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Abstract

Nowadays the analysis of remote sensing data for environmental monitoring is funda-

mental to understand the local and global Earth dynamics. In this context, the main goal

of this thesis is to present novel signal processing methods for the estimation of biophysical

parameters and for the analysis icy terrain with active sensors. The thesis presents three

main contributions.

In the context of biophysical parameters estimation we focus on regression methods.

According to the analysis of the literature, most of the regression techniques require a rel-

evant number of reference samples to model a robust regression function. However, in

real-word applications the ground truth observations are limited as their collection leads

to high operational cost. Moreover, the availability of biased samples may result in low

estimation accuracy. To address these issues, in this thesis we propose two novel contribu-

tions. The first contribution is a method for the estimation of biophysical parameters that

integrates theoretical models with empirical observations associated to a small number of

in-situ reference samples. The proposed method computes and correct deviations between

estimates obtained through the inversion of theoretical models and empirical observations.

The second contribution is a semisupervised learning (SSL) method for regression defined

in the context of the ε-insensitive SVR. The proposed SSL method aims to mitigate the

problems of small-sized biased training sets by injecting priors information in the initial

learning of the SVR function, and jointly exploiting labeled and unlabeled samples in the

learning phase of the SVR.

The third contribution of this dissertation addresses the clutter detection problem in

radar sounder (RS) data. The capability to detect clutter is fundamental for the inter-

pretation of subsurface features in the radargram. In the state of the art, techniques that

require accurate information on the surface topography or approaches that exploit com-

plex multi-channel radar sounder systems have been presented. In this thesis, we propose

a novel method for clutter detection that is independent from ancillary information and

limits the hardware complexity of the radar system. The method relies on the interferomet-

ric analysis of two-channel RS data and discriminates the clutter and subsurface echoes by

modeling the theoretical phase difference between the cross-track antennas of the RS. This

allows the comparison of the phase difference distributions of real and simulated data.

Qualitative and quantitative experimental results obtained on real airborne SAR and

RS data confirm the effectiveness of the proposed methods.



Keywords[Remote sensing, signal processing, biophysical parameters estimation, sup-

port vector regression, synthetic aperture radar, radar sounder, clutter detection.]
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Chapter 1

Introduction

The aim of this first Chapter is to introduce the PhD thesis work. In particular, it presents

the context in which estimation and detection methods are exploited to analyze remote

sensing images. This allows to state the aim of this work and to highlight its novel con-

tributions. Finally, the structure of the whole document is outlined.

1.1 Background and motivation

In the last decade the interest in remote sensing data analysis for the Earth Observation

(EO) is increased. Techniques for EO data analysis have strong impact in many research

areas having as a major concern the interaction of humans with environment. For ex-

ample, the study of biophysical parameters and ice sheets dynamics are fields of study

of crucial importance in the scientific community. The techniques for the estimation of

biophysical terrain parameters and for the analysis of Polar regions of Earth are among

the most relevant branch of EO because they contribute to provide key environmental

indicators. In this scenario, the availability of a large amount of information acquired

by cutting-edge active and passive sensors encourages the definition of methods to ana-

lyze the remote sensing data. In this thesis, we focus our attention on signal processing

methods for the estimation of biophysical parameters and for the analysis icy terrain with

active sensors. Concerning the estimation problem, we aim to provide improved solutions

to tackle the scarcity of ground truth information, which is a fundamental resource for

the retrieval of biophysical parameters. Regarding the analysis of icy terrains we focus

on the definition of methods for the detection of clutter in Radar Sounder (RS) data. In

the following we give some background on these two topics.

Biophysical parameters estimation

In remote sensing data analysis, the estimation of biophysical parameters is relevant to the
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understanding of environment dynamics at local and global scales. Soil moisture content

(SMC), leaf chlorophyll content, temperature, leaf area index, are some examples of the

most important parameters related to surface terrain that can be retrieved by remote sens-

ing data. Every year international space agencies and private companies launch satellite

missions with innovative payloads for EO. Some examples of recent missions are: Sentinel

1 (Snoeij et al. [2010]), one of the missions of the European Space Agency’ Copernicus

Program; the Soil Moisture Active Passive (SMAP) mission (Entekhabi et al. [2010]);

and Radarsat-2 (Rolland et al. [2012]), a Canadian commercial satellite. In more details,

Sentinel 1 carries single or dual polarization C-Band Synthetic Aperture Radar (SAR)

instrument to provide an all-weather, day-and-night supply of imagery relevant to several

monitoring applications (e.g., Arctic sea-ice extent, the marine environment including

oil-spill, land-surface for motion risks, forest, water and soil management). SMAP is a

mission for soil moisture content estimation at global scale. Radarsat-2 is satellite car-

rying a quad polarization C-Band SAR having common characteristics with Sentinel but

different operatives modes. These sensors made available new data, which are relevant to

the estimation of biophysical parameters.

These parameters are continuous variables of fundamental importance in several appli-

cation domains. For instance, for natural disasters prevention, such as drought, flooding

and landslides (Sandholt et al. [2002], Engman and Gurney [1991]) a precise knowledge

of SMC in superficial terrain layers is needed. SMC concentration is also a parameter

required in precision farming, which relies on indicators estimated from satellite data to

support decision for the management of the farm site with the goal of optimize returns

while preventing the waste of resources (Bolten et al. [2010], Heathman et al. [2003]).

From a physical perspective, the change of these parameters, which depends on the chem-

ical and structural characteristics of a target, corresponds to a variation of the electro-

magnetic response that can be measured by the sensor. Absorption, transmission and

reflection (Ulaby and Long [2014]) of an electromagnetic wave varies according to the

characteristics of the observed target. Ultimately, the estimation of parameters can be

treated as a regression problem. From an analytical view point a regression problem can

be solved by designing a mapping function being capable to couple the parameter to be es-

timated (i.e., target or label) with a set of feature extracted from the remote sensing data

(e.g., backscattered power). However, most of the regression techniques require ground

truth data (i.e., reference samples) to build a reliable mapping function. As an example,

supervised regression algorithms need good quality and quantity of the reference samples

to model a precise and robust mapping function. In real-word applications the limited

disposability of reference samples or the availability of bias ground truth information are

major concerns when a regression algorithm is exploited.
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Considering the criticality of the estimation of biophysical parameters in the remote

sensing field, we focus on the definition of novel solutions to improve the regression per-

formance when the quality or the quantity of ground truth samples is limited or when

bias reference samples are available. Moreover, we aim to define general methodologies,

thus applicable to heterogeneous data sources.

Clutter detection in radar sounder data

Another important topic in the context of environment monitoring is the analysis of icy

terrains with active sensors data. Ice sheets dynamic is among the most relevant topic

for glaciologist and climate change scientists. Indeed, radioglaciology uses remote sensing

data to study sub-glacial conditions of rapidly changing ice sheets and their potential

contribution to the rate of sea level rise. In particular, an effective way to study the

ice subsurface on wide areas is exploiting the RS data (Bogorodsky et al. [1984], Fu and

Daniels [2007]), called radargrams. RS is a nadir-looking active sensor that transmits

a low-frequency electromagnetic wave towards the surface and measures the reflected

power from both surface and subsurface with a penetration capability that depends on

the electromagnetic characteristic of the conductive medium and on the radar design it-

self. Concerning EO, RS acquisitions are operated during dedicated airborne campaigns

at the Earth polar regions. Some examples of RSs that acquire ice sheet information

on Greenland and Antartica are: Multifrequency Airborne Radar Sounder with Full-

phase Assessment (MARFA) operated by the University of Texas Institute for Geophysics

(UTIG) (Young et al. [2016]), Multichannel Coherent Radar Depth Sounder (MCoRDS)

operated by Center for Remote Sensing of Ice Sheets (CReSIS) (Shi et al. [2010]) and

POLARIS an ESA’s Ice Sounding Radar (Dall et al. [2010b]). The unique results ob-

tained on Earth polar region from these sensors and the success of the existing planetary

RS instruments, under development as Radar for Icy Moon Exploration (RIME) on the

ESA JUICE mission (Bruzzone et al. [2015]), or the already operating mars missions as

the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) and the

SHAllow RADar (SHARAD) (Jordan et al. [2009], Croci et al. [2011]) have encouraged

dedicated studies for defining an EO RS missions on satellite platform that can enrich

time repetition and space coverage of airborne surveys.

All the RS systems mentioned above need an efficient way to tackle the clutter prob-

lem, which intrinsically depends on the acquisition geometry of RSs. Due to the non-ideal

directivity of the antenna beam, the received signals can contain components coming from

off-nadir directions at the same time with the subsurface nadir returns. In the radargram,

the clutter returns can overlap the returns coming from the subsurface, leading to partial

or complete masking of the subsurface features. According to the solutions presented in
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the state of the art, the clutter can be discriminated from the nadir return using two

different approaches: i) designing multi-channel RSs that permit to use very directive an-

tenna or to exploit the cross-channel phase, ii) exploit modeling using precise information

about the surface topography. However, these approaches have drawbacks. Multichannel

systems require high complexity hardware system design and large data volume resources

to independently record the echoes received from the channels. These problems are par-

ticularly relevant in the design of satellite RSs for which resources (e.g., mass, volume,

power and data volume allocation) are limited. The second class of approaches involves

the use of a digital elevation model (DEM) of the surface to simulate synthetically radar-

grams and predict the position of clutter coming from the surface. However, in some cases

DEMs, having sufficient spatial resolution to properly represent features in the radargram

are not available. Moreover, these techniques can only identify surface echoes, without

providing discrimination of clutter generated from a structure buried in the ice subsur-

face. This clutter problem can have an important impact on the science return that a RS

system can gather, preventing the capability to analyze part of the subsurface features.

For this reason, it is important to define effective and efficient solutions to detect the

clutter contribution in the radargram.

1.2 Objectives and novel contributions of the thesis

The main goal of this thesis is to present novel signal processing methods for the analysis

of remote sensing data. As mentioned above, both the estimation of biophysical terrain

parameters and the analysis of icy terrains are fundamental issues that can be addressed

through the analysis of remote sensing data acquired by active sensors.

Concerning the development of regression methods for the estimation of biophysical pa-

rameters, we aim to overcome one of the limitations of the current state-of-the-art meth-

ods. We address parameter estimation problems when a small quantity of reference sam-

ples are available, or when the reference samples set is bias. In this context, we propose

two novel regression methods for the estimation biophysical parameters:

1. A novel hybrid method for the correction of the theoretical model inversion in

bio/geophysical parameter estimation.

2. A novel semisupervised method for the estimation of biophysical parameters based

on Support Vector Regression.

In the context of the analysis of icy terrains with radar, we propose a novel technique

based on interferometry for clutter detection in two-channel RS data. The use of a two-



Biophysical parameter estimation 5

channel RS system allows the reduction of the hardware complexity with respect to the

multi-channels systems currently used. The proposed method exploits a single-pass in-

terferometric approach to discriminate the surface clutter from nadir subsurface return

without the need of ancillary information about the surface topography (e.g., DEM).

In the following sections, we describe in greater detail the main novel contributions of

the thesis. The former is devoted to the estimation of biophysical parameters, while the

latter refers to the detection of clutter in RS data.

1.3 Biophysical parameter estimation

The main novel contributions of the thesis related to the analysis of remote sensing data

for biophysical parameter estimation can be summarized as follows.

A novel hybrid method for the correction of the theoretical model inversion

in bio/geophysical parameter estimation

The first contribution is a novel method for the estimation of biophysical parameters

that integrates theoretical models with empirical observations associated to a small num-

ber of field reference samples. To this aim, we developed a novel hybrid approach that

models and corrects deviations from correct target values when theoretical electromag-

netic models are used for the inversion process. This is achieved in two steps. In the

first step, deviations between estimations obtained by a theoretical model and empirical

observations are initially computed. Then, deviations associated to unlabeled samples

(for which reference measures are not existing) are characterized based on two different

strategies: i) the global deviation bias (GDB) strategy (which assumes that the deviations

of samples are constant within the input space); and ii) the local deviation bias (LDB)

strategy (which assumes that the deviations of samples are variable within different por-

tions of the input space). In the second step theoretical model estimates of unlabeled

samples are corrected based on the estimated deviations. The experimental analysis car-

ried out in the context of soil moisture content retrieval from microwave remotely sensed

data confirm the effectiveness of the proposed hybrid estimation approach.

A novel semisupervised method for the estimation of biophysical parameters

based on Support Vector Regression

The second contribution is a novel semisupervised learning (SSL) technique defined

in the context of ε-insensitive SVR for parameter estimation. The proposed SSL method



6 Introduction

aims to mitigate the problems of small-sized biased training sets without collecting any

additional sample with reference measures. This is achieved on the basis of two consecu-

tive steps. The first step is devoted to inject additional prior information in the learning

phase of SVR in order to adapt the importance of each training sample to the distribution

of the unlabeled samples. To this end, a weight is initially associated to each training

sample based on a strategy that defines higher weights for the samples located in the

high density regions of the feature space, while gives reduced weights to those that fall

into low density regions of the feature space. Then, in order to exploit different weights

for training samples in the learning phase of the SVR, we consider the weighted SVR

(WSVR) algorithm. The second step is devoted to jointly exploit labeled and informative

unlabeled samples for further improving the definition of the WSVR learning function.

To this end, the most informative unlabeled samples that have an expected reliable tar-

get values are selected according to a novel strategy that relies on the distribution of the

unlabeled samples in the feature space and on the WSVR function estimated at the first

step. Then, we introduce a redefined WSVR algorithm that jointly uses labeled and un-

labeled samples in the learning phase of the WSVR algorithm and tunes their importance

by different values of regularization parameters. Experimental results obtained on two

different datasets show the effectiveness of the proposed technique by comparing it with

the standard SVR.

1.4 Clutter detection in radar sounder signals

The main novel contribution of the thesis related to the analysis of RS signals for clutter

detection is summarized in the following.

