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Abstract 

  

Tart cherries are polyphenol abundant stone fruits claimed to exert health benefits further 

of its nutritional properties. The abundant phytochemicals content in tart cherries also referred as 

dietary polyphenols have been considered as an effective natural antioxidant when added in daily 

diet. However, it has been hypothesized the intervention of gut microbiota on the overall 

functionality of such compounds. This thesis contains a wide-ranging literature review focused on 

tart cherry as a crop, current market, functional food, and several health benefits. Furthermore, the 

research done describes and in vitro and in vivo assays of a short-term dietary intervention of tart 

cherry and polyphenol isolates assessed with microbial ecology analysis and metabolomics of tart 

cherry concentrate polyphenols and microbial metabolites. The concentration of polyphenols 

(anthocyanins, flavonols and phenolic acids) were high amounts as expected. The in vitro assay 

showed large increase of Bacteroides in addition to a suggested Bifidobacterium increase likely 

due to large concentration of chlorogenic acid found in the tart cherry concentrated juice. The main 

microbial metabolites found in this assay was mainly 4-hydroxyphenyl propionic acid and in less 

amounts 4-hydroxybenzoic acid. The in vivo assay showed two initial scenarios associates with 

Bacteroides relative abundance: individuals with high Bacteroides increase the relative abundance 

of Lachnospiraceae, Ruminococcus and Collinsella; on the other hand, individuals with low levels 

of Bacteroides responded with an increase Prevotella and Bifidobacterium and Bcteroides and 

decrease of Lachnospiraceae, Ruminococcus and Collinsella. The results confirm an intervention 

from the gut microbiota over the metabolism of phytochemicals which should be considered in 

studies linked with functional foods and potential benefits to health.  
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ABSTRACT 

 Tart cherries are increasingly popular due to purported health benefits. This Prunus cesarus 

species is cultivated worldwide, and its market has increased significantly in the last two decades 

due to improvements in agricultural practices and food processing technology. Tart cherries are 

rich in polyphenols, with a very specific profile combining anthocyanins and flavonols (berries-

like) and chlorogenic acid (coffee-like). Tart cherries have been suggested to exert several 

potentially beneficial health effects including: lowering blood pressure, modulating blood glucose, 

enhancing cognitive function, protecting against oxidative stress and reducing inflammation. 

Studies focusing on tart cherry consumption have demonstrated particular benefits in recovery 

from exercise-induced muscle damage and diabetes associated parameters. However, the 

bioconversion of tart cherry polyphenols by resident colonic microbiota has never been considered, 

considerably reducing the impact of in vitro studies that have relied on fruit polyphenol extracts. 

In vitro and in vivo gut microbiota and metabolome studies are necessary to reinforce health claims 

linked to tart cherries consumption.  

Keywords:  

Tart cherries, Phytochemicals, Polyphenols, Gut microbiota, Metabolome  
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INTRODUCTION 

Tart cherries (Prunus cerasus) are among the ever-growing list of fruits branded as “super-

foods”. While the superfood concept tends to often rely on speculative assertions, the potential 

health benefits of tart cherries are relatively well documented. The significantly high 

phytochemical content in tart cherries (especially polyphenols) has most commonly been studied 

in the context of health, and there is solid evidence for high antioxidant properties at the very least 

(Blando et al. 2004,Ducharme et al. 2009,Levers et al. 2016,Matchynski et al. 2013,Wojdylo et al. 

2014). 

Functional food is a term broadly used to label foods that help to enhance some functions 

of the body as well as being nutritious (Hasler. 1996). It is important to note that “qualified health 

claims” are stringently regulated by FDA, and thus only few foods marketed as functional foods 

have strong scientific evidence of bringing health benefits. Therefore, tart cherries, like other 

phytochemical-rich fruits, do not fulfill specific health claims (however, like most fruits and 

vegetables containing fibers and vitamins, they fulfill the general claims for reduced coronary heart 

disease and cancer risk). Still, there have been numerous reports of beneficial health impacts from 

consumption of phytochemical-rich fruits (Nile and Park. 2014). Tart cherries are particularly rich 

in polyphenolic compounds such as flavonoids: flavonols and anthocyanins; anthocyanins being 

responsible for the deep red color characteristic of the fruits (Damar and Eksi. 2012, Alrgei et al. 

2016).  

Several studies in recent years have suggested specific beneficial health properties from 

tart cherry consumption, notably a potential to alleviate muscle damage commonly associated with 

prolonged physical effort (Connolly et al. 2006 ,Kuehl et al. 2010,Kuehl. 2012). Tart cherries 

potential for prevention of chronic diseases such as cancer (Kang et al. 2003, Martin and Wooden. 
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2012) and cardiovascular abnormalities (Juhasz et al. 2013,Bak et al. 2006,Csiki et al. 2015), 

diabetes (Mahmoud et al. 2013) as well as inflammatory conditions (Ou et al. 2012,Saric et al. 

2009) has also been reported. However, a significant portion of research has relied on in vitro or 

animal studies with isolated native polyphenolic extracts (in particular, antioxidant properties) 

(Kirakosyan et al. 2015,Kirakosyan et al. 2009,Mahmoud et al. 2014). Polyphenols, which are 

large and complex molecules, are known to be generally poorly absorbed in the small intestine. It 

has been shown that the colonic microbiota (the collection of microbes living in the large intestine) 

modifies and degrades polyphenols to smaller metabolites which become available to the host 

(Bohn. 2014, Bohn et al. 2015, Crozier et al. 2009). There is still only sparse knowledge on how 

fruit polyphenols modulate the gut microbiota, and into which metabolites they break down 

through colonic fermentation (Del Rio et al. 2013a). This represents a major limitation for previous 

in vitro studies using native polyphenols, since human cells/organs are most likely to be exposed 

to phenolic metabolites (Aura et al. 2013,Clifford et al. 2013,Larrosa et al. 2009a,Miene et al. 

2011). Further, the strong individuality in human gut microbiota profiles (Turroni et al. 

2017,Arumugam et al. 2011) and microbiome functions arguably leads to different metabolome 

profiles (Bolca et al. 2013,Tomas-Barberan et al. 2016). The goal of this review is to present the 

current knowledge on tart cherries as a high value crop and describe the reported potential health 

benefits. The limited knowledge on gut microbiota modulation of tart cherries phytochemicals will 

also be presented. 

TART CHERRY ECONOMIC IMPORTANCE 

 

Cherry trees (genera Prunus) are represented by two subgenera, Padus (bird cherries) and 

Cesarus, however most berries of agricultural importance belong to the Cesarus subgenus. More 
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specifically, the two-main species grown worldwide are Prunus avium (sweet cherries) and Prunus 

cesarus (tart or sour cherries) (Brown-Skrobot et al. 1989). Cherries are considered high-value 

crop produced worldwide largely because of their purported health benefits (Bak et al. 2010, Bell 

et al. 2014a) rather than organoleptic properties. The current review will be focused on tart 

cherries. 

Worldwide, tart cherries production has increased significantly in the last decades because 

of advances in agricultural practices, food technologies and raising global demand; from 2,154,000 

to 3,057,000 metric tons. Europe leads the production with 65.8% of the total world production 

followed by Asia and America with 24.9% and 9.3% respectively (FAOSTAT, 2015). In 2013, the 

top five producer countries of tart cherry were Ukraine, Russian Federation, Poland, Turkey and 

the United States of America (USA). The USA produced 268,072 metric tons in 2013 and 2014 

valued at more than $210 million. Michigan, Utah, and Washington are the three states with the 

highest production (USDA NASS, 2014). During the past decade, USA has been a leading exporter 

of this commodity and lately Chile has joined the export market, mainly to China, Russia and 

South Korea. Tart cherry production has increased due to recent improvement in agricultural 

practices, allowing producers to sell fruits at reasonable prices (Webster and Looney. 1995), before 

necessary processing into concentrate, juice, wine, brined, dried and powder, which have better 

palatability (Kirakosyan et al. 2009, Webster and Looney. 1995). 

PRE AND POST-HARVEST AND PROCESSING SPECIFICITIES 

 

Tart cherry cultivars are the most tolerant plants to biotic and abiotic stress among their 

family (Rosaceae). However, during harvest tart cherries become susceptible to hot-dry weather, 

which reduces the harvest window and can be the cause of significant physico-chemical changes 
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affecting color, polyphenol content and the detachment force, thus affecting the overall production 

(Aslantas et al. 2016). Appropriate harvest and postharvest handling are critical for higher quality 

of the commodity, however 55% of the total cost is spent when cherries are hand-harvested. In 

contrast mechanical harvesting was shown to lower the cost and enhance profits for the industry 

(Webster and Looney. 1995).  

Tart cherry is a non-climacteric fruit, thus the variability of maturity throughout the tree 

influences quality and yields during harvest and processing. Industrial tart cherry processors rely 

on methods to determine optimum physio-chemical parameters of maturity including the fruit 

detachment force (FDF) and color parameters (Aslantas et al. 2016) . The color characteristics, 

specifically the color intensity, have been reported to be an effective field indicator of maturity 

stage in cherry. Aslantas et al. ( 2016) researched a standard procedure to determine the degree of 

maturity for harvest based on the fruit detachment force and fruit pomological and chemical 

characteristics. Tart cherries were classified into five stages of maturity per physical characteristics 

such as color and size by observation, where higher values meant higher level of maturity. The 

results indicated a strong relation between the physicochemical characteristics and the stage of 

maturation in the fruit; where the best three categories of maturity stages showed higher efficiency 

in poundage per tree, as well as improved homogeneity of color and reduced fruit detachment 

force. Ascorbic acid levels tend to decrease when maturity increases as degradation of organic 

acids occur, which is a desirable quality in the juice industry (Wojdylo et al. 2014,Karaaslan et al. 

2016).  

Around 95% of the tart cherry production is intended for industrial purposes; representing 

a great challenge for new processing technologies able to preserve bioactive compounds available 

for consumption. The production of juice accounts for about half of the tart cherry production 
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destined to industry. Turkey, one of the largest producers, utilizes around forty percent of the tart 

cherries in production of juice or nectar because of the market demand and accessible handling for 

commercialization (Damar and Eksi. 2012). The rest of the production is distributed into frozen, 

purees, dried pitted tart cherry, powder from individually quick frozen (IQF), and concentrates. 

