t> s (5)

where a,, and H,, are, respectively, the present scale factor and
the present Hubble parameter, outside the void.

As discussed by Bartlett et al. (1994), the ratio H,o/H,, varies
over the range 3/2 to 1 as Q,, varies from O to 1. Hence, the
maximum Hubble parameter within the void is at most 3/2
times the background Hubble parameter H,,. However, it
should be noted that H,, is not observed directly. The
observed Hubble parameter is determined through the relation
between the distance and redshift with the correction for the
peculiar velocity of the observer.

Here we introduce the CMB rest frame to define the peculiar
velocity which is crucial to estimating the true cosmological
redshift. As mentioned in § 1, the CMB rest frame means the
coordinate system in which the CMB is isotropic for an obser-
ver moving along a constant spatial coordinate curve. We
assume here that the CMB is homogeneous and isotropic. This
means that a comoving observer outside the void observes the
isotropic CMB, while a comoving observer inside the void
observes an anisotropic CMB. It should be noted, however,
that even inside the void the CMB is isotropic for the observer
along R = (a,/a,)R, = constant curve since such a noncomov-
ing observer moves in the same manner as the comoving obser-
ver outside the void. Hence we obtain the CMB rest frame by
adoptmg R as the new radial coordinate. The transformation
matrix is given by

dt = dt , (6)

dR ="—(H — H)R,dt +* & : dR, )
b

dS? = ds? . 8)

In the original coordinate (1), the comoving observer and co-
moving observed source move along R, = constant lines and
hence the components of those 4-velocities are given by the
common u* = (1, 0, 0, 0). On the other hand, in the CMB rest
frame, the components are given by

ot
i=_ t=1,
u 0tu 9)
k=R %y _pir (10)
ot a,
W=0=u?. (11)

The radial component u® corresponds to the peculiar velocity
of the comoving observer inside the void.
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3. THE HUBBLE PARAMETER BY THE DISTANCE-REDSHIFT
RELATION

In order to obtain the relation between the distance and
redshift, it is sufficient to approximate the light ray by a null
geodesic, i.e., to treat the propagation of the light ray by the
geometric optics (Misner, Thorne, & Wheeler 1973). By virtue
of the spherical symmetry of this system, without loss of gener-
ality, we focus only on the null geodesic on the equatorial
plane 0 = n/2. The solution for the null geodesic tangent k* is
then given by

a
K=—"20,,
aft) °

Ro _ 4 %0 [ &2 2 ﬁzr
v e (@) Jon-G)] @

ayo L
k? = az(‘;)R"z s (14)

(12

and k® =0. The radial trajectory of the null geodesic is
obtained as

R,=Ryn) =R /F*n)—1, (15)
with

Fn) = /1 + (Lyo/®soR,)* cosh {cosh™" [\/1 + (R,o/R.)*
X /14 (Lyo/@o R 1 £ (1 = mo)} ™1, (16)

where R, L,, and o, are the integration constants and 7, is
the present conformal time. It should be noted that, at = 5,
(R,, ®) = (R0, 0), and this corresponds to the position of the
comoving observer. L, is the conserved angular momentum of
the light ray, while w,, is the angular frequency measured by
the comoving observer. Together with w,,, L, determines the
angle 6, between the radial direction toward the center from
the observer and the propagation direction of the light ray as

(see Fig. 1)
Lo 2
=0 17
1 (wvo RuO) ’ ( )

Next, we consider the effect of the peculiar velocity on the
angular frequency of the light ray. The comoving observer
(comoving observed source) detects (emits) the light ray k* with
the angular frequency, w, = —k,u* = —k,. On the other hand,
the observer and observed source movmg along R = constant
curve have 4-velocity w# = (1, 0, 0, 0) in the CMB rest frame,
and hence the angular frequency for those is given by

cos O, = F

, + kRuR
=, + (H, — H)R, kg, . (18)

It should be noted that w, corresponds to the angular fre-
quency with the correction for the peculiar velocity. Obser-
vationally, we can find the effect only of our own peculiar
velocity, and hence hereafter we focus on the quantities with
the correction for the peculiar velocity only of the observer and
those without any corrections for the peculiar velocity. Then
we define the following two kinds of redshift as

o, = —kyw' = —k; =

P 1, and z,=-2_1, (19)
va wco
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FIG. 1.—Schematic diagram of the position of the observed and the
observed direction. The angle 6, is defined in eq. (17).

where w, is the angular frequency of the light ray at the
observed source while w_, is given by

Weo = Wyo + (Hypo — Hyo)R o K (110) - (20

Hence, z is the bare observed redshift, and z_, is the redshift
with the correction for the peculiar velocity only of the
observer.

