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Abstract 
A large spectrum of more than 2,000 CFTR mutations have been reported, associated with a 

very diverse clinical phenotype of Cystic Fibrosis (CF). In this work we analyzed the 

spectrum of CFTR mutations in CF and in CF-related disorders. The project specifically aims 

at investigating the following points: 

1) Validation of a new diagnostic screening method xTAG (Luminex; panel of 71 mutations), 

for routine analysis compared to the INNO-LiPA® (Innogenetics; panel of 36 mutations), 

used as a reference. Reproducible and concording results were obtained on the Luminex 

platform from DNA Innogenetics positive samples, using DNA extracted from different 

biological matrices, including blood samples, blood spots from Guthrie cards, chorionic villi 

and amniotic fluid. The new panel significantly increases the detection rate for patients of 

southern European origin. 

2) Study of frequencies of CFTR mutations in central Argentina in the Santa Fe province, 

which has never been characterized. A cohort of 83 patients out of an initial local selection of 

121 was analysed. The results were combined with those of a previous study of the 

neighboring Cordoba province, leading to the proposal of a unique panel of 21 CFTR 

mutations for a first line molecular diagnosis in central Argentina. 

3) Analysis of the effects of mutations in the PRSS1, CFTR or SPINK1 genes on the severity 

of sporadic idiopathic pancreatitis. A retrospective cohort of 68 patients carrying mutations in 

the genes was compared to a paired cohort of age- and sex-matched patients with idiopathic 

pancreatitis and negative genetic testing. Clinical and morphological characteristics of 

patients were taken into account in the analysis. Clinical parameters were similar in the two 

cohorts, except for the age of pancreatic disease onset. A significantly higher occurrence of 

pancreas cancer was observed in the case group, particularly in patients carrying mutations in 



12 

 

the CFTR gene. We therefore suggest that CFTR variants present a risk factor for pancreatic 

cancer. 

4) Updating the molecular analysis of the CFTR gene in a cohort of patients with allergic 

bronchopulmonary aspergillosis syndrome (ABPA). Samples from 18 patients previously 

analysed using a panel of 13 mutations and reported in a paper published in 2001 were re-

analysed in 2010 using complete exon sequencing. Compared to the first analysis, 8 cases 

were found carrying one CFTR mutation and 4 with two mutations. The study considerably 

extends previous findings by demonstrating a strong link between ABPA in adults and CFTR 

mutations.   

Altogether, these studies contribute to shed new light on the molecular diagnosis of the CFTR 

gene in CF and in CF-related disorders. 
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Résumé 

Un large spectre de plus de 2000 mutations CFTR ont été associées à un phénotype clinique 

très variable de la mucoviscidose. Dans ce travail, nous avons analysé le spectre des 

mutations du gène CFTR chez des patients atteints de mucoviscidose et dans les troubles 

associés à la mucoviscidose. Le projet vise spécifiquement à étudier les points suivants: 

1) Validation d'une nouvelle méthode de dépistage xTAG (Luminex, panel de 71 mutations), 

pour l'analyse de routine par rapport à l'INNO-LiPA® (Innogenetics, panel de 36 mutations), 

utilisé comme référence. Des résultats reproductibles et concordants ont été obtenus sur la 

plate-forme Luminex à partir d'échantillons ADN Innogenetics positifs utilisant de l'ADN 

extrait de différentes matrices biologiques, y compris des échantillons de sang, des taches de 

sang de cartes Guthrie, des villosités chorioniques et du liquide amniotique. Le nouveau panel 

augmente significativement le taux de détection pour les patients d'origine sud-européenne. 

2) Etude des fréquences des mutations du CFTR dans le centre de l'Argentine, dans la 

province de Santa Fe, qui n'a jamais été caractérisée. Une cohorte de 83 patients sur une 

sélection locale initiale de 121 a été analysée. Les résultats ont été combinés avec ceux d'une 

étude précédente de la province voisine de Cordoba, aboutissant à la proposition d'un panel 

unique de 21 mutations du CFTR pour un diagnostic moléculaire de première ligne au centre 

de l’Argentine. 

3) Analyse des effets des mutations dans les gènes PRSS1, CFTR ou SPINK1 sur la gravité de 

la pancréatite idiopathique sporadique. Une cohorte rétrospective de 68 patients porteurs de 

mutations dans ces gènes a été comparée à une cohorte, pairée pour l'âge et le sexe, de 

patients atteints de pancréatite idiopathique avec des tests génétiques négatifs. Les 

caractéristiques cliniques et morphologiques des patients ont été prises en compte dans 

l'analyse. Les paramètres cliniques étaient similaires dans les deux cohortes, à l'exception de 
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l'âge d'apparition de la maladie pancréatique. Une augmentation significative du cancer du 

pancréas a été observée dans le groupe des patients porteurs de mutations, en particulier dans 

le gène CFTR. Nous suggérons donc que les variants de CFTR présentent un facteur de risque 

pour le cancer du pancréas. 

4) Mise à jour de l'analyse moléculaire du gène CFTR dans une cohorte de patients porteurs 

d'un syndrome d'aspergillose bronchopulmonaire allergique (ABPA). Les échantillons de 18 

patients précédemment analysés à l'aide d'un panel de 13 mutations et rapportés dans un 

article publié en 2001 ont été ré-analysés en 2010 en utilisant le séquençage complet des 

exons. Comparativement à la première analyse, 8 cas ont été trouvés porteurs d'une mutation 

CFTR et 4 de deux mutations. L'étude a considérablement étendu les résultats précédents en 

démontrant une forte relation entre ABPA chez les adultes et mutations du CFTR. 

Au total, ces études contribuent à jeter un éclairage nouveau sur le diagnostic moléculaire du 

gène CFTR dans les cas de patients atteints de mucoviscidose et de syndromes associés à la 

mucoviscidose. 
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Introduction 
1. Historical overview 

In the 18th century, the adage that said "Woe to that child which kissed on the forehead tastes 

salty. He is bewitched and will soon die." was an early reference describing the fatal disease 

nowadays known as Cystic Fibrosis (CF). 

During the last century, broad knowledge was progressively acquired to better characterize 

the disease and to understand its pathophysiology. The medical literature of the disease started 

in 1936 when Guido Fanconi, a Swiss pediatrician, reported in his PhD thesis, written in 

German, the case of a child suspected of carrying a celiac disease, and described it as 

“fibrocystic disease of the pancreas and bronchiectasis” (1). Two years later, Dorothy 

Andersen, from the Pathological Laboratory, Babies Hospital and the Department of 

Pathology, Royal College of Physicians and Surgeons, Columbia University in New York, 

made, based on the review of one thousand autopsies, a clear description of the “fibrocystic 

disease of the pancreas”, pointing out damage of the pancreatic tissue and associating 

meconium ileus to the disease. For the first time, CF was recognized as a separate entity, 

different from celiac disease (2). Prior to this description, the association made by Karl 

Landsteiner (in 1905) between meconium ileus and pancreas fibrosis was erroneously 

believed to result from an enzyme deficiency (3). Two years after Andersen’s description, 

Blackfan and May reported on thirty-five children with atrophy and fibrosis of the pancreas 

due to thickening of secretions and dilatation of ducts and acini (4). The current terminology 

of Cystic Fibrosis was introduced in 1943 by Sydney Farber (5). 

A recessive transmission of a life-threatening familial condition combining steatorrhea and 

bronchopneumonia, probably corresponding to CF, was suspected by Sir Archibald Garrod in 

1912 (6). An autosomal recessive inheritance was suggested in 1945 by Anderson and Hodges 

following the observation of about a hundred families with CF (7). 
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Before the discovery of the gene responsible for the disease in 1989 by the Lap-Chee group, 

the pathogenesis of CF was not understood, even though primary investigations revealed that 

the salt loss occurred via the sweat glands (8,9). This  major advance allowed to establish an 

accurate diagnostic test of CF consisting in measuring an elevated sweat chloride 

concentration following pilocarpine stimulation by iontophoresis, as originally reported by 

Gibson and Cooke in 1959 (10). In the 80’s, more knowledge was brought up with Paul 

Quinton’s work about chloride impermeability in the sweat gland (11). 

The modern history of CF is dominated by the identification of the CF transmembrane 

conductance regulator (CFTR) gene and of the most clinically relevant F508del 

(c.1521_1523delCTT or p.Phe508del) mutation (12-14). Consequently, the basic defect in CF 

has been better understood as a loss of function of the cyclic AMP-dependent CFTR chloride 

channel. In the 90’s, a number of studies to characterize molecular defects of the gene, 

culminating with the development of an open CFTR1 mutation database 

(http://www.genet.sickkids.on.ca/app), have been addressed. The main goal of the database is 

to assemble information on CFTR mutations, more than 2,000 of them having been reported 

up to now. More recently, the CFTR2 database (http://www.cftr2.org/), collecting clinical and 

molecular data from more than 88,000 patients from 41 different countries has been created 

with the aim of studying genotype-phenotype correlations. 