A novel technique based on interferometry for clutter detection in two-channel

RS data

As mentioned above the second part of the thesis is devoted to clutter detection in

RS data. The capability of detect clutter is fundamental for the interpretation of sub-

surface features, which are often of primary interest to geologists and planetary. Indeed,

the clutter can prevent the capability of detect and analyze subsurface features in the

radargram. The clutter is usually identified either by manual or automatic techniques

that require ancillary information about the topography of the surface, or by using multi-

channel RS systems with arrays of antennas. However, topographic information is not

always available and multi-channel systems are generally too massive and costly to mount
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on satellites for planetary exploration. In this contribution to the thesis, we propose a

novel approach to clutter discrimination that is independent from ancillary information

and limits the hardware complexity of the RS system. This approach uses a two channel

RS and exploits cross-channel interferometric phase differences to discriminate the clut-

ter. Our approach includes three main steps: i) manual feature extraction and theoretical

phase difference estimation; ii) RS interferogram formation; iii) comparison of theoretical

and real phase difference distributions. The proposed contribution was validated on RS

data acquired in Greenland and provides a proof of concept for surface clutter discrimina-

tion using RS data. This contribution also aims to demonstrate that a clutter detection

method based on interferometry can be implemented on two-channel RS data acquired

from satellite platform. To this goal we assess the capability of the proposed method to

discriminate clutter features from subsurface nadir returns using simulated data. Despite

the analysis presented in this contribution can be generalized to a large number of radar

sounders, we compare: i) an airborne RS having the same system design of MARFA with

ii) a planetary RS operating on the Jupiter Icy Moons. Limiting the hardware complexity

and thus the consumption of the most relevant resources for satellites sensors (e.g., mass,

power, data rate, data volume), the proposed technique aims to provide a proof of concept

for a planetary RS. This technique is a candidate to be considered for the implementation

of the REASON RS for Europa mission (Moussessian et al. [2015]).

1.5 Structure of the Thesis

This document is divided into six main chapters. In Chapter 1, the introduction to

this thesis dissertation has been provided. Chapter 2 illustrates the fundamentals and

the background notions needed for the understanding of the thesis. The remaining four

chapters are the novel contribution of the thesis. The first part, is devoted to the de-

veloped novel methods for the estimation of biophysical parameters. Chapter 3 presents

a novel hybrid method for the correction of the theoretical model inversion in bio/geo-

physical parameter estimation. Chapter 4 illustrates a novel semisupervised method for

the estimation of parameters in the framework of SVR. Chapter 5 describes the proposed

interferometric technique for clutter detection using a two-channel radar sounder data.

In each chapter an introduction to the specific topic is provided. Finally, in Chapter

6 the conclusions of the thesis are drawn along with proposal for future research and

developments.
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Chapter 2

Fundamentals and background

In this Chapter we review the fundamentals of microwave remote sensing instruments and

we analyze the state of the art of regression methods for parameter estimation and clutter

detection. First, we illustrate the basic principles of microwave systems relevant to this

thesis. Afterwards, we focus on the estimation methods for parameter estimation. Finally,

we discuss the state of the art regarding methods from clutter detection in radar sounder

data.

2.1 Introduction to microwave remote sensing systems

This Section reviews the basic concept of the microwave sensor systems exploited in this

thesis. First, the monostatic radar system and the general radar equation are defined.

Then, the fundamentals about SAR and SAR interferometry are presented. Finally, we

provide a description about RS systems.

2.1.1 Radar

Radar detection and ranging (Radar) refers to a technique as well as an instrument.

The radar instrument emits electromagnetic pulses in the radio and microwave regime

and detects the reflections of these pulses from objects in its line of sight. The radar

uses the two-way travel time of the pulse to determine the range to the detected object

and its backscatter intensity to infer physical quantities or the roughness of the surface.

The most important design parameters of a radar systems are the central frequency fc
and the bandwidth Bw. fc is typically in the range between few MHz and tens of GHz

depending on the type of radar and the application. A monostatic radar receives the

signal backscattered from a target using the same antenna used for pulse transmission

(see Figure 2.1). This received power Pr can be computed with the radar equation that
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Figure 2.1: Monostatic radar configuration.

expresses the received power as a function of the transmitted power Pt, the wavelength λ

which is associated to fc, the gain of the antenna ηant, the distance in range between the

radar and the target R, the medium losses ηloss and the radar cross section RCS (Ulaby

and Long [2014]). The radar equation can be written as:

Pr =
Ptλ

2η2
ant

(4π)3R4η2
loss

RCS (2.1)

This equation changes depending on the application and type of radar. The ratio between

the received power Pr and the noise in which the radar is working is defined as SNR and

represents an important factor for the assessment of the radar measurement. Signal-to-

noise ration (SNR) is calculated as follows:

SNR =
Prtp
kbTN

(2.2)

where kB is the Boltzmann constant, tp is the pulse duration and TN is the noise tem-

perature that expresses the noise power introduced by the electronic components of the

radar. In the radar equation the parameter that expresses the interaction between the

wavelength and the target is the RCS. This parameter depends on the surface charac-

teristics in terms of roughness or dielectric permittivity of the target. The backscattered

signal received by the radar is composed of a mix of specular and diffuse components,

depending on the roughness of the surface. Three different situation are envisaged: i)

the wave is entirely reflected in the specular direction because the surface is smooth (i.e.,

coherent scattering). ii) the backscattering is mostly composed of a specular component

but there is a small diffusive component because the surface is slightly rough and iii) the

waves are scattered diffusely in all directions due to a very rough surface (i.e., incoherent

scattering). The coherency or incoherency of the backscattered wave is driven by the

relation between the radar wavelength and the roughness of the surface and it is critical

in radar signal analysis.

This overview on radar systems is general to all types of radar systems. In the fol-

lowing we will focus on SAR systems, since they are exploited for biophysical parameter
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Figure 2.2: Principle of SAR.

estimation, which is one of the subject of the thesis. In this context, we provide also

background information on radar interferometry. This concept has been extended to RS

system for solving the problem of clutter detection on icy terrains. Finally, RS systems

will be presented.

2.1.2 Synthetic aperture radar

Synthetic aperture processing or Doppler filtering is a well-known processing technique

possible when there is relative motion between the radar and the target. The resolution

of the system can be improved in the motion direction exploiting the analysis of the phase

history of the target. Figure 2.2 illustrates the considered geometry in the case in which

the radar is flying on the platform and the target is stationary. As the radar is moving

along its path, an ideal point target on the ground is illuminated by the radar in a time

interval ti called integration time. The space covered by the radar during ti corresponds

to:

Ti =
θ3dBR

Vs
(2.3)

Ls = VsTi (2.4)

where Ls represents the length of the synthetic aperture, θ3dB is the 3 dB aperture of the

radar antenna in the along-track direction, and Vs is the velocity of the radar. During

the integration time, the target response shows different Doppler shifts due to the relative

motion of the spacecraft with respect to the target. Therefore, although different targets

are present in the same antenna footprint, their returns have different Doppler shifts.
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Figure 2.3: SAR acquisition geometry.

Coherent radars thus measure and record the phase history of the received signals. The

phase information is then exploited to resolve the ground targets in the Doppler domain

analyzing the phases of a series of consecutive echoes using a focusing algorithm. Thanks

to this technique an antenna length longer than the physical one is synthesized.

SAR image formation

When the SAR processing is exploited on radars having side-Looking geometry it is ca-

pable to acquire images of the observed target. The main central frequencies used in

SAR for imaging are L-band, C-band and and X-band. These frequency bands allow the

microwave signal to acquire SAR images independently from daylight, cloud coverage and

weather conditions (Moreira et al. [2013]). SARs represent an evolution of the so-called

real aperture radars (RAR). The main difference between RARs and SARs is the much

finer along-track resolution of SARs, which is obtained by exploiting synthetic aperture

processing. Airborne and satellite SAR systems illuminate the scene using the geometry

shown in Figure 2.3. The antenna of the radar system is mounted on a flying platform

moving in the along-track direction. The slant range is the direction perpendicular to

the radar’s flight path. The angle between nadir and the radar beam direction is called

incidence angle. The swath width gives the ground-range extent of the radar scene, while

its length depends on the how long the radar is turned on. The transmitted signal com-

monly used is the so-called chirp, which is a frequency modulated pulsed waveforms. The

amplitude of the transmitted waveform is constant, while the instantaneous frequency



Introduction to microwave remote sensing systems 13

varies linearly over time tp according to fi = krt, where kr is the chirp rate. The received

echo signal data form a two-dimensional data matrix of complex samples, where each

complex sample is given by its real and imaginary part, thus representing an amplitude

and phase value. To obtain useful information on the scene the received signal should be

processed according the following steps: i) a range compression of the chirp signal to a

short pulse, exploiting a multiplication in the frequency domain (which aims to reduce the

computational complexity) of each range line by the complex conjugate of the spectrum

of the transmitted chirp; and ii) an azimuth compression that convolves the signal with

its reference function, which is the complex conjugate of the response expected from a

point target on the ground.

Geometric resolution

After the range compression, the slant-range resolution δslt and the ground-range resolu-

tion δgrd resolution can be computed as:

δslt =
vlight
2Bw

(2.5)

δgrd =
vlight

2Bw sin θ
(2.6)

where θ is the angle between nadir and the radar beam direction (i.e., incidence angle).

As mentioned above, SAR systems can improve the azimuth resolution by processing

the phase information of the complex signals. Under the assumption of fully focused

processing, the along-track resolution can be described form the following equation:

δalt =
h0λ

2Ls cos θ
(2.7)

where the synthetic aperture corresponds to a synthetic antenna length Ls, which is the

distance traveled by the sensor while illuminating a target with its beam, is equal to:

Ls =
h0λ

La cos θ
(2.8)

From (2.7), one can observe that the azimuth resolution of a SAR sensor is theoretically

only dependent on the length of the actual antenna, but not on the distance between

sensor and target.

2.1.3 Radar interferometry

As mentioned before, the signal transmitted by radars is a waveform characterized by

amplitude and phase. Its scattering changes both the amplitude and the phase of the

signals. The use of the phase information leads to interferometry (Rosen et al. [2000]).
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The idea behind interferometry is to combine together two SAR images, acquired either

two different antennas or using repeated acquisitions. The use of interferometry enables

the observation of relative distances as a fraction of the radar wavelength, and the dis-

tance in the sensor locations (i.e., Baseline) allows to measure angular differences. Phase

measurements in interferometric SAR can be made at degree level accuracy, and with typ-

ical radar wavelengths in 3-80 cm range this corresponds to relative range measurements

having millimeter accuracy. The SAR interferometry has been introduced in several ap-

plication fields, such as: i) mapping and cartography (e.g., to produce digital elevation

models (DEMs) from airborne platform (Madsen et al. [1993]) and land elevation maps

at global scale using spaceborne interferometry (SRTM) (Rodriguez et al. [2005])), haz-

ard alert and change measurements (e.g., displacement maps (Massonnet et al. [1994])),

Earth science and climate change research (e.g., Glacier and ice sheet dynamics (Hoen and

Zebker [2000]), geodesy (Eineder et al. [2011]) and atmospheric measurements (Ferretti

et al. [2000])).

Different types of interferometric radar can be classified according to the geometric

configuration of the baseline vector. On one side, in cross-track interferometric radars

the two antennas are separated in the cross-track direction. This technique can be imple-

mented: i) having a single antenna that performs repeat pass on the same area (see Figure

2.4a) or ii) with two antennas that fly on the same platform (see Figure 2.4c). Cross-track

interferometric radars are usually exploited to compute topography and terrain deforma-

tions. On the other side, along-track interferometric radars have two antennas separated

in the along-track direction and operate single pass (see Figure 2.4b) to exploit radial

velocity measurements. In a radar image each pixel is a complex phaser representation of

the coherent backscatter from the resolution element on the ground and the propagation

phase delay. The signal received from each antenna is defined as in the follows:

s1 = Abe
−jφbe−j

4π
λ
ρ1 (2.9)

s2 = Abe
−jφbe−j

4π
λ
ρ2 (2.10)

where ρ1 and ρ2, which are the path lengths of the received signals for left and right

channel respectively, is the only parameter changing in the equations. This implies that,

pixels in two radar images observed from two different antennas have nearly the same

complex phasor representation of the coherent backscattering from a resolution element

on the ground, but they have different propagation phase delay. The two SAR images

can be combined to obtain the interferometric image exploiting the following equation:

sint = s1s
∗
2 (2.11)

Moreover, combining the two SAR images, the phase difference (i.e., interferometric phase)
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Figure 2.4: Interferometric radar configurations.

can be computed:

∆φ =
2π

λ
(ρ2 + ρ1)− 2π

λ
(ρ2 + ρ1) =

2π

λ
(ρ2 − ρ1) (2.12)

However, this is an approximation of the interferometric phase. The exact formula

and its demonstration is given in Figure 2.5.

In the following, we focus our discussion on single-pass interferometry, which is char-

acterized by one antenna that transmits and receives the echoes. The main advantage

of single-pass interferometric systems is the reduction of temporal decorrelation between

the two SAR images. This is fundamental to exploit topographic mapping applications.

However, the baseline is limited by the platform dimension and constraints (e.g., mount

points definition and aerodynamic considerations for airborne) and requires high accuracy

in its length definition. The interferometric decorrelation is a critical factor that affects

height and displacement accuracy (Zebker and Villasenor [1992]). The correlation γ is a

complex measure that describes the similarity of the signals recorded at the two antennas,

as given in the following equation:

γ =
〈s1s

∗
2〉√

〈s1s∗1〉〈s2s∗2〉
(2.13)

Concerning a single-pass interferometric radar, the main cause of decorrelation is the

thermal noise that affect the signal SNR, which is called SNR correlation γSNR and it

can be measured on each pixel of the interferometric image. However, also the base-

line decorrelation γB mainly caused by the change angular separation between the two

antennas and the volumetric decorrelation γv can affect the interferometric system (i.e.,

γ = γSNR + γB + γv). The effect caused by the γ is called phase noise σθ and is computed
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Figure 2.5: Exact formula of the interferometric phase in the cross-track single-pass configura-

tion.

as follows:

σφ =
1√
2N

√
1− γ2

γ
(2.14)

where N is the number of samples averaged by multilooking the SAR images.