We shall employ the luminosity distance D, as the distance
measure between the observer and observed source. Here, the
luminosity distance D, is given by the well-known relation in
the FRW universe with equation (1) as

1
D, = Hodh (2900 + (oo — (=1 + /29,02 + 1)1 . (21)
where q,, = Q,0/2. It should be noted that the luminosity dis-
tance D, is just the observed quantity that is determined by, for
example, the Tully-Fisher relation. Then, using D,;, we define
the observed Hubble parameter H,, with the correction for the
peculiar velocity only of the observer, with the assumption that
the observer regards his/her own universe as the flat FRW
spacetime:

2
Hco = D_ (zco +1-— VZeo t+ 1) . (22)
L

In fact, we can measure H_, instead of H,, in the real observa-
tions. In Figure 2, H_, is depicted for 6, = 0, n/2, and =. In
this figure, the density parameter inside the void, Q,,, is equal
to 0.1 and the radial position of the observer is fixed as
a,0R,0 =1 x 1072H,,' ~ 30k, ! Mpc.

We find that, for H,, D, < 1, H_, strongly depends on the
observed direction along which the light ray propagates. This
comes from the inadequate peculiar velocity correction. Here it
should be noted that the Hubble parameter defined by Turner
et al. is the volume average of just H,,.

To understand the directional dependence of H,,,, we investi-
gate the behavior for H,, D, < 1. In this case, H,, ~ z.,/D;, ~
H,(z./2), and, assuming the case of Q,, = 0.1, we obtain
H,/Hye — 1 ~ 0.35. Further, a,4 R, is assumed to be less than
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HoD,
F1G. 2—The Hubble parameter H , with the correction for the peculiar

velocity of the observer only is plotted against the luminosity distance D, for
various directions. The density parameter Q,, within the void is 0.1.

about 100k, ! Mpc, ie., a,oHyp <3 x 1072 <1 Hence, we
obtain

1 R
~ D, —107%2 — k —0
Zgo~Hyo Dy, 0 Do (HyoDp+ 1) R.,(’?O)(loo M )

23)

Since a,o R, = Hy ' (1 — Q,0) Y2 ~ Hil. R,o/R, is much less
than unity, and hence we can see that kg (1) ~ —w,o cos 6.
Then we get

H, H, .. _
—o 041072
Hb() HbO

1 R,
—=1. (24
Hy D, €08 ek<100 MPC) 24

From the above equations, when the distance of the observer
from the center of the void is 30k, ! Mpc, when such an obser-
ver looks in the direction 8, = 0 and the observed distance is
D, =3x10"3H ' ~7h;* Mpc, the observer may
estimate H, to be 2 times larger than H,,. On the other hand,
if that observer looks in the opposite direction 6, = =, the ob-
server may obtain almost vanishing H_. This is just the
dipole anisotropy due to the wrong correction for the peculiar
velocity.

Here we shall consider the relation between our simple void
model and the results of Turner et al. In our case, the averaged
H_, agrees with H,, as

<Hco>=—1—f dekHco—_'HvO' (25)
T Jo

It should be noted that we assume a uniform distribution of
observed sources, ie., galaxies, when we perform the above
averaging. However, in the N-body simulation, the “ galaxies”
are not uniformly distributed in contrast with our model, and
the integral of the second term on the right-hand side of equa-
tion (24) may remain. Figure 1 shows an example in which the
number of galaxies in the direction 8, = 0 is larger than that in
the 6, = = direction. In such a case, the averaged H_, is greater
than H,,. Therefore, it may be a reason that the variance of the
Hubble parameter depends on the scale of the observational
regions and there appears a large variance of the Hubble
parameter in the small-scale observation in the results of
Turner et al. Of course, in order to confirm this expectation,
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detailed investigation by N-body simulations is needed
(Gouda et al. 1995).