Due to early referral to specialized, multi-disciplinary reference centers for CF (1955 US 

National CF Research Foundation; 1959 Canada foundation of CF; 1965 in Paris the CF 

International Association) (15) and to more comprehensive care, survival has improved over 

time. While in 1938, 70% of CF babies died within the first year of life (2), the median life 

expectancy of patients in the US reached 40.7 years in 2013 (16). Together with a rational 

nutritional care, multi-disciplinary symptomatic management of patients with CF, including 

chest physiotherapy, inhaled bronchodilators, mucolytic and anti-inflammatory agents to 
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improve mucus clearance and to limit chronic infections, and aggressive antibiotic therapy, 

has contributed to improve survival and quality of life. More recently, numerous efforts have 

been made to find a cure for CF by developing strategies addressing the basic defects of the 

disease. As a proof of evidence that the basic defect is drug targetable, ivacaftor (Kalydeco®) 

has been approved as the first drug to treat the underlying cause of the disease. The drug is a 

small molecule acting as a CFTR potentiator, meaning that it increases the gating function of 

CFTR proteins of class III CFTR mutations, such as G551D, normally expressed at the 

plasma membrane of epithelial cells (17); more details on class mutations are given in section 

4. The number of mutations that can be targeted by ivacaftor has expanded (currently 10 

mutations are targeted: G551D, G1244E, G1349D, G178R, G551S, S1251N, S1255P, S549N, 

S549R and R117H). Used as a monotherapy, the drug targets about 5% of the CF community. 

In July 2015, Orkambi®, the combination of ivacaftor and lumacaftor, was approved for 

patients displaying at least one F508del allele. Lumacaftor is a small molecule acting as a 

corrector of the misfolded F508del mutated protein, with good preclinical correcting effects in 

vitro and ex vivo (18) but with only modest effects in patients (19, 20). TranslarnaTM 

(ataluren, PTC124) is another small molecule currently in phase III clinical development for 

read-through of CFTR nonsense mutations. The drug is believed to interact with ribosomes to 

enable read-through premature nonsense stop signals on mRNA, thus allowing cells to 

produce a full length protein; the drug is used to target class I mutations, such as G542X (21). 

Ataluren has recently received conditional approval for Duchenne muscular dystrophy, 

another disease associated with premature stop codons. Despite these developments, we still 

lack answers to many questions on the pathogenesis of the disease, and there is still no cure 

for CF. 
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2. Clinical description of CF 

CF is the commonest lethal recessive autosomal disorder in Caucasian populations, with an 

average incidence of 1 in 3,000 live births in European countries (22). It is an exocrine gland 

multisystemic disorder, in which chronic respiratory disease and pancreatic insufficiency 

dominate the clinical picture. Beside sino-pulmonary disease and exocrine pancreatic 

insufficiency, male infertility and high concentrations of sweat electrolytes are among the 

most typical manifestations. The full spectra of phenotypic characteristics in CF are shown on 

Figure 1. CF is one of the most frequent types of chronic lung disease in children and young 

adults, and pulmonary involvement is the major cause of morbidity and mortality. Meconium 

ileus occurs at birth in 15 to 20% of newborns with CF (23). In 85 to 90% of children with 

CF, the pancreatic parenchyma is gradually destroyed, leading to exocrine pancreatic 

insufficiency with protein and fat malabsorption (22). As patients with CF now live longer 

than before, glucose intolerance and cystic fibrosis-related diabetes (CFRD) are becoming 

common complications. Extensive exocrine pancreatic damage is associated with progressive 

loss of endocrine pancreatic tissue, represented by a reduction of the number of Langerhans 

islets, that may contribute to the development of CFRD, the etiology of which is still not 

completely understood (24). More than 95% of males with CF are infertile as a result of 

obstructive azoospermia caused by atrophic, fibrotic or even absent Wolffian duct structures; 

their complete absence is known as CBAVD (for congenital bilateral absence of vas 

deferens). 
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Figure 1. Spectrum of clinical manifestations in Cystic Fibrosis  

 

The phenotypic spectrum spans from mono- to polysymptomatic disease, and from atypical to 

classical CF (25). The severity of involvement within a specific organ, as well as the number 

of affected organs, varies widely from patient to patient, even among those displaying the 

same genotype. The factors related to the large and complex variability are not fully 

understood. Moreover, oligo- or mono-symptomatic patients are usually diagnosed later in 

life, presenting diagnostic, prognostic and therapeutic challenges, in particular considering 

that rare and low prevalent mutations are usually found in such cases. It has been recognized 

that beside genetic factors directly related to CFTR mutations, the presence of residual 

chloride secretion, either by CFTR channels or by alternative chloride channels and of 

environmental factors (e.g., recurrent pulmonary infections, tobacco (26), pollution (27), 

socioeconomic status (28), or compliance to therapy), can influence the CF phenotype. 

Moreover, genetic factors extrinsic to CFTR known as modifier genes have been recently 

studied. Several genes involved in the modulation of the inflammatory response have been 

pointed out. Convincing candidates have been highlighted: the presence of alleles linked to a 

reduced expression of the MBL2 (mannose-binding lectin 2, located at the chromosome 10q), 
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or to an exaggerated expression of TGF-β (transforming growth factor beta, located at 

chromosome 19q) and of EDNRA (endothelin receptor gene A, located at chromosome 4q), 

(29). Additionally, a microsatellite CATT localized in the macrophage migration inhibitory 

factor (MIF) promoter has been reported to be a possible candidate capable of influencing the 

disease severity in patients homozygous for the F508del mutation (30). 

Clinically, typical CF is characterized by the accumulation of viscous mucus in the airways, 

gastrointestinal tract and numerous other organs. In the respiratory tract, this leads to chronic 

obstruction, fibrosis, and ultimately destruction of the lung tissue architecture. The most 

prominent symptoms in the airways are cough, tachypnea and wheezing due to recurrent and 

chronic bronchopulmonary infections. The intestinal malabsorption and pancreatic 

insufficiency lead to steatorrhea and failure to thrive. Exploring sweat gland abnormalities, 

characterized by production of sweat with elevated chloride and sodium concentrations, 

provides the rationale for the development of the sweat test, the gold standard diagnostic 

method. 

 

2.1 Respiratory tract 

At birth, the macroscopic and microscopic appearance of the airways has been described as 

normal, suggesting that airway disease develops postnatally (31). Over the first months of life, 

pathology starts in small airways, bronchioles become plugged with mucus and bronchiolar 

mucosae become inflamed (32,33). However, studies have shown that inflammation is present 

very early in life in CF infants, even in the absence of any detectable infection in response to 

current or previous infection (34-37). 

Progressive accumulation of highly viscous mucus in the airways impairs mucociliary 

clearance and causes bronchiolitis and bronchitis, and eventually bronchiolectasis and 
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bronchiectasis. At end-stages, disseminated bronchiectasis is recognized as irreversible 

dilatation of thick-walled bronchi with airflow obstruction, inflammation and collapse. The 

airway submucosal glands and goblet cells, both involved in mucus production, also seem 

normal at birth, but progressively become obstructed with mucus resulting in dilatations and 

hypertrophy. Mucus hyperproduction and plugging that typifies CF is also a consequence of 

mucous cell metaplasia and up-regulation of mucin gene expression by inflammation. Altered 

airway cilia structure and function, also found in patients with CF, may contribute to 

impairing mucociliary clearance (38,39). At the end-stage of the lung disease, final disruption 

of lung architecture leads to sustained decline in lung function to such an extent that lung 

transplantation becomes the only option for improving quality of life and survival.  

 

Most CF patients have chronic rhinitis with inflammation and irritation of the nasopharyngeal 

mucosa that can contribute to the development of nasal polyps. As a matter of fact, beginning 

in preschool age, during their lives, up to 50% of patients with CF experience obstructing 

nasal polyposis. Enlargement of terminal phalanges of fingers and toes, known as digital 

clubbing, is fairly common in patients with CF and is generally considered indicative of 

extensive pulmonary disease.  

The progression of lung disease is associated with repeated chronic lung infections by 

opportunistic pathogens. Typically, Staphylococcus aureus and Haemophilus influenza are the 

first detected microbial agents (40), and infection with Pseudomonas aeruginosa, a 

predominant biofilm-forming pyogenic bacterial pathogen in CF, overcomes at later stages. 

Colonization with P. aeruginosa is associated with an faster decline of pulmonary function. In 

end-stage CF lung disease, P. aeruginosa can co-exist with other microorganisms competing 

for the same pool of resources. Additionally, Burkholderia cepacia complex organisms are 
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important respiratory pathogens in patients with CF. Infection with B. cepacia complex 

organisms can result in increased mortality and morbidity (41). 

Although the exact mechanism of lung infection is not yet fully understood, it seems clear that 

accumulation of thick mucus with impaired mucociliary clearance creates a favourable 

environment for development of pathogens. 

 

2.2 Gastrointestinal tract 

Pathological changes of the mucosa of the gastrointestinal tract are minimal and consist in 

dilatation of ducts and acinar lumens of the Brunner glands in the duodenum due to mucus 

accumulation. As in airways, goblet cell hyperplasia is a common finding, especially in the 

appendix, together with increased amounts of mucous material within crypts and lumen of the 

gastrointestinal tract. 

Thick meconium plugs in the lumen of the gastrointestinal tract is the first clinical 

manifestation in CF observed in prenatal stages as early as 17 weeks of gestation (42-44), 

both from autopsy material and from in utero echography examinations. These 

gastrointestinal abnormalities can occur irrespective of changes in any other organ (45). The 

accumulation of meconium plugs can develop into total obstruction of the distal ileum, failure 

to pass meconium, abdominal distension and emesis. A meconium plug syndrome occurs in 

10 to 15% of newborns with CF, usually presenting within 48 h after birth, or even earlier 

when complications such as volvulus, intestinal wall perforation or meconium peritonitis arise 

(46,47). Babies with meconium ileus should always be evaluated for CF, as very few other 

conditions can cause it and up to 90% of infants with the clinical picture have CF (48). 

