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Abstract

Mammalian sex chromosomes originated from a pair of autosomes, and homologous genes on the sex chromosomes
(gametologs) differentiated through recombination arrest between the chromosomes. It was hypothesized that this
differentiation in eutherians took place in a stepwise fashion and left a footprint on the X chromosome termed
‘‘evolutionary strata.’’ The evolutionary stratum hypothesis claims that strata 1 and 2 (which correspond to the first two
steps of chromosomal differentiation) were generated in the stem lineage of Theria or before the divergence between
eutherians and marsupials. However, this prediction relied solely on the molecular clock hypothesis between pairs of human
gametologs, and molecular evolution of marsupial sex chromosomal genes has not yet been investigated. In this study, we
analyzed the following 7 pairs of marsupial gametologs, together with their eutherian orthologs that reside in stratum 1 or
2: SOX3/SRY, RBMX/Y, RPS4X/Y, HSFX/Y, XKRX/Y, SMCX/Y (KDM5C/D, JARID1C/D), and UBE1X/Y (UBA1/UBA1Y). Phylogenetic
analyses and estimated divergence time of these gametologs reveal that they all differentiated at the same time in the
therian ancestor. We have also provided strong evidence for gene conversion that occurred in the 39 region of the eutherian
stratum 2 genes (SMCX/Y and UBE1X/Y). The results of the present study show that (1) there is no compelling evidence for
the second stratum in the stem lineage of Theria; (2) gene conversion, which may have occurred between SMCX/Y and
UBE1X/Y in the eutherian lineage, potentially accounts for their apparently lower degree of overall divergence.
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Introduction

Sex chromosomes are widely considered to have differentiated

from a pair of autosomes [1,2]. The differentiation of sex

chromosomes has resulted from the suppression of recombination

between proto-sex chromosomes [2–6]. One likely cause of this

suppression is chromosomal inversion [2,3,7]. In fact, chromo-

somal inversion has been frequently observed in the early stage of

sex chromosomal differentiation, as reported in plants and animals

[8,9]. However, the genetic linkage required among related sex-

determination genes also favors the suppression of recombination

[3,10].

Members of the class Mammalia, including Eutheria (eutherians

or placental mammals), Metatheria (marsupials), and Monotrema-

ta (monotremes: the most ancient divergence of mammalian taxa),

have either a single pair or multiple pairs of X and Y

chromosomes [11,12]. In the common ancestor of Theria

(eutherians and marsupials), the X and Y chromosomes evolved

from a pair of autosomes syntenic to chromosome 6 in the

platypus [13,14]. However, the sex chromosomes in monotremes

originated independently from those in Theria [14]. In eutherians,

the sex-determining region Y (SRY) gene probably differentiated

from its original allele at SOX3 on the proto-sex chromosome

[13,15]. Although SRY has also been identified in several orders of

Australidelphia (Australian marsupials) [16], it is absent in

monotremes; in platypus, SOX3 is located on chromosome 6 [13].

Lahn and Page [7] proposed that the process of sequence

differentiation between homologous X-Y gene pairs (gametologs)

in humans involved 4 successive events of recombination arrest,

although it was later found that another recombination arrest

occurred near the current pseudoautosomal boundary [17]. Each

recombination arrest generated a single segment on the X

chromosome that was called an ‘‘evolutionary stratum.’’ Originally

Lahn and Page noted that 19 gametologs categorized into 4

groups or strata, based on significant difference of synonymous

nucleotide divergence between gametologs (KS values): 0.94 to 1.25

(stratum 1), 0.52 to 0.58 (stratum 2), 0.23 to 0.36 (stratum 3), and

0.05 to 0.12 (stratum 4) [7]. These strata are ordered by the extent

of KS values from the tip of the long arm to the distal part of the

short arm [7,18]. The KS values of a stratum depends on the time

of recombination arrest. It was proposed that both strata 1 and 2

differentiated in the stem lineage of Theria after the divergence of

monotremes. Strata 3 and 4 were formed before the eutherian

radiation and after the divergence of prosimian and simian

primates, respectively [7,10,18]. However, to date, the evolution-

ary stratum hypothesis proposed by Lahn and Page [7] is not

entirely consistent with that proposed by other research groups

[19–21].