Every product undergoes different treatment technologies that have an impact on the content of 

bioactive compounds which varies according to the type of product. Table 1 presents an exhaustive 

list of the processing steps that tart cherries undergo to be converted to juice. In the production of 

juice, mash press extraction has been shown as the key step for optimal phenolic compounds 

recovery. To improve extraction three rinses are necessary to increase the recovery yield of 

bioactive compounds, reaching 83% of anthocyanin and 62% of procyanidins (oligomeric 

flavonoids) from the press cake (Toydemir et al. 2013b). The total extraction of these compounds 

is remarkably high in comparison to other fruits such as blueberries (Skrede et al. 2000); and two 

properties may explain this phenomenon. First, the molecular structure of the anthocyanin profile 

in tart cherry is dominated by water soluble chemical groups (tri-glycoside), which may increase 

the recovery of anthocyanins. Second, anthocyanins in the fruits are found mainly in the flesh 

facilitating disruption and enabling a higher yield of bioactive compounds in the end-product 

(Capanoglu et al. 2013,Toydemir et al. 2013a). Transformation of rich polyphenol plants tissues 

to processed products leads to changes in the phenolic profile with the formation of derived 

polyphenols (Crozier et al. 2009). The addition of sweeteners in cherry products has been shown 

to induce a slight decline in polyphenol concentration, especially the anthocyanins. Nevertheless, 

these products are more attractive to consumers and are still able to provide a high antioxidant 

activity and potential health benefits (Nowicka and Wojdylo. 2016). 
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Nutritional and health claims have substantially increased the demand of tart cherry in the 

industry and have generated interest of research in preservation and stability of the phytochemicals 

content and bioavailability in tart cherry after processing (Seeram et al. 2001a). During processed 

tart cherry products storage, physicochemical reactions take place where the antioxidant 

compounds are converted or degraded, and color may be altered. The concentration of 

polyphenolic compounds can also change due to enzymatic oxidation to quinones (Bonerz et al. 

2007). Monomeric anthocyanins are the most affected by the storage steps that the products 

undergo. Furthermore, long term storage had been reported to affect the polyphenol profile and 

contents. Storage at 20°C for 6 months resulted in formation of polyphenol derivatives and 

significant decline (70–75%) of anthocyanin concentration (Bonerz et al. 2007). Also since this 

last step is key, packaging alternatives were tested to identify the most effective storage route for 

product quality (freeze-dried sour cherry) and polyphenols integrity. This study showed that most 

of polyphenols remain stable and in high concentration except anthocyanins which decreased by 

62% after one-year storage at lower temperatures (Zoric et al. 2016). This kind of food storage 

allow year-round tart cherry products availability, hence proper food processing practices to 

preserve the bioactive components is beneficial not only for the industry but for the consumers.  

TART CHERRY PHYTOCHEMICALS 

 

Phytochemicals are secondary metabolites, non-nutritive molecules produced naturally by 

plants (Dillard and German. 2000) as a response to abiotic and biotic stress especially climate 

variation, mechanical damage, as well as a response to pathogen attack (Hirschi. 2009). Certain 

secondary metabolites are classified as phytochemicals if their chemical structure can provide 

potential health benefits over basic nutritional value (Dillard and German. 2000,Tsao. 2010). 
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Phytochemical profiles are extremely variable across plant species (and even variety/cultivar); and 

environmental factors such as growth conditions, soil type and seasons result in further variability 

(Hirschi. 2009, Webster and Looney. 1995). 

Cherries in general have been described as phytochemical rich fruits with potential health 

benefits, while reports on their phytochemical profiles have been somewhat conflicting 

(Kirakosyan et al. 2009,Kirakosyan et al. 2010,Ou et al. 2012). While there is convincing evidence 

that phytochemicals in general are safe to consume, one should remember that in vitro experiments 

that constitute a large fraction of our current knowledge are only partially representative of actual 

human metabolism and physiology (Nile and Park. 2014, Steinberg et al. 2003, Amin et al. 2015, 

Bak et al. 2006). Moreover, the interaction between phytochemicals may result in changes in 

physio-chemical characteristics such as solubility, stability and bioavailability of the active 

compounds in the products (Kirakosyan et al. 2010). Total polyphenol, monomeric anthocyanins, 

and ascorbic acid are well known to possess remarkable anti-oxidant properties (Moyer et al. 

2002,Seeram et al. 2008, Del Rio et al. 2013b, Landete. 2012, Redondo et al. 2017). However, 

most of the antioxidant response was thought to come from the anthocyanins fraction but it actually 

derives mostly from phenolic acids (Damar and Eksi. 2012). 

The phytochemicals in tart cherries are carotenoids and phenolics: phenolic acids and 

flavonoids (Damar and Eksi. 2012, Blando et al. 2004, Kirakosyan et al. 2009).  

Phenolics 

 

Phenolics are secondary metabolites produced by plants which have at least one aromatic 

ring with a single or several hydroxyl groups attached, ranging from simple low molecular weight 

up to complex large molecules such as tannins. Some phenolics are synthesized from 
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carbohydrates following shikimate and phenyl propanoid pathways (Ferretti et al. 2010) . The 

distribution and concentration of phenolics varies within each tree and within the fruit as shown in 

Table 2. Montmorency tart cherry cultivar have highest phenolic content in their skin, leading to 

higher antioxidant capacity (Chaovanalikit and Wrolstad. 2004). The synthesis and accumulation 

of phenolics in the skin is used as a natural harvest indicator, provides organoleptic characteristics 

to the fruit constituting a natural defensive mechanism.  

 

The phenolic compounds in tart cherry contribute to their sensorial attributes like color and 

flavor (Ferretti et al. 2010) (Table3). There is also a great interest on the preventive functionality 

that phenolic compounds have shown in several animal and human models exposed to chronic 

and/or long-term diseases such as, cancer or diabetes and associated features such as oxidative 

stress.  

For a clearer understanding, phenolic compounds are classified into flavonoids and non-flavonoids 

(Bravo. 1998, Tsao. 2010). 

Flavonoids 

 

Flavonoids have attracted interest because of their influence as health promoter 

compounds. The widely-studied anthocyanins are well known for their antioxidant capacity 

(Casedas et al. 2016,Khoo et al. 2012,Wojdylo et al. 2014)(Khoo and others 2011; Wojdylo and 

others 2014b; Casedas and others 2016; Nowicka and others 2016). Other flavonoids include 

flavonols, flavones, flavanols, flavanones, and isoflavones. Flavonoids are recognized for their 

ability of scavenge hydroxyl and peroxyl radicals and also function in synergy with other 

antioxidants and other bio-compounds such as tocopherol and ascorbic acid. 
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Anthocyanins 

 

Anthocyanins are synthetized mainly during ripening and are responsible for the color 

change from green to deep red (Karaaslan et al. 2016). Tart cherries have been shown to contain 

high levels of anthocyanins and phenolic acids which have an inverse relationship: during early 

stage the fruit is high in phenolic acids, while anthocyanins synthesis increases towards ripening 

(Karaaslan et al. 2016,Wojdylo et al. 2014,Blando et al. 2004,Damar and Eksi. 2012), resulting 

in the characteristic deep red color of tart cherries. Since color means such an important parameter 

for harvest and sensorial control, Kim et al (Kim et al. 2005) also evaluated the total content of 

anthocyanins in cherries using two approaches: a colorimetric assay and HPLC. While comparing 

both methods the anthocyanin levels from both were almost the same, meaning that the total count 

of anthocyanins colorimetric assays gave a similar result when compared with the sum of 

individual anthocyanins analyzed with HPLC.  

Several factors strongly affect the anthocyanin content such as genetic background and 

environmental characteristics (Karaaslan et al. 2016) or if the tart cherries are analyzed as fresh 

fruit or as processed product (Kirakosyan et al. 2009). However, the major fraction corresponds 

to Cyanidin-3-glucosyl-rutinoside, accounting for approximately 70% of the total anthocyanin 

concentration (Blando et al. 2004,Chaovanalikit and Wrolstad. 2004, Daenen et al. 2007, Kang et 

al. 2003, Seeram et al. 2001, Tall et al. 2004). Anthocyanins have been reported to be the major 

phenolic in tart cherries,in particular cyanidin and peonidin aglycones and anthocyanidins (Fang 

2015) (Table 4). 

 

Although, anthocyanins are the major compound in tart cherries, they are also the most 

unstable and handling in industrial levels is a challenge (Chaovanalikit and Wrolstad. 2004, 



12 

 

Kirakosyan et al. 2009, Zoric et al. 2016). Vesna et al ( 2016) developed a cookie taking advantage 

of the positive interaction between proteins and phenolics, resulting in a satisfactory retention of 

anthocyanins (19-59%). 

Flavonols 

 

Flavonols are a subclass of flavonoids that are naturally produced by plants with important 

antioxidant potential (Kirakosyan et al. 2009). The reported flavonols content in cherry products 

vary significantly, this phenomenon can be due to several causes such as the kind of product itself, 

the conditions it was subjected during processing as well as to the environmental and agricultural 

conditions where the plant was grown (Toydemir et al. 2013b). In a study of interaction of isolated 

polyphenols from tart cherry fruits, it was found that kaempferol and quercetin were the primary 

contributors of the antioxidant (TEAC) properties (Kirakosyan et al. 2009), with Trolox equivalent 

antioxidant capacity (TEAC) values of 4.5 mM TEAC and 4.2 mM respectively. The flavonols 

reported from tart cherry products are kaempferol-3-rutinoside, quercetin-3-glucoside, quercetin-

3-rutinoside, quercetin-3-(2-glucosyl-rutinoside) and isorhamnetin rutinoside (Table 5). They 

were found to be fairly stable in tart cherry juice stored six months at freezing temperature (-25°C) 

(Bonerz and others 2007a; Li and others 2008). 

 

Phenolic acids 

 

Phenolic acids are non-flavonoid polyphenolic compounds recognized for their strong 

antioxidant activity; and divided into two subclasses: hydroxyl-benzoic acids and hydroxyl-

cinnamic acids. Recent studies reported that tart cherries are rich in chlorogenic and 

neochlorogenic acids (Table 6), which have only been described in similarly high quantities in 
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coffee (Karaaslan and others 2016; Casedas and others 2016) and in lower abundances in apricots 

and blueberries (Cho et al. 2004,Dragovic-Uzelac et al. 2007). 

 

Carotenoids and other phytochemicals 

 

While carotenoids are assumed to be present in tart cherries, there have been no reports on 

detection and quantification specifically on tart cherries. Carotenoids, including α and β-carotens, 

lutein and neoxanthin have been detected in wild cherries; however total carotenoids levels did not 

exceed 12.6 mg/kg, whereas carotenoids-rich vegetables often contain hundreds of mg/kg of just 

one of these carotenoids (Mikulic-Petkovsek et al. 2016). Carotenoids have been reported to be 

present in sweet cherries (McCune et al. 2011), however original reports could not be tracked back. 

Carotenoids were also detected in very low levels (0.02 mg/g DW) in cherries (presumably sweet) 

in comparison with carrots and bell peppers in a study conducted in New Zealand (Leong and Oey. 