The pathogenesis of meconium ileus has been attributed to pancreatic insufficiency and to 

consequent indigestion of the intestinal intraluminal contents (49). Abnormal transmucosal 
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transport and dehydration of extramucosal liquid layers leading to increased viscosity of the 

intestinal mucus contribute to the underlying pathophysiological mechanism (50,51). 

Meconium ileus is clearly associated with homozygosity for the F508del mutation, commonly 

causing pancreatic insufficiency, whereas mutations that do not impair pancreatic function are 

only rarely found in association with meconium ileus (52). Moreover, non-CFTR genes, 

known as modifier genes, also influence the risk of developing meconium ileus. Genome-

wide analyses have suggested ADIPOR2 and SLC4A4 as candidate modifier genes, although 

the mechanisms underlying the relationship with meconium ileus are still unknown (53). 

After the neonatal period, distal intestinal obstruction syndrome (DIOS, formerly designated 

“meconium ileus equivalent”), and constipation with complete or incomplete intestinal 

obstruction of viscid fecal accumulation in the terminal ileum and proximal colon occur in 

about 20% of patients with CF. 

Bicarbonate secretion in the duodenum, a protective mechanism neutralizing gastric acidic 

secretions, has been shown to be defective in CF. Indeed, it has been shown that functional 

CFTR is required for cAMP-stimulated electroneutral bicarbonate secretion involving the Cl-

/HCO3- exchanger (54). This impairment might contribute to the gastrointestinal complaints 

of patients with CF. 

 

2.3 Pancreas 

Exocrine pancreatic insufficiency is present in the vast majority (up to 95 %) of patients with 

CF (55), with pathological pancreatic changes, consisting of dilated ducts and acini owing to 

thick and inspissated pancreatic secretions, already detectable during intrauterine life (56). 

Detection of high levels of immunoreactive trypsin-like activity (IRT) by newborn screening 

programs demonstrates the capacity of the neonatal parenchyma pancreas to secrete enzymes, 
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but excretion is impaired due to ductal obstruction (57). The major role of CFTR in pancreatic 

ducts is to dilute and to alkalinize the protein-rich acinar secretions. Progressive loss of acinar 

cells and areas of destruction are replaced by fibrous tissue and fat. Later in the progression of 

the disease, islets of Langerhans, the functional units of the endocrine pancreas, become 

affected with deformation by fibrous tissue and destruction of insulin producing β-cells. 

These abnormalities contribute to the development of glucose intolerance and CFRD. 

The severity of the pancreatic enzyme and bicarbonate deficiency is variable. It increases with 

age (58-60) and seems to be genetically determined (61). Fat loss in stools (steatorrhea), due 

to insufficient secretion of lipolytic enzymes to digest and absorb fat associated with 

deficiency in fat-soluble vitamins, correlates with massive (more than 90%) destruction of 

pancreatic exocrine tissue. Patients displaying steatorrhea are classified as pancreatic 

insufficient (PI), while those (10-15%) showing less severe pancreatic changes with some 

remaining functional pancreatic tissue are classified as pancreatic sufficient (PS). The PI 

status is associated with more severe mutations like F508del while the PS status seems to 

better correlate with milder CFTR mutations. Pancreatic insufficiency is defined by faecal fat 

loss above 7 g/day, fat absorption below 93% during a 3-day faecal fat balance or faecal 

elastase below 200 μg/g. While fat loss is increased in stools, faecal elastase-1 activities are 

increased in PI patients. (62). Symptomatic treatment of the pancreatic insufficiency status 

includes pancreatic enzyme supplements (63) and structured follow up of nutritional status. 

 

2.4 Hepatobiliary tract 

CFTR is normally expressed in bile ducts. It has long been recognized in post-mortem 

analyses that liver abnormalities, found in up to 50% of autopsies of patients with CF, 

integrate the spectra of phenotypic characteristics of the disease (64,65). Liver morphological 



26 

 

changes include inspissated secretions, biliary duct proliferation, periportal inflammation and 

fibrosis. Fibrotic areas surround patches of normal liver parenchyma with a lobular aspect. 

Additionally, gallbladder abnormalities include hypoplasia of the gallbladder, stones 

containing calcium and protein, and thick, white, mucous contents (66). 

Symptomatic liver disease is found in approximately 5-10% of patients. Multilobular cirrhosis 

occurs early in the first decades of life, with signs of portal hypertension and liver failure 

developing later in childhood (67). Clinical manifestations may include hyperbilirubinemia, 

ascites, peripheral edema, or hematemesis due to eosophageal varices (68). In contrast to the 

pancreatic involvement in CF disease, there is no clear genotype-phenotype association in CF 

liver disease (69). 

 

2.5 Genital tract 

Male patients with CF develop normal secondary sexual characteristics and sexual 

maturation, yet almost all (~ 97%) of them are infertile due to obstructive azoospermia 

attributed to congenital absence of the vas deferens (CBAVD). Genital male abnormalities 

encountered in CF include bilateral atrophic or absent vas deferens and body and tail of the 

epididymis, and seminal vesicles are dilated, fibrotic, or also absent (70). As a consequence, 

no spermatozoa are present in the ejaculate due to obstruction of the vas deferens, whereas 

testicular biopsies show that spermatogenesis is preserved. With increasing survival of 

patients with CF, a need of micro-assisted reproduction techniques, such as testicular sperm 

extraction and intracytoplasmic sperm injection, have emerged as beneficial methods to 

enable these patients to father children of their own (71). 
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Reduced female fertility might exist through reduced water content of the cervical mucus, 

which hinders sperm passage (72). Other disturbing factors are chronic pulmonary sepsis 

initiating menstrual irregularities, and possible cysts in the ovaries (73). 

 

2.6 Sweat glands 

During the summer of 1949 in New York City, an unusually intense heat wave struck, 

bringing to Dr Paul di Sant ‘Agnese, a clinician, the suspicion that the accentuated 

dehydration presented by children with CF was due to pure salt loss. Gibson and Cooke 

meticulously demonstrated that sweat glands were the site of the ion loss in these children 

(G&C). This was the basis of the introduction of the “Quantitative Pilocarpine Iontophoresis 

Sweat Test” (QPIT) still used nowadays as the gold standard diagnostic test in CF. 

In practice, sweat gland secretion is stimulated by iontophoresis of pilocarpine, a cholinergic 

agent, and sweat is collected for 30 minutes using either filter paper or the Macroduct sweat 

collection system (Wescor Inc, Logan, Utah) (Figure 2). Sweat chloride concentration is 

measured by quantitative analysis techniques such as colorimetry, coulometry, etc. Currently, 

according to the European Coordination Action for Research in Cystic Fibrosis (EurocareCF) 

(http://www.eurocarecf.eu) and the European Cystic Fibrosis Society (ECFS) Diagnostic 

Network Working Group (http://www.ecfsoc.org), established cutoff sweat chloride 

concentrations are: normal: <30 mmol/L; intermediate: 30-60 mmol/L; and abnormal :> 60 

mmol/L. However, it has been well established that a fraction of patients with a diagnosis of 

CF have a sweat chloride value < 60 mmol/L. As a matter of fact, some mutations, i.e. 

A455E, 3849+10kbC>T, R117H, L206W, … are described with borderline (30-60 mmmol/L) 

or normal (<30mmmol/L) chloride concentrations (74,75). 
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Figure 2. Collection methods of sweat test. A iontophoresis electrodes on the forearm. B 

Wescor collection method. C Filter paper collection. 

  A    B     C

 

 

3. CFTR-related disorders 

A CFTR-related disorder has been described as « a clinical entity associated with CFTR 

dysfunction that does not fulfil diagnostic criteria for CF » (24,76). The picture is comprised 

of three main clinical entities, all associated with CFTR dysfunction: CBAVD (congenital 

bilateral absence of the vas deferens), acute recurrent or chronic pancreatitis and disseminated 

bronchiectasis (24). Additionally, ABPA has been considered as a CF-related disorder (77). 

More recently, CFSPID (CF screening positive inconclusive diagnosis) has been suggested as 

a CF-related disorder. The terminology has been adopted to describe the sometimes 

challenging case of a child with a positive newborn screening test, later changed into an 

inconclusive diagnosis of CF (78). In clinical practice, it is advisable that the child graduates 

to a proper CF care unit, assuming the possibility, even limited, of conversion to CF. The 

follow-up should include repeating the sweat test  (at 6 and 12 months of age, then annually) 

and the fecal elastase test later. To assist in the diagnosis, other diagnostic tests such as the 

nasal potential difference test and intestinal current measurements in tissues obtained from 

rectal biopsies are helpful. In the USA, the CFSPID has been termed "CFTR-related 

metabolic syndrome" (CRMS) (79). 
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3.1 CBAVD 

CBAVD is the clearest example of a CFTR-related disorder. As such, isolated CBAVD 

occurs in men with mild pulmonary or gastrointestinal manifestations of CF or even without 

any detectable CFTR dysfunction. The expression "CFTR-related disorder" for isolated 

CBAVD associated with at least one CFTR-causing mutation has been considered more 

appropriate than other common terminologies such as mild, atypical or non-classic CF. The 

absence of vas deferens is part of the clinical picture of classical CF. In all cases of CBAVD, 

affected men have azoospermia (absence of sperm in the semen) and are infertile. Isolated 

CBAVD accounts for approximately 3% of cases of male infertility (incidence around 1:1000 

males). In contrast with classical forms of CF, the prevalence of isolated CBAVD does not 

appear to be linked to ethnic factors and does not vary among populations.  