For instance, a pair of SMCX/Y genes was recognized as

belonging to stratum 2 by Lahn and Page [7] but was placed in

stratum 3 by Pearks Wilkerson et al. [19] and in stratum 1 by

Sandstedt and Tucker [21]. This inconsistency was caused by the
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difference of methods and data sets in calculating nucleotide

divergences. Lahn and Page, and Sandstedt and Tucker made a

simple assumption: they estimated corrected KS values by the

Jukes-Cantor method [7,21], while Pearks Wilkerson et al. used a

Bayesian approach to estimate the divergence time of gametologs

based on maximum likelihood trees [19]. In addition, data sets

were slightly different among these studies, but marsupial

sequences were not included in any cases; Lahn and Page used

human and squirrel monkey sequences, Sandstedt and Tucker

used mouse sequences, and Pearks Wilkerson et al. used several

eutherian sequences [7,21,19]. In particular, Pearks Wilkerson et

al. [19] reported that the divergence time of eutherian SMCX/Y

was as short as that of other stratum 3 genes [19]. They also

showed that the divergence time of another stratum 2 gene

(UBE1X/Y) was similar to that of stratum 3 genes. On the basis of

the above results, although marsupial gametlogs were not used in

the analysis, they suggested that the two genes differentiated

independently in the eutherian and marsupial ancestors, but not in

the therian ancestor [19]. However, Sandstedt and Tucker [21]

reported that nucleotide divergence of mouse SMCX/Y is

significantly different from that of human SMCX/Y, and as large

as that of stratum 1 genes, suggesting that SMCX/Y differentiated

in the therian ancestor.

Previous studies [7,18] have predicted that the marsupial X

chromosome might also contain 2 distinct strata 1 and 2, although

this prediction has not yet been tested. Murtagh et al. [22] recently

published partial sequences of the wallaby Y chromosome,

including 5 novel Y gametologs, and performed phylogenetic

analyses on them. However, the presence of marsupial stratum 2

has not been demonstrated. In this study, on the basis of the

nucleotide sequences available for marsupial orthologs of several

human genes in strata 1 and 2, we showed how sex chromosomal

differentiation occurred in the early stages of therian evolution.

Results

Divergence of marsupial gametologs
We collected 32 available pairs of gametologs in the human or

primate genome (Table S1) [7,17,18,23,24]. Out of the 32 X-

linked genes, 5 are located in stratum 1, 3 in stratum 2, 11 in

stratum 3, and 13 in stratum 4. Of these, we found 30 orthologs in

the opossum genome: 7 are located on the X chromosome, 7 on

chromosome 4, and 16 on chromosome 7 (Fig. 1). However, 2

genes, TSPX (stratum 2) and VCX (stratum 4), were not found in

the opossum or other marsupial genome. The 23 genes on the

opossum chromosome 4 and 7 are all orthologous to genes in

strata 3 and 4 of the human genome (Fig. 1).

Of the 7 genes on the opossum X chromosome (Table 1), 5 are

orthologs of human stratum 1 genes (SOX3, RBMX, RPS4X,

HSFX, and XKRX) and 2 are orthologs of stratum 2 genes (SMCX

and UBE1X). Six of the 7 genes have Y gametologs in opossums or

other marsupials, while no Y counterpart of XKRX was identified.

All the 7 genes are located in the long arm of the opossum X

chromosome, but the gene order differs from that on the human X

chromosome (Fig. 1). In particular, opossum UBE1X and SMCX

are located between SOX3 and RPS4X on the distal end of the long

arm, whereas the human orthologs are located at the proximal end

of the short arm (Fig. 1). The differences in the ordering of genes

between human and opossum X chromosomes may stem from

large genomic rearrangements, such as inversion or transposition,

in either eutherians or marsupials [25,26].

Table 1 shows the estimated pS values in the comparison of

conspecific gametologous pairs of genes of marsupials and

eutherians. The values were estimated from interspecific gameto-

logs for UBE1X/Y and HSFX/Y, because of the limited availability

of marsupial sequences; however, their pS values were comparable

with those of other gametologs.

Each pS of SOX3/SRY, RBMX/Y, RPS4X/Y, and HSFX/Y in

marsupials does not differ significantly from the value for

eutherian stratum 1 (Z test). However, the pS and KS values of

marsupial SMCX/Y and UBE1X/Y are significantly greater than

those of the eutherians (Z test, Z.4.8, P,0.001); yet, they are

similar to those of stratum 1 genes (Table 1). Therefore, it appears

that SMCX/Y and UBE1X/Y began to differentiate at the same

time as eutherian stratum 1 genes in marsupials.

Phylogenetic analyses of gametologs in Theria
Using synonymous substitutions of the 7 gametologs, phyloge-

netic analyses were performed to assess whether the differentiation

of each of these genes occurred before or after the divergence of

therians. The neighbor joining (NJ) trees of HSFX/Y, SOX3/SRY,

RBMX/Y, and XKRX/Y show that the X- and Y-linked genes are

separated into different clusters, each of which include both

marsupials and eutherians (Fig. 2A–D). This observation is

consistent with the prediction that these gametologs differentiated

before the divergence of therians. However, this pattern in the NJ

trees differs to that of the remaining SMCX/Y, UBE1X/Y, and

RPS4X/Y genes (Figs. 2E–G).