This basics on SAR interferometry are relevant to the clutter detection method intro-

duced in this thesis for the analysis of RS data.

2.1.4 Radar sounder

The RS is a nadir-looking radar working at low frequency (usually between few MHz and

few hundreds of MHz). It is a particular type of SAR system that has the capability

to investigate the structural and dielectric characteristic of a subsurface. RS systems

are particularly suitable to sound deep ice, where the signal can deeply penetrate. The

backscattered power can be received until few kilometers due to the dielectric transparency

of this material (Bogorodsky et al. [1984]). In the following the main characteristics of

RSs and the radargram formation are introduced.

Let us consider a RS instrument is mounted on a platform flying at an altitude h0

from the ground. The platform altitude can vary between several hundreds of meters

and several hundreds of kilometers, depending on the type of platform (i.e., airplane or

satellite). The instruments emits a pulse having a duration tp every pulse repetition
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interval (PRI). The pulse travels from the sensor to the surface, where a part of the signal

is reflected or scattered. A portion of it penetrates the subsurface and is backscattered by

the subsurface targets and turns back through the ice and air to the sensor. In this scenario

the targets are thermal or mechanical discontinuities that implies a dielectric contrast.

While sending pulses the platform is moving in the so called along-track direction and

the resulting data is called radargram. A radargram is a 2D image that represents the

recorded echo power for a given range position in dept as a function of time (or distance),

and as a function of the instrument position in the along-track direction. Figure 2.6 shows

the acquisition geometry of a RS mounted on a airborne platform. As mentioned above,

the radargram can be represented in both the time or the distance (i.e., depth) domain.

This conversion depends on the dielectric properties of the medium in which the radar

signal propagates. In particular, the velocity of propagation can be defined as:

v =
1

√
µ0µrε0εr

=
vlight√
εr

(2.15)

where µ0 is the magnetic permeability of vacuum, µr is the material relative permeability,

ε0 is the dielectric permittivity of vacuum, εr is the dielectric permittivity of the mate-

rial. From the formula, the propagation velocity of the waves through a real material is

always smaller than the speed of the wave propagating in vacuum (i.e., light speed vlight).

Considering the two-way path of the wave in the air and into the material, the depth is

computed according to the following equation:

z =
vt

2
(2.16)

Figure 2.6: Nadir acquisition geometry of radar sounder systems.
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where v, and consequently εr is the only parameter that relates the propagation depth

z with the propagation time t. εr strongly affects also the penetration capability of

the RS pulse. Indeed, it affects the main factors describing the signal propagation in

the medium, which are: reflection, transmission and attenuation. The reflection and

transmission effects can described by the Snell’s law under the assumption of flat surface.

The reflection coefficient (i.e., scattering coefficient) between two interfaces (e.g., air and

ice) is defined as follows:

σs =

∣∣∣∣√εr,p −√εr,p+1
√
εr,p +

√
εr,p+1

∣∣∣∣2 (2.17)

where εr,p and εr,p+1 are the relative dielectric constants of layer p and p+ 1, respectively.

Assuming that no absorption loss is generated by the interface, the fraction of energy

that is transmitted through the interface is given by the transmission coefficient τp,p+1, as

follows:

τp,p+1 = 1− σs (2.18)

An important factor that affects the signal propagation is the two-way power attenuation.

The attenuation depends on the characteristics of the medium, in terms of dielectric

properties (e.g., material, water content) and structure (e.g., porosity) (Fu and Daniels

[2007]). It can be modeled considering an homogeneous layer according the following

exponential equation:

η2
loss = e4αzz (2.19)

where αz is the attenuation factor and z is the penetration depth in the subsurface. The

attenuation factor αz is given by:

αz = ω

√
µε′

2

√√√√√
1 +

(
ε′′

ε′

)2

− 1 (2.20)

where ω = 2πf , µ is the magnetic permeability of the medium, and

ε = ε0εr = ε′ − iε′′ (2.21)

where the term ε represents the dielectric permittivity of the material, which is given by

the product of the vacuum permittivity ε0 and the material relative permittivity εr. Con-

sidering this formulation, the attenuation is frequency dependent, it is higher at higher

frequencies. This implies that at higher central frequency the penetration depth decreases.

Geometrical resolution Using a chirp signal, after the range compression, the vertical

resolution of a RS mainly depends on the bandwidth Bw and is equal to:

δz =
vlight

2Bw
√
εr

(2.22)
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Thus, the effective resolution in the subsurface depends on the material in which the wave

is traveling. Usually, weighting is applied during the range compression in order to reduce

the sidelobes due to the signal processing. As a result, the effective range resolution wors-

ens by a factor that depends on the applied weighting function (e.g., Hanning, Hamming).

It is important to note that the bandwidth of the signal is a key factor also for the gain

of the system. Indeed, radar systems using chirp signals can achieve a gain equal to the

range compression factor, given by:

ηz = tpBw (2.23)

In RS systems the along-track resolution after focused processing can be computed as

δalt =
Vs
BD

(2.24)

where DB is the Doppler bandwidth that is:

BD =
2V 2

s

h0λ
Ti (2.25)

Equation (2.8) indicates the maximum ideal integration time. In real scenarios as for

spaceborne RSs, it is commonly assumed that the coherent scattering from the ground is

limited by the first Fresnel zone. The diameter of the Fresnel zone DF is given by:

DF =
√

2λh0 (2.26)

According to the Fresnel zone, the effective integration time becomes:

ti,eff =
DF

Vs
(2.27)

Thus the along-track resolution calculated using the effective integration time is lower

than the maximum value considering the ideal case. The number of echoes that should be

processed to obtain the synthetic aperture depends on the effective integration time and

the pulse repetition frequency (PRF). Such echoes are integrated to focus one resolution

cell. As a consequence, the SNR of the focused signal increases by a factor that depends

on the number of echoes (i.e., along-track compression factor ηa).

2.2 Overview on approaches for biophysical parameters estima-

tion

The aim of this Section is to provide an overview on approaches for parameters estima-

tion. First, we briefly introduce the problem of parameter estimation using remote sensing

data. Afterwards, we describe the derivation of empirical data-driven relationships using

empirical methods. Finally, we focus on approaches based on the inversion of physical

models.
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2.2.1 Biophysical parameters estimation problem

The accurate estimation of biophysical parameters from remote sensing images is a chal-

lenging task. From an analytical view point an estimation problem can be solved by

designing the best mapping function possible that couples the parameter to be estimated

(i.e., target) with a set of feature extracted from the remote sensing data. The mapping

function must properly model the problem guarantying good generalization capability

to minimize the overall estimation error. The main approaches presented in the remote

sensing literature to solve parameter estimation problems are: i) derivation of empiri-

cal data-driven relationships using empirical methods and ii) inversion of physical based

theoretical models. In the following sections these approaches are presented.

2.2.2 Derivation of empirical data-driven relationships using empirical meth-

ods

Empirical methods relies on the availability of a set of reference samples, i.e., couples

of ground truth measurements of the desired target variable associated with the corre-

sponding measurements of the remote sensor. These samples are exploited for deriving

an empirical mapping. Simple function, such as linear, polynomial and logarithmic, can

be used to describe this relationship among a set of variables and the corresponding mea-

surement of the parameters of interest. However, they usually have limited capability to

solve complex estimation problems. Due to the rising interest in the remote sensing com-

munity in this class of problems, more advanced empirical methods, relying on machine

learning techniques, have been introduced in the field of biophysical variable estimation.

In this context, supervised regression methods are an effective way to deal with the es-

timation of parameters. This advanced learning strategies can: i) approximate complex

non-linear mapping problems exploiting the information contained in reference sample

sets, ii) be independent from the distribution of the data and iii) integrate data coming

from different sources. We recall the following theoretical frameworks: neural networks

(Egmont-Petersen et al. [2002], Kwok and Yeung [1997]), Gaussian Process regression

(Rasmussen [2006]) and Support Vector Regression (SVR) (Drucker et al. [1997], Smola

and Schölkopf [2004]). Among them, due to their good intrinsic generalization ability and

the robustness to noise, SVR methods demonstrated the capability to achieved promising

results (Demir and Bruzzone [2014]). Bruzzone and Melgani [2005] introduced Support

Vector Machines (SVM) in the remote sensing field to find a robust solution to regression

problems. An improved approach was presented in Camps-Valls et al. [2006], where an

epsiv-Huber cost function is proposed in the framework of SVR to improve the estimation

results when few in situ measurements are available. A related work was proposed in
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Durba et al. [2007], focused on the retrieval of leaf area index from multi-angle imag-

ing spectroradiometer data. SVR strategies requires the user to set internal parameters.

For this reason methods for the automatic selection of this parameters are presented in

Moser and Serpico [2009] and Pasolli et al. [2012]. These works exploit a functional min-

imization correlated to regression errors and a multi-objective function based on a set

of metrics (i.e., mean squared error and determination coefficient), respectively. More

recently a multi-output SVR approach for the simultaneous estimation of different bio-

physical parameters has been presented (Tuia et al. [2011]). The use of SVR demonstrated

its robustness when exploited to address the estimation of biophysical parameters from

microwave sensors and in particular exploiting SAR images. As an example in Pasolli

et al. [2011] and Pasolli et al. [2015], the authors present regression methods based on

SVR for retrieval of the SMC from Radarsat-2 data in challenging scenarios as mountains

areas are for SAR data. It worth noting that, when supervised regression approaches

are exploited, the capability to obtain a reliable regression function strichtly depends on

the quality and quantity of the reference samples available to the learning phase of the

algorithm. Small or biased training sample sets can prevent the capability of an empirical

supervised estimation technique to model an accurate mapping function.

To solve this issue, semisupervised learning techniques are presented in the literature

(Zhu [2010]). This approaches represent a solution to deal with low quality or small

quantity training samples. Only few related works on SSL are presented in the remote

sensing literature, while SSL is a deeply studied in the pattern recognition and machine

learning communities. As an example, in Bazi et al. [2012] a seimisupervised regression

for biophysical parameter estimation using multi-objective optimization in the field of

Gaussian processes is proposed. This work aim to iteratively involve high confidence

unlabeled samples in the learning phase of the regression using an iterative algorithm.

At each iteration, the labels of unlabeled samples are estimated and, among them, the

unlabeled samples that can improve the regression performance are selected and added

to the training set. Another SSL work is presented in Camps-Valls et al. [2009]. In this

work the authors presents two semi-supervised methods for the estimation of biophysical

parameters in the context of SVR. These methods rely on building a graph or hypergraph

Laplacian using the available labeled and unlabeled samples that are used to deform the

training kernel matrix.

2.2.3 Inversion of physical based theoretical models

The second class of approaches to address parameter estimation problems is based on

the inversion of physical models. These approaches exploit electromagnetic models to

define the mapping function. In this way, the function represents the interaction between
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the electromagnetic radiation and the target variables. In the direct operational way,

they simulate the response of a target object as function of: i) the target characteristics

(i.e., structural, chemical and biophysical variables); and ii) the signal characteristics (i.e.,

wavelength, incidence angle, etc.). In the inverse operational way, the simulations can be

used to represent the mapping between the measurements at the remote sensor and the

target variable of interest. Due to the solid physical foundation and the wide range of

applicability (in terms of both target properties and system characteristics), electromag-

netic models can operate in more general scenarios also in cases where reference measures

are not available. Thus, theoretical electromagnetic models with different levels of com-

plexity and generality have been widely studied in the literature. When dealing with

microwave emission and scattering, the most widely used model is the Integral Equa-

tion Model (IEM) that can estimate backscattering coefficients in the context of different

configuration of active sensors, e.g., incidence angle, polarization and central frequency

(Fung et al. [1992]). Furthermore, the IEM characterizes surface soil moisture in terms of

dielectric constant and surface roughness, and thus it is appropriate for soil moisture esti-

mation problems from radar measurements. The electromagnetic models may have high

complexity and dependence on a huge number of input parameters. This issue makes the

inversion process often analytically complex. To overcome this problem, several different

inversion strategies have been presented in the literature based on: i) iterative search al-

gorithms, such as the Nelder-Mead and the Netwon-Rapson methods (Meroni et al. [2004]

and Paloscia et al. [2008]), which iteratively use different model parameter configurations

to minimize a dissimilarity measure between simulated and measured electromagnetic re-

sponse of a target object, ii) look-up table matching (Darvishzadeh et al. [2008]), which

searches among a set of pre-computed simulated spectra the most similar to the remote

measurement and iii) regression methods (Song et al. [2009] and Duveiller et al. [2011]),

which exploit a set of simulated samples (i.e., target biophysical variables and simulated

electromagnetic responses).

2.3 Overview on clutter in radar sounder data

The aim of this Section is to analyze the clutter problem associated to the acquisition of RS

data. Moreover, we provide an overview of the state of the art regarding the clutter sup-

pression techniques which use multi-channel RS systems. Finally, we present techniques

for clutter detection that exploits information on the surface topography.



Overview on clutter in radar sounder data 23

2.3.1 Clutter problem definition

Clutter is a well known problem that affects the acquisition of RS data both from airborne

and satellite platforms. Among the other sources of noise (e.g., thermal noise, speckle and

sidelobes) the clutter is the most difficult to be avoided. Figure 2.7 shows the geometry of

this phenomenon. The beam pulse of the RS antenna usually defines a large footprint on

the ground. If the ground swath contains off-nadir topographic elements, detectable at the

RS resolution, the receiver records their backscattered signals. Appearing in the radar-

gram under the level of the surface, these off-nadir contributions can be mistaken with

subsurface returns. The presence of strong clutter may hamper the correct interpretation

of the radargrams. The strength of clutter depends on the size of the detected off-nadir

target and on its slope and roughness. Moreover, the power of the received clutter return

is frequency dependent. In particular, it can monotonically increase with the frequency.