2012). 

The potentially antioxidant melatonin (N-acetyl-5-methoxytryptamine) had been reported in high 

levels in tart cherries (Burkhardt et al. 2001), however more recent reports indicated that melatonin 

was in low concentration in Montmorency and Balaton tart cherries and completely absent in 

processed tart cherry products (Kirakosyan et al. 2009). Finally, tart cherries contain relatively low 

(3-9 mg/100 g) amounts of ascorbic acid (Vitamin C) (Papp et al. 2010), confirming that tart 

cherries antioxidant potential mainly derive from phenolic compounds. 
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IMPACT ON NUTRITION AND HEALTH 

There are several studies suggesting health promoting benefits could be associated to tart 

cherries consumption including effects on chronic diseases such as cancer, diabetes and cardiac 

complications (Bajerska et al. 2016, Czompa et al. 2014, Bobe et al. 2006, Martin and Wooden. 

2012, Saleh et al. 2017). These studies have generally focused on the content and functionality of 

phytochemicals of tart cherries and connected specifically with the antioxidant activity. 

Nutrition  

 

Tart cherry fruits have somewhat unremarkable nutritional composition (Table 7), with low 

fiber and vitamin C content, but represent a good source of minerals and vitamin A. In addition, 

the necessary food processing tends to even lower the contents of valuable nutrients. One 

advantage is that unsweetened tart cherries products have low sugars and calories. 

Tart cherries impact on exercise 

 

The antioxidant effect phytochemicals in powdered tart cherry has been suggested to improve 

muscle function recovery and reduce inflammation, oxidative stress and pain associated with 

intensive exercise (Bell et al. 2014a). Consumption of tart cherry juice blend have been shown to 

reduce significantly muscle damage symptoms caused by intensive strength exercise or running in 

humans (Connolly et al. 2006,Kuehl et al. 2010,Howatson et al. 2010,Bowtell et al. 2011) and 

horses (Ducharme et al. 2009).Tart cherries supplementation intake was shown to improve the 

average of race pace, as well as modulating the balance in oxidative stress, decreasing 

inflammation markers and improving muscle recovery (Levers et al. 2015,Levers et al. 2016). 

Another study investigated the potential effect of tart cherry concentrate on muscle recovery after 

prolonged and intermittent exercise such as soccer Tart cherry supplementation resulted in faster 
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recovery and lower muscle soreness suggesting modulation of oxidative stress and inflammation 

post-exercise (Bell et al. 2016). Similar results were reported in water-polo players consuming tart 

cherry products (McCormick et al. 2016) as well as other type of high intensity exercise (Bell et 

al. 2015) including cycling (Bell et al. 2014b). Another concern about extended exercise recovery 

has to do with airway inflammation (respiratory mucosal inflammation) directly linked with 

induced pulmonary stress. Tart cherry juices seemed to have a modulatory effect as well as 

reducing inflammatory markers in the respiratory tract of healthy athletes, leading to faster 

recovery (Dimitriou et al. 2015). 

Antioxidant and anti-inflammatory potential 

 

Tart cherries have been shown to modulate inflammatory and oxidative stress expression in 

HAPI cells (rat microglial cells) such as nitric oxide, inducible nitric oxide synthase and 

cyclooxygenase-2 in dose and time dependent manner (Shukitt-Hale et al. 2016a). The 

inflammatory activity in the hippocampus of older rats, measured through COX-2 expression, 

decreased significantly after six weeks of tart cherry supplementation (Thangthaeng et al. 2016). 

Similar anti-inflammatory potential was observed in mice consuming tart cherry juice (Saric et al. 

2009). A double-blind, placebo-controlled, crossover dietary intervention demonstrated that 

consumption of tart cherry juice improved the ability of older men and women to resist oxidative 

damage and stress (Traustadottir et al. 2009). Another study demonstrated that various tart cherry 

products possessed remarkable antioxidant (ORAC properties), but that concentrates in particular 

have higher anti-inflammatory properties as measured by COX-1 inhibition in vitro (Ou et al. 

2012). 
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Tart cherry have also been used as supplementation for treatment of rheumatoid arthritis, in 

this case tart cherry seeds were used to investigate its promoting health activity over inflammatory 

disorder. Blood leukocytes from rheumatic arthritis patients were used and subjected to 

lipopolysaccharide and seeds extract for 24 hours and was reported a decreased expression of heme 

oxygenase-1 (inflammatory marker) that control oxidative stress and therefore intervene on 

inflammation expression (Mahmoud et al. 2014,Mahmoud et al. 2013). 

 

POTENTIAL IMPACT OF METABOLIC DISEASES 

Diabetes and Obesity 

 

Phenolic compounds have shown promising results associated with neutralization of development 

and progression of diabetes and its complications (Lachin. 2014). Although further in vivo studies 

are needed, this may represent an alternative to current treatments. 

Two enzymes are in charge to hydrolyze carbohydrates: pancreatic alpha-amylase and 

intestinal alpha-glucosidase needed to break down to monosaccharides. Therefore, one postulated 

manner to control hyperglycemia and type 2 diabetes is to interfere the role of these enzymes. 

Nowicka et al ( 2016) showed effective inhibition of those enzymes in in vitro assays through 

consumption of smoothies made of tart cherry and other fruits rich in phytochemicals. Comparable 

in vitro results were found with tart cherries anthocyanins having inhibitory activity towards alpha-

amylase (Homoki et al. 2016).  

A recent study was carried out to evaluate the hypoglycemic effect of tart cherry extracts 

in acute and sub-chronic injections to mice, both leading to dose-dependent restorative effects. The 

acute injection resulted in a decrease of blood glucose level and the sub-chronic scenario an even 
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stronger amelioration of glucose levels as well as effects on weight loss and oxidative stress and 

significant pancreatic cell regeneration (Saleh et al. 2017). Another health problem associated with 

diabetes is obesity and the harmful impact of adiposity over metabolism. Here again the 

consumptions of tart cherry extracts also resulted in lower blood glucose in obese mice fed with 

polyphenol-rich cherry extract after food deprivation. The extract consumption also reduced lipid 

accumulation, adiposity accumulation in the liver tissue and remediate the uncontrolled  

accumulation of fat cultured cells (Snyder et al. 2016) .  

 The potential to use by-products such as pomace of juice production has been considered 

due to the elevated content of phytochemicals. A human randomized crossover trial (one test meal 

followed by glycemic response measurements) was performed using tart cherry pomace as 

ingredient of muffins replacing part of the flour (20 or 30%). The results in terms of controlling 

glucose levels were similar to other studies mentioned before but the enriched muffins were also 

effective managing hunger and food intake. Those food products could be a suitable alternative 

for a healthy breakfast or snack in additions to its sensorial acceptance (Bajerska et al. 2016).  

 Certain phytochemicals are also associated with antihyperlipidemic effect. An 

investigation in rats showed reduction of lipid accumulation in liver tissue, which appeared to be 

linked with phenolic acids in tart cherry such as chlorogenic acid and more specifically its 

metabolites rather than anthocyanins. Such metabolites may have a connection with enzymes of 

hypocholesterolemic functions (Papp et al. 2015). In a similar way another study was done with a 

cell culture model which explained a dose-dependent influence decreasing lipid accumulation 

when the cells are expose to 100 µmol/L of quercetin (Snyder et al. 2016). More studies will be 

needed to conclude on the potential antihyperlipidemic and antiadiposity properties of tart cherries. 
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Cardiovascular disease 

 

Cardiovascular dysfunction is a leading cause of death among chronic diseases in 

industrialized countries. Polyphenol-rich fruits have seen increased interest for potential 

cardiovascular health protective effects (Habauzit and Morand. 2012,Habauzit et al. 2015). Tart 

cherries kernel extracts were shown to alleviate ischemia reperfusion-induced damage in isolated 

rat (Bak et al. 2006) and rabbit (Juhasz et al. 2013) hearts. Only marginal impact was observed 

when humans where given similar extracts in a limited double-blind study (Csiki et al. 2015). 

An acute, placebo-controlled, double-blinded, cross-over, randomized intervention was 

performed in a group of middle age volunteers with early hypertension. Volunteers consumed tart 

cherry concentrates (60mL equivalent to 180 cherries). The concentrate consumption was effective 

in reducing their systolic blood pressure but not microvascular reactivity nor arterial stiffness. This 

effect maybe associated to the phenolic acids content and could be extended to other rich 

phytochemical fruits which can serve as systolic blood pressure modulators (Keane et al. 2016b). 

Another study reported no detectable effect on the same cardiovascular disease biomarkers, 

however the study focused on healthy subjects consuming only 30 mL of the same concentrate 

(Lynn et al. 2014). 

 

 Other potential health benefits 

 

Tart cherries consumption was shown to improve the working memory in aged rats having 

an influence on reducing inflammation linked with aging and therefore promoting delay on 

neurodegenerative diseases (Thangthaeng et al. 2016). Furthermore, tart cherry anthocyanins were 

reported to accumulate in brain cells of rats after three weeks in a dose-dependent manner as well 
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(Kirakosyan et al. 2015). Casedas et al ( 2016) reported that tart cherry juice may have protective 

effect against neurological diseases, with antidepressant and anxiolytic properties, possibly due to 

the ability to inhibit  monoamine oxidase A and tyrosinase. In addition, another study showed 

improved memory and cognition in older adults affected with dementia through consumption of 

(sweet) cherry juice (Kent et al. 2017) 

Tart cherries, in fact all cherries; have been increasingly suggested as beneficial to reduce 

the risk of gout attacks, a specific inflammatory arthritis condition. However, FDA has warned 

several cherry producers about claims based on unsubstantiated data, and an epidemiological 

dietary study provided limited evidence for potential gout protective effect (Zhang et al. 2012) and 

a later internet based survey suggested that any correlation seen may be due to the fact that patients 

with milder symptoms are more likely to consume cherries or other plant-based supplements and 

no treatment, effectively skewing the data (Singh et al. 2015). However, a human study showed 

that tart cherry concentrate consumption resulted in significant decrease of plasma uric acid, which 

is purported as the main driver of gout attacks (Bell et al. 2014c). 

  

FATE OF CHERRY POLYPHENOLS IN THE DIGESTIVE SYSTEM 

 

It has been assumed for a long time that the impact of polyphenols on health could be identified 

by exposing human cell lines to more or less purified fractions from fruits (or other plant material) 

(Haddad et al. 2013,Hanbali et al. 2013,Mahmoud et al. 2014,Mahmoud et al. 2013,Martin and 

Wooden. 2012, Shukitt-Hale et al. 2016b). However, it is also well known that most polyphenols 

cannot be absorbed by cells or reach the blood circulation due to their high molecular size (Moco 

et al. 2012a, Marin et al. 2015). In the mammalian digestive system, large non-digestible dietary 
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molecules are subject to fermentation, modifications and degradation by the resident microbes 

(designed under the terms microbiome or microbiota) (Sheflin et al. 2017). The human colonic 

microbiome has therefore become the subject of intense research (Flint et al. 2012,Holmes et al. 