The NJ trees of RPS4X/Y, SMCX/Y, and UBE1X/Y show that

both eutherians and marsupials are not monophyletic with respect

to X- or Y-linked genes (Fig. 2E–G). Marsupial X- and Y-linked

genes form a separate cluster from those of eutherian orthologs,

although the bootstrap values supporting this separation are

relatively low. This phylogenetic incongruence might be caused by

the relatively small number of synonymous sites used in the

analysis (Fig. 2); however, a similar pattern was obtained by using

the total nucleotide or amino acid sequences in each of the NJ,

maximum likelihood (ML), and maximum parsimony (MP) trees

(data not shown). Thus, we suggest the possibility that the

evolutionary mode of RPS4X/Y, SMCX/Y, and UBE1X/Y was

different from that of the other 4 genes.

Gene conversion between gametologs
To explore the possibility suggested in the previous section, we

examined phylogenetically informative sites at the second codon

positions, where nucleotide substitutions are unlikely to be

saturated (see File S1 and Fig. S2). In SMCX/Y, there are 59

informative sites in total, and importantly the sites indicate two

different clustering patterns in phylogeny (Table S2). The

phylogenetic relationship supported by the sites is different

between the 59 end of the gene (denoted by SMCX/Ya, including

the first to the tenth exon) and the 39 end (denoted by SMCX/Yb,

including the 11th to the last exon). SMCX/Ya supports that the

differentiation of X and Y occurred before therian divergence,

whereas SMCX/Yb indicates that the differentiation occurred after

therian divergence (Table S2). Indeed, pS for eutherian SMCX/Yb

is significantly (Z test, P,0.001) lower than that of SMCX/Ya

(Table 1). Furthermore, sliding window analysis of the number of

nucleotide differences per site (p-distance) also shows large

variation across the human SMCX/Y gene pair (,0.6; Fig. 3A):

p-distances of the 39 end with SMCX/Yb are significantly lower

than those of SMCX/Ya (0.2–0.4 in a ,5-kb region; Z test,

P,0.001; Fig. 3A). The phylogenetic analysis for SMCX/Ya and b

consistently supports this region-dependent divergence pattern

(Fig. 3A). A possible cause for the close relatedness between

eutherian SMCX and SMCY in the b region is an ectopic gene

conversion event. Gene conversion was statistically supported by a

Runs test and GENCONV software (P,0.001). The topologies of
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Figure 1. The syntenic relationship between the human X chromosome and the opossum 7, 14, and X chromosomes. Orthologous
human and opossum genes are connected by gray lines. In the human X chromosome, each stratum is indicated by a different color (stratum 1,
magenta; stratum 2, yellow; stratum 3, green; and stratum 4, blue) [7]. Opossum chromosomal regions homologous with strata 1 and 2 on the human
X chromosome are indicated in magenta and yellow, respectively.
doi:10.1371/journal.pone.0045488.g001
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two phylogenetic trees (Fig. 2F and 3A) indicate the direction of

gene conversion is Y to X.

Likewise, we examined mouse UBE1X/Y. The reason for using

the mouse sequence is that genomic UBE1X/Y sequences are

available only for this species. Significant gene conversion could

not be identified using the Runs test or GENECONV, and

actually the p-distances of the 59 side and 39 side of CDS are not

different from each other (Table 1). However, sliding window

analysis of the gene including intronic sequences showed the low

extent of nucleotide differences in mouse UBE1X/Y (,0.4 in a

,2-kb region; Z test, P,0.001) at the 39 region (Fig. 3A and B),

compared to 59 region. Besides, in the 39 region, the phylogeny

shows the monophyletic relationship of eutherian UBE1X/Y,

indicating possible gene conversion in eutherians (Fig. 2 and 3B).

In contrast, the 59 region exhibits separate clustering of X and Y

gametologs, although the marsupial Y sequence is unavailable in

this region (Fig. 3B).

The large pS value of RPS4X/Y indicates that X- and Y-linked

genes separated before therian divergence (Table 1). Nevertheless,

the phylogeny based on the number of nucleotide substitutions

shows that therian RPS4X or Y genes are not respectively

monophyletic, and that the single marsupial cluster of RPS4X or

Y genes is more closely related to the eutherian RPS4X gene cluster

than to the eutherian RPS4Y gene cluster (Fig. 2E). The

phylogenetic tree based on the number of amino acid differences

supports the same topology as that based on the number of

nucleotide differences. However, it turns out that the branch

length leading to RPS4Y is significantly shorter in opossums than in

humans. For instance, the opossum RPS4Y branch (2.7560.10) is

approximately one-sixth of the human RPS4Y branch

(16.2560.25) (Fig. S3). The short branch leading to opossum

RPS4Y indicates that ectopic gene conversion also occurred from

RPS4X to RPS4Y in the marsupial.