In subjects with CBAVD, the most common CF-causing mutation is p.Phe508del varying 

from 21-33% (in Canada, USA, Northern Europe) to 12-18% (in India and Southern Europe). 

These frequencies are much higher than those found (4%) in control European populations. 

The frequency of the 5T allele in the general population is 5%, but it is higher in the CBAVD 

populations (Indians 25%, Japanese 30%, Egyptians 44%, Taiwanese 44%). In about 70-90% 

of cases with CBAVD, a compound heterozygous status is identified with combination, in 

trans position, of a « severe » (class I to III) and a « mild » CFTR mutation (class IV to V). 

The two most common compound heterozygous genotypes found in European subjects with 

CBAVD are p.Phe508del with a 5T allele (28%) and p.Phe508del with p.Arg117His (6%). 

The 5T allele is considered as a CBAVD mutation with incomplete penetrance. It has been 

well established that the combination of the T(5-9) repeats with that of TG dinucleotide, 

usually varying from 10-13 repeats and lying immediately upstream of the former, influences 



30 

 

the efficiency of exon 9 splicing (80). Longer TGm repeats in cis with shorter Tn repeats are 

associated with increased exon 9 skipping, and lead to production of misfolded and 

nonfunctional CFTR protein and correlate with a more severe CBAVD or CFTR-related 

phenotype. (81,82). 

The diagnosis of CFTR-related CBAVD is established in males with azoospermia with low 

volume (<2 mL; normal: 3-5 mL) of ejaculated semen and absence of vas deferens, possibly 

associated with abnormalities of seminal vesicles. Rarely, a thin fibrous cord representing a 

rudimentary vas deferens may be present. Additionally, a specific chemical profile including 

acidic sperm (average pH <6.8; normal pH >8), elevated citric acid concentration (>2000 

mg/100 mL; normal: 400-1500 mg/100 mL), elevated acid phosphatase concentration (760-

1140 mµ/mL; normal: 140-290 mµ/mL) and low fructose concentration (30-80 mg/100 mL; 

normal: 250-720 mg/100 mL) can be found. 

 

3.2 Idiopathic Chronic Pancreatitis 

Chronic pancreatitis is defined as a long-standing inflammatory destruction of the pancreatic 

parenchyma, finally leading to tissue fibrosis. The disease is characterized by variable 

abdominal pain, calcifications, necrosis, fatty replacement, fibrosis and scarring, and other 

complications. Chronic pancreatitis rarely causes diabetes. Diabetes due to chronic 

pancreatitis is characterized by a low incidence of ketosis and a high incidence of insulin-

induced hypoglycaemia. Obstructive pancreatitis is due to an obstacle (tumours, scars) in the 

pancreatic duct. Calcifications, also signing the chronic inflammation, are like stones 

embedded in the tissue itself or in the pancreatic duct. 

The estimated incidence of chronic pancreatitis in adults is 3.5-10 cases per 100,000. In 

developed countries, 60–70% of patients with chronic pancreatitis have a history of excessive 
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alcohol intake, while in 30% of cases, the disease is considered idiopathic. Variability in 

susceptibility to idiopathic chronic pancreatitis seems to be related to genetic differences 

among patients. Plugging of the smaller pancreatic ducts is a frequent early finding in 

idiopathic chronic pancreatitis (ICP) in which progressive obstruction finally leads to 

pancreatic injury. 

CFTR protein is expressed at the external membranes of epithelial cells lining the normal 

ducts of the human exocrine pancreas, where it regulates bicarbonate secretion through a 

cAMP-dependent pathway. The major role of CFTR in pancreatic ducts is to dilute and to 

neutralize acinar solutions that are rich in protein. Through this mechanism, CFTR protects 

the tissue against formation of protein aggregates and tissue damage. The fact that a loss-of-

function of CFTR protein of > 98% is needed to produce pancreatic insufficiency (i.e. 

homozygous p.Phe508del) illustrates the large functional reserve of the pancreas.  

About 30% of patients with ICP display CFTR mutations. About two-thirds of them carry 

common CFTR mutations and a small fraction (~ 6%) is compound heterozygous combining a 

CF-causing mutation and a milder CFTR allele. Although there is no clear genotype-

phenotype relationship regarding the development of ICP, rare class IV or class V mutations 

are generally associated with pancreatitis (24). The pancreatitis risk increases 40-fold in the 

presence of two CFTR mutations (83). 

An association between some genetic non-CFTR mutations and chronic pancreatitis (CP) has 

been recognized for a long time. ICP can also result from mutations in the cationic 

trypsinogen gene (PRSS1), and the serine protease inhibitor Kazal 1 (SPINK1) genes. In 1996, 

the first mutation associated with hereditary pancreatitis, namely the R122H mutation in the 

PRSS1, was identified (84). Several other mutations (A16V, K23R, N29I, N29T, R122C) and 

triplication as well as duplication of the PRSS1 locus have been subsequently described (85). 
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The effect of mutations in the SPINK1 gene, considered as a susceptibility gene, on the onset 

of pancreatitis was reported in 2000 (86,87). The most frequent SPINK1 mutation is N34S. 

The pancreatitis risk increases 20-fold in the presence of N34S mutation in the SPINK1 gene 

and 900-fold in the presence of both CFTR and SPINK1 mutations (83). 

 

3.3 Allergic Bronchopulmonary Aspergillosis 

Allergic bronchopulmonary aspergillosis (ABPA) is a pulmonary hypersensitivity mediated 

by an allergic response to Aspergillus fumigatus.  There are approximately 250 different 

species of Arpergillus, but only a few of them are known human pathogens. Depending on the 

host/pathogen equation, the respiratory diseases caused by Aspergillus are classified as 

allergic (allergic Aspergillus sinusitis, hypersensitivity pneumonia and ABPA), saprophytic 

(aspergilloma) and invasive (airway invasive aspergillosis, chronic necrotizing aspergillosis, 

and invasive aspergillosis).  

Multiple immunological features combining immediate type 1 hypersensitivity, antigen-

antibody type III reactions, and eosinophil-rich inflammatory type IVb responses have been 

described in ABPA (88). However, a predominant T-helper 2 lymphocyte response to 

Aspergillus fumigatus infection without tissue invasion seems to be well characterised, 

leading to mucus production, airway hyperactivity and, finally, bronchiectasis.  

Clinically, ABPA manifests itself as chronic poorly controlled asthma, recurrent pulmonary 

infiltrates and bronchiectasis.  In asthma or CF, most patients with ABPA present with 

wheezing, bronchial hyperreactivity, hemoptysis, productive cough, low-grade fever, malaise, 

weight loss, and/or worsening symptoms; however asymptomatic forms are recognised. The 

diagnosis of ABPA is currently based on the most recent criteria reported in 2012 in the 

Journal of Allergy and Clinical Immunology (89). According to the paper, the minimal 
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criteria to establish the diagnosis include deterioration of lung function in patients with 

asthma or CF, positive test for immediate skin reactivity to Aspergillus species (prick skin 

test), elevated total serum IgE (> 1000ng/mL), increased Aspergillus species-specific IgE and 

IgG antibodies and the presence of chest radiographic infiltrates (90,91). Despite these criteria 

(89), the diagnosis of ABPA in patients with CF remains challenging. It is believed that 

ABPA most probably remains underdiagnosed.  

In the general population, the prevalence of ABPA is unknown but it is believed to be as high 

as 2.5% (92). Although ABPA is most commonly diagnosed in adults, its prevalence in 

children is increasing and the condition is very unusually found in children outside the context 

of CF.  In patients with CF, the prevalence of ABPA has been reported as varying from 2 to 

15% (93). Its increased frequency in patients with asthma or CF is consistent with a genetic 

susceptibility to ABPA. 

Patients with disseminated bronchiectasis carry at least 1 CFTR mutation in 10-50% of the 

cases, and 5-20% carry 2 mutations. In a letter published in Thorax (94) extending an earlier 

DNA analysis, it has been shown that the CFTR mutation carrier frequency can be as high as 

67% (12/18), which is close to the estimate for CBAVD. 

 

4. The CFTR gene 

The large spectrum of phenotypes (detailed in paragraph 3) associated with variable degrees 

of severity of typical and atypical CF disease is caused by mutations in the CFTR gene 

(NG_016465.4). The gene is large, spanning approximately 230kb on the chromosome 7q31.2 

and contains 27 exons, numbered as illustrated in Figure 3.  
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Figure 3. Structure of the CFTR gene.  

A) 

 

 

B) 

 

C) 

 

A) Exons numbering. Rescaled exon scheme (introns are not drawn to scale). Numbers above 
(1 to 24) correspond to the old nomenclature (legacy name). Numbers below (1 to 27) 
correspond to the new nomenclature (HGVS). 

B) Corresponding numbering and reading frame for exons and nucleotides. Inside each box, 
white numbers refer to exons labelling corresponding to the old nomenclature (legacy name) and red 
numbers to the new nomenclature (HGVS). Numbers in black correspond to codon numbers. Red 
numbers under boxes correspond to nucleotide numbers in the CDS (NM_000492.3). 