4. ANISOTROPY OF THE CMB BY SACHS-WOLFE EFFECT

Here, we should comment on the effect of the void on the
anisotropy of the CMB. Here we shall assume that the CMB is
completely isotropic at the last scattering surface and that the
anisotropy is caused only by the effect of one void. The dipole
anisotropy of the CMB is about v/c, where v is the peculiar
velocity of the comoving observer in the void, and it is given
roughly as (H,, — Hyo)a,0 R, by equation (10). If the density
parameter inside the void is nearly zero, we obtain v ~ 1.5

x 103(a,o R,0/100h, 1 Mpc) km s~!. Assuming that the
observed dipole anisotropy comes from the peculiar velocity of
our local group, it is estimated as about 600 km s~ ! (Smoot et
al. 1991). If we live in such a void, then our position is 10k, *
Mpc away from the center of the void. However, our void
considered here is nothing but a toy model, and it should not
be seriously considered.

The rather serious subject is the quadrupole or higher multi-
pole anisotropies which come from the gravitational redshift.
We consider the situation that the size of the void is much
smaller than the horizon scale L of the background flat FRW
universe, and hence the Newtonian approximation is applic-
able. In this case, the metric is written as

ds? = —(1 — 2U)dt* + ad(t)(1 + 2UXdR? + R?dS?), (26)

where | U| < 1. Further we assume the following density con-
figuration:

= {pv(t) R < Rvoid (27)

pp(t) otherwise ,

where p, corresponds to the critical density. Then the Newton
potential U inside the void R < R, ;4 is obtained as

2
U =2népl — 7" Sp(a, RY? (28)

where | = a, R, ;4. Here, since we consider the case in which
p~ —p, ~ —HE = — L2, we see that 6pl?> ~ k? = (I/L)* <
1. Thus we can roughly estimate the Newtonian potential as
U~ k% — kXa, R/)?,0,U ~ HyU and 0, U ~ x*(a,/l)*R.

Here we shall estimate the Sachs-Wolfe effect by the above
Newtonian potential. The anisotropy of CMB is expressed by
the integrated brightness temperature perturbation ®, and the
equation for @ is written as

4 (02250 U= _
- (@—U)=(6,+ab a,.)((a U)=-20,U, (29)

where 7' is the direction cosine of the photon (Kodama &
Sasaki 1986). Then, the difference between the two opposite
radial directions is roughly estimated as

AT
—E@:Z(jdta,U —fdta,U >~x3(&>, (30)
0=0 O =m !

T

where R, denotes the radial position of the observer, and the
integration is performed along the path of the light ray. In the
above estimation, we have ignored the contribution of the
peculiar velocity of the observer. It should be noted that the
above result is consistent with the analysis by Thompson &
Vishniac (1987) and Mészaros (1994) for the case that the posi-
tion of the observer is outside of the void. From equation (30),
if we live in the 100h, ! Mpc scale void, since x> ~ 4 x 107>,
the higher multipole anisotropy of the CMB does not conflict
with COBE results (Smoot et al. 1992). However, this estimate
is so rough that we need more detailed investigation, and this is
in progress.

5. DISCUSSION

In this paper, we investigated the effect of the void on the
determination of the Hubble parameter and have shown the
importance of the estimation of the peculiar velocity to obtain
the true Hubble parameter. Inadequate correction for the
peculiar velocity leads to the dipole anisotropy of the Hubble
parameter determined from the distance-redshift relation.

From the observational point of view, if the variance of
Hubble parameter comes from the dipole anisotropy as men-
tioned above, it is important to confirm the isotropy of the
Hubble parameter. Lauer and Postman reported the highly
isotropic Hubble parameter by a rather large scale observation
z < 0.05 (Lauer & Postman 1992). Hence, even if we stay in the
void considered here, we are near the center of that. In the case
that we stay near the center of the void, the observed Hubble
parameter is H o, and this varies the range H,, to 1.5H,,. Since
this variance is not so large, we can find almost the same
Hubble parameter as the background one. Of course, our
model is too simple, and more complicated situations may be
imagined, which makes us fail to determine the true Hubble
parameter. Hence, further theoretical investigation should be
continued, and deeper observation over the whole sky is very
important.
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