This is one of the driving factor in the design of the current airborne sensors that usually

have central frequency in the range between 60 and 150 MHz (Peters et al. [2007], Jezek

et al. [2011b]). Since at higher frequencies the ice surface appears very rough compared to

the wavelength, the use of RS working at higher central frequencies (e.g., 1 GHz) can lead

to unwanted clutter returns of considerable strength (Bekaert et al. [2014]). According to

the RS acquisition geometry reported in Figure 2.6, clutter returns can be received from

both along-track and across-track directions. Doppler filtering and SAR processing (i.e.,

azimuth focusing) are successful implemented to deal with along-track clutter. Azimuth

focusing is able to reduce the area on the RS ground swath where the clutter is coming

from. Figure 2.8 shows the reduction of the surface region that contributes to surface

clutter in the along-track direction after the azimuth focusing. This reduces the clutter

Figure 2.7: Geometry of the clutter problem.
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Figure 2.8: Surface clutter contribution before SAR processing (light gray locus), and after

focusing in azimuth direction by Doppler processing and in range by range compression (dark

gray cells). This example assumes flat topography in the absence of airplane roll.

problem to a one dimension problem. Thus, we mainly focus our interest on across-track

clutter contribution because: i) SAR processing is a baseline for most of the RS systems

to avoid along-track clutter, and ii) no synthetic aperture processing can be performed in

the across-track direction (the illuminated points have zero Doppler shift).

The clutter issue makes the analysis of radargrams a challenging tasks. In the litera-

ture, two different approaches are presented: i) techniques for clutter suppression and ii)

techniques for clutter detection. In the following, suppression and detection techniques

are presented.

2.3.2 Clutter suppression techniques

Clutter suppression techniques aim to eliminate or mitigate the surface clutter contribu-

tion before the radargram formation. The capability to suppress the clutter, while the

radar is acquiring the data, strictly depends on the system design. Radar systems capable

to suppress the across-track clutter exploit sophisticated antenna with very directive beam

pattern to illuminate a small portion of the surface or to exploit multi-channel systems,

that, combining returns coming from different direction of arrivals, can underweight the

antenna pattern in the expected clutter direction.

The P-Band multi-channels system presented in Bekaert et al. [2014], allows the de-

velopment of both the Null Steering (NS) and the Minimum Variance Distortion-less
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Response (MVDR) techniques. NS provides clutter reduction at the risk of a degraded

SNR, while MVDR, which represents a combination of beam steering (i.e., assuming that

the clutter angles are known the antenna pattern is steered to the angle of interest) and

NS, is capable to jointly minimize the power of clutter and the white noise, however it

depends on prior signal-to-clutter information. Wu et al. [2011] show that a tomographic

method can reject the surface clutter as well as the beam steering does. Moreover, tomo-

graphic ice sounding provides good estimations of both the ice thickness and the bottom

backscattering intensity. In Nielsen and Dall [2015], a multi-channel RS is used to analyze

the direction of arrival (DOA) of ice sheet data collected on Antarctica. DOA estimation

has been applied to data acquired with the four-channel POLARIS to improve the per-

formance of surface clutter suppression techniques. The analysis of the DOA has recently

recognized as a very interesting solution to address also ice thickness retrieval, icebed

roughness and bed slope (Nielsen et al. [2017]). Jezek et al. [2011a] exploit a complex

RS system composed of a two-way high-power transmitter and eight independent receiver

channels to study the influence of surface clutter on the obscuration of the basal return

at different elevations and frequencies. Moreover, using interferometric techniques the

authors were able to estimate cross-track ice thicknesses and obtain strip maps of ice

thickness along the flight track. Despite multi-channel RS systems have been mainly

implemented for airborne platform, an attempt to suppress was envisaged on MARSIS

mounting a secondary monopole antenna oriented along the nadir axis (Picardi et al.

[2003]). This monopole was devoted to independently acquire the off-nadir returns. Un-

fortunately, antenna calibration issues made this technical solution difficult to be applied.

Also polarimetry has been presented as a possible solution in Raney [2008]. Polarimetry is

based on the transmission of a circular polarized signal. Under the assumption of specular

reflection, the sense of polarization can be distinguished. Nadir returns present inverted

polarization, while clutter returns result in the same polarization transmitted, because

of the double bounce effect. In principle, this method requires only two Rx channels (H

and V) for the detection of the polarization change. The state of the art reported above

demonstrate a recent growth of interest in the development of multi-channel RS systems

to tackle the clutter problem.

2.3.3 Detection techniques

Clutter detection techniques mainly involve algorithms for the clutter surface simulation

that use as input a digital elevation model (DEM) of the surface. Different simulation

algorithms have been presented in the literature to develop the cross-track mapping of the

radar echoes onto the surface. These algorithms allow one to manually or automatically

compare a radargram with a surface clutter simulation and to map the location and shape
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of the clutter echoes in the radargram. Clutter detection is address in the literature

for both airborne and satellite RSs. As an example, in Holt et al. [2006] the authors

present an echo discrimination technique using the DEM to predict the location of off-nadir

echoes and to compute the signal-to-clutter ratio on single-pass airborne data acquired

by airborne on the Dry Valleys of Antarctica. In Wu et al. [2015] a radar signal simulator

based on Kirchhoff approximation of rough surface scattering on multi-layer stratified

media to improve the discrimination of ice bed from surface clutter in crevassed regions of

Antarctica and Greenland. Detection techniques using topographic information are widely

used also for the analysis of planetary RS data. As an example, in Ferro et al. [2013],

the authors propose a clutter detection method made up three steps: first, simulate the

clutter using an incoherent radar simulator; then, automatically coregisters radargrams

and simulations; finally, extract surface clutter returns from the coregistered radargrams.

Other simulators are presented in the literature to predict clutter on both SHARAD and

MARSIS data. In this context, fast simulators to optimize the computational complexity

(Iorio et al. [2008]) and precise coherent simulation algorithms based on the facets method

(Nouvel et al. [2004]), are presented. Such studies prove a recent growth in interest in the

development of techniques for clutter detection for the analysis of icy terrains using RS

data. However, in some cases clutter detection techniques based on radar signal simulation

are not applicable, because DEMs having sufficient spatial resolution to properly represent

features in the radargram, are not available. This issue leads to the development of

novel techniques capable to detect the clutter independently from topographic information

about the surface.



Chapter 3

A novel hybrid method for the

correction of the theoretical model

inversion in bio/geophysical

parameter estimation

This Chapter provides the first contribution of the thesis in the context of the estimation

of biophysical parameters. In particular, it presents a novel hybrid method that aims

at integrating theoretical analytical models with empirical observations. Exploiting two

consecutive steps, the proposed method models and corrects deviations from reference target

values when theoretical electromagnetic models are used for the inversion process. In

order to estimate the deviation, in the first step two different strategies are presented:

the global deviation biased (GDB) strategy, based on the assumption that the deviation

is globally independent and identically distributed; and the local deviation biased (LDB)

strategy, based on the assumption that the deviation is locally independent and identically

distributed. Once the deviation is defined, the second step corrects the estimates obtained

with the inversion of the theoretical model. The proposed hybrid method has been applied

in the context of soil moisture content (SMC) estimation from microwave remotely sensed

data.

3.1 Introduction

Accurate estimation of biophysical parameters (e.g., water chlorophyll concentration, leaf

area index, soil moisture, tree stem diameter and volume) from remotely sensed data

is an important research field. The biophysical parameters estimation (retrieval) can be
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achieved by two different approaches: 1) derivation of empirical data-driven relationships;

and 2) inversion of physical based theoretical electromagnetic models.

The first approach relies on the availability of labeled samples (for which reference

measures are given) being used to derive an empirical mapping between remotely sensed

data and target biophysical value. The empirical mapping is achieved through regression

techniques, which estimate a functional relationship between a set of variables and cor-

responding target values (i.e., the measurement of the parameters of interest). Different

machine learning methods have been used for addressing regression problems, e.g., neu-

ral networks, Gaussian Process regression, nearest neighborhood regression, kernel ridge

regression, and Support Vector Regression (SVR) (Camps-Valls et al. [2006], Tuia et al.

[2011], Pasolli et al. [2011]). Among several methods, the SVR has become popular due

to its i) good generalization capability; ii) ability to handle problems with a small ratio

between number of training samples and the size of the feature space; and iii) relatively

limited computational load in the training phase (Demir and Bruzzone [2014]). The

amount and the quality of the training samples are crucial to obtain accurate estimations

by the use of regression algorithms. An inadequate number of training samples may cause

a reduction on the estimation performance in terms of accuracy and generalization ability.

However, collecting labeled samples is expensive (since generating reference measures may

require significant time). Moreover, empirical observations are typically site and sensor

dependent, as the reference samples are collected under specific operational conditions.

This issue limits the possibility to extend the use of reference samples to different areas

and different remote sensing systems since the observations remain valid only under the

conditions in which reference samples have been collected (Meroni et al. [2004]).

Unlike the approach based on empirical observations, the second approach relies on

theoretical models that require the definition of the desired mapping function associated

to an analytical electromagnetic model. Such models are defined based on the physics

of the mechanisms that model interaction between the electromagnetic radiation and the

target variables in the direct operational way. The theoretical models simulate the re-

sponse of a target variable as function of: 1) the target characteristics (i.e., structural,

chemical and biophysical variables); and ii) the radiation characteristics (i.e., wavelength,

incidence/reflection angle, etc.). In the inverse operational way, the simulations can be

used to represent the mapping between the measurements at the remote sensor and the

variable of interest. Due to the solid physical foundation and the wide range of appli-

cability (in terms of both target properties and system characteristics), electromagnetic

models can operate in more general scenarios also in cases where reference measures are

not available. Thus, theoretical electromagnetic models with different levels of complex-

ity and generality have been widely studied in the literature (Fung [1994], Karam et al.
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[1992]). When dealing with microwave emission and scattering, the most widely used

model is the Integral Equation Model (IEM) that can estimate backscattering coefficients

in the context of different configuration of active sensors, e.g., incidence angle, polarization

and central frequency (Fung et al. [1992]). Furthermore, the IEM characterizes surface soil

moisture in terms of dielectric constant and surface roughness, and thus appropriate for

soil moisture estimation problems from radar measurements. The IEM has been further

improved to consider multiple scattering effects in the Advanced IEM model (Fung [1994])

and often coupled with layered structured or three dimensional models to handle complex

target such as vegetated areas (Karam et al. [1992]). The electromagnetic models may

have high complexity and dependence on a huge number of input parameters. This issue

makes the inversion process often analytically complex.The electromagnetic models may

have high complexity and dependence on a huge number of input parameters. This issue

makes the inversion process often analytically complex. Moreover, the theoretical models

have two main limitations: 1) they adopt simplifying assumptions in the modeling of real

phenomena, which may result in deviations from correct estimations; and 2) they neglect

sensor noise, calibration errors and local propagations that may produce variability of the

relations between the target variables and the features in different regions of the feature

space. The first issue can be mitigated by increasing the complexity of the model, which

results in reduction on the generalization ability, while the second one can be addressed

by applying a statistical component to the estimation obtained by the theoretical model.

However, often the results are not satisfactory. Thus, it is crucial to predict the possible

deviations of the estimations when theoretical models are considered.

In this chapter, we address the above-mentioned limitations of theoretical models by

proposing a novel hybrid approach that aims at integrating theoretical analytical models

with empirical observations (which are associated to few field reference samples). This is

achieved on the basis of a two steps technique. In the first step, a theoretical model is

initially constructed to derive a mapping between the input variables and the target bio-

physical values. Then, field reference samples are taken into account for modeling in the

feature space the deviations between the theoretical model predictions and the true target

values. This information is then used to characterize the deviations for unlabeled sam-

ples. This is accomplished by two different strategies: i) the global deviation bias (which

assumes a constant behavior of the deviation in the whole feature space for compensating

bias between theoretical models and empirical observations); and ii) the local deviation

bias (which takes into account the more realistic condition in which the deviation is vari-

able within different portions of the input space). In the second step, the theoretical

model estimations of unlabeled samples are corrected based on the deviations estimated

in the first step. Accordingly, the proposed approach mitigates the limitations (such as
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the simplifying assumptions) of theoretical models while keeping their generalization abil-

ity and robustness due to the rigorous theoretical foundation. It is worth noting that the

proposed hybrid approach requires the availability of only few labeled samples that leads

to limited operational cost. In our experiments the proposed approach is applied to the

estimation of soil moisture from microwave remotely sensed data. However, it is general

and can be used in any other application where i) the above-mentioned limitations of the

theoretical models are critical; and ii) the limited availability of field reference samples

represent a strong limitation to the use of empirical observations only.

The remaining part of this Chapter is organized as follows. Section 3.2 presents the

proposed hybrid method. Section 3.3 describes the data used in the experiments. Section

3.4 illustrates the experimental results. Finally, Section 3.5 draws the conclusion of this

work.

3.2 Proposed hybrid method

Let us consider a remote sensing data Υ = {x1,x2, ...,xM}made up of a very large number

M of samples, where xiεR is the i-th sample defined as
[
x1
i , x

2
i , ..., x

d
i

]
, i = 1, ...,M .

xli,l = 1, ..., d, is the l − th variable of the i − th sample in Υ and d is the total number

of variables (i.e., features). If ground reference samples do not exist, a possible approach

to estimate the target values of each sample in Υ is to use theoretical models. Let

us assume that G is a theoretical forward model, which simulates the behavior of the

remotely sensed signals as a function of the target value under certain assumptions and

simplifications intrinsic in its analytical formulation. The estimation problem can be

defined by a functional relationship between a set of variables and corresponding estimated

target values as:

yti = G−1(xi) (3.1)

where G−1(.) represents the desired inverse mapping between the variable xi and the

estimated target value yti . Due to the simplifications and approximations intrinsic within

the theoretical model formulation, the estimation is usually affected by a deviation δ(xi)

from the target value yi, i.e.,

yi = G−1(xi) + δ(xi) = yti + δ(xi) (3.2)

In other words the real target value of each sample can be modeled by two terms: i) the

estimation derived from the inverse theoretical model function G−1; and ii) a deviation

δ(xi). The term δ(xi) represents a correction to the error due to the simplified analytical

formulation of the model and the intrinsic noise in the data. The characterization of the
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Figure 3.1: Block diagram of the proposed hybrid approach.

deviation of each unlabeled sample is crucial and depends on an availability of the prior

information.