C) Meaning of boxes' edges: round-shaped edges indicate exon ending at the first nucleotide; arrow-
shaped edges indicate exon ending at the second nucleotide; flat edges indicate exons ending at the 
third nucleotide. 
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5. The CFTR protein 

The encoded mRNA (NM_000492.3) is about 6.5 kb in length and is translated into a protein 

product of 1480 amino acids (NP_000483.3). A putative structure of the CFTR protein has 

been drawn on the basis of the amino acid sequence. It is a member of the superfamily of 

ATP-binding cassette (ABC) transporters, in particular it is categorised as a sub-family C 

member 7 (ABCC7). The predicted protein structure is composed of two repeated units, each 

consisting in a membrane spanning domain (MSD) comprised of six hydrophobic 

transmembrane helices, followed by a nucleotide-binding domain (NBD) that interacts with 

ATP. Ten of the 12 transmembrane helices contain one or more charged amino acids, and two 

potential glycosylation sites are found between helices 7 and 8. The 6-helical domains of 

MSD1 span from residues 82 to 103, 119 to 139, 196 to 216, 222 to 243, 309 to 329 and 330 

to 351 interlinked by three short extracellular loops and two longer intracellular loops (Figure 

4). The 6-helical domains of MSD2, also interlinked by two intracellular and three 

extracellular loops, span from residues 880 to 900, 944 to 964, 1023 to 1043, 1046 to 1066, 

1135 to 1155, and 1161 to 1182. NBD1 and NBD2 correspond to the amino acid sequences 

433-584 and 1219-1382 respectively (Figure 4). The two repeated units are linked by a single 

regulatory (R) domain that spans from amino acid residues 590 to 831 and contains 9 of the 

10 consensus sites for phosphorylation by protein kinase A (PKA) and 7 of the 

phosphorylation sites for protein kinase C (PKC). The R domain is unique to CFTR as it is 

not present in any other member of the ABC superfamily. The transmembrane helices 

assemble to line the pore of the anion-selective channel (95) through which chloride ions can 

flow across the plasma membrane (96). Anion flow through the channel is believed to be 

gated by cAMP-dependent PKA phosphorylation of the R domain (97,98) and by binding of 

ATP to NBD sites that induces conformational changes in the protein, finally controlling its 

open probability 
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(96,99-102). 

Figure 4. Protein CFTR structure 

 

Numbers correspond to amino acid positions in the polypeptide chain. 

 

6. Mutations in the CFTR gene 

Under physiological conditions, the CFTR gene undergoes transcription and is translated into 

a CFTR protein that trafficks to the cell membrane where it mainly functions as a chloride 

channel (Figure 4). In CF, the majority of CFTR mutations involve changes in three or fewer 

nucleotides and result in amino acid substitutions, frame shifts, splice site, or nonsense 
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mutations. The most common and also the first identified mutation, p.Phe508del, corresponds 

to a three base pair deletion that codes for a phenylalanine at position 508 of the protein. 

However, the relative frequency of the p.Phe508del mutation in families carrying the CF gene 

varies among ethnic groups. An increasing South East–North West gradient has been noticed 

for its relative frequency across European countries: the highest frequency of 82% is reached 

in Denmark but the mutation is much less frequent in Mediterranean regions, where less than 

50% of chromosomes with the CFTR gene have the mutation (103). The overall frequency of 

non-p.Phe508del mutations is low, except for some rare alleles that segregate with a specific 

ethnic group. For instance, the W1282X, a stop codon mutation, accounts for 48% of CF 

chromosomes in Ashkenazi Jews (104), and 23% of French Canadian CF chromosomes carry 

the 621+1G>T variant (105,106). It is the presence of the p.Phe508del mutation that increases 

the frequency of CF in Caucasian population relative to other races. 

CFTR mutations have been described in six different classes (Table 1). Class I mutations 

result in an absence of functional CFTR protein (caused by unstable truncated RNA); they 

correspond to nonsense, frameshift canonical splice. This class contains for example 

p.Gly542*, p.Trp1282*, p.Arg553*, c.489+1G>T mutations. Class II result in CFTR 

trafficking defects (full length CFTR RNA but protease destruction of misfolder CFTR); they 

correspond to missense or amino acid deletion. Examples of class II mutations include 

p.Phe508del, p.Asn1303Lys, p.Ile507del, p.Arg560Thr mutation. Class III produce a CFTR 

protein at the cytoplasmic membrane but with defective channel regulation; they correspond 

to missense or amino acid change. This class contains for example the p.Gly551Asp, 

p.Gly178Arg, p.Gly551Ser, p.Ser549Asn mutations. Class IV produce a CFTR protein at the 

cytoplasmic membrane but with a defective CFTR channel with decreased channel 

conductance; they correspond to missense or amino acid change. This class contains for 

example the p.Arg117His, p.Arg347Pro, p.Arg117Cys, p.Arg334Trp mutations. Class V 
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induce a reduced synthesis of CFTR caused by splice defect or missense. This class contains 

for example the 3849+10kbC>T, 2789+5G>A, 3120+1G>A and 5T mutations. Class VI lead 

to decreased CFTR membrane stability; they correspond to missense or amino acid change. 

This class contains for example the c.4196_4197delTC, p.Gln1412* and c.4147_4148insA 

mutations. 

Table 1. Classes of CF mutations 

Class Resulting CFTR 
defect  

Mutation Type Examples 

I No protein Premature stop codon, 
larges deletions, out-of-
frame deletion, insertion 

p.Gly542* 
p.Trp1282* 
p.Arg553* 
c.489+1G>T 

II Processing defect Missense, amino acid 
deletion 

p.Phe508del 
p.Asn1303Lys 
p.Ile507del 
p.Arg560Thr 

III Regulation defect Missense p.Gly551Asp 
p.Gly178Arg 
p.Gly551Ser 
p.Ser549Asn 

IV Decreased 
conductance 

Missense p.Arg117His 
p.Arg347Pro 
p.Arg117Cys 
p.Arg334Trp 

V Reduce synthesis Missense, change in splicing 
efficiency 

3849+10kbC>T 
2789+5G>A 
3120+1G>A 
5T 

VI Altered channel 
stability 

Nonsense, frameshift c.4196_4197delTC 
p.Gln1412* 
c.4147_4148insA 

 

 

7. Molecular diagnosis of CFTR 

The consensus strategy for molecular diagnosis is divided in two groups. The first line 

strategy aims at detecting known mutations using commercial kits. The second line aims at 

detecting unknown mutations, using a gold standard DNA sequencing method.  
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In Europe, due to heterogeneity of distribution of mutations, a local detection rate higher than 

95% is difficult to achieve (with mutation frequencies of more than 1%). Panels of mutations 

commonly used recognise from 20 to 86 CF-causing mutations.  

In the USA, the situation is unambiguous. The American College of Medical Genetics 

(ACMG)/American College of Obstetricians and Gynecologists (ACOG) have recommended 

a core panel of 23 mutations to be included in the first line strategy. 

When a CF phenotype is suspected and no or only one known mutation in the panel has been 

detected, a search is made for a rare CF-causing mutation. This second line sequences the 

coding exons (CDS) and bordering intronic regions for punctual mutations (SNV), and the 

Multiplex Ligation-dependent Probe Amplification (MLPA) for large rearrangements (CNV). 

Nowadays, the complete intronic nucleotide sequencing is not routinely applied in molecular 

diagnostic laboratories. 

 

8. CFTR1 database 

In 1990 the international Cystic Fibrosis Genetic Analysis Consortium (CFGAC) created the 

‘cftr1’ mutation database (http://www.genet.sickkids.on.ca/PicturePage.html) in the CF 

Centre at the Hospital for Sick Children in Toronto. On August 25 2016, 2009 variants had 

been introduced in the database. Their distribution into categories is given on Table 2. 
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Table 2. Distribution of variants in the CFTR gene  

Mutation Type Count Frequency % 

Missense 795 39.57 

Frameshift 313 15.58 

Splicing 228 11.35 

Nonsense 167 8.31 

In frame in/del 41 2.04 

Large in/del 52 2.59 

Promoter 15 0.75 

Sequence variation 269 13.39 

Unknown 129 6.42 

The usefulness of the database is limited by its composition: a list of individual patients with a CF- or 

a CF-related phenotype and carrying a new suspected pathological variant in the CFTR gene. 

 

9. CFTR2 database 

More recently, a second CF mutation database “CFTR2” for “Clinical and Functional 

Translation of CFTR” (http://www.cftr2.org/) was created, in an attempt to correlate 

phenotype with genotype (including the allelic distribution in cis or in trans) in groups of 

patients carrying the same mutation. It was based on the collection of clinical data of almost 

88,000 patients from 25 European and North-American datasets, namely CF registries and CF 

centers. Despite the very large size of the set of patients, only 273 mutations have been 

included (http://cftr2.org/progress.php). Clinical data taken into consideration are sweat 

chloride, lung function, pancreatic status and presence of Pseudomonas. The database 

classifies mutations into four categories labelled « disease-causing », « neutral », « mutation 
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of varying clinical consequences » and "mutations of unknown clinical significance", and 

provides clinical information about complex alleles containing more than one variant (107). 
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Objectives 

The general aim of this work is to analyse the spectrum of CFTR mutations in CF and in CF-

related disorders.  The severity of classic forms of the disease and the number of affected 

organs varies substantially from patient to patient, even among those displaying the same 

genotype. The presence of CFTR mutations can also be associated with CF-related disorders, 

such as ABPA and pancreatitis. The factors related to the large and complex variability in CF 

are not well recognized and a large spectrum (more than 2,000) of CFTR mutations has been 

reported.  

This project specifically aims at investigating the following points: 

1) Validation of a new diagnostic screening method (xTAG Luminex) for routine 

analysis compared to the INNO-LiPA® method (Innogenetics) used as a reference. 

2) Characterisation of frequencies of CFTR mutations in central Argentina with the 

final aim of developing a new first line panel of mutations with high sensitivity for 

routine use in this population. 