2011), in particular in relation to health and diseases (Candela et al. 2014,Carbonero et al. 

2012b,Carbonero et al. 2012a,O'Keefe et al. 2015,Everard and Cani. 2013, Sartor. 2008, Kostic et 

al. 2014) It is now well known that diet composition strongly influences the gut microbiome 

taxonomic composition and metabolic functions (Flint. 2012, Sheflin et al. 2017). A corollary 

research field is metabolomics; the study of the metabolites deriving from gut microbe activities 

(Wishart et al. 2016, Moco et al. 2012b). The human metabolome is known to include thousands 

of small molecules detected in stool, urine and blood; which are far more bioavailable than parent 

molecules. As far as we know, there has been no attempt to decipher the impact of tart cherries 

consumption on the human gut microbiome and metabolome. Therefore, in this section, we will 

describe the potential effects based on published data on relevant pure polyphenols or fruits/plants 

with similar polyphenolic profiles. 

Polyphenols and polyphenol-rich food impact on the gut microbiota 

 

Several reviews on the impact of dietary polyphenols on the gut microbiota are available 

(Duda-Chodak et al. 2015,Tomas-Barberan et al. 2016,Sheflin et al. 2017). The two genera that 

are reported the most often as being stimulated by polyphenols are Bifidobacterium and 

Lactobacillus, both known for their probiotic properties (Larrosa et al. 2009b,Chen et al. 2016,Li 

et al. 2015,Espley et al. 2014,Faria et al. 2014a,Mills et al. 2015). In addition, it has been shown 

that those genera are the primary converters of quercetin (Zhang et al. 2014), and chlorogenic acid 

(Ludwig et al. 2013), while their role in bioconversion of other polyphenols remains elusive. 

Quercetin has been shown to be degraded by Escherichia coli and Bacteroides fragilis (Zhang et 
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al. 2014). Isoflavones are converted by Aldercreutzia spp. and Slackia spp (Guadamuro et al. 

2017). Elagitannins were found to increase the numbers of Akkermansia in vivo (Li et al. 2015). 

Tea, coffee, cocoa, berries mango and pomegranate, all rich in polyphenols were all found to 

stimulate Lactobacillus and Bifidobacterium (Jaquet et al. 2009,Bialonska et al. 2010,Ojo et al. 

2016,Jakobsdottir et al. 2013,Truchado et al. 2012,Puupponen-Pimiä et al. 2013,van Duynhoven 

et al. 2013). The main exception is lingonberries, which have been shown to increase 

Faecalibacterium, Bacteroides and Clostridium levels (Heyman-Linden et al. 2016,Matziouridou 

et al. 2016).  

To the best of our knowledge, there have been no in vitro, animal or human dietary intervention 

studies on the impact of tart cherries (and sweet cherries) consumption on the gut microbiome. 

Based on cherries polyphenolic profiles, stimulation of Lactobacillus, Bifidobacterium and/or 

Bacteroides can be hypothesized, but the bioavailability of specific polyphenols in various tart 

cherry products probably influence their impact on gut microbiota. It can be hypothesized that 

other phytochemicals would have limited impact because of very low concentration; and the near-

absence of fibers suggests that tart cherries would provide low amounts of polysaccharides for 

microbial fermentation. 

 

Microbial derived metabolites from dietary polyphenols 

 

Isoflavones have been studied extensively because microbial biotransformation leads to the 

very beneficial equol metabolite (Setchell and Clerici. 2010, Setchell et al. 2002). However, it was 

also shown that equol production is not universally distributed (Frankenfeld et al. 2014, Reverri et 

al. 2016) leading to the concept of metabotypes. While the potential health benefits of resveratrol 
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have been put under scrutiny, it is known that equol producing bacteria are able to convert trans-

resveratrol to dihydroresveratrol (Bode et al. 2013). There is extensive evidence that elagitannins 

are converted to urolithins (Espin et al. 2013,Selma et al. 2014,Puupponen-Pimia et al. 

2013,Gimenez-Bastida et al. 2012) and proanthocyanidins to phloroglucinol and benzoic acid 

derivatives: gallic, syringic and coumaric acids (Faria et al. 2014b,Hanske et al. 2013).  

Metabolomics studies have been conducted on different food types. Tea catechins were found 

to be converted to conjugated catechins, valerolactones, valeric acids and other phenolic 

acids(Grun et al. 2008, Gross et al. 2010). Berries and pomegranate were shown to enrich 

metabolomes in urolithins, phloroglucinol and benzoic acid derivatives (Truchado et al. 2012, 

Jakobsdottir et al. 2013). Studies on citrus fruits, which are rich in esperetin, naringenin, and ferulic 

acid, showed microbial production of different hydroxyphenyl propionic acids(Pereira-Caro et al. 

2015). 

Chlorogenic acid from coffee was shown to be converted to dihydrocaffeic acid, dihydroferulic 

acid, and 3-(3'-hydroxyphenyl) propionic acid in rats (Gonthier et al. 2003) and in humans (Ludwig 

et al. 2013). The anthocyanin cyanidin-3-glucoside was shown to be converted mainly to phenolic, 

hippuric, phenylacetic, and phenylpropenoic acids in humans through isotope pulse-chase studies 

(Czank et al. 2013). These metabolites were shown to modulate vascular reactivity (Edwards et al. 

2015) and reducing the expression of inflammatory mediators (Amin et al. 2015) in vitro. 

Protocatechuic acid in particular has been reported as the main metabolite of gut microbiota 

fermentation of cyaniding glucosides  and has been shown to exert several potential health benefits 

(Amin et al. 2015,Hornedo-Ortega et al. 2016,Olivas-Aguirre et al. 2016,Wang et al. 

2016,Woodward et al. 2011,Seeram et al. 2001b). It is expected that similar metabolites are 



23 

 

produced through gut microbiota fermentation of tart cherries, though it is possible that the unique 

polyphenol profile results in different metabolic pathways and metabolomics profiles. 

 

Conclusions and perspectives 

 

This review provides an update on the current investigation in regard to the promising 

phytochemicals content in tart or sour cherries. Improvements in agricultural practices and 

processing combined with health claims have resulted increased worldwide production. Health 

claims are mainly associated with high polyphenol concentration, as well as specific profile. 

However, it is necessary to determine the fate of those polyphenols in the human gastrointestinal 

tract. Based on studies on other polyphenol-rich fruits, it is expected that tart cherries consumption 

has potential to significantly modulate the gut microbiota composition and metabolic activities, 

leading to the release of specific phenolic metabolites. The potential health benefits of modulated 

gut microbiota and phenolic metabolites presumably differs from health properties described by 

in vitro studies of native polyphenols extracts from tart cherries. 
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Table 1: Description of tart cherry juice processing steps. 

Processing step 
Treatment & 

conditions 
Aim Weight data 

Fresh fruit Washing and selection 
Removal of unwanted 

material 

3.5% reduction in wet-

weight 

Fresh fruit and 

stalk 
Separation of stalks Stalk removal 

2% and 4% reduction 

in wet- and dry-weight 

bases 

Mash heat 
Mash heating              

80°C for 90s  
Enzyme inactivation No change 

Mash press 
Pressing; 110bar- 

horizontal press 

Obtaining the juicy 

part 
73% juice yield 

Mash press cake 

extract  

Mash press extraction- 

(repeated 3 times) 

Increasing the yield of 

juice 

Juice yield increased to 

85% 

Press cake with 

seeds 

Press cake resulting 

after mash press 

Removal of insoluble 

fruit parts 

15% reduction wet-

weight; 29% dry-

weight 

Pasteurized 

juice 

Pasteurization of 

pressed juice; 95°C for 

90s 

Microbial inactivation No change 

Enzyme treated 

juice 

Enzymation; 50°C for 

2h 

Degradation of pectic 

substances and starch 

pectolytic enzyme and 

amylolytic enzyme 

Clarified juice 
Clarification; 50°C 

for1h 

Precipitating haze 

precursors 

780 g gelatin/t juice1.2 

kg bentonitef/t juice 

Filtered juice 

and filtration 

residue 

Ultrafiltration 

Obtaining the clear 

juice by removing 

precipitates 

6% and 7% reduction 

in wet- and dry-weight 

-  

Concentrated 

juice 

Evaporation to 65˚Brix 

(Bx); 65-80°C 

Volume reduction for 

storage 

12.5˚Bx evaporated to 

65˚Bx 

Non-paper-

filtered and 

paper-filtered  

Paper filtration 

Elimination of 

Alycyclobacillus 

bacteria 

Negligible 

Nectar 
Addition of sucrose and 

citric acid 
Production of nectar 

56% sucrose on dry-

weight basis with: 

Pasteurized 

nectar 

Pasteurization of final 

nectar; 95°C for 45s 
Microbial inactivation   

 

 



40 

 

Table 2: Polyphenols distribution and concentration in the tart cherry fruit.. 

Cultivar Portion 
Anthocyanins (mg cy-3-

glu/100gfw) 

Total phenolics (mg GAE/g 

fw) 

ORAC (μmoles 

TE/g fw) 

FRAP 

(μmolesTE/g fw) 

Montmorency 

Flesh 0 ± 0.1 3.± 0.3 15 ± 1 13.8 ± 0.3 

Pits 0.8 ± 0.1 1.6 ± 0.02 9.8 ± 0.3 8.5 ± 0.9 

Skins 36.5 ± 1.6 5.6 ± 0.3 51 ± 2 48 ± 1.3 

 

 

 

 

 

 

 

 

 

4
0
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Table 3: Phytochemical profiles and antioxidant properties in different tart cherries food products. 

Product Total anthocyanin Phenolic acids Total phenolic 
Antioxidant 

capacity 
Reference 

Puree (mg/100g) 21.5-25.1 9.3-23.3 147.2-200  

(Nowicka and 

Wojdylo. 2016) 

Fruit (Italian 

cultivars) 

(mg/100g) 

27.8-80.4 

 

2000-2600 

μmol TE/100g 

fw 

(Blando et al. 2004) 

Fruit (Turkish 

cultivars) 

(mg/100g) 21-285    

 (Damar and Eksi. 

2012) 

Fruit (Turkish 

cultivars) 

(mg/100g) 45  275.4 

19 mmol 

TE/Kg 

(Karaaslan et al. 