Dating of sex chromosomal differentiation in Theria
At least 7 gametologs (HSFX/Y, SOX3/SRY, RBMX/Y, XKRX/

Y, RPS4X/Y, SMCX/Y, and UBE1X/Y) might have differentiated

simultaneously in the stem lineage of Theria (Fig. 4). Except for

RPS4X/Y, SMCX/Y, UBE1X/Y, which experienced possible gene

conversion, the KS value is 1.3360.63 across the gametologs in

Theria. From this value, the divergence time of these gametologs

was inferred as 224–173 million years ago (MYA; see Materials

and Methods), if the synonymous substitution rate was 5.9561029

to 7.6761029 per site per year. Even if we assume a different

substitution rate in a different lineage, the estimated divergence

time does not differ much from that calculated here (data not

shown). Therefore, we suggest that therian sex chromosomal

differentiation occurred around or after the divergence of Theria

from monotremes (i.e., about 231–217 MYA) [27].

Discussion

Loss of gametologs in therian evolution
Gene losses were often observed on sex chromosomes

[19,24,28,29,30]. In this study, we also observed that not all the

7 pairs of gametologs were found in all the species used (Table 1)

and six of them were consistent with the previous results. Previous

studies showed that UBE1Y has been lost at least twice in primates:

once in the Catarrhini (hominoids and Old World monkeys)

ancestor and once in the marmoset lineage [28]. Similarly, RPS4Y

has been lost at least 3 times in eutherian lineages, leading to

rodents, artiodactyls (pigs and cows), and horses [19,29,30]. While

XKRY is only present in primates, the large KS value of XKRX/Y

does not support its emergence in primates [24]. Rather, it is more

likely that XKRY was lost in non-primates. In addition to these

reported genes, we found that HSFX/Y are also absent in mice and

rats; however, an HSFY-like processed gene is present on an

autosome (Fig. 2A; Mumu*). It is likely that in rodents, HSFY

retrotransposed to an autosome, after which both HSFX/Y were

lost.

Both TSPX/Y genes are also absent in marsupials. It is more

likely that TSPX/Y genes emerged in eutherians, rather than

having been lost in marsupials, because a BLAST search could not

identify any TSPX-like gene in vertebrates, except eutherians.

However, the divergence time between TSPX/Y genes estimated

using KS value (KS = 1.0660.20; pS = 0.5660.05) is 178–138 MYA.

Therefore, we cannot rule out the possibility that both TSPX/Y

genes arose before therian divergence (190–148 MYA); however,

they were lost in marsupials.

Gene conversion between gametologs
Despite large sequence divergences between therian gameto-

logs, our results showed the possibility of gametologous gene

conversion in eutherian SMCX/Y and UBE1X/Y. Human SMCX/

Ya (59-end of the gene) showed a pS value of 0.5260.039, while

SMCX/Yb (39-end of the gene) showed a pS value of 0.3760.020

(Table 1). Therefore, the pS of the entire gene was averaged as

0.4160.018, which is lower than the average pS of stratum 1 genes

(0.6160.085; Z test, P,0.001). The pS values observed in the

mouse, cat, and dog SMCX/Ya and b are all similar to those in

humans (Table 1), indicating that gene conversion at SMCX/Yb

occurred in the eutherian ancestor. This observation is consistent

with the previous result of Sandstedt and Tucker [21], who

reported that the nucleotide difference in mouse SMCX/Y is high

in almost the entire region, except the 39-end [21].

To some extent, a local reduction in nucleotide differences

between UBE1X/Y gametologs should decrease the nucleotide

difference in the entire UBE1X/Y, as in the case of SMCX/Y

(Table 1 and Fig. 3B). Excluding such a local region, the pS value

becomes similar to that of the other 5 genes in stratum 1 (Table 1

and Fig. 3A and B).