In this Chapter, we propose a hybrid approach that jointly uses the theoretical models

and empirical observations (which can be related to a small number of ground reference

samples) to estimate deviations associated to unlabeled samples and their final target

values. Accordingly, we assume that a training set L ⊂ Υ made up of N << M pairs

(xj, yj)
N
j=1 is initially available, where xjεR is the j-th training sample associated with

the target value yjεR. Note that the remaining samples in Υ (i.e., samples in Υ/L) are

considered as unlabeled, i.e., the target measures of these samples are not available and

should be estimated. The proposed hybrid approach consists of two consecutive steps:

i) computing and modeling the deviations; and ii) estimating the final target values of

unlabeled samples. Figure 3.1 shows the block scheme of the proposed hybrid approach.

Each step of the approach is explained in detail in the following.

3.2.1 Computation and modeling of deviations

This first step is devoted to estimate the deviation of each unlabeled sample based on the

available ground reference samples and their theoretical model estimates. To this end,

initially the deviations of training samples are estimated as the differences between their

correct target values (i.e., on the measurements of the parameters of interest) and the

related theoretical model estimates, i.e.:

δ(xj) = yj − ytj, j = 1, 2, ..., N (3.3)

Then using the deviations of training samples, we aim at modeling the deviation values

for the unlabeled samples for which the correct target values do not exist. Accordingly,
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we propose two strategies that rely on two different assumptions associated to the dis-

tributions of deviations in the feature space: i) the global deviation bias (GDB), which

assumes that the deviations are globally independent and identically distributed (i.i.d.);

and ii) the local deviation bias (LDB), which assumes that the deviations are locally i.i.d.

The detailed descriptions of the proposed strategies are given in the following.

Global deviation bias (GDB)

The GDB strategy assumes that the accuracy of a theoretical model is the same

within all portions of the feature space, i.e., the distribution of the deviation δ between

the output and the inverse model is globally i.i.d. On the basis of this assumption, the

deviation associated with each unlabeled sample xi in Υ L is considered as uniform (i.e.,

the same deviation value for each unlabeled sample is considered) and characterized by

the average deviation values of all training samples as follows:

δ̂(xi) =
1

|L|

N∑
∀xj∈L

δ(xj), i = 1, 2, ...,M −N (3.4)

where |L| is the total number of samples in L and δ̂(xi) shows the estimated deviation for

xi. The strategy is simple and has a low computational complexity. However, due to the

simplifying assumptions intrinsic to theoretical models and the complexity of the inversion

process (e.g., large number of variables and physical processes, and complex mathematical

formulations), different accuracies of the theoretical model may be produced. Thus, as-

signing the same amount of deviation to all unlabeled samples may reduce the estimation

accuracy of parameters. It is worth noting that using this strategy implicitly assumes that

the distribution of the deviation δ between the output and the inverse model is globally

independent and identically distributed.

Local deviation bias (LDB)

The LDB strategy, unlike the GDB strategy, assumes that the theoretical model can

provide different accuracies in different portions of the feature space, i.e., the deviations

are locally i.i.d. On the basis of this assumption, it aims at estimating a deviation for

each unlabeled sample by assessing the deviations of training samples in the feature space

that are located only within the same portion of the feature space with the unlabeled

sample. This is achieved by adopting an estimation based on the k-nearest neighbor (k-

nn) algorithm that is one of the simplest and most popular methods for the estimation

of statistical variables. To this end, initially the distance between each unlabeled sample

xi and the labeled sample xj, j = 1, 2, ..., N in the feature space is estimated. Then, the

k-nearest labeled samples that have the smallest distance (i.e., the highest similarity) to
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the unlabeled sample xi in the feature space are identified. Finally, the deviation value

of each unlabeled sample xi in Υ L is defined as the average deviation values of the

k-nearest labeled samples located in its neighborhood, i.e.,

δ̂(xi) =

∑
∀xj∈L δ(xj)W (xi,xj)∑
∀xj∈LW (xi,xj)

, i = 1, 2, ...,M −N (3.5)

where the function W (xi,xj) outputs 0 or 1, depending on whether or not xj is among

the k-nearest neighbors of the unlabeled sample xi, i.e., W (xi,xj) = 1 if xj is one of the

k nearest neighbors of xi, and W (xi,xj) = 0 otherwise. Thus,
∑
∀xj∈LW (xi,xj) = k.

An important issue in the LDB strategy is how to select an optimal value of the

neighborhood parameter k to estimate reliable deviations. On the one hand, if the value

of k is as high as the number N of the reference samples, the results of LDB strategy are

the same of those of the GDB strategy. On the other hand, selecting a small k value may

provide unreliable deviations affected by possible local noise or outliers. k is set according

to a well-known rule of thumb (Mardia et al. [1982]), i.e., it is defined as the square root

of the half of the total number of reference samples.

The LDB strategy avoids the unreliable estimations of deviations with the GDB strat-

egy, by addressing a more realistic condition when compared to the GDB strategy. How-

ever, it requires higher number of reference samples than the GDB strategy to accurately

model the deviations in different portions of the feature space. Thus, in the case of

availability of a small number of reference samples, the simple GDB can be preferred.

3.2.2 Estimation of the final target values

After obtaining the deviation δ̂(xi) for each unlabeled sample xi, the final target value

of that sample is obtained by the sum of theoretical model estimate and its deviation

estimated by using either the GDB or LDB strategy, as:

ŷi = yti + δ̂(xi) (3.6)

In other words, theoretical model estimates are corrected by the use of deviations. If

the GDB is used, the same amount of correction is applied to the theoretical model

estimates of all unlabeled samples. If the LDB is used, the deviations differ from each

other, depending on the sample location in the feature space. It is important to note

that the proposed hybrid method can be used for any biophysical parameter estimation

problem. Varying the estimation problem requires to exploit the proper theoretical model

(which should guarantee the considered i.i.d. assumptions), whereas it does not affect

the formulation of proposed method. In addition, the proposed hybrid method is also

independent from the adopted distance metric to identify the k-nn samples, and thus can

be used with any of the metrics presented in the literature (Alpaydin [2009]).
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3.3 Datasets description and experimental setup

In order to assess the effectiveness of the proposed approach, several experiments were

carried out on three datasets, namely Scatt, SMEX and ActPass, in the context of the

estimation of SMC from microwave remotely sensed data. The three datasets have been

acquired from radar instruments at different central frequencies mostly on bare soil ter-

rains. The considered datasets consist of backscattering radar coefficients together with

field SMC surveys. The Scatt dataset is composed of 17 soil moisture reference samples

acquired in two bare fields. Remote measurements were conducted with a ground C-band

scatterometer using HH and VV polarizations at 23°and 40°incidence angles. The

terrain was characterized by an extremely variable roughness, also within the same field

due to plowing practice, and a medium/dry soil moisture condition. The samples were

acquired at different times, from 1998 to 2004 on an agricultural field near Matera, Italy

(Mattia et al. [2003]).

The SMEX dataset consists of 35 soil moisture reference samples coupled with dual-

polarized backscattering coefficients (HH and VV) acquired in L-Band at 40°incidence

angle. This dataset was acquired in Iowa, USA, from June 24th to July 12th, 2002, during

a soil moisture experiment Notarnicola et al. [2006]. The main aim of the campaign was

the validation of the soil moisture algorithm for the Japanese radiometer called Advanced

Microwave Scanning Radiometer-Earth Observing System. The soil samples were acquired

over four soybean fields characterized by a low biomass value. Concerning to the remote

sensing backscattering measurements, the dual polarimetric radar data were acquired by

an airborne Synthetic Aperture Radar (AirSAR).

The ActPass dataset consists of 29 reference samples acquired by a truck-mounted

full-polarimetric radiometer-scatterometer operating at different frequencies (between 2.5

and 11 GHz) and incidence angles (Wegmuller et al. [1994]). The use of the same antenna

for both active and passive measurements ensured that the two instruments observed the

target under almost identical spatial conditions. The ground truth measurements of the

volumetric soil moisture were acquired on three bare and smooth fields.

To obtain homogeneity with the simulated data that are used in the experiments for

the inversion of the theoretical backscattering model, in this work the soil moisture mea-

surements are converted into dielectric constant values (real part) through a well-known

relationship (Hallikainen et al. [1985]). Table 3.1 summarizes the main characteristics of

the three datasets.

In our experiments, we used the Integral Equation Model (IEM) (Fung et al. [1992])

as a theoretical model to simulate the microwave backscattering. This model is suitable

to properly represent the microwave response when there is no contribution from the



Datasets description and experimental setup 35

vegetation in the backscattered signal, which is the case of a bare soil surface, or when the

emitted wavelength is long enough, such as the L-Band, to make the biomass contribution

negligible. In the results, we analyze both cases, i.e., Scatt and ActPass datasets are

acquired only on bare soil field, whereas the SMEX is acquired on soybean fields (which are

usually characterized by low biomass values). The heterogeneity of the experimental setup

aims to demonstrate the effectiveness of the proposed hybrid model in different conditions.

Concerning the inversion of the IEM theoretical model, the inverse function has been

computed using the SVR technique due to the complexity of the IEM model inversion

process. It is worth noting that SVR is used in the experiments for the inversion of the

theoretical models due to its effectiveness proven in the literature (Pasolli et al. [2011]). In

details, IEM model generated 300 simulated reference samples in the forward operational

way Pasolli et al. [2012]. Such reference samples were generated under the same conditions

(in terms of signal frequency, polarization, acquisition angle and soil characteristics) of the

available real data. In the experiments, simulated backscattering values were corrupted

by a Gaussian additive noisy contribution with mean and variance equal to 0 and 0.1,

respectively. This was done in order to increase both the variability within the simulated

data and the generalization ability of the estimator. The simulated samples have been

used to train an SVR with Radial Basis Function (RBF) kernel. The values of SVR

Table 3.1: Main characteristics of the three datasets considered in the experimental analysis.
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parameters and of the spread of the RBF kernel were obtained by a standard grid search

procedure with five-fold cross validation (Smola and Schölkopf [2004]). The simulation

of the synthetic backscattering and the training processes were applied independently

for each dataset. Then, the inverse function computed by the SVR regression was used

to obtain the theoretical estimation of the SMC values. After the SVR regression, the

deviations between theoretical model estimates and field reference measurements were

characterized according to the GDB and LDB strategies. The k-nn algorithm involved in

the LDB strategy is implemented by setting the value of k according to the rule of thumb

(Mardia et al. [1982]) and by considering the Euclidean distance. Moreover, due to the

limited number of reference samples available for the experiments, we consider a v-fold

cross-validation procedure to assess the performance of the proposed approach. To this

end, field reference samples were randomly divided into v subsets. Then, (v − 1) subsets

were iteratively used for the characterization of the deviation, while the remaining subset

was exploited as an independent test set for assessing the performance of the proposed

hybrid approach. This procedure was repeated until all reference samples were used as

test samples. In the experiments, we varied the number v of folds from 2 to N − 1, where

N is the total number of reference samples.

The resulting dielectric constant values were compared with the measured reference

values in terms of mean and standard deviation of mean absolute error (MAE) and mean

squared error (MSE) together with slope and intercept of the linear trend line between

estimated and reference target values. We also considered scatter plots of estimated versus

measured dielectric constant values for performance evaluation. We compared the results

of the proposed method with those obtained by considering only the inverse theoretical

model estimates, neglecting the correction procedure based on estimated deviations. In

our experiments, the inverse theoretical model is associated to the empirical inversion

based on the input-output relationships of the theoretical model that is achieved by the

SVR technique.

3.4 Experimental results

3.4.1 Results on the Scatt dataset

The results of the Scatt dataset has been obtained on two different configurations of

features associated to the following polarization of the backscattering coefficient: i) HH

acquired at 23°of incident angle (named afterword HH23) and ii) HH and VV both

acquired at 23°(named afterword HH23VV23). Table 3.2 shows estimation performances

in terms of mean and standard deviation of MAE and MSE together with slope and

intercept obtained by the proposed hybrid method with the GDB and LDB strategies
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and by the direct use of the inverse theoretical model. All the results in the table are

obtained when v=2. By analyzing the table, one can observe that the proposed hybrid

method with both strategies always yields the highest estimation performance in terms of

MAE and MSE compared to the inverse theoretical model estimates under the two feature

configurations. As an example, the proposed method with the GDB and the LDB yields

MSEs of 5.92 and 4.76, respectively, while the theoretical model provides an MSE of 17.88

when the HH23 features are considered. When the HH23VV23 feature configuration is

used, the GDB and LDB strategies reach MSEs of 8.99 and 6.32, respectively, whereas

without any correction the theoretical model provides an MSE of 24.42. Moreover, the

standard deviations of MSEs and MAEs show that the proposed LDB and GDB results

are more stable than those of the standard inverse theoretical model estimations without

correction. In greater detail, Table 3.2 shows that the HH23 feature provides in general

better performance than the feature HH23VV23. This is due to the fact that HH and

VV polarizations provide similar backscattering values. Adding VV polarization at the

same incidence angle brings redundant information that can increase the level of noise in

the input features (thus decreasing the performances of the regressor) (Notarnicola et al.

[2008]).