3) Study of the clinical manifestations, including the occurrence of pancreas cancer, 

in patients with sporadic idiopathic pancreatitis who display mutations in the 

CFTR, PRSS1 and SPINK1 genes. 

4) Better characterisation of the nature of CFTR mutations, by sequence analyses, in 

a group of adult patients with ABPA. 
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Personal Research 

New Molecular Screening Assay for Increased Detection Rate 

of CFTR Mutations in European Populations 

Xavier Pepermans1, Marianne Philippe1,2, and Teresinha Leal1,2,3 

1. Centre for Human Genetics, Cliniques Universitaires Saint-Luc; 2. Department of Clinical 

Biology, Cliniques Universitaires Saint-Luc; 3. Louvain Centre for Toxicology and Applied 

Pharmacology, Université Catholique de Louvain 

European Respiratory Review, 2010; 6: 62–65 

In 2009, all Belgian Genetics centers used the same panel of 36 mutations (the gold standard 

at the national level) for the first line molecular diagnosis of the CFTR gene. At that time, a 

US-based company contacted me with an alternative single panel of the 71 most frequent 

mutations for Europe as the whole. The rationale was that “it was better suited for patients of 

southern European descent”, who are characterised by a large diversity of mutations.  

This work has been designed to address the first objective of the thesis project, namely, to 

investigate the validation of a new diagnostic screening method (xTAG Luminex) for routine 

analysis compared to the INNO-LiPA® method (Innogenetics) used as a reference. The paper 

below compares the two panels and presents mutation detection rates for countries from 

northern, central and southern Europe separately, with data from the national registries. This 

paper tried to answer the question : “what is the advantage of using a panel with twice the 

number of mutations in the first line molecular diagnosis?”. Since then, the UCL and ULg 

Genetics centers use the new panel in first line routine diagnosis.  
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Identification and frequencies of cystic fibrosis mutations in 

central Argentina 

Xavier Pepermansa,b, Soledad Melladoc, Sergio Chialinac,d, MartaWagenere, Liliana Gallardof, 

Hilda Landef, Walter Bordinod, Daniel Barang, Vincent Boursa, Teresinha Lealh 

aCenter for Human Genetics, CHU Sart-Tilman, Université de Liège, Liège, Belgium; bCenter 
for Human Genetics, Cliniques Universitaires St-Luc, Université Catholique de Louvain, 
Brussels, Belgium; cLaboratorio STEM, Rosario City, Santa Fe province, Argentina; dInstituto 
Universitario Italiano de Rosario, Rosario City, Santa Fe province, Argentina; eHospital de 
Niños “Dr. Orlando Alassia”, Santa Fe City, Santa Fe province, Argentina; f Hospital de 
Niños “Víctor J. Vilela”, Rosario City, Santa Fe province, Argentina; gInstitut de la 
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Clinical Biochemistry 49 (2016) 154–160 

In 2009 in South-America, a small number of publications identified the mutations of the 

CFTR gene present in the continent. Especially in Argentina, only two papers reported the 

distributions and frequencies of CFTR mutations, one for the Cordoba province and the other 

for Buenos Aires, the capital city. In contrast, all European countries and regions have been 

studied to determine the natures and frequencies of CFTR mutations (and large differences 

have been observed between regions). Argentina was largely populated by a European 

immigration at the end of the 19th century. The rationale of the paper was: “Can CFTR 

mutations of putative precolombian origin be found in a country mainly populated by Italians, 

Spanish, Irishmen, Germans, French, … Europeans?” And a second question arose: "Are 

frequencies similar to those found in Europe?"  

To answer the questions and to address the second objective of my thesis project, namely to 

characterize the frequencies of CFTR mutations in central Argentina with the final aim of 

developing a new first line panel of mutations with high sensitivity for routine use in this 

population, I used my personal contacts in the country. A questionnaire was designed on 

purpose by Prof. Daniel Baran to select a cohort of more than 100 children with classical CF 

in the Santa Fe province of Argentina, and I performed a complete molecular CFTR screening 

of the cohort according to the best European practices. The results are described in the 

following paper.  
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Clinical and morphological characteristics of sporadic 

genetically determined pancreatitis as compared to idiopathic 

pancreatitis: higher risk of pancreatic cancer in CFTR variants. 

a Coralie HamoirФ, b Xavier PepermansФ, a Hubert Piessevaux, c Anne Jouret-Mourin, c Birgit 

Weynand, a Jean-Baptiste Habyalimana, b Teresinha Leal, a André Geubel, d Jean-François 

Gigot, a Pierre H. Deprez* 

aGastroenterology Department, Cliniques universitaires Saint-Luc, Université Catholique de 

Louvain, Brussels, Belgium ; bCenter for Human Genetics. Cliniques universitaires Saint-Luc, 

Université Catholique de Louvain, Brussels, Belgium ; cPathology Department, Cliniques 

universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium ; dDepartment 

of Abdominal Surgery and Transplantation, Cliniques universitaires Saint-Luc, Université 

Catholique de Louvain, Brussels, Belgium  

Ф C.H. and X.P. contributed equally to this study. 

Digestion. 2013; 87(4):229-39. 

The starting point of this paper was a question asked by the UCL Gastroenterology 

Department: “Is it possible to predict, from clinical data, a genetic factor in patients with 

idiopathic pancreatitis (excluding an alcoholic origin)?”. And a second question was: “Are 

patients with pancreatitis and carrying at least one CFTR, PRSS1 or SPINK1 mutation more 

frequently affected than non-carriers?”. 

To answer the questions and to address the third objective of the thesis project, i.e., to study 

the clinical manifestations, including the occurrence of pancreas cancer, in patients with 

sporadic idiopathic pancreatitis who display mutations in the CFTR, PRSS1 and SPINK1 

genes, I thus collected, from the files of the Department of Genetics, the retrospective 

molecular data since 1999 (obtained by me since 2001) of patients from departments of 

Gastroenterology of the whole of Belgium. This constituted a database of 351 patients with 

idiopathic pancreatitis and genetic testing. Out of this cohort, a group of 68 patients carried at 

least one mutation in the CFTR, PRSS1 or SPINK1 genes. From the database of 351 patients, 

the UCL Gastroenterology Department then constituted a non-carrier control group matched 

for gender and age, and compared the clinical characteristics between the two groups. The 

results of the comparison are given in the following paper.  
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Link between CFTR mutations and pancreatic cancer 

Chronic inflammation has long been recognised as an important underlying condition for 

tumor development, accounting for approximately 20 % of human cancers (1). Despite years 

of extensive research, the mechanisms linking chronic inflammation to cancer development 

still look very complex and remain largely unresolved. 

 

1. TNFα and NFκB, major actors in inflammation 

The NFκB (Nuclear Factor kappa-light-chain-enhancer of activated B cells) family of 

transcription factors plays an essential role in inflammation and innate immunity. They are 

strongly expressed in inflammation in response to stimulation by TNFα (Tumor Necrosis 

Factor α), in particular in CF (2). NFκB is considered responsible for increased expression of 

pro-inflammatory cytokines (such as IL-8, chemoattractants for neutrophils,...) (3). It has 

essential roles in the complex flux of information from transcription to regulation of RNA 

function and turnover, and in protein synthesis, functions and degradation (4). 

 

2. CFTR deficiency and increased expression of NFκB 

CFTR dysfunction affects innate immune pathways, generating an imbalance in the 

inflammatory status in epithelia in favour of pro-inflammatory markers.  

Normal CFTR has been shown to stabilise several membrane receptor proteins involved in the 

inflammation signalling pathways. It regulates TLR4- (Toll-Like Receptor 4, the membrane 

receptor of LPS, e.g. from Pseudomonas aeruginosa) mediated responses in secretory 

epithelia, by controlling the activation of Src (Rous Sarcoma virus oncogene Cellular 

homolog) tyrosine kinase. When CFTR is defective, the negative regulation of Src is lost and 

tyrosine kinase is free to target TLR4/NFκB and increase its response to endotoxins (5). It has 
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also been demonstrated that the dF508 CFTR mutation impairs osteoblast differentiation and 

function as a result of overactive NFκB and Wnt/β-catenin signalling (6-7). 

These observations support the view that CFTR acts as a tumor suppressor gene. RNA 

sequencing analyses of CFTR-deficient intestinal tumors confirmed an altered 

proinflammatory gene expression profile in normal CFTR-deficient tissues as well as in 

CFTR-deficient tumors (8). In the latter, CFTR deficiency results in upregulation of numerous 

proinflammatory chemokines, cytokines and their receptors, and members of the NFκB 

signalling pathway. 

 

3. From NFκB increased activity to development of cancer 

It has been suggested that NFκB, a hallmark of inflammatory responses that is frequently 

detected in tumors, may constitute a link between inflammation and cancer (9). Evidence is 

accumulating in favour of NFκB acting through its control of the apotosis/autophagy balance. 

Apoptosis is the broadly recognised mechanism of programmed cell death. Autophagy is a 

lysosomal process in which cytoplasmic constituents such as proteins, lipids, and organelles 

are degraded (10). It is activated in many situations of cell stress. It is a pivotal regulator of 

several important physiological processes including development, cell survival, differentiation 

and senescence. Tight regulation of both the NFκB pathway and that of the autophagy process 

is essential to homeostasis. Deregulation of both of these is frequently observed in cancer 

cells and is associated with tumorigenesis and tumor cell resistance to cancer therapies (11). 