Figure 2. The phylogenetic relationships of 7 gametologs. Neighbor-joining trees were constructed on the basis of the number of
synonymous differences per site (pS). The bootstrap value supporting each internal branch is indicated at the node. Only a bootstrap value of more
than 50% is shown. Sequences used for tree construction are listed in Table S1. The number of synonymous sites compared (excluding gaps) and that
of operation taxonomy units (OTUs) are as follows: (A) HSFX/Y (96 sites; 13 OTUs), (B) SOX3/SRY (70 sites; 15 OTUs), (C) RBMX/Y (289 sites; 15 OTUs), (D)
XKRX/Y (114 sites; 15 OTUs), (E) RPS4X/Y (289 sites; 11 OTUs), (F) SMCX/Y (1280 sites; 12 OTUs), and (G) UBE1X/Y (147 sites; 10 OTUs). Platypus
sequences were used as an outgroup, except in trees B and D. For trees B and D, chicken sequences were used as an outgroup. A vertical gray bar
beside each tree shows a monophyletic cluster of X- or Y-linked genes. Bold branches in E, F, and G show either marsupial- or eutherian-specific
clusters. OTU names in bold indicate marsupials. The abbreviation for species names are as follows: Bota (Bos taraus), Cafa (Canis familiaris), Caja
(Callithrix jacchus), Eqca (Equus caballus), Feca (Felis catus), Gaga (Gallus gallus), Hosa (Homo sapiens), Loaf (Loxodonta africana), Maeu (Macropus
eugenii), Magi (Macropus giganteus), Maru (Macropus rufus), Modo (Monodelphis domestica), Mumu (Mus musculus), Orna (Ornithorhynchus anatinus),
and Smma (Sminthopsis macroura). Mumu* in HSFX/Y tree (A) is located on chromosome 1 (see Discussion). BotaY sequence was not included in the
UBE1X/Y tree (G) because it is truncated (Fig. S1).
doi:10.1371/journal.pone.0045488.g002
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Figure 3. Window analysis of nucleotide divergence and phylogenic relationship of human SMCX/Y (A) and mouse UBE1X/Y (B)
genes. The entire genomic sequences of genes were compared in a window analysis. The window size was 500 bp, with no overlap between
adjacent windows. The ordinate represents the extent of nucleotide differences and the abscissa represents position (bp). Position 1 corresponds to
the beginning of exon 1 of the X-linked gene. The asterisks indicate the areas showing a statistically significant reduction in nucleotide divergence
(SMCX/Y: ,5 kb, UBE1X/Y: ,2 kb). The unrooted tree was based on the number of synonymous differences per site. A bootstrap value of more than
50% is indicated at each node. A vertical gray bar shows a monophyletic cluster of X- or Y-linked genes. Bold branches in B show a eutherian cluster
of both X- and Y-linked genes. OTU names in bold are marsupials. The abbreviations for species names are the same as those in Fig. 2. (A) The tree of
the 59 region of the gene (SMCX/Ya; exons 1–10) is shown in the left panel and that of the 39 region (SMCX/Yb; exons 11-end) is shown in the right
panel. The number of synonymous sites compared was 404 bp (SMCX/Ya) or 972 bp (SMCX/Yb) without gaps, and 11 OTUs were used. (B) The tree of
the 59 region of the gene (UBE1X/Ya; 1–1000 bp) is shown in the left panel and that of the 39 region (UBE1X/Yb; 1001–3180 bp) is shown in the right
panel. The number of synonymous sites compared was 332 bp (UBE1X/Ya) or 151 bp (UBE1X/Yb) without gaps, and 7 OTUs or 8 OTUs were used. In
UBE1X/Ya, MaruY could not be included because of missing data.
doi:10.1371/journal.pone.0045488.g003
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Pearks Wilkerson et al. [19] estimated shorter divergence times

of eutherian stratum 2 genes (SMCX/Y and UBE1X/Y) than that

calculated by Lahn and Page [7], indicating that these 2 genes

diverged independently in the eutherians and marsupials. How-

ever, the authors did not consider the possibility of gene

conversion, and therefore, they probably underestimated the

divergence time of stratum 2. In any event, if ectopic gene

conversion events occurred in eutherian SMCX/Y and UBE1X/Y,

the presence of stratum 2 proposed by Lahn and Page [7] is not

substantiated. Our conclusion is that recombination arrest

between the proto-sex chromosomes in the therian ancestor

formed only a single stratum.

Marsupial sex chromosomal differentiation
The human X-linked gametologs are ordered from the small to

the large value of pS; however, this is not the case in the opossum.

In addition to the 6 gametologs in marsupials (Table 1), another

gene named ATRX could also be examined. Both marsupial and

eutherian ATRX are located on the long arm of the X

chromosome (Fig. 1), and only ATRY is found in marsupials

[31,32]. The extent of marsupial ATRX/Y divergence is large

(pS = 0.5460.020; KS = 0.9460.027), as observed for the other 6

pairs of marsupial gametologs (Table 1 and Fig. S4A; P.0.05).

The ATRX/Y phylogeny shows that this pair of gametologs

diverged in the therian ancestor, although the monophyletic

relationship of ATRX is only weakly supported (Fig. S4). In the 5

novel Y gametologs recently reported by Murtagh et al. [22], 3

gametologs (i.e., MECP2X/Y, HCFC1X/Y, and HUWE1X/Y)