Figure 3.2 shows the scatterplots of measured dielectric constant versus estimated

ones obtained by using the inverse theoretical model and the proposed hybrid method

with the GDB and the LDB strategies when the HH23 feature is considered. From Figure

2 (related to HH23 feature) one can see that the theoretical model introduces a bias that

can be corrected by using the GDB strategy, which is capable of improving the MAE,

MSE and intercept metrics. In addition, the LDB strategy further improves the MAE

and MSE with respect to the GDB strategy due to its capability to better model the

Table 3.2: Estimation performances obtained by the proposed hybrid approach with the GDB

and LDB strategies and the standard inverse theoretical model (Scatt dataset).
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Figure 3.2: Scatterplots of measured versus estimated dielectric constant values obtained by (a)

the inverse theoretical model, (b) the proposed hybrid approach with the GDB strategy, and (c)

the proposed hybrid approach with the LDB strategy (Scatt dataset with HH23 features).

deviation under the assumption that the deviation is locally i.i.d.
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Table 3.3: Estimation performances obtained by the proposed hybrid approach with the GDB

and LDB strategies and the standard inverse theoretical model (SMEX dataset).

3.4.2 Results on the SMEX dataset

The experiments on the SMEX dataset are obtained by using a single feature configuration

that is the dielectric permittivity from the data in HH and VV polarizations. Table 3.3

shows mean and standard deviation of MAE and MSE together with slope and intercept

obtained by the proposed hybrid method with GDB and LDB strategies and the inverse

theoretical model. All the results in the table are obtained when v=2. From the table one

can observe that also in this case the proposed method with both strategies provides the

best estimation performance in terms of MAE and MSE when compared to the theoretical

model. As an example, the proposed method with the GDB and the LDB yields MAEs

of 1.56 and 1.27, respectively, while the inverse theoretical model provides an MSE of

1.90. By analyzing Table 3.3, we can also observe that the MAEs and MSEs obtained

with the proposed GDB and LDB methods are also more stable than those obtained

by the standard inverse theoretical model without correction. A global analysis of the

estimation performance points out that the proposed method achieves smallest MAE and

MSE considering the LDB strategy (due to considering locally i.i.d. deviations), whereas

the GDB strategy provides the best slope and intercept values (which are 0.96 and 0.26,

respectively).

Figure 3.3 shows the scatterplots of estimated versus measured dielectric constant val-

ues. Similarly to the case given in Figure 3.2, the theoretical model results are affected

by bias errors, while the LDB strategy leads to a strong improvement on the estimation

accuracy and a significant reduction on the overestimation trend for high dielectric con-

stant values. In the case of the GDB strategy, from the figure one can see that a slight

overestimation of high dielectric constant values can be observed in the final output es-

timates. Similar behaviors are observed with different values of v. These results confirm

the capability of the proposed hybrid method to improve estimation of performances of

theoretical models.
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Figure 3.3: Scatterplots of measured versus estimated dielectric constant values obtained by (a)

the inverse theoretical model, (b) the proposed hybrid approach with the GDB strategy, and (c)

the proposed hybrid approach with the LDB strategy (SMEX dataset).
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3.4.3 Results on the ActPass dataset

The experiments on the ActPass dataset are carried out by considering only the ac-

tive components of the data acquired by the radiometer-scatterometer. This choice has

been done according to the properties of the IEM theoretical model, which is specifically

designed to simulate the backscattering coefficient for active systems. Among the scat-

terometer data, three different polarizations with different incidence angles are exploited

in the experiments: i) data at HH polarization (named HH), ii) data at VV polarization

(named VV) and iii) data at HH and VV polarizations (named HHVV). Table 3.4 re-

ports the obtained mean and standard deviation of MAE and MSE together with slope

and intercept obtained by the proposed hybrid method with GDB and LDB strategies

and the inverse theoretical model. All the results in the table are obtained when v=2.

By analyzing the table, one can observe that the proposed method with the GDB and

LDB strategies, again, improves the results obtained by the theoretical model in terms

of MAE and MSE. In addition, the LDB strategy leads to the smallest MAE and MSE.

As an example, when the HHVV feature is considered, the LDB strategy yields an MAE

of 1.36 and an MSE of 2.86, whereas the GDB and the theoretical model provide MAEs

of 1.69 and 1.83, respectively, and MSEs of 4.18 and 4.93, respectively. One can see that

the proposed LDB results in the smallest MAE and MSE among the difference feature

configurations and also results more stable than the standard theoretical model without

correction.

Figure 3.4 shows the scatterplots measured versus estimated dielectric constant values

by the inverse theoretical model and the proposed method with GDB and LDB strategies.

Table 3.4: Estimation performances obtained by the proposed hybrid approach with the GDB

and LDB strategies and the standard inverse theoretical model (ActPass dataset).
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Figure 3.4: Scatterplots of measured versus estimated dielectric constant values obtained by (a)

the inverse theoretical model, (b) the proposed hybrid approach with the GDB strategy, and (c)

the proposed hybrid approach with the LDB strategy (ActPass dataset with the HHVV feature).
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The scatterplots confirm the results on the quantitative analyses given in Table 3.4. More-

over, the figure shows that, when the theoretical backscattering model underestimates low

values of dielectric permittivity and overestimates the high ones, the best performances

are obtained with the LDB strategy. This is due to considering the deviation that is

locally i.i.d. in a given position. Similar behaviors are observed with different values

of v. These results further confirm that the proposed method significantly improves the

performance of the theoretical model.

3.5 Conclusion

In this Chapter, a novel hybrid method that integrates theoretical analytical models and

empirical observations is presented for an accurate estimation of biophysical parameters

from remotely sensed data. The proposed method exploits the available field reference

samples to characterize deviations between theoretical model based estimates (affected

by biases and approximations intrinsic within the analytical formulation of theoretical

models) and the measured true target values. To this end, we have presented two dif-

ferent strategies: i) global deviation bias (GDB) and ii) local deviation bias (LDB).The

GDB strategy assumes that the deviation is globally i.i.d. in the feature space and thus

estimates a constant for all samples to globally recover the bias of the theoretical model.

The LDB strategy considers the more realistic assumption that the deviation is varying

in different portions of the feature space whereas it is locally i.i.d. in a given position.

Accordingly, the amount of deviation depends on the samples location in the feature

space. However, the LDB strategy requires a higher number of reference samples than

the GDB strategy to accurately model the different local deviations. Thus, in the case

of availability of a small number of reference samples, the simple GDB can be preferred.

After the deviations are computed, theoretical model estimates of samples are corrected

based on these deviations.

The proposed hybrid method preserves the robustness and the generality of theoretical

model estimates derived by physics foundations, while reducing the bias and imprecision

occurred due to the simplifying assumptions of the models. It is worth noting that the pro-

posed method requires a relatively small number of samples. Thus, the cost for collecting

target measurements is affordable in many applications.

In the experimental analysis, we studied the effectiveness of the proposed hybrid

method to estimate soil moisture from microwave remotely sensed data. From the re-

sults obtained on three different datasets we observed that the proposed hybrid method

is promising as: i) it allows improved estimation performance by reducing biases and

overcoming the effects of simplifications intrinsic within the analytical formulation of the-
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oretical models; ii) it handles effectively the variability of the deviation function in the

feature space; and iii) it is simple, easy to implement and fast during the processing.

Although the experimental analysis has been carried out in a specific application domain,

it is important to emphasize that the proposed hybrid method is general and can be also

applied to other biophysical parameter estimation problems.

We would like to point out that the proposed hybrid method can be applied to different

bio-geo physical parameter estimation problems by considering proper theoretical electro-

magnetic models (which should guarantee the considered i.i.d. assumption) associated

to the considered problem. As a final remark, we would like to note that the proposed

hybrid method achieves the estimation (and thus correction) of globally or locally uniform

deviations by the use of the GDB and LDB strategies, respectively.

As a future development of this work, we plan to analyze the possible extension of our

method to the use of other functional forms (polynomial, exponential, etc.). Moreover,

we plan i) to study other techniques for the estimations of deviations based on different

assumptions on the distributions of deviations in the feature space, and ii) to assess

the effectiveness of the proposed hybrid method in other estimation problems (e.g. the

retrieval of snow pack variables in mountain areas).



Chapter 4

A novel semisupervised method for

the estimation of biophysical

parameters based on Support Vector

Regression

This Chapter provides the second contribution of the thesis in the context of the estimation

of biophysical parameters. It presents a novel semisupervised method for the estimation

of biophysical parameters based on SVR. The proposed method is made up of two steps:

1) the injection of priors information in the learning phase of SVR in order to adapt the

importance of each training sample according to distribution of the unlabeled samples; 2)

the jointly exploitation of labeled and informative unlabeled samples for further improving

the definition of the WSVR learning function. In the first step each training sample is

weighted on the basis of a novel strategy. Its goal is to define higher weights for the samples

located in the high density regions of the feature space and smaller weights to those located

in low density regions of the feature space. To exploit different weights in the learning

phase of the SVR, the weighted SVR (WSVR) algorithm is considered. In the second

step, the most informative unlabeled samples are selected. This is done using a novel

strategy that relies on the distribution of the unlabeled samples in the feature space and

on the WSVR function estimated at the first step. Then, the selected unlabeled samples

and the label samples are included in the learning phase of the WSVR algorithm, which is

redefined to tune the importance of the unlabeled samples using different values of regular-

ization parameters. Experimental results obtained on two different datasets demonstrate

the effectiveness of the proposed method to mitigate the problems of small-sized biased

training sets.
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4.1 Introduction

Accurate estimation of parameters from specific data, such as geo/biophysical parame-

ters (e.g., soil moisture and forest parameters from remote sensing data) and biomedical

parameters (e.g., glucose concentration in diabetic patients from biomedical data) is an

important research field in pattern recognition. Parameter estimation can be achieved

by supervised regression techniques, e.g., neural networks (Egmont-Petersen et al. [2002],

Kwok and Yeung [1997]), Gaussian Process (GP) regression (Rasmussen [2006]) and Sup-

port Vector Regression (SVR) (Drucker et al. [1997], Smola and Schölkopf [2004], Col-

lobert et al. [2001]). However, such techniques require the availability of training samples

(i.e., samples for which reference measures are available) to be used in the learning phase

of the supervised regression methods. The learning phase of a regression method aims

at estimating a functional relationship between a set of variables and corresponding tar-

get values (i.e., the measurement of the parameters of interest) based on the training

samples. Accordingly, the amount and the quality of these samples are crucial to obtain

accurate estimations. However, collecting an adequate number of high quality training

samples is often costly, time consuming (as producing reference measures may require

significant time) and unfeasible in some cases. An insufficient number of training samples

or the availability of biased samples may lead to poor estimation performance in terms of

accuracy and generalization ability (Demir and Bruzzone [2014]).

To reduce the need and effort to collect training samples, semi-supervised learning

(SSL) techniques have been presented in the literature Zhu [2010]. SSL methods jointly

exploit training and unlabeled samples in the learning phase of the regression algorithm to

describe a regression function that consider both the information present in the training

set and the structure of all data in the feature space. Most of the previous studies in

SSL have been developed in the context of classification problems (Mingmin and Bruz-

zone [2007], Cohen et al. [2004], Bennett and Demiriz [1998]). However, SSL has been

marginally considered in regression problems. In Bazi et al. [2012] a semi-supervised re-

gression framework that integrates multi-objective optimization and Gaussian processes is

introduced for estimating chlorophyll concentrations in subsurface waters. The training

phase of the GP regressor is achieved by exploiting the unlabeled samples are in con-

junction with training samples. Estimation of the target values related to the unlabeled

samples is achieved by the simultaneous optimization of two different criteria that are: 1)

the empirical risk quantified in terms of the mean square error measure and 2) the marginal

likelihood (ML). In Kang et al. [2016] a SSL method is presented in the framework of SVR

problems with a specific application to virtual metrology in semiconductor manufacturing.

The method evaluates the uncertainty of the target values of unlabeled samples based on
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their distribution estimated with two probabilistic local reconstruction models. In Blum

and Mitchell [1998] and Zhou and Li [2005], two different regression models are generated

by exploiting sub-feature sets. In Zhou and Li [2005], a SSL method that exploits two

k-nearest neighbor regressors with different distance metrics is presented. Each regressor

assigns target values to the unlabeled samples for the other regressor, where the confidence

of the target values of the unlabeled samples is estimated through the amount of reduction

in mean squared error over the labeled samples located at neighborhood of that sample.

A similar SSL approach is introduced in Wang et al. [2010] by exploiting two SVRs for

the estimation of water quality parameters. In Wang et al. [2010] the authors propose an

algorithm in the context of SVR framework, while in Zhou and Li [2007] a method called

COREG which exploits the k-NN algorithm to compute the co-training regression models

is presented. In Camps-Valls et al. [2009], two SSL methods for the estimation of biophys-

ical parameters are introduced in the context of SVR. These methods are defined based

on a graph or hypergraph Laplacian that is constructed by both the available labeled and

unlabeled samples and used to deform the training kernel matrix. Then, the deformed

kernel is exploited in the framework of SVR. Similarly to the semi-supervised method,

also transductive regression methods (where the unlabeled test samples are known in the

training phase of the regression) have been presented in the literature. For instance, in

Cortes and Mohri [2006] a VapnikChervonenkis dimension error bounds for transductive

regression that hold for all bounded loss functions is introduced, which has been inspired

by the bounds defined in Vapnik [1995] for classification problems.

The effectiveness of the above-mentioned semi-supervised methods relies on the fact

that the available training samples should not be too distant from the correct represen-

tation of the considered regression problem. It is crucial since the training samples may

pose a bias on the part of the feature space. In the case that these samples are too

distance from the real regression function, the risk is to find a correct solution from the

theoretical viewpoint that does not model the property of the considered problem. Ac-

cordingly, when the available training set is incomplete and biased, these methods can

provide unsatisfactory results.

In this Chapter, to deal with the above-mentioned critical problems, where small

size biased training sets are available, we propose a novel SSL method. The proposed

method is defined in the context of the ε-insensitive SVR, since it demonstrates good

generalization capability and ability to handle high dimensional input spaces also when

few training samples are existing (Demir and Bruzzone [2014]).