In the case of pancreas cancer, high-throughput technologies and accurate disease models now 

provide a comprehensive picture of the diverse molecular signalling pathways and cellular 

processes governing adenocarcinoma genesis. Central among these is oncogene KRAS, a 

mediator of cellular plasticity, metabolic reprogramming, and inflammatory and paracrine 

signalling required for tumor development and maintenance. Autophagy is proposed to be one 
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of the cellular mechanisms contributing to pancreatic carcinogenesis, particularly during 

initial stages in which the KRAS oncogene appears to play a key role. Pancreatic autophagy, 

induced during pancreatitis by the overexpression of VMP1 (Vacuole Membrane Protein 1), 

promotes the development of precancerous lesions when induced by the mutated KRAS (12). 

In addition, the treatment with chloroquine, an inhibitor of autophagic flux, reverses the 

effects of VMP1 in pancreatic cancer induced by the KRAS oncogene (13). 

 

In summary, the link between CF, chronic pancreatitis and pancreas adenocarcinoma is 

complex and still largely unresolved. It involves several pathways and factors that can 

possibly balance each other. Better understanding of interactions between the CFTR protein, 

other membrane proteins such as receptors, and cytoplasmic transduction cascades could help 

orient future investigations. The structure of CFTR itself is a challenge for further research 

and the way to light is full of pitfalls. 
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In 2009, Prof. P. Lebecque, then head of the clinical CF Centre at St Luc Hospital, revisited 

an earlier publication on frequencies of CFTR mutations in patients with Allergic 

Bronchopulmonary Aspergillosis (ABPA) (Chest; Marchand et al. 2001); this paper was 

based on a molecular method using a panel of 13 common CFTR mutations. At the time, the 

hypothesis was spreading in the scientific community of the possible existence of other, still 

undetected, CFTR mutations responsible for the ABPA phenotype. Accordingly, Prof. P 

Lebecque asked the department of Genetics to update the analysis, and I performed an up-to-

date complete CFTR screening in the same cohort of patients in order to obtain more accurate 

insight on the link between CF and ABPA. Therefore, the work has been designed to address 

the fourth objective of the thesis project, i.e., to better characterise the nature of CFTR 

mutations, by sequence analysis, in the same group of patients from the princeps paper. The 

results of the new study are described in the adjacent paper.  
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Conclusion 

This work contributes in several ways to a deeper understanding of the involvement of the 

CFTR gene in patients with CF and CF-related disorders and it sheds new light on the 

molecular diagnosis.  

A new diagnostic screening method, xTAG (Luminex; panel of 71 mutations), was validated 

for routine analysis compared to the INNO-LiPA® (Innogenetics; panel of 36 mutations), 

used as a reference. The robustness of the method was established by using DNA samples 

extracted from different biological matrices, including blood samples, blood spots from 

Guthrie cards, chorionic villi and amniotic fluid. In this way, reproducible and concording 

results were obtained on the Luminex platform from all DNA Innogenetics positive samples. 

The new method, which uses a large panel of 71 mutations more specially designed for 

patients of southern European origin, significantly increases the detection rate. Since 2009, 

the method has been routinely used in first-line molecular diagnosis in the Human Genetics 

Centre of the Cliniques universitaires St-Luc. 

A contribution to a better molecular diagnosis of CF was achieved in the Santa Fe province of 

central Argentina, which has never been studied before. In this province, studying mutations 

in the CFTR gene allowed us to answer two questions. First, in a country largely populated by 

immigrates from mediterranean origin, the nature and distribution of mutations largely 

reproduces that of the countries of origin. Second, specific mutations never observed before, 

c.2554dupT (p.Tyr852Leufs*44) and c.146T>C (p.Leu49Pro), were discovered. We raise the 

hypothesis that they may be of aborigenic origin. As a result of the study, a new panel of 21 

mutations, better adapted locally, was proposed to replace the European panel presently used 

for the routine first line molecular diagnosis of classical CF in children. 
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Our work also contributed to a better understanding of the correlation between phenotype and 

genotype with a retrospective study of the effects of mutations in the PRSS1, CFTR or 

SPINK1 genes on the severity of sporadic idiopathic pancreatitis.  The results showed that 

clinical and morphological parameters were similar in patients carrying mutations in one of 

the three genes as in non-carriers, except for the age of pancreatic disease onset. However, a 

significantly higher occurrence of pancreas cancer was observed in the mutated group, 

particularly in patients carrying mutations in the CFTR gene. We therefore suggest that some 

CFTR variants present a risk factor for pancreatic cancer. 

A better understanding of the role of the CFTR gene in a specific pathology was provided by 

updating the molecular analysis of the CFTR gene in patients with allergic bronchopulmonary 

aspergillosis syndrome (ABPA). To this end, samples from patients analysed in 2001 using a 

panel of 13 mutations were re-analysed in 2010 using complete exonic sequencing and large 

rearrangement screening. Compared to the first analysis, 8 cases were found carrying one 

CFTR mutation and 4 with two mutations. Thus, the study considerably extends previous 

findings by demonstrating a strong link between ABPA in adults and CFTR mutations and 

further enriches our knowledge of the phenotype-genotype relationship.   
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Perspectives: The molecular diagnosis of CF from past to future 

The story of the molecular diagnosis of CF begins in 1989 

The discovery of the CFTR gene and of the p.Phe508del mutation took place in 1989. It 

created the molecular diagnosis of CF as a new tool for clinicians. At the time, it was initially 

accepted that the molecular diagnosis of CF was completely understood, with a single gene, a 

single protein and a single mutation, p.Phe508del, and the task of the molecular geneticist 

seemed simple. The evolution over the next two decades was by no means anticipated. I plan 

to give here an overview of the evolution of the molecular genetics, in parallel with the 

difficulties of the molecular diagnosis of the CFTR gene (patients with CF and CF-related 

disorders). 

In the early 90’s, the molecular diagnosis of the principal mutation, p.Phe508del, used a 

simple PCR with high resolution electrophoresis to detect deletion of the three base pairs. At 

the same time, a few additional mutations were identified using restriction enzymes. At the 

time, the best available technique was the Sanger sequencing method, which was very 

expensive and labour intensive (at least two weeks for only 200bp of length), and as all 

radioisotope-based methods, it used hazardous radioactive reagents. The development of the 

fluorescence method replaced the use of radioactive reagents, simultaneously reducing the 

technician time and allowing sequencing 500bp segments. A major advantage of the new 

method was the possibility to analyse an entire exon and to discriminate several mutations of 

different types, such as the p.Ile507del mutation which gave the same delta of 3bp as the 

p.Phe508del in the electrophoresis. Another advantage was that the method avoided 

uncertainties associated to the use of restriction enzymes, for example sufficient enzyme 

activity to discriminate mutated homozygous from heterozygous. 
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Ten years later 

At the end of the 90’s, a large number of mutations had been discovered in the CFTR gene. 

The most frequent one, p.Phe508del, was found in 40 to 95% of CF alleles in different 

European populations, and in the second position came a small group of mutations with 

frequencies between 1 and 5% of CF alleles. A third large group included rare local 

mutations, with frequencies less than 1%. A strategy of molecular diagnosis was then adopted 

(see, for example, European last best practice) (1), in which a panel of know mutations was 

defined; initially, it contained 13 mutations present regionally in high proportions and it was 

progressively extended to 71 mutations. The first paper presented above shows an application 

of this approach. An example of regional diversity in a given country is the distribution in 

France (2). Some regions, mainly outside Europe, have not been studied yet, and their local 

distributions are unknown. In my second paper above, I present the results of my study of 

distribution of mutations in the Santa Fe province of central Argentina, which had never been 

studied. In the study, I identified a small group of specific mutations present in high 

proportions, justifying development of a local panel of mutations.  

Despite the discovery of more local mutations, the task of the molecular geneticist, which 

seemed initially simple, became substantially more complicated and a source of frustration 

due to the impossible task of satisfying the demands of clinicians ("Please, find two 

mutations!"). As a matter of facts, identifying one particular mutation in a patient required 

heavy logistics and time, making it practically impossible to implement. 
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In the early 2000’s 

At the beginning of the years 2000, the cost of reagents decreased drastically, allowing 

automation of the Sanger sequencing method with a much higher throughput in diagnostic 

laboratories. It became possible to sequence the complete coding DNA sequence (CDS) of the 

CFTR gene nowadays known as the second line of genetic diagnosis. In those days, for 

practical reasons, CF centers chose to give priority to the analysis of unsolved classical CF 

patients, and as a result, a large proportion of patients carrying two mutations was found. 

At about the same time, following the detection of copy number variations (CNV), the idea 

appeared in laboratories of molecular genetics that Sanger sequencing alone was not enough, 

and the need arose for a parallel study to detect patients with two complete pathogenic alleles 

of the CFTR gene. The introduction of the MLPA method (3), easy to apply in routine 

practice, induced large hopes to help patients with CF phenotype carrying no, or only one 

mutation. Unfortunately, the number of mutations with large rearrangements in the CFTR 

gene represented only 1-1.5% of patients (4). 

Despite the major technical advances, the problem remained of selecting the part of the gene 

to be sequenced due to the ever increasing number of mutations. As a consequence, the 

frustration of the molecular geneticist grew because no clear end of the analysis procedure 

could be defined. 

 

Around 2010 

In the years 2010, it was decided to explore other genes in cases of patients with a CF 

phenotype in whom no CFTR mutation had been found. One example of such genes is that of 
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the epithelial Na+ channel (ENaC) family (5). Despite a strong hope to find mutations, the 

number of unresolved cases remained very high (6). 