differentiated in the marsupials after its divergence from the

eutherians. This information is based on the monophyletic

relationships of the marsupial gametologs. However, 2 other

genes (i.e., RPL10X/Y and PHF6X/Y) showed the possibility of

differentiation before the therian divergence. While this interpre-

tation is not entirely reliable, our re-analysis also supported their

conclusion (Fig. S4B and C). The extent of wallaby RPL10X/Y

divergence (pS = 0.7260.066; KS = 1.3160.089) is as large as that

of the other 6 marsupial gametologs. Moreover, the pS value is

greater than that of orthologous wallaby and human RPL10X

(pS = 0.5860.059; KS = 1.0660.080). This variation indicates that

RPL10X/Y possibly differentiated before the divergence of

marsupials and eutherians. In contrast, the extent of PHF6X/Y

divergence (pS = 0.3760.074; KS = 0.5260.087) is smaller than

that in other marsupial gametologs. This rather small value is

similar to that of orthologous genes between the human and

wallaby (pS = 0.3960.075; KS = 0.5660.089). The small value

between PHF6X/Y means that the synonymous nucleotide

substitution rate somehow slowed down compared with other

genes because the pS and KS values between the human and

wallaby are significantly smaller in PHF6X (pS = 0.3960.075;

KS = 0.5660.089) than in RPL10X (pS = 0.5860.059;

KS = 1.0660.080). Yet, it is likely that PHF6X/Y diverged before

therian divergence, although it is not clear whether PHF6X/Y

diverged at the same time as the other gametologs.

Conclusions and perspective
We proposed a single recombination arrest in the therian

ancestor in the early process of sex chromosomal evolution in

mammals and provided evidence for regional gene conversion

between eutherian gametologs categorized as belonging to the so-

called stratum 2. In the therian ancestor, at least 9 pairs of

gametologs probably differentiated simultaneously (Fig. 4; HSFX/

Y, SOX3/SRY, RBMX/Y, XKRX/Y, RPS4X/Y, SMCX/Y, UBE1X/

Y, ATRX/Y, and RPL10X/Y). Simultaneous differentiation of these

gametologous gene pairs may have been facilitated by chromo-

some-wide recombination suppression between the proto-sex

chromosomes. Under this sheltering effect, it appears that

functional diversification of X- or Y-linked alleles subsequently

took place, becoming responsible for sex determination and sex

differentiation.

Although the above conclusion was drawn from a limited

amount of data, if the genomic sequence of the entire marsupial Y

chromosome is completed, additional gametologs are likely to

become available. These might include gametologs that differen-

tiated in the therian ancestor and in the marsupial lineage. Such

information would allow us to discuss directly marsupial sex

chromosomal evolution, and to identify how many strata

marsupials have.

Materials and Methods

Sequences used
Nucleotide sequences of genes on the sex chromosomes from

the mammals listed below and their homologs from chicken (Gallus

gallus) (Table S1) were obtained from NCBI (http://www.ncbi.

nlm.nih.gov/) and Ensembl databases (release 62; http://uswest.

ensembl.org/index.html). The mammals used in this study

included a monotreme: platypus (Ornithorhynchus anatinus); marsu-

pials: gray short-tailed opossum (Monodelphis domestica), tammar

wallaby (Macropus eugenii), red kangaroo (Macropus rufus), eastern

gray kangaroo (Macropus Giganteus), and stripe-faced dunnart

(Sminthopsis macroura); and eutherians: human (Homo sapiens),

Figure 4. Schematic diagram of sex chromosome evolution in
Theria. After the divergence of Theria from monotremes, recombina-
tion was suppressed in at least 10 genes on the proto-XY chromosome
in the therian ancestor; this is indicated by gray color on the
chromosome. In the stem lineage of marsupials and eutherians, a gene
conversion occurred in RPS4X/Y or both SMCX/Y and UBE1X/Y,
respectively; this is indicated by back color on the chromosome. An
asterisk means that it is not clear whether PHF6X/Y diverged at the same
time as the differentiation of the other gametologs (see text).
doi:10.1371/journal.pone.0045488.g004
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marmoset (Callithrix jacchus), mouse (Mus musculus), dog (Canis

familiaris), cat (Felis catus), cow (Bos taurus), horse (Equus caballus), and

elephant (Loxodonta africana).

Detection of gametologs in mammals
We performed BLASTN searches to identify orthologs of

human gametologs against each of the mammalian genome

sequences with a cut-off e value of 1024. Homologs were identified

as sequences that displayed more than 70% similarity to a query

sequence. To confirm orthology with genes on the human X

chromosome, sequences adjacent to the homologs were examined

using a program called ‘‘Synteny’’ in Ensembl. For genes on the Y

chromosome, orthologs could not be identified because of frequent

genome rearrangements on the Y chromosome in each species.

Therefore, homologous sequences identified by a BLASTN search

were regarded as orthologs. The gene-name abbreviations follow

the standard nomenclature for human genes.