2016) 

Dried (μg/g) 62-564a  3522-7813b 3.3.5 mmol/L 

(Kirakosyan et al. 

2009) 

frozen(μg/g) 533-1741a  6742-12665b 

4.4-4.5 

mmol/L 

Concentrate (μg/g) 213-722a  2541-4013b 3.5 mmol/L 

IQF powder(μg/g) 482-1063a  7752-10323b 

9.8-9.9 

mmol/L 

Lyophilized juice 

(mg/Kg) 0.19  9.84  

(Casedas et al. 

2016) 

a dry weight of cyanidin -3-glucoside equivalent; b dry weight of gallic acid equivalent 

 

4
1
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Table 4: Anthocyanins concentrations across varieties and product presentation. 

Product 
Cyanidin-3-

sophoroside 

  Cyanidin-3-

glucosylrutinoside 

Cyanidin-3-

glucoside 

Cyanidin-3-

rutinoside 
Reference 

Fruit (Italian 

cultivars) (mg/100g) 0.7-2.3 17.3-71.9 0.5-0.9 9.3-25.3 

(Blando et al. 

2004) 

Fruit (Turkish 

cultivars) (mg/100g) 0.48 28.1 1.2 9.2 

(Karaaslan et al. 

2016) 

Juice (German and 

Hungarian cultivars) 

(mg/L) 39-185 361-515  125-213 

(Bonerz et al. 

2007) 

Juice (Turkish 

cultivars) (mg/L) 2.6-21.5 140.3-320.9 2-9.9 35.4-85.5 

(Damar and 

Eksi. 2012) 

Dry (μg/g) 1.9-15.7 11.1-203.6 0.7-7.6 6.9-95.8 

(Kirakosyan et 

al. 2009) 

Lyophilized 

juice(μg/g)  0.08   

(Casedas et al. 

2016) 

 

 

 

 

 

 

4
2
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Table 5: Flavonols profile and concentration in tart cherry products. 

 

 

 

 

 

 

 

 

 

 

 

Flavonol/Unit 
Dry Frozen Concentrate IQF powder Juice  

µg/g µg/g µg/g µg/g mg/L References 

Isorhamnetin rutinoside 35.8-383.1 250.2-328.9 163.7-288.1 62.9-176.6 14-33 

(Kirakosyan et al. 

2009) 

kaempferol 12.9-42.9 3.8-13.1 5.2-11.9 16.8-85.9  
Quercetin 1.9-8.8 5.9-8.5 2.1-6.7 556.2-292.6  
Melatonin nd 2.9-12.3 nd 1.7-7.5  
Quercetin-3-(2-

glucosylrutinoside 
    11-31 

(Bonerz et al. 2007) 

Quercetin-3-rutinoside 
    18-59 

Quercetin-3-glucoside 
    3-8 

Kaemferol-3-rutinoside 
    4-13 4

3
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Table 6: Phenolic acids profile in tart cherry. 

Sample Neochlorogenic acid  Chlorogenic acid Caffeic acid Author 

Fruit (mg/Kg) 584.7 - 33.3 (Karaaslan et al. 

2016) 

Lyophilized juice 

(mg/Kg) 

1.6 0.6 (Casedas et al. 

2016) 

 

 

Table 7: Nutrient composition of Tart cherry compared to Sweet cherry (values in 100 grams: Adapted from USDA ARS 2017).  

  Sweet cherry Tart Cherry 

Nutrient Unit Value/100 g Value/100 g 

Energy kcal 63 50 

Protein g 1.06 1 

Fiber, total dietary g 2.1 1.6 

Sugars, total g 12.8 8.5 

Minerals mg 267.4 216.4 

Vitamin C, total ascorbic acid mg 7 10 

Thiamin mg 0.03 0.03 

Vitamin A, IU IU 64 128 

Vitamin E (alpha-tocopherol) mg 0.07 0.07 

Vitamin K (phylloquinone) µg 2.1 2.1 

4
4
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ABSTRACT 

Tart cherries have been reported to exert potential health benefits, which has been 

attributed to their specific and abundant polyphenol content. However, there is a need to study the 

impact and fate of tart cherries polyphenols in the gut microbiota. Here, tart cherry, apricots and 

pure polyphenols were submitted to in vitro assays and assessed through to 16S rRNA gene 

sequence sequencing and metabolomics. A short-term dietary intervention study was also 

conducted for microbiota analyses. 

Tart cherry concentrate juices were found to contain expected abundances of anthocyanins 

and flavonols and high amounts of chlorogenic and neochlorogenic acids. Targeted metabolomics 

confirmed that gut microbes were able to degrade those polyphenols, leading to the release mainly 

of 4 hydroxyphenylpropionic acid and to lower amounts of epicatechins and 4-hydroxybenzoic 

acid. Tart cherries were found to induce a large increase of Bacteroides in vitro, likely due to the 

input of polysaccharides, but prebiotic effect was also suggested by Bifidobacterium increase from 

chlorogenic acid. In the human study, two distinct and inverse responses to tart cherry consumption 

were associated with initial levels of Bacteroides. High Bacteroides individuals responded with a 

decrease in Bacteroides and Bifidobacterium, and an increase of Lachnospiraceae, Ruminococcus 

and Collinsella. Low Bacteroides individuals responded with an increase in Bacteroides or 

Prevotella and Bifidobacterium, and a decrease of Lachnospiraceae, Ruminococcus and 

Collinsella. These data confirm that gut microbiota metabolism, in particular the potential 

existence of different metabotypes, needs to be considered in studies attempting to link tart cherries 

consumption and health. 

Keywords: Tart cherry, Apricots; Gut microbiota, Polyphenols; Metabolites. 
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INTRODUCTION 

Tart cherries (Prunus cerasus) are stone fruits from the rosaceae family which have 

become a significant agricultural commodity after centuries of small-scale cultivation [1]. This 

increased popularity is due to: (1) greater resistance to environmental factors than other Prunus 

species [2], (2) improvements in food processing technologies allowing for the production of less 

acidic derived products [3,4] and (3) purported health-promoting properties leading to higher 

customer demand [5,6].  

Tart cherries, like other red-colored fruits [7], contain remarkably high amounts of 

phytochemicals, polyphenols in particular [8-11]. It is well known that plant-derived polyphenols 

possess high antioxidant properties [12,13], and this property has led to extensive research on 

potential health benefits [14-16]. Tart cherries are particularly rich in anthocyanins and flavonols 

like other red-colored fruits [8,17]. A recent study reported that tart cherries may be rich sources 

of chlorogenic (3-caffeoylquinic acid (3-CQA)) and neochlorogenic (5-caffeoylquinic acid (5-

CQA)) acids [18], which have only been described as abundant polyphenols in apricots [19], coffee 

[20] and blueberries [21]. Another study described significant amounts of genistein, an isoflavone 

typically found in soybeans, in certain tart cherry cultivars [22]. Indeed, there have been numerous 

reports of potential health benefits incurred by tart cherries consumption in sport medicine [23,24], 

diabetes and metabolic syndrome [25,26] and cardiovascular health in particular [27-29]. 

However, the antioxidant potential of dietary polyphenols has traditionally been measured 

from the native phenolics extracted from the fruits [30,31]. Only a limited fraction of low 

molecular weight phenolic compounds can be absorbed in the upper intestinal tract, and those 

compounds may have different antioxidant potential than large molecular weight polyphenol 

molecules. It is now well established that polyphenolic molecules undergo biotransformation in 



48 

 

the human colon [32-34]. Those metabolic processes are performed by bacterial members of the 

human gut microbiota [35,36]. While ellagitannins bioconversions to urolithins [34] and bacterial 

equol production from isoflavones [37] have been studied extensively; there is limited knowledge 

on how other polyphenols or polyphenol-rich fruits impact the human gut microbiota and it 

metabolic potential [38].  

The objective of this study was to investigate the impact of tart cherries and tart cherry juices on 

the human gut microbiota composition and to determine the fate of polyphenols through 

metabolomics. In vitro fermentations were used to test a variety of cherries and cherry 

concentrates. Because it is known that basal gut microbiota composition strongly drives the 

metabolism of dietary polyphenols [39], a human dietary intervention was also conducted with 

one tart cherry juice concentrate. 

 

MATERIALS AND METHODS 

Materials and reagents 

Plant materials and pure polyphenols 

 

Concentrate juices (King Orchards) of Montmorency tart cherries grown in Michigan were 

provided by the Cherry Marketing Institute. Commercially available tart (Balaton and 

Montmorency tart cherries blend; All Natural) and sweet (Black cherries, Tree of Life) cherry 

concentrate were also used. Fruits of two tart cherries genotypes (Pipacs1 and Érdi bőtermő) 

cultivars harvested in 2010 at the Research and Extension Centre for Fruit Growing (Újfehétró, 

Eastern Hungary), were used in this study. In addition, fruits of two apricot (P. armeniaca L.) 

cultivars (‘Gönci magyarkajszi’ and m604 cultivars) obtained from 2010 vintage of the apricot 
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breeding program conducted at the Department of Genetics and Plant Breeding, Szent István 

University (Budapest) were also evaluated. 

Reagents 

 

Crystalline 3-caffeoylquinic acid (3-CQA), 5-caffeoylquinic acid (5-CQA), rutin, 

kaempferol-rutinoside were purchased from Sigma-Aldrich (St. Louis, USA) and cyanidin-

glucoside from Extrasynthese (Genay, France). Acetonitrile (HPLC Gradient Grade), methanol 

(HPLC Gradient Grade) were obtained from Fisher Scientific (Loughborough, UK) and Sigma-

Aldrich (St. Louis, MO, USA), respectively. Formic acid (98% for mass spectrometry) was 

obtained from Fluka (Sigma-Aldrich). High-purity (18 Mcm-1) water was obtained from a Milli-

Q Plus ultrapure water system from Millipore (Milford, MA, USA). 

 

In vitro digestion experiments 

 

In vitro batch incubations were performed by sampling 25 ml of the distal colon 

compartments from the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). This 

gastrointestinal model is made of five double-jacketed fermentation vessels simulating the 

stomach, small intestine and the three colonic regions conditions [40]. The SHIME was seeded 

with enrichment cultures from human stool samples. Microbial suspensions (25 ml) were placed 

into bottles containing apricots or cherries (5 mL or g) and were incubated for 48 h at 37 °C. To 

maintain anaerobic conditions, l-cysteine (0.5 g/l) was added to bottles before flushing with N2 

during 15 cycles of 2 min each at 800 mbar over pressure and 900 mbar under pressure. Bottles 

were then closed with butyl rubber stoppers and placed at atmospheric pressure. Samples (1 mL 

each) were taken with a syringe and needle at 0, 4, 24 and 48 h. After each sampling, batch cultures 
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were flushed with N2 to maintain anaerobic conditions. Samples were centrifuged (14,000g, for 

10 min at 4 ºC) and pellets and supernatants were stored at −20 °C until further analysis. 