The proposed method is made up of two steps: i) injection of additional priors in-

formation in the initial learning of the SVR function; and ii) exploitation of labeled and

unlabeled samples in the learning phase of the SVR. The first step aims at adapting the
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importance of each training sample with respect to the distribution of the unlabeled sam-

ples to overcome the problems occurred due to biased and small-sized training sets. This

is achieved by inserting additional priors information in the initial learning of the SVR

that is described by using a novel strategy. According to this strategy, a weight value is

initially defined associated to each training sample, where higher weights are given to the

training samples located in the high-density regions of the feature space and vice versa.

Then, to exploit the weight of each training sample in the learning phase of the SVR,

we consider a weighted SVR (WSVR) algorithm previously presented in the literature

Yang et al. [2007]. The WSVR gives more importance to the training samples with high

weights and less importance with those of lower weights while modeling the SVR learning

function. Thanks to this step, representativeness of the true underlying distribution in the

case of initial biased training sets is better achieved, i.e., the structure of the unlabeled

data is captured without any bias on the training samples while modeling the learning

function of SVR. To further improve the definition of the SVR learning function, the

second step aims to jointly use the labeled and unlabeled samples in the framework of the

WSVR learning phase. This is achieved by adding a new term in the WSVR learning that

exploits a subset of informative unlabeled samples (with their “pseudo”target values

estimated at the first step). In the restructured WSVR, the labeled and unlabeled sam-

ples are associated to the different values of regularization parameters, i.e., a lower value

of regularization parameter is assigned to unlabeled samples when compared to that if

training samples. This choice is done to reduce the importance assigned to the unlabeled

samples for which real target values are not existing. In the experiments, the performance

of the proposed SSL method is demonstrated with respect to estimation of i) age of the

abalones from the variables that model the physical characteristics of abalones and ii) soil

moisture content from the variables that model the microwave remotely sensed data. It

is worth noting that the most of the previous SSL studies in the framework of Support

Vector Machine (SVM) are introduced for classification problems. However, these tech-

niques cannot be directly used for SVR problems, because: i) the decision rule of SVM

classification is different from that of SVR and ii) classification and regression problems

are essentially different. Thus, in this Chapter we extend the use of SSL to the framework

of SVR.

The remaining of the Chapter is organized into four sections. Section 4.2 presents

the problem definition by introducing the ε-insensitive SVR. Section 4.3 introduces the

proposed SSL method. Section 4.4 and 4.5 describe the considered dataset and illustrates

the experimental results, respectively. Finally, Section 4.5 draws the conclusion of this

work.
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4.2 Problem definition

Let us assume that a small-sized and biased training set L made up of n pairs {(xi, yi)}ni=1

is initially available, where xi ∈ <d is the i-th training sample, yi ∈ < is the corresponding

target value and n is the number of training samples. The goal of the proposed SSL

method is to include in the learning phase both samples in the training set L and those in a

set U of u unlabeled samples {xj}nj=1 with u >> n to improve the estimation performance

of the regression function. The proposed SSL method does not require that the real target

values {yj}nj=1 for unlabeled samples are known a priori. The proposed SSL method is

defined in the framework of the ε-insensitive SVR that defines a function in the learning

phase which is as flat as possible and has, at most, deviation ε from the real targets for all

training samples. Thus, the original data is projected into a higher dimensionality space

to find a linear regression function in this space as (Smola and Schölkopf [2004]):

f(x) = wΦ(x) + b (4.1)

where w ∈ <d, Φ(.) is the mapping function that projects the samples from the original

variable space to a higher dimensional space, and b is the bias. The optimal function f(x)

in the higher dimensional space can be obtained based on the concept of soft margin by

solving the following minimization problem:

min

{
1

2
‖w‖2 +

n∑
i=1

CL
(
ξLi + ξL∗i

)}
(4.2)

subject to


yi − (w Φ(xi) + b) ≤ ε+ ξLi ,

(w Φ(xi) + b)− yi ≤ ε+ ξL
∗

i , i = 1, 2, ...n

ξLi , ξ
L∗
i ≥ 0,

(4.3)

where ξLi and ξL
∗

i are slack variables that evaluate the distance of the training samples

situated outside the ε-insensitive tube from the tube itself. CL > 0 is a regularization (i.e.,

penalty) parameter that controls the tradeoff between the flatness of the function f(x)

and the tolerance to empirical errors. The minimization problem in (4.2) can be described

in a dual formulation and solved by standard methods of quadratic programming. When

a linear penalty function is considered, Lagrangian function is defined as:{
L(α, α∗) =

n∑
i=1

yi(αi − α∗i )−
n∑
i=1

ε(αi + α∗i )−
1

2

n∑
i=1

n∑
j=1

(αi − α∗i )(αj − α∗j )K(xi,xj)

}
(4.4)

where αi and α∗i , are the Lagrange multipliers, and K(xi,xj) = Φ(xi)Φ(xj) is the kernel

function that computes the similarity between samples in the transformed higher dimen-

sionality space as a function of the samples in the original space without the explicit
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definition of the mapping function Φ(.). The minimization problem in the dual formula-

tion becomes as follows:

max {L(α, α∗)} (4.5)

subject to


∑n

i=1 (αi − α∗i ) ,
0 ≤ αi ≤ CL, i = 1, 2, ..., n

0 ≤ α∗i ≤ CL,

(4.6)

Finally, the estimation function is written as:

f(x) =
n∑
n=1

(αi − α∗i )K (xi,xj) + b (4.7)

where the training samples that are associated to the Lagrangian multipliers different

from zero are known as support vectors (SVs) that are outside or on the boundary of

the ε-insensitive tube from a geometrical viewpoint the SVs. The proposed SSL method

redefines the ε-insensitive SVR to: 1) to adapt the importance of each training sample

according to the distribution of the unlabeled samples to overcome the problems of small-

sized biased training sets; and 2) to jointly exploit the labeled and unlabeled samples to

further improve the regression function. The details of the proposed method are given in

the following section.

4.3 Proposed SSL method for regression

We propose a novel SSL method in the context of the ε-insensitive SVR (SS-SVR) to

overcome the problems of small sized-biased training sets without collecting additional

samples with reference measures. The proposed method is defined based on two consecu-

tive steps: i) injection of additional priors information in the initial learning of the SVR

function; and ii) exploitation of labeled and unlabeled samples in the learning phase of

the SVR to further improve the definition of the SVR learning function. The first step

aims to exploit the additional prior information that is characterized by determining the

importance of each training sample according to the distribution of the unlabeled and la-

beled samples in the feature space. To model the importance of training samples a novel

clustering-based strategy is introduced, while to integrate the obtained weights within

the learning phase of the SVR, a weighted SVM (WSVM) algorithm (Yang et al. [2007])

is adapted. The second step aims to further improve the definition of the SVR learning

function by jointly using labeled and informative unlabeled samples. To this end, a novel

strategy is developed to select the most informative unlabeled samples according to the

SVR properties. Then, to jointly use these samples with label samples in the learning
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Figure 4.1: Block scheme of the proposed SSL method.

phase of the SVR, the WSVR algorithm is redefined. Figure 4.1 shows the block scheme

of the proposed SSL method. In the following subsections, we present in further details

each step of the proposed SSL method.

4.3.1 Injecting priors information in the initial learning of the SVR function

The first step is devoted to exploit additional prior information in the learning of the

SVR function in order to overcome the problems occurred due to the small-sized biased

training sets. To effectively characterize the priors we evaluate the importance of each

training sample according to the distribution of the unlabeled samples in the feature space.

Training samples that are located in high density regions of the feature space are more

informative than those located in the low density regions. This is due to the fact that

i) samples in the high density regions provide a better statistical representation of the

underlying sample distribution; and ii) the estimation results on samples located in the

high density regions of the feature space affect more the overall accuracy of the estimation

process than those obtained on samples within low density regions. Accordingly, we

consider that the importance of each training sample xi is associated the density di of

the portion of the feature space where that sample is located. To estimate the density

di of each training sample xi, the number of neighbor samples to the sample xi within a

specified radius R in the feature space is computed. To define the value of R an iterative

algorithm is adopted. This algorithm assumes that: 1) the portion of the feature space

defined by the radius R should include only one training sample; and 2) each unlabeled

sample should belong to only one portion this radius. To this end, each training sample
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is initially considered as located at the center of the portion of the feature space and

the initial value of R is defined as the average of the distances estimated between the

training samples. The feature space is divided by the number of portion that is equal to

the number of training samples. Then, the value of the radius R is reduced by a factor ζ.

This process is iterated until each area include only one training sample, i.e., until there

are no overlapping portions associated to more than one training sample. This choice

guarantees that an unlabeled sample can belong to only one portion. It is worth noting

that some of the unlabeled samples can remain outside the portions and thus they will

not have any role in the importance estimation of the training samples. Once the radius

R is set, the number ui,R of the unlabeled samples in i-th portion is calculated and then

the density di is computed as di = ui,R/u
t
i,R, where uti,R is the total number of unlabeled

sample included in all areas defined by the radius R. Then, the density di of each sample

xi is taken as a weight value si for that sample, i.e., si = di. In this way, training samples

located high density regions of the feature space are associated to a high weight value and

vice-versa. In order to exploit the weights of training samples in the SVR learning phase,

we exploit the weighted SVR (WSVR) algorithm. The WSVR extends the SVR to the

case in which different training samples give different contributions to the learning of the

ε-insensitive tube. Accordingly, optimization problem given in (4.2) is redefined as:

min

{
1

2
‖w‖2 + CL

n∑
i=1

si
(
ξLi + ξL∗i

)}
(4.8)

subject to


yi − (w Φ(xi) + b) ≤ ε+ ξLi ,

(w Φ(xi) + b)− yi ≤ ε+ ξL
∗

i , i = 1, 2, ...n

ξLi , ξ
L∗
i ≥ 0,

(4.9)

The main difference with respect to (4.2) is that the penalty value CL of misestimation for

each training sample xi has a different weighing term that is driven by si. Thus, the train-

ing samples with higher weights (which are associated with the portion of feature space

with the highest density) are associated to high penalty values for their misestimations,

whereas training samples with smaller weights are associated to small penalty values. In

the WSVR, the Lagrangian function is the same as (4.4), whereas the constraints in the

maximization problem are changed to:

max {L(α, α∗)} (4.10)

subject to


∑n

i=1 (αi − α∗i ) ,
0 ≤ αi ≤ CL, i = 1, 2, ..., n

0 ≤ α∗i ≤ CL,

(4.11)
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And finally the WSVR estimation function is defined as:

f(x) =
n∑
n=1

(αi − α∗i )K (xi,xj) + b (4.12)

The WSVR regression function obtained in (4.12) is applied to all unlabeled samples and

then estimated target values y∗i , j = 1, 2, ..., u are obtained to be used in the second step

of the proposed method. It is worth noting that unlike the standard ε-insensitive SVR

(where all training samples have the equal penalty), this step of the proposed method can

avoid the problems occurred due to the availability of the small-sized biased training sets

injecting the priors in the initial learning of the SVR. If si = 1, i = 1, 2, ..., n the WSVR

results to be the same as the standard SVR.

In Figure 4.2 a qualitative 1-D example is given, where Figure 4.2 (a) represents the

distribution of labeled samples (circles in black) and unlabeled samples (squares in green)

in the feature space and Figure 4.2 (b) shows the definition of R. Figure 4.2 (c) shows

the ε-insensitive tube obtained by applying the proposed WSVR algorithm. As we can

observe from the figure, the WSVR learning function provide a good characterization of

Figure 4.2: A qualitative example in a 1-D feature space: a) distribution of the biased data; the

unlabeled samples are the squares in green and the labeled samples are the circles in black. b)

Radius definition to estimate the weight of label samples. c) the WSVR learning function.
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the position of the unlabeled samples in the feature space. This is done by studying the

density of the region that each training sample exploiting the approach presented above.

The first step of the proposed method can be summarized as follows:

Algorithm 1: Step 1 of the proposed SSL method

1: Inputs:

L (Training samples set)

U (Unlabeled samples set)

2: Outputs:

SVs (Support Vectors SV )

y∗j , j = 1, 2, ..., u (Estimated target values of the unlabeled samples)

si (Weights of training samples )

3: Begin

4: Initialize the radius R as the mean distance among all the training samples xi

5: If there is any unlabeled sample xj that belongs more than one portion defined by the radius

R, reduce the radius value of ζ. Repeat 4 until each unlabeled sample is associated to only

one portion defined by R

6: Count the number of samples ui,R present in each portion

7: Estimate the density di as di = ui,R/u
t
i,R. Then, the density di of each sample xi is taken

as the weight value si, i.e., si = di

8: Train the WSVR with the training samples by considering their weights

9: Estimate pseudo target values to the unlabeled samples by using (4.12)

10: End

4.3.2 Exploitation of both labeled and unlabeled samples in the learning

process of the regression function

The second step of the proposed SSL is devoted to better model the WSVR function

obtained at the first step by exploiting the training samples with their weights and a

subset S ⊂ U of m informative unlabeled samples with their pseudo target values (which

are estimated at the first step). The unlabeled samples are considered as informative

if they have: 1) high certainty on their estimated (i.e., pseudo) target values (i.e., the

WSVR has high confidence to correctly estimate the target values of these samples); 2)

high relevancy, (i.e., they provide additional information to the definition of the WSVR

function). In SVR problems, the samples inside the ε-tube do not have any role in

determining the SVR function, while the samples outside or on the boundary of the ε-

tube model the SVR function. In addition, the samples on or close to the boundary have
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the largest confidence to be correctly estimated among the samples outside the ε-tube.

Accordingly, we aim to select samples that are located as close as possible to the ε-tube

and outside of the ε-tube. This is achieved by a novel strategy that includes two sub-steps:

i) rejection of unlabeled samples with low confidence on their estimated target values, and

ii) selection of unlabeled samples with high relevancy.