Because the marsupial HSFY sequence was unavailable in the

databases, the nucleotide sequence was obtained from male

eastern gray kangaroos by using the polymerase chain reaction

(PCR) method. Genomic DNA was extracted from a liver sample

(which was provided by the Kanazawa Zoo of Yokohama City,

Japan, in 2000) and the DNA was used as a template in PCR

amplification. Genomic DNA (10 ng) was in 20 L of 16Ex Taq

PCR buffer containing 0.2 mM of each deoxyribonucleotide

triphosphate (dNTP), 0.5 mM of each of the 2 primers, and 1 unit

of TaKaRa Ex Taq DNA polymerase (TaKaRa). A set of primers

(59-TGATTGAAGAAAATGCTTTTCAGGCTTT-39 and 59-

GCCTCTTTTAAAATTAGGATT-39) was designed on the basis

of evolutionary conserved sequences in the platypus ortholog and

eutherian HSFY. The following PCR procedure was used: 95uC
for 30 s, followed by 35 amplification cycles of denaturation for

15 s at 95uC, annealing at 58uC for 60 s, and extension at 72uC
for 60 s. A final extension was performed for 10 min at 72uC. The

PCR fragment of ,700 bp was directly sequenced using an

Applied Biosystems 3130 genetic analyzer in both directions. The

obtained sequence was deposited into DDBJ (accession number:

AB667854).

Phylogenetic and molecular evolutionary analyses
The obtained sequences were translated into amino acids and

were then aligned using ClustalX software [33], with manual

corrections (Fig. S1). In this study, both nucleotide and amino acid

sequences were used in the following analyses. Nucleotide

divergence was calculated using the corrected number (KS) and

uncorrected number (pS) of synonymous nucleotide differences per

synonymous site, according to a modified version of the Nei–

Gojobori method (assuming transition/transversion bias (R) = 1),

with the MEGA 5.03 program [34]. Multiple hit corrections for KS

were performed using the Jukes–Cantor model [35]. For

nucleotide and amino acid sequences, phylogenetic trees were

constructed using the 3 different methods available in the MEGA

5.03 program [34]: NJ [36], ML [37], and MP [38]. For

nucleotide sequences, NJ trees were reconstructed on the basis of

pS values, ML trees were constructed using the Kimura 2-

parameter model [39], and MP trees were constructed using

default conditions. For amino acid sequences, ML and MP trees

were also constructed. Default conditions were used for MP, and

the substitution model for ML was the Jones–Taylor–Thornton

model [40]. Bootstrap resampling with 1000 replications assessed

the reliability of these trees.

Detection of gene conversion
We investigated whether phylogenetically informative sites were

distributed uniformly in the alignment of gametolog sequences by

using 2 statistical tests. The first test was the two-sample runs test

[41], which used the informative sites in the alignment of 4

operation taxonomy units for both eutherian and marsupial

gametologs. We tested whether the run of informative sites was

significantly clustered. The second test was the global test in the

GENECONV program (version 1.81) [42] under the default

conditions. The global test for reciprocal recombination or gene

conversion events was performed with 10,000 permutations of the

sequence alignment to assess significance. In addition, we

examined the heterogeneity of nucleotide divergence along the

sequences by using a window analysis (window size = 500 bp, no

overlaps) implemented in DnaSP v5 [43].

Estimation of nucleotide substitution rate
Due to male-biased mutations in the germ line [44],

nucleotide sequences at silent sites (i.e., synonymous sites or

sites in a non-coding region) on the X and Y chromosomes

evolve at different rates. The X chromosome was present in the

female germ line during two-thirds of the evolutionary time and

in the male germ line during the remaining one-third.

Assuming a 1:1 sex ratio, the mutation rate of X chromosomal

genes (mX) is the sum of two-thirds of the female mutation rate

(mf) and one-third of the male mutation rate (mm), whereas the

mutation rate of Y chromosomal genes (mY) is the same as mm.

In several eutherians, mm is 2 to 6 times as high as mf (a = mm/

mf = 2–6) [45–49]. For a conservative estimate, we assumed

that a = 2. We also estimated the autosomal nucleotide

substitution rate per site per year (mA = 1/2(mm+mf)) from a

comparison of genomic sequences of opossum–human ortho-

logs. The average KS between the 2 species was 1.02 (0.76–1.44)

[50]. This was translated into mA = 2.6861029–3.4561029,

assuming that the divergence time between eutherians

and marsupials is 148–190 MYA [27,51,52]. We

estimated mX = 2/3 mf+1/3 mm = 2.3861029–3.0761029 and

mY = mm = 3.5761029–4.6061029, respectively, yielding

mXY = 5.9561029–7.6761029 for the XY gametolog compar-

ison.