 

Analytical chemistry 

Sample preparation for analytical chemistry 

 

Two hundred µL of fruit juice (Tree of Life, King Orchard or Royal Farms) were diluted to 10 mL 

with methanol: water:formic acid (60:39:1, v/v) and ultrasonicated for 30 min at room temperature 

(< 35 °C at the end). After centrifugation at 3,000g for 10 min, 2.5 mL of the supernatant was 

diluted to 5 mL with water, and filtered through a 0.2 μm PTFE filter (SMI-LabHut Ltd, 

Gloucester, U.K.) before injection on the analytical column for analysis.  

Apricot and cherry fruits were halved after harvesting; stones were removed and stored at -80 °C 

until lyophilization. Lyophilized samples were manually pulverized in a mortar and stored at -20 

°C until dilution of 200 mg into 10mL of methanol: water:formic acid (60:39:1, v/v). Sample 

preparation was then performed as described in the previous paragraph. 

Fluids (from simulated stomach, small and large intestine) of in vitro digestions were 

homogenised after thawing, and 250 µL mixed with 725 µL MeOH containing 1% (v/v) formic 

acid and 25 µL daidzein internal standard (50 µg mL-1). Samples were homogenised for 30 secs 

using a vortex mixer, then centrifuged at 15,000g (10 min, 4°C). After centrifugation, 500 µl 

aliquots of the supernatant were transferred to clean micro-centrifuge tubes and concentrated to 

final volumes below 200 µL with a speed-vacuum. Then 25 µL of MeOH containing 5 % (v/v) 

formic acid was added final volume adjusted to 250 µL with water. Finally, samples were filtered 

through a 0.2 μm PTFE filter before injecting 10 μL on the analytical column for analysis. 
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LC/MS analysis 

 

The LC/MS profiling of fruit juices and in vitro gastric samples were based on the approach 

detailed previously [19,22]. The HPLC system (Agilent 1200, Agilent Technologies, Waldbronn, 

Germany) including a binary pump and a diode array detector (DAD) was coupled to an Agilent 

6350 quadrupole–time-of-flight (Q/TOF) hybrid tandem mass spectrometer (Agilent 

Technologies, Santa Clara, CA USA) equipped with a dual-spray ESI source. Chromatographic 

separation was carried out on a Phenomenex Kinetex Phenyl-hexyl RP (Phenonemex, 

Macclesfield, UK), 4.6 × 150 mm, 2.6 μm particle size column using 0.5% (v/v) formic acid in 

water (mobile phase A) and 0.5% (v/v) formic acid in acetonitrile (mobile phase B) as mobile 

phases at a flow rate of 500 μL/min. The gradient program was started at 8% B and after 5 min of 

isocratic run, solvent B was increased linearly and reached 45 % at 35 min and then 100 % at 40 

min. Finally, 100% B was kept constant for 5 min, followed by 10 min isocratic re-equilibration 

for initial conditions. 

Mass spectrometer was used either in negative or positive ion mode, with the following 

parameters: electrospray capillary voltage, 4000 V; nebulizer pressure, 40 psig; drying gas flow 

rate, 13 L/min; gas temperature, 325 C; skimmer voltage, 65 V. Fragmented voltage was triggered 

automatically between 160 V and 210 V in positive mode and 140 and 240 V in negative mode. 

The instrument performed internal mass calibration automatically, using a reference ESI nebulizer 

with an automated calibrating delivery system, which introduces the flow from the outlet of the 

chromatograph together with a low flow of a calibrating solution. The calibrating solution contains 

internal reference masses of purine and HP-0921 ([hexakis-(1H,1H,3H-tetrafluoropentoxy)-

phosphazene]). Protonated molecules of purine ([C5H5N4]
+ at m/z 121.0509) and HP-0921 

([C18H19O6N3P3F24]
+ at m/z 922.0098) were used as reference masses in positive ion mode, while 
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deprotonated purine at m/z 119.0363 and the formate adduct of HP-0921 ([C19H19O8N3P3F24]
- at 

m/z 966.000725) were used for the same purpose in negative ion mode. 

High resolution (> 20 000 FWHM at m/z 922) full-scan TOF spectra were recorded in the 

range of m/z 50–1100 at a frequency of 1.4 spectra/s. Agilent Mass Hunter Qualitative Analysis 

Software (version B.04.00 build 3.1.346.0) was applied for data evaluation. The DAD acquired 

data in the range of 200-800 nm in 2-nm steps at 0.5 spectra/s acquisition speed.  

 

Quantitative determination of selected polyphenols 

 

Quantitation of chlorogenic acid (3-CQA), neochlorogenic acid (5-CQA), rutin, kaempferol-

rutinoside, was carried out using the standard addition calibration technique and reference 

standards, whereas cyanidin-dH-H-H, Cyanidin-dH-H and cyanidin-glucoside were all quantified 

as cyanidin-glucoside equivalents. Anthocyanins, rutin and kaempferol-rutinoside were quantified 

in positive ion mode using the [M+H] + ion, whereas 3-CQA and 5-CQA were quantified in 

negative ion mode based on their [M-H]- ions.  

 

 Dietary intervention 

 

The study was approved by the University of Arkansas IRB (IRB# 15-02-476). A cohort 

of 10 healthy participants of five of each gender from 23 to 30 years old were recruited. All 

individuals took part in a screening session where they signed a consent form and completed a 

Food Frequency Questionnaire (FFQ). The individuals where generally healthy, with normal 

digestive function, non-smokers, and had not consumed any type of antibiotics for twelve weeks 

prior and during the intervention Each individual received tart cherry concentrate (King Orchard, 
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provided by the Cherry Marketing Institute) for the length of the study. Subjects were instructed 

to consume 8 oz of juice daily for five days. Additionally, they received a stool collection kit 

(commode Specimen Collection System; Fisher Scientific, Pittsburg, PA, USA) and provided a 

stool samples before and after the dietary intervention. Once the samples were collected they were 

stored at -80°C until analysis.  

Microbial Analyses 

DNA extraction 

 

Bacterial DNA was extracted and purified from the stool samples with the QIAamp Fast 

DNA Stool Mini Kit (Qiagen, Valencia, CA) following the manufacturer’ recommendations with 

addition of an initial bead-beading step (autoclaved 100 mg of 0.1 mm and 0.5 mm diameter 

Zirconia-silicate beads - BioSpec Products) for 30 s at 30 Hz repeated 3 times using FastPrep-24 

sample preparation system (MP Biomedical, CA) [41]. The genomic DNA quantification was 

measured with a Qubit Fluorometer (Life Technologies, Carlsbad, CA).  A polymerase chain 

reaction (PCR) was set up in a 96 well plate for confirmation of the bacterial DNA quality with 

universal 8F and 1541R primers for bacteria [42]. The quality was checked with 12% of samples 

randomly selected on a gel electrophoresis of 1% agarose gel to ensure amplification was normal 

and verify the presence of bacterial DNA from the stool sample [43]. 

Library Preparation for sequencing 

 

After bacterial DNA quality check, a second polymerase chain reaction (PCR) was 

performed to amplify the V4 region of the 16S rRNA gene using dual-indexed Illumina primers 

[43]. PCR reaction mixtures were set up with Accuprime Pfx SuperMix (Life Technologies, 

Carlsbad, CA) according to the manufacturer’s protocol, forward and reverse primers (200nM final 
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concentration) and template DNA (15 ng) in a 96 well plate; each plate contained a negative control 

(water). The amplification was carried out in an Eppendorf Mastercycler pro S (Eppendorf) under 

the following conditions 95°C for 5 min for initiation with 30 cycles of thermal program 

(denaturation, 95°C for 30 s; annealing, 55°C for 30 s; extension, 72°C for 60 s) and finally 72°C 

for 5 min. Then all samples were run in a 1% gel electrophoresis at 100v for 40 min for quality 

control of the PRC product.  

Normalization and purification of the amplicon was performed using Invitrogen 

SequalPrep Kit (Life Technologies, Carlbad, CA) following the manufacturer’s recommendations 

in order to remove residual salts or short oligonucleotide primers and normalize the concentration. 

To ensure success of the step a 1% gel electrophoresis was run with all the samples. Then, aliquots 

of 5 μL of each sample were pooled together. Pooled samples quality was checked on a 

TapeStation (Agilent). Real-time quantitative PCR was performed using Eppendorf Realplex 

Mastercycler ep gradient S (Eppendorf, Hamburg, Germany) using the PerfeCta NGS library 

Quantification Kit (Quanta Biosiences, Beverly, MA) according to the manufacturer’s protocol.  

The prepared library was mixed and diluted with 0.2 N NaOH and HT1 buffer, along with 

the control mix of PhiX control V4 and both solutions brought up to 8 pM of final concentration. 

The diluted amplicon and control were combined and loaded to the Illumina Miseq reagent 

cartridge along to the index, read 1 and read 2 sequencing primers. 

Sequence and Statistical Analysis 

 

 The sequencing reads were downloaded from the Illumina Basespace server in Fastq files 

format. The sequences were demultiplexed in read 1 and read 2 with approximately 250bp in 

length. The sequencing analyses were carried out using SILVA database as reference for 
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assignation of operational taxonomic units (OTUs) with 97% of identity. Further analysis was done 

using Mothur 1.35.1 pipeline [44]. Non-metric multidimensional scaling (NMDS) plots and 

analysis of similarities (ANOSIM), both based on the Bray-Curtis index, were obtained in PAST 

3.15. In addition, Kruskal Wallis and Mann-Whitney tests were performed to detect significant 

differences in bacterial taxa between samples and time points (by convention, differences were 

considered significant when p<0.05). 

RESULTS AND DISCUSSION 

Tart cherry juices phenolic profiles 

 

To the best of our knowledge, this is the first time that concentrated juices of Montmorency 

and Balaton tart cherries grown in the U.S. were profiled for their phenolic content. In comparison 

with previous studies on sweet cherries or European sour cherries, profiles were similar in the 

composition of anthocyanins, hydroxycinnamic acids and flavonols (Table 1) [4,17,45,46]. The 

most notable difference was the absence of detection of catechins and epicatechins which were 

reported in European sour cherries cultivars. While anthocyanins have received more attention for 

tart cherries, we report here that the most abundant polyphenols in the concentrated juices were 

the hydroxycinnamic acids: chlorogenic (3-CQA) and neochlorogenic (5-CQA) acids (Table 1). 