The unlabeled samples closest to SVs that are located on the boundary of the ε-tube

can have high confidence on their estimated target values, while those close to the SVs that

are outside the tube can be associated to the low confidence on their estimated target

values. Thus, in order to analyze the confidence of an unlabeled samples, we initially

identify the closest SV associated to each unlabeled sample. Then the unlabeled samples

for which the closest SV is located outside the boundary of the ε-tube are considered as

uncertain and thus rejected. To determine the locations of the SVs with respect to ε-

tube, the information on the Lagrange multipliers of the SVs and the SVR regularization

parameter value is considered. This is due to the fact that SVs that have Lagrange

multipliers smaller than the SVR regularization parameter value are known as located

on the ε-tube, while those that are associated to Lagrange multipliers larger than the

SVR regularization parameter value is located outside the ε-tube. From the remaining

unlabeled samples, we select the subset of m unlabeled samples, which have high relevancy.

This is achieved by selecting most relevant c ≤ m samples associated to each SV located

on the tube, where the number c is computed proportionally to the total number m of

samples and the density of the related SV in the feature space. By this way, more samples

that are associated with portions of the feature space having high density of samples are

selected as relevant unlabeled samples.

Figure 4.3 shows a qualitative example of the unlabeled samples selection strategy.

To exploit together the training samples with their associated weights and the set of

informative unlabeled samples in the learning of the regression function, we introduce the

restructured WSVR that redefines the optimization problem given in (4.8) as:

min

{
1

2
‖w‖2 + CL

n∑
i=1

si
(
ξLi + ξL∗i

)
+ CS

n∑
j=1

(
ξSj + ξS∗j

)}
(4.13)

subject to



yi − (w Φ(xi) + b) ≤ ε+ ξLi ,

(w Φ(xi) + b)− yi ≤ ε+ ξL
∗

i , i = 1, 2, ..., n

ξLi , ξ
L∗
i ≥ 0,

yj − (w Φ(xj) + b) ≤ ε+ ξUj ,

(w Φ(xj) + b)− yj ≤ ε+ ξU
∗

j , j = 1, 2, ...,m

ξUj , ξ
U∗
j ≥ 0,

(4.14)



56
A novel semisupervised method for the estimation of biophysical parameters based on Support

Vector Regression

where, ξUj and ξU
∗

j are the slack variables and CU is the penalty parameter of unlabeled

samples in S. Note that the set S of informative unlabeled samples is associated with the

same regularization parameter CU , i.e., the same amount of penalty is assigned to all the

selected unlabeled samples. The minimization problem in (4.14) can be written in a dual

formulation and solved according to standard methods of quadratic programming. In the

case of a linear penalty function, Lagrangian function is obtained as:
L(α, α∗, β, β∗) =

∑n
i=1 yi(αi − α∗i )−

∑n
i=1 ε(αi + α∗i ) +

∑n
i=1 y

∗
j (βj − β∗j )

−
∑n

i=1 ε(βj + β∗j )− 1
2

∑n
i=1

∑n
k=1(αi − α∗i )(αj − α∗j )K(xi,xk)

+
∑n

i=1

∑n
j=1(αi − α∗i )(βj − β∗j )K(xi,xj) + 1

2

∑n
j=1

∑n
z=1(βj − β∗j )(βz − β∗z )K(xi,xz)

(4.15)

where β and β∗, are the Lagrange multipliers for the informative unlabeled samples. The

minimization problem in the dual formulation becomes:

max {L(α, α∗, β, β∗)} (4.16)

subject to



∑n
i=1 (αi − α∗i ) ,

0 ≤ αi ≤ CL, i = 1, 2, ..., n

0 ≤ α∗i ≤ CL,∑m
j=1

(
βj − β∗j

)
,

0 ≤ βj ≤ CU , j = 1, 2, ...,m

0 ≤ β∗j ≤ CU ,

(4.17)

Finally, after the Lagrange multipliers are obtained, the final estimation function of the

restructured WSVR is defined as:

f(x) =
n∑
i=1

(αi − α∗i )K (xi,x) +
m∑
j=1

(
βj − β∗j

)
K (xj,x) + b (4.18)
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Figure 4.3: A qualitative example in a 1-D feature space. (a) the WSVR learning function

obtained at the first step; (b) selection of SVs that lie on the ε-tube after elimination of samples

out and far from the tube (c) selection of informative unlabeled samples having largest confidence

and relevancy to be correctly estimated.
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Algorithm 2: Step 2 of the proposed SSL method

1: Inputs:

SVs (Support vectors)

U (Unlabeled samples set)

L (Training samples set)

weights si of the training samples, where i = 1, 2, ..., n

2: Outputs:

Final target values

3: Begin

4: Find the closest SV associated to each unlabeled sample

5: Eliminate the unlabeled samples associated to SVs located outside the ε-tube

6: Compute the number of unlabeled samples to be associate to each SV, taking from each

region the samples closest to the remaining SV

7: Trained the re-structured WSVR by considering the labeled samples and most informative

unlabeled samples

8: Estimate the target values of the samples

9: End

4.4 Dataset description and design of the experiments

In order to evaluate the performance of the proposed SSL method, we have conducted ex-

periments on two different regression problems, aiming to estimate: 1) tree stem diameter

from a set of features extracted by Light Detection And Ranging (LiDAR) data acquired

on a forest, and 2) age of the abalones from the variables that model the physical char-

acteristics of abalones. The first regression problem refers to a study area that is a forest

site in the Southern Italian Alps. The LiDAR data located at Parco Naturale Paneveg-

Table 4.1: The list of variables used in the experiments and their physical meanings for the

estimation of stem diameter.

Variable Name Physical Meaning

1st maximum Tree Height

mean 1st mean 3rd Crown Internal Structure

1st minimum Tree Height

4th range Crown Internal Structure

1st intensity Species
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Table 4.2: The list of variables used in the experiments and their physical meanings for the

estimation of abalones ages.

Variable Name Physical Meaning

Sex Sex of the abalone

Length [mm] Longest shell measurement

Diameter [mm] Measured perpendicular to the length

Height [mm] Height of abalone with meat in the shell

Whole weight [g] Weight of the whole abalone

Shucked weight [g] Weight of the meat

Viscera weight [g] Gut weight (after bleeding)

Shell weight [g] Weight after being dried

Rings [g] +1.5 gives the age in years

gio, Trento was acquired on July 16, 2008 by an Optech ALTM 3100EA sensor mounted

onboard of a helicopter. The site is a typical Alpine forest with three main species (i.e.,

Norway spruce, silver fir, and European beech) and less common species (i.e., European

larch and Scots pine). The LiDAR data have been interpolated and the resulting images

have been segmented. The variables for describing each tree have been extracted from the

segmented regions using the elevation and intensity channels of the four LiDAR returns

(Dalponte et al. [2011]). Table 4.1 shows the detailed information on the variables used

in the experiments and their expected physical meanings. For the Paneveggio dataset,

the available ground reference samples (581 samples) were randomly divided in a test set

of 229 samples, a biased labeled training set of 24 samples and an unlabeled sample set

of 228 samples. It is worth noting that the training set is poor due to the small number

of samples considered.

The second regression problem refers to a dataset for the estimation of the age of

abalones that are included in the UCI Machine Learning Repository (Bache and Lichman

[2013]). This dataset consists of 9 variables for which the detailed information together

with their expected physical meanings are given in Table 4.2. The number of rings char-

acterizes the age of the abalone, and therefore is the variable to predict. The available

reference samples (4177 samples) were randomly divided to derive a test set of 2082 sam-

ples, a biased training set of 45 samples and an unlabeled sample set of 2050 samples.

For the experiments, we adopted an SVR with Radial Basis Function (RBF) kernel. The

values of the regularization parameters and, of the parameter ε and of the spread of the

RBF kernel were obtained by a five-fold cross validation. The regularization parameter
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CL of SVR was tested between [10-1000] with a step size increment of 10. In the second

step of the proposed method, the regularization parameter CU of the WSVR (which is

associated to the informative unlabeled samples) is set to 0.5 CU . This is done to limit

the importance assigned to the unlabeled patterns for which real target values are not

existing and give more importance to training samples on which we know the true target

values. The ε parameter of SVR and the spread of the RBF kernel were tested between

[0.01-1] and [0.01-2], respectively, with a step size of 10. The results referred to average

results obtained on 10 trials associated to 10 initial randomly selected biased training

set. Results are provided in terms of: i) mean and standard deviation (std) of the mean

absolute error (MAE), ii) mean and standard deviation of the coefficient of determination

R2. In the experiments, we have analyzed the effectiveness of the proposed SSL method

by comparing the results with those obtained by the standard SVR method (Smola and

Schölkopf [2004]). Moreover, we analyze the effectiveness of the steps of the proposed

method by evaluating the performance when only the first and second steps are executed

independently from each other. In addition, to evaluate the effectiveness of the proposed

automatic radius selection strategy introduced in the first step of the proposed method,

we compared the results with those obtained considering fix radius values. These val-

ues are computed in terms of Euclidean distance and for all the 10 trails they are fixed

independently from the distribution of the unlabeled samples in the feature space. The

number m of informative unlabeled samples being considered in the second step is selected

equal to the number of SVs (obtained at step 1). All the experiments are implemented

via MATLABon a standard PC with Intel core i7 CPU 2.93 GHz.

4.5 Experimental results

4.5.1 Paneveggio dataset: estimation of stem diameter

The first set of experiments aims to assess the effectiveness of the proposed SS-SVR

method for the estimation of the tree stem diameter from the Paneveggio dataset. Table

4.3 shows the results of the average (on 10 trials) MAE and R2 obtained by the standard

SVR and the proposed SS-SVR. From the table one can see that the proposed SS-SVR

results in the best MAE and R2 values and is also more stable (with respect to its lowest

standard deviation) than the standard SVR. As an example, the SVR method reaches an

MAE of 1.07, whereas the proposed method obtains an MAE of 0.88 and it is more stable

with lower standard deviation over the ten trials.

Table 4.4 shows the results of the average (on 10 trials) MAE and R2 obtained when

the first step of the proposed method is applied by using: i) the proposed automatic

radius selection strategy; and 2) random selection of radius. In the experiments, the
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Table 4.3: Mean and standard deviation (std) of MAE and R2 obtained by the standard SVR

and proposed SS-SVR.

Method
MAE R2

mean std mean std

SVR 1.07 0.15 0.53 0.1

Proposed SS-SVR 0.88 0.07 0.57 0.05

Table 4.4: Results of the first step of proposed method obtained when the value of radius is

estimated either by the proposed strategy or by randomly fixing its value.

Method
MAE R2

mean std mean std

Automatic Radius Estimation 1.05 0.15 0.53 0.1

Random Selection of the Radius

R = 0.03 1.18 0.22 0.50 0.1

R = 0.05 1.13 0.20 0.50 0.1

R = 0.07 1.27 0.26 0.50 0.1

R = 0.08 1.30 0.28 0.49 0.1

radius is varied in range of [0.03 to 0.08] with a step size of 0.01. From the Table one can

see that the proposed strategy to estimate the value of radius provides the best results

when compared to the random selection strategy. From the results one can observe that a

proper selection of R is important. Selecting the radius value randomly may lead to high

MAE and low R2. For example, when R=0.08 the MAE is 1.30, while with the proposed

strategy leads to a MAE of 1.05. In addition,the standard deviation of both MAE and R2

demonstrate that the proposed step is stable. The reason is that, an arbitrary selection of

the radius dimension can generate overlaps among different portions in the feature space

making the density computation ambiguous and, consequently, the weighting training

samples will not improve the regression function.

Table 4.5 shows the performance of the proposed method by exploiting: 1) only the

first step; 2) only the second step; and 3) two steps together. By analyzing the table one

can see that the proposed method with both steps provides the best MAEs and R2 and

results more stable (due to the its lowest standard deviation) with respect to the cases

where either first step or the second step is considered. In particular, using both steps

yields a MAE of 0.88 and an R2 of 0.57, that of first step and the second step provide

MAEs of 1.05 and 1.11, and R2 of 0.53 and 0.51, respectively. In addition, using both steps

leads to more stable results with lower standard deviation over the ten trials. In details,
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Table 4.5: Mean and standard deviation (std) of MAE and R2 obtained by executing the

proposed SS-SVR with and without the 2nd step.

Method
MAE R2

mean std mean std

Proposed SS-SVR

Only step 1 1.05 0.15 0.53 0.1

Only step 2 1.11 0.19 0.51 0.12

Both steps 0.88 0.07 0.57 0.05

on the one hand if the first step is neglected (i.e., the second step is applied directly on

the biased training set), the lowest performance is obtained with the highest MAE and

lowest R2. This result demonstrates the importance of the priors’injection phase of the

proposed method. It is worth noting that if the priors are not injected in the case of biased

training sets, the weights of the training samples cannot be accurately defined and thus

the proposed method can fail to effectively model the regression function. Moreover, if

only the first step is used, the performance is better than the case of using only the second

step. This shows the importance of including the information on unlabeled samples while

characterizing the regression function. The average computational time required for the

first step is 20.5 seconds, while that for the second step is 1.8 seconds.

4.5.2 Abalone dataset: age of abalone

Similar experiments have been conducted on a second dataset, called Abalone, to evaluate

the effectiveness of the proposed SSL method in the context of the estimation of age of

abalones. Table 4.6 shows the average results (on the 10 trials) MAE and R2 obtained

by the standard SVR and the proposed SS-SVR. As one can see from the table, the best

result is achieved again by the proposed SS-SVR method in terms of both MAE and R2.

In particular, the MAE obtained with the standard SVR is 3.21, while with the proposed

SS-SVR method is 2.69 and, the stability increases with a reduction of the standard

deviation from both the MAE and the R2.

Similarly to Table 4.4 shown in the previous experiment, Table 4.7 shows the results

of the average MAE and R2 obtained on the 10 trials when the first step is applied,

using: i) the proposed automatic radius selection strategy; and 2) a random selection of

radius (fixed for all the 10 trials in the range [0.03 to 0.08]). From the table, one can

see that the proposed automatic radius estimation strategy leads