Supporting Information

Figure S1 The alignment of amino acid sequences of
gametologs. The alignment used in Figures 2A–G, 3A–B, S3 and

S4 is shown in (A–I). (A) HSFX/Y (96 sites; 13 OTUs), (B) SOX3/

SRY (70 sites; 15 OTUs), (C) RBMX/Y (289 sites; 15 OTUs), (D)

XKRX/Y (114 sites; 15 OTUs), (E) RPS4X/Y (152 sites; 11 OTUs),

(F) SMCX/Y (SMCX/Yab: 1280 sites; 12 OTUs), (G) UBE1X/Ya

(329 sites; 7 OTUs), (H) UBE1X/Y (UBE1X/Yb: 147 sites; 10

OTUs), and (I) ATRX/Y (862 sites: 9 OTUs). In (G), the sequences

of ModoY and Orna are missing and could not be aligned.

(PDF)

Figure S2 The topology among 4 eutherian and marsu-
pial X/Y genes. If gametologs differentiated before speciation,

the phylogeny of X- or Y-linked genes would be monophyletic (A).

If gametologs differentiated after speciation or if a lineage-specific

gene conversion occurred between X and Y genes, the phylogeny

of each species would be monophyletic (B). The third case,

showing the different topology of (A) and (B), might potentially

occur (C). The abbreviations in this figure are as follows: EX (a

eutherian X gene); EY (a eutherian Y gene); MX (a marsupial X

gene); and MY (a marsupial Y gene).

(EPS)
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Figure S3 The phylogenic relationship of RPS4X/Y. The

unrooted tree was based on the number of amino acid

substitutions (No. of differences). The bootstrap value was 100%

at each node. The number of sites that were compared was 263

amino acids without gaps, with 4 OTUs being used. Branches in

bold show RPS4X and Y in the opossum. An asterisk indicates that

the branch length leading to RPS4Y was significantly shorter in

marsupials than in humans. OTU names in bold are marsupials.

The abbreviations for species names are the same as those in Fig. 2.

(EPS)

Figure S4 The phylogenic relationship of marsupial
gametologs. The neighbor joining (NJ) tree was based on the

number of synonymous differences per site (pS). A bootstrap value

of more than 50% is indicated at each node. (A) In ATRX/Y, the

number of synonymous sites compared was 1473 bp without gaps,

with 9 OTUs being used. (B) In RPL10X/Y, the number of

synonymous sites compared was 213 bp without gaps, with 9

OTUs being used. This NJ tree did not form 1 cluster of eutherian

and marsupial X-linked genes. ML and MP trees of nucleotides

(644 bp) showed monophyletic relationships of the eutherian and

marsupial X-linked genes, although the bootstrap value was low.

(C) In PHF6X/Y, the number of synonymous sites compared was

95 bp without gaps, with 10 OTUs being used. In trees of (B) and

(C), the alignments were applied to the supplementary information

of Murtagh et al [22]. The vertical gray bar beside the tree

indicates a monophyletic cluster of X-linked genes. OTU names in

bold are marsupials. The abbreviations for species names are the

same as those in Fig. 2.

(EPS)

Table S1 Accession number of nucleotide sequences
used in this study.
(XLSX)

Table S2 The phylogenetic informative sites at the
second position of the codon. The number of sites to support

each topology of fig. S2 was shown. A, B or C means topology A,

B or C in fig. 4. UBE1X/Yb is the region with the low divergence

and UBE1X/Ya is the rest.

(TIF)

File S1 The distribution and number of phylogenetical-
ly informative sites. We examined the distribution and

number of phylogenetically informative sites by using only the

second positions of codons, in which substitutions were unlikely to

be saturated. This analysis excluded XKRX/Y, for which the Y

homolog was not present in the opossum genome. For simplicity, 4

OTUs were used: the X and Y sequences from the opossum

(marsupial X and Y: MX and MY) and a eutherian (human or

cat), denoted by EX and EY (eutherian Y). Each phylogenetically

informative site supports one of 3 possible topologies (Fig. S1). One

topology (topology A: Fig. S1A) is supported by the partition as

([EX, MX], [EY, MY]), in which the inner parentheses indicate

nucleotides that are shared. Gametologs that differentiated before

therian divergence show the partition ([EX, MX], [EY, MY]),

whereas differentiation after divergence produces the topology

([EX, EY], [MX, MY]). Furthermore, while the partition of ([EX,

MY], [MX, EY]) is not consistent with early therian divergence, it

could occur by chance (topology C: Supp Fig. S1C). Table S2

shows the number of phylogenetically informative sites for each

topology of the 4 genes (there are too few informative sites in

HSFX/Y and RPS4X/Y to determine a topological category). The

informative sites in SOX3/SRY and RBMX/Y support the

differentiation of gametologs before therian divergence (Table

S2), which is consistent with the topology of their nucleotide trees.

SMCX/Y and UBE1X/Y support topology B (Fig. S2B), suggesting

differentiation after therian divergence (Table S2), which is not

consistent with the topology of the nucleotide trees.

(DOCX)
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