Remarkably, 3-CQA, but not 5-CQA was much less abundant in the sweet cherry concentrated 

juice. The only other food containing high levels of 3-CQA are coffee [20,47,48], apricots [49] 

and blueberries [21].  
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Polyphenol degradation and associated phenolic metabolites in vitro 

 

As expected, in the initial stages (stomach and small intestine SHIME compartments), 3-

CQA, quercetin-3-O rutinoside and glucoside, and kaempferol-rutinoside were among the most 

abundant polyphenols. However, metabolomics also revealed the presence of significant amounts 

of catechin and epicatechin in tart cherry concentrates only, indicating that tart cherry contained 

tannins (Figure 1A). Somewhat surprisingly, the concentration of those polyphenols decreased 

significantly in the stomach and small intestine. The concentration of all the detected native 

polyphenols declined steadily with time in the colonic fermentation, confirming that resident 

microbiota was responsible for their bioconversion. 

3-CQA catabolism was somewhat constant during the 48 hr of fermentation. 3-CQA 

derivatives included caffeic acid at very low concentrations, but the main metabolite was dihydro-

coumaric acid (Figure 1B) as described before [50,51].In the early stages of the SHIIME 

experiment, large amounts of 4-hydroxyphenylacetic acid were detected and decreased to stable 

amounts in the colon compartment (Supplementary Figure 1), which makes it difficult to assess if 

this metabolite originates from bacterial metabolism. However, this metabolite is known to derive 

from quercetin and kaempferol from different berries [52]. At this point, very small amounts of 

quercetin-3-O-glucoside were detected compared with quercetin-3-O-rutinoside and kaempferol-

3-O-rutinoside that were still present at higher concentrations. The rutinoside derivatives 

concentrations decreased subsequently, suggesting that gut microbes preferentially used the 

glucoside forms before the rutinosides. Quercetin was apparently converted to 3,4 and 4-

hydroxybenzoic acid, but catechins may represent another origin for these metabolites (Figure 1B), 

as both pathways have been described [53].  
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Impact of tart cherries and apricots on gut microbiota in vitro 

 

A total of 68 samples were subjected to DNA extraction and sequencing (replicate samples 

derived from concentrated juices and control were also sequenced due to low read counts in the 

first sequencing run). Overall 202,239 high quality reads (2974±1760) were obtained, 192,459 

(3262±1700) when excluding low read (<1,500) counts. 

The control fermentation with only stool samples yielded a low diversity microbiota dominated by 

Verrumicrobia then Synergistes (Figure 2A), two marginal phyla in the human colon. Remarkably, 

the two major genera present in the control fermentation, Akkermansia and Cloacibacillus 

(Supplementary Figure 2) are well known for their strict metabolism of feeding from host-derived 

mucins rather than dietary elements in the lumen [54-56]. In addition, Bifidobacterium 

(Actinobacteria), present in relatively high abundance, have also been shown to be able to feed on 

host mucins [57,58], and the third most abundant genera, Bilophila, is able to metabolize host bile 

acids [59,60]. It appears that fermentation of dietary elements present in the batch cultures was 

primarily conducted by Bacteroides and several members of the Firmicutes in succession 

(Veillonella (0hr), then Lachnospiraceae (4-24 hr) and Lachnospiraceae, Eubacteriaceae and 

Clostridium XIVa (48 hr). Somewhat surprisingly, some genera typically present in high 

abundance and known as polysaccharides and fiber fermenters [61-63] were detected in marginal 

relative abundance (though it does not mean they were not active), in particular Prevotella and 

Ruminococcus. 

As expected, fermentation with polyphenols and to a greater extent with fruit matrices significantly 

shifted the microbiota, primarily with a dramatic and consistent decrease in Verrumicrobia then 
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Synergistes and increase in Bacteroidetes primarily, and to a lesser extent Firmicutes and 

Proteobacteria (Figure 2B-D). 

Impact of tart cherries powder and tart cherries concentrated juices 

 

All tart and sweet cherries products lead to similar gut microbiota modulation (Figure 3A), 

driven by very significant increase of Bacteroides relative abundance at all time-points (Figure 

3B), probably reflecting fermentation of sugars and carbohydrates which are the main energy 

source for Bacteroides [64]. Other genera that were significantly increased included Veillonella, 

Bilophila Enterobacteriaceae and Escherichia and Clostridium XIVa. These dynamics probably 

reflects carbohydrates fermentation rather than plolyphenols biotransformation.  

Similar trends were observed for sweet cherry juice (Supplementary Figure 2), however the 

increase in Bacteroides was less marked, and Clostridium XIVa, Lachnospiraceae and 

Eubacteriaceae increased slightly, presumably because of the higher sugar and polysaccharides 

content of this juice. 

Impact of apricot powder on the gut microbiota 

 

Apricots have been shown to contain high amounts of 3-CQA, and to be generally rich in 

a diversity of polyphenols [19,49]. Two apricot varieties were subjected to in vitro fermentation 

and induce a very significant modulation of the gut microbiota (Figure 4A). As with tart cherries, 

apricots fermentation resulted in an overwhelming increase of Bacteroidetes (Figure 1B), 

Bacteroides in particular (Figure 4B). Remarkably, and in contrast with tart cherries, a significant 

increase of Lactobacillales, Lactobacillaceae and Lactobacillus (around 15%) was observed after 

48 hours of fermentation. While Lactobacillus has been identified as able to metabolize 3-CQA 

[66], this is to the best of our knowledge the first time that a very strong potential prebiotic impact 
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is suggested for apricots. However, it should be reminded that 48 hours in vitro fermentation may 

not really be representative of in vivo metabolism, and thus further analyses with apricots would 

be needed. 

Impact of representative pure polyphenols 

 

Since the microbiota in cherries’ batch fermentation were likely more influenced by 

nutrient than polyphenol content, representative polyphenols were subjected to similar 

fermentation to better determine their potential impact on human gut microbiota. Indeed, gut 

microbiota dynamics was different in terms of abundance (Figure 5), but with similar responsive 

taxa. 

As confirmed by our concentrated juices’ polyphenols profiling, tart cherries are 

particularly rich in 3-CQA and 5-CQA yielded a notable increase in Bifidobacterium in the first 

three time-points (Supplementary Figure 7), which is in accordance with previous reports of 

Bifidobacterium species’ ability to catabolize CA [48,67,68]. However, these studies also reported 

Lactobacillus species as common CA degraders [69], while in our case there was no visible change 

in Lactobacillus and other lactic acid bacteria (if anything, there was often a very slight decrease). 

Other taxa stimulated included Bacteroides to a small extent, Bilophila, Veillonella and members 

of the Clostridium XIVa cluster. The latter observation lines up with the report of increased 

Clostridium coccoides-Eubacterium rectale group by pure 3-CQA [48]. Bacteroides has been 

reported as a primary degrader of complex carbohydrates that are used as source of energy [64]. 

The stimulation of Veillonella and Bilophila is more enigmatic. As a lactate fermenter [70,71], the 

increase of Veillonella may be explained by cross-feeding on lactate produced by Bifidobacterium, 

however lactate production has only been shown from oligosaccharides in Bifidobacterium [72]. 
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Bilophila is known to ferment polysaccharides with taurine or hydrogen as final eletron acceptors 

[73]. It is thus possible that Bilophila disposes of the hydrogen released through fermentation of 

dietary molecules, a process that would likely be performed by other hydrogenotrophic bacteria 

and archaea in vivo [74,75]. 

Quercetin-rutinoside (QR) was the second most abundant polyphenol in concentrated tart 

cherry juices. Somewhat similarly to, QR led to an increase in Bacteroides, Bifidobacterium, 

Veillonella and Bilophila (Supplementary Figure 8). The most notable difference was a strong 

increase in members of Clostridium cluster XIVa with a peak at 4hr, mirroring the Bifidobacterium 

dynamics. It seems likely that Clostridium XIVa cross-feed on rutinoside derived from 

Bifidobacterium [76,77] and possibly Bacteroides breakdown of QR, while Bilophila disposed of 

hydrogen produced by this fermentation. 

To the best of our knowledge, cyanidin rutinoside impact on human gut microbiota was 

never tested before. Cyanidin rutinoside resulted in a marked increase of Bacteroides, but limited 

bifidogenic effect (Supplementary Figure 8). Veillonella and Clostridium XIVa were again 

stimulated as well as Bilophila, presumably because of similar metabolic requirements and 

properties as described for QR. 

While genistein was not measured in the tart cherry concentrates, its abundance has been 

shown in other tart cherry cultivars [22]. Genistein (Supplementary Figure 9) induced a significant 

bifidogenic effect as well as increases of Collinsella and Assacharobacter, which have been 

reported as degraders of isoflavones that do not produce equol [78]. 
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Since Bifidobacterium relative numbers were not affected in contrast with other mucin degraders, 

we can hypothesize that polyphenols in tart cherries and concentrates were to a certain extent 

metabolized by Bifidobacterium. 

Impact of tart cherries on gut microbiota in vivo 

 

One individual’s sample yielded very low read counts, and thus sequences from nine subjects 

were analyzed. A total number of 124,172 high quality reads (6898±2455) were obtained. When 

comparing all individuals before and after dietary intervention, very little difference in microbiota 

was observed (Supplementary Figure 10). However, it was found that individuals initial microbiota 

were highly variable, with the relative abundances of Bacteroides being the main driver. Since 

Bacteroides was the genus primarily impacted by concentrated juice in vitro, it was decided to 

split the individuals in two groups: low (<10%; n= 4; LB) and high (>20%; n= 5; HB) Bacteroides 

in the initial gut microbiota (it should be noted that no individual exhibited relative abundance 

between 10 and 20%). Separating human cohorts according to their enterotypes [79,80] or 

metabotypes [39,81] is an increasingly common approach to overcome the inherent interindividual 

variability in gut microbiota profiles. Here, we observed that the microbiota were significantly 

different (ANOSIM: p<0.05) before and after dietary intervention among both groups (Figure 6) 

In addition, the grouping revealed significant differences in dietary habits, with higher intake of 

carbohydrates, sugar and fibers associated with LB (and high Firmicutes) gut microbiota (Table 

2). LB individuals also tended to have lower BMI. 

At the phylum level, the HB group initially had higher Bacteroidetes than the LB, and LB had 

more Firmicutes. In the HB group, tart cherry consumption resulted in a sharp significant decrease 

of Bacteroides, Parabacteroides and Alistipes, as well as suggestive decrease of the low abundant 
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Barnesiella, Butyricimonas, Odoribacter, Porphyromonas and other Prevotellaceae (Figure 7A). 