The most spectacular breakthrough came after 2008 with the development of the next 

generation sequencing (NGS) methods. The NGS strategy applied by the genetic laboratories 

consists in substituting the Sanger method for the complete CDS of the CFTR gene, thereby 

enormously increasing the number of samples analysed. For example, a trained technician can 

now process 50-100 patients in three days, which is more than the total number of new 

patients of a CF center in one year. However, implementing the methods requires solving 

great problems. The difficulty of the diagnostic laboratory is now to demonstrate locally high 

sensitivity, specificity, accuracy, robustness, …. of the NGS method in order to obtain the 

ISO15189 certification, following the guidelines of the International Organization for 

Standardization. (7-10). 

Despite the information gathered in exploring other genes, it remained necessary to deepen 

the knowledge of the CFTR gene, because the other genes had not given useful answers in the 

case of an apparently monogenic disease, and because analysis of the CFTR gene was 

unfinished, since introns had not been sequenced. This is still valid today in routine diagnosis, 

and the frustration of the molecular geneticist remains. 

 

The present situation in 2016 

Now, a new situation has appeared during the last years. On the one hand, highly efficient 

diagnostic methods are available at an affordable cost; on the other hand, ever increasing and 

complex mutations have been identified so that the results of the genetic analysis can no 

longer be simply interpreted, as will be further explained below. From an initial apparently 

simple situation of a monogenic disease, additional gene alleles, called modifier genes, have 
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been recognised which directly influence the severity of the CF phenotype (11). And as a 

consequence, so far, no consensus gene panel in relation with CF and CF-related disorders has 

been agreed at an international level.  

In parallel, another method, the genome-wide associated studies (GWAS), has been used, 

with the aim of identifying other loci, (12) but the new loci need more meta-analysis to 

confirm the involvement in this disease. A better categorisation of phenotypes in a parallel 

extensive database of "phenomics" constitutes a new challenge.  

These two factors contribute to slow down the application of the most recent methods to 

laboratory practice. 

Another difficulty comes from the increasingly frequent request from clinical departments for 

molecular diagnosis in the case of patients with phenotypes very closely related to classical 

CF, for example idiopathic pancreatitis and ABPA, as illustrated in the third and fourth papers 

above. These cases require resorting more and more frequently to a second line diagnosis, 

which is substantially more demanding, not only technically but also in time spent in the 

interpretation of complex alleles. Indeed, a grey zone broadens up between a deleterious 

mutation and a polymorphism, making a clear molecular diagnosis and the task of the 

molecular geneticist nearly impossible. 

However, everything is not as grey. The new very broad interconnected public human 

genome databases (1000genome, Exome ExAC, ncbi, ensembl, uscs, ...) give access to a new 

control population database at a world-wide scale. For example, when a new variant, never 

observed before locally, is found in an Asian patient, consulting the large database allows 

comparing the variant to an Asian population. If this variant is present in a proportion larger 

than 5% in the database, it can be considered as a common polymorphism. The limit of 5% 
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represents an international consensus because the most common CFTR mutation, the 

p.Phe508del, is present in 4% of Caucasians. 

A possible way of solving the difficulties related to the CFTR gene, as explained above, 

would be to sequence by NGS the complete gene, including introns. The problem does not lie 

in the technology but in the shear size of the gene. As a matter of fact, in a gene of 250,000 

bp, 250 variants can theoretically be expected, as it is well known that on average, one variant 

is present for every 1,000 bp, and the majority of them are present in the introns. More in 

vitro models are needed to reveal the influence of splicing (13,14). This, however, is not the 

final answer, because when a partial splicing defect is found in the in vitro model, the 

consequence in the ex-vivo model is not fully predictable. Furthermore, when two complex 

variants are found, it is not known if they are present in cis or in trans if the parents' genes 

have not been analyzed. If they are adjacent, their possible reciprocal influence is also not 

known. 

 

A view of the future by the molecular geneticist 

In summary, disappointing immense initial hopes, the molecular diagnosis has not resolved all 

cases, despite huge technical progresses over the last half century. It is even quite the 

contrary. In the context of CF, the new methods of gene analysis and the added loci have 

increased the detection rate by only about 1% while making the interpretation considerably 

more difficult. The molecular diagnosis in medicine is now, and will remain in a foreseeable 

future, but one diagnostic tool among others, such as IRT screening, sweat test, nasal potential 

difference test,… to help the CF center. From the point of view of the geneticist, in many 

hereditary diseases, improving the categorisation of phenotypes, in other words the selection 



100 

 

of cohorts, seems to be the starting point to move forward in the way toward a more accurate 

diagnosis.  
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Annexe 

Impact of MIF gene promoter polymorphism on F508del 

cystic fibrosis patients. 

Melotti P1, Mafficini A2, Lebecque P3, Ortombina M1, Leal T4, Pintani E1, Pepermans  

X5, Sorio C2, Assael BM1. 

1. Cystic Fibrosis Centre, University and Hospital Trust of Verona, Verona, Italy; 2. ARC-

NET Research Centre and Department of Pathology and Diagnostics, University and Hospital 

Trust of Verona, Verona, Italy; 3. Pediatric Pulmonology & Cystic Fibrosis Unit, Universite´ 

Catholique de Louvain, Brussels, Belgium; 4. Louvain Centre for Toxicology and Applied 

Pharmacology, Universite´ Catholique de Louvain, Brussels, Belgium; 5. Centre for Human 

Genetics; Universite´ Catholique de Louvain, Brussels, Belgium. 

PLoS One. 2014 Dec 12; 9(12):e114274. 

This annexe includes a contribution I co-authored during my PhD programme. As a molecular 

geneticist, I took part in this collaborative work designed to try to determine if a 

polymorphism, 5-repeat allele displaying lower promoter activity, of the Macrophage 

migration Inhibitory Factor (MIF) is associated with disease severity in a group of Cystic 

Fibrosis patients homozygous for F508del CFTR mutation. Patients have been selected in two 

CF centers in Brussels and in Verona (Italy).  



105 

 

 

  



106 

 

 

  



107 

 

 

  



108 

 

 

  



109 

 

 

  



110 

 

 

  



111 

 

 

  



112 

 

 

 

  



113 

 

 

  



114 

 

 

  



115 

 

 

  



116 

 

 

  



117 

 

Résumé 

Un large spectre de plus de 2000 mutations CFTR ont été associées à un phénotype clinique 
très variable de la mucoviscidose. Dans ce travail, nous avons analysé le spectre des 
mutations du gène CFTR chez des patients atteints de mucoviscidose et dans les troubles 
associés à la mucoviscidose. Le projet vise spécifiquement à étudier les points suivants: 

1) Validation d'une nouvelle méthode de dépistage xTAG (Luminex, panel de 71 mutations), 
pour l'analyse de routine par rapport à l'INNO-LiPA® (Innogenetics, panel de 36 mutations), 
utilisé comme référence. Des résultats reproductibles et concordants ont été obtenus sur la 
plate-forme Luminex à partir d'échantillons ADN Innogenetics positifs utilisant de l'ADN 
extrait de différentes matrices biologiques, y compris des échantillons de sang, des taches de 
sang de cartes Guthrie, des villosités chorioniques et du liquide amniotique. Le nouveau panel 
augmente significativement le taux de détection pour les patients d'origine sud-européenne. 

2) Etude des fréquences des mutations du CFTR dans le centre de l'Argentine, dans la 
province de Santa Fe, qui n'a jamais été caractérisée. Une cohorte de 83 patients sur une 
sélection locale initiale de 121 a été analysée. Les résultats ont été combinés avec ceux d'une 
étude précédente de la province voisine de Cordoba, aboutissant à la proposition d'un panel 
unique de 21 mutations du CFTR pour un diagnostic moléculaire de première ligne au centre 
de l’Argentine. 

3) Analyse des effets des mutations dans les gènes PRSS1, CFTR ou SPINK1 sur la gravité de 
la pancréatite idiopathique sporadique. Une cohorte rétrospective de 68 patients porteurs de 
mutations dans ces gènes a été comparée à une cohorte, pairée pour l'âge et le sexe, de 
patients atteints de pancréatite idiopathique avec des tests génétiques négatifs. Les 
caractéristiques cliniques et morphologiques des patients ont été prises en compte dans 
l'analyse. Les paramètres cliniques étaient similaires dans les deux cohortes, à l'exception de 
l'âge d'apparition de la maladie pancréatique. Une augmentation significative du cancer du 
pancréas a été observée dans le groupe des patients porteurs de mutations, en particulier dans 
le gène CFTR. Nous suggérons donc que les variants de CFTR présentent un facteur de risque 
pour le cancer du pancréas. 

4) Mise à jour de l'analyse moléculaire du gène CFTR dans une cohorte de patients porteurs 
d'un syndrome d'aspergillose bronchopulmonaire allergique (ABPA). Les échantillons de 18 
patients précédemment analysés à l'aide d'un panel de 13 mutations et rapportés dans un 
article publié en 2001 ont été ré-analysés en 2010 en utilisant le séquençage complet des 
exons. Comparativement à la première analyse, 8 cas ont été trouvés porteurs d'une mutation 
CFTR et 4 de deux mutations. L'étude a considérablement étendu les résultats précédents en 
démontrant une forte relation entre ABPA chez les adultes et mutations du CFTR. 

Au total, ces études contribuent à jeter un éclairage nouveau sur le diagnostic moléculaire du 
gène CFTR dans les cas de patients atteints de mucoviscidose et de syndromes associés à la 
mucoviscidose. 

 