These trends were mirrored with significant or suggestive increases in many Firmicutes 

(Ruminococcus, Lachnospiraceae, Clostridium and Clostridium XI, Dialister, Coprococcus, 

Lactobacillus and Streptococcus), with the notable exception of a significant decrease in 

Faecalibacterium relative abundance. Somewhat surprisingly, Bifidobacterium numbers tended to 

decrease, but a significant increase in other Actinobacteria and Collinsella was observed. 

Remarkably, the dynamics were almost completely opposite in the LB group (Figure 7B). All 

abundant Bacteroidetes genera increased though generally only in a suggestive manner. In 

particular it should be noted that the apparent increases in Prevotella for each group was entirely 

driven by one individual in each group increasing from less than 1% to more than 15%. Prevotella 

is considered a major genus in driving “enterotypes”, and has been consistently associated with 

consumption of plant-rich diets [82-86]. More specifically, it was shown that short-term dietary 

intervention with “extreme” plant-based diets can drive strong Prevotella expansion, with 

responsiveness varying greatly between individuals [62], in agreement with our findings. The 

increase in Bacteroidetes genera was mirrored with decreases in some Firmicutes members 

(Lachnospiraceae, Streptococcus, Dialister, Blautia and Roseburia), however, increase in 

Clostridium IV and XI, Subdoligranulum and Lactobacillus (numerical) were also observed. 

Bifidobacterium relative abundance increased numerically, associated with significant decrease in 

Collinsella and suggestive decrease in Assacharobacter and other Actinobacteria. Therefore, the 

only common response for the HB and LB were a maintenance or slight increase of Ruminococcus 

and a sharp decrease of Faecalibacterium. Ruminococcus are well known to degrade complex 

polysaccharides (cellulose, xylan, pectins…) and dietary fibers in the human colon [61,63], while 

Faecalibacterium has been particularly associated with high fiber consumption [87-89]. Since tart 
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cherry juice contains no dietary fiber, these trends may be due to lower dietary fiber intake by the 

subjects during the dietary intervention, because of the important fruit intake through juice 

consumption. Since the HB group had lower regular intake of carbohydrates, it is likely that the 

large intake of complex polysaccharides stimulated Lachnospiraceae and other Clostridiales 

typically involved in the metabolism of those molecules [90-92]. It appears that in HB individuals, 

high 3-CQA and 5CQA intake selected more Collinsella than Bifidobacterium, bringing more 

evidence for Collinsella’s potential role in polyphenol degradation. The LB group response was 

more in line with the In vitro dynamics, indicating that the donor(s) gut microbiota was likely 

similar. It can be hypothesized that the LB response is more driven by the high polyphenol intake, 

since their gut microbiota was presumably adapted to higher complex polysaccharides intake. The 

increases in Bacteroides and Bifidobacterium would then be explained by their known abilities to 

metabolize 3-CQA, 5-CQA and many polyphenols present in tart cherries [93-97]. Based on 

previous studies [66,98], a significant increase may have been expected in Lactobacillus, however 

Lactobacillus were, surprisingly, not prevalent and abundant in this human cohort.  

 

CONCLUSIONS 

To the best of our knowledge, this study represents the first microbiota/metabolome 

investigation of the impact and fate of tart cherries and their polyphenols in the human colon. The 

metabolomics from in vitro fermentation showed that 3-CQA and 5-CQA, the dominant 

polyphenols, were mainly converted to dihydrocoumaric acid. In vitro fermentation of tart cherry 

powder and concentrated juices (and apricots) resulted in large increases in Bacteroides and 

Collinsella and moderate increases of specific Firmicutes, Enterobacteriaceae and Bilophila. In 

vitro fermentation of pure polyphenols indicated bifidogenic effects for 3-CQA and 5-CQA, 
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genistin and to a lesser extent rutin and cyanidin. Bacteroides appeared to be more involved in 

rutin and cyanidin metabolism. The human dietary intervention demonstrated strikingly different 

responses due to initial microbiota composition, apparently driven by individuals’ habitual 

consumption of carbohydrates and fiber. The high Bacteroides group (low carbohydrates and fiber) 

responded to tart cherry juice consumption with decrease of Bacteroides and increase of 

fermentative Firmicutes and potential polyphenol metabolizer Collinsella. The low Bacteroides 

group responded with an increase in Bacteroides and Bifidobacterium (presumably due largely to 

polyphenols availability) and decrease in in the relative abundance of fermentative Firmicutes. 

Overall, our results confirm that gut microbiota strongly influences polyphenol metabolites 

from polyphenol-rich tart cherries in the human colon. Further, the data suggests that gut 

microbiota of individuals consuming a more Western diet may have lower ability to metabolize 

polyphenols, thereby reducing bioavailability and any potential health benefits.  
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Table 8: Phenolic profiling of cherry concentrated juices (NQ: Not quantified). 

 Phenolic compound Concentration (mg/100g) 

  King 

Orchard 

Royal 

Farms 

Tree of Life 

Hydroxycinnamic 

acids 

Chlorogenic acid 25.5±1.9 22.8±1.9 3.6±0.1 

Neochlorogenic acid 21.1±2.5 33.9±1.8 39.2±5.5 

Caffeoyl-quinic acid 

isomers 

NQ 

 

Coumaroyl-quinic acid 

isomers 

NQ 

 

Feruloylquinic acid NQ 

 

Di-caffeoyl-quinic acid 

 

NQ 

 

Flavonoid 

Rutin 10.3±0.5 6.0±0.1 5.0±0.2 

Kaempferol-rutinoside 3.6±0.3 1.9±0.1 0.8±0.1 

Quercetin-deoxyhexose--

exose-hexose 

NQ 

 

Isorhamnetin-

deoxyhexose-hexose 

 

NQ 

 

Anthocyanidins 
Keracyanin* 1.4±0.2 0.3 1.4±0.0 

Cyanidin-dH-H-H*  4.9±0.3 4.4±0.2 <0.02 

* Cyanidin compounds quantification was carried out based on cyanidin-glucoside standard, 

therefore given concentrations are cyanidin-glucoside equivalents. 
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Table 9: Demographic and dietary intake data of the High and Low Bacteroides groups. 
 

High Bacteroides Low Bacteroides T-test 

Gender 3M-2F 1M-2F 
 

Age 26.2 25.5 0.379 

BMI 26.1 22 0.068 

Avg FBG 90.1 89.6 0.445 

kilocalories 1543 1830 0.161 

Protein (g) 75 75 0.49 

CHO (g) 134.4 197.6 0.049 

Fat (g) 70.3 83.5 0.2 

Alcohol (g) 12.6 3.4 0.038 

Cholesterol (mg) 279.2 362.2 0.182 

SFA (g) 21.3 27.3 0.122 

MUFA (g) 28.1 32.6 0.26 

PUFA (g) 15.5 17.1 0.342 

PRO % 19.42 16.2 0.152 

CHO % 34.3 42.2 0.034 

Fat % 40.4 40.3 0.488 

Alcohol % 5.86 1.3 0.028 

Fiber (g) 10.8 21.62 0.04 

Sugar (g) 51.2 78.9 0.018 
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Figure 1: Polyphenol metabolomics; Microbial degradation of the main native tart cherry 

polyphenols over the 48 hours of microbial fermentation in vitro A and B. Tart cherry and C. 

Sweet cherry concentrate juices; and detection of major metabolites from chlorogenic acid (DEF) 

and proanthocyanins (GHI) for King Orchard (DG) and All Natural (EH) tart cherry juices and 

Sweet cherry juice (FI). 
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Figure 2: Dynamics (phylum level) of microbiota in in vitro fermentation for A. Control, B. 

Apricots, C. All tart cherries and D. all polyphenols standards. 
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Figure 3: Tart cherries impact on in vitro gut microbiota. (A) Non-metric Multidimensional 

Scaling (NMDS) of control (filled squares), tart cherries (+) and sweet cherries (filled circles); 

(B) Relative abundances of significantly modulated taxa for all tart cherries samples 
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Figure 4: Apricots impact on in vitro gut microbiota. (A) NMDS of control (filled squares), and 

apricots (open diamonds); (B) Relative abundances of significantly modulated taxa for all 

apricots samples. 
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Figure 5: Pure polyphenols impact on in vitro gut microbiota: relative abundances of 

significantly modulated taxa. 
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Figure 6: Stool microbiota dynamics (NMDS and phylum level) for human volunteers with A. 

High Bacteroides and B. Low Bacteroides initially; before (green) and after (red) dietary 

intervention with daily tart cherry juice consumption 
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Figure 7: Bacterial genera significantly affected by tart cherry consumption for A the high 

Bacteroides group and B the low Bacteroides group. 
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Chapter 3 

OVERALL CONCLUSION 

 

The results of this research provide evidence and confirm an active intervention of the gut 

microbiota over the metabolism of polyphenols contained in tart cherry concentrate juices as 

well as fresh fruits. Additionally, the initial gut microbiota composition of an individual 

determines the ability to metabolize efficiently polyphenols into bioactive microbial metabolites 

with potential health benefits. Finally, such approaches are suggested when studying the 

association of polyphenols over any health claims.  
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Office of Research Compliance  

Institutional Review Board 

March 17, 2015 
 

MEMORANDUM 
 
TO: Sun-Ok Lee  
 Ellen Pottgen 
 Tung Pham 
   
FROM: Ro Windwalker 
 IRB Coordinator 
 
RE: New Protocol Approval 
 
IRB Protocol #: 15-02-476 
 
Protocol Title: Effect of Consumption of Cherry Juice on the Human Gut 

Microbiota 
 
Review Type:  EXEMPT  EXPEDITED  FULL IRB 
 
Approved Project Period: Start Date: 03/17/2015  Expiration Date:  02/17/2016 

 

Your protocol has been approved by the IRB.  Protocols are approved for a maximum period of 
one year.  If you wish to continue the project past the approved project period (see above), you 
must submit a request, using the form Continuing Review for IRB Approved Projects, prior to the 
expiration date.  This form is available from the IRB Coordinator or on the Research Compliance 
website (https://vpred.uark.edu/units/rscp/index.php).  As a courtesy, you will be sent a reminder 
two months in advance of that date.  However, failure to receive a reminder does not negate 
your obligation to make the request in sufficient time for review and approval.  Federal 
regulations prohibit retroactive approval of continuation.  Failure to receive approval to continue 
the project prior to the expiration date will result in Termination of the protocol approval.  The 
IRB Coordinator can give you guidance on submission times. 

This protocol has been approved for 60 participants.  If you wish to make any modifications 
in the approved protocol, including enrolling more than this number, you must seek approval 
prior to implementing those changes.  All modifications should be requested in writing (email is 
acceptable) and must provide sufficient detail to assess the impact of the change. 

If you have questions or need any assistance from the IRB, please contact me at 109 MLKG 
Building, 5-2208, or irb@uark.edu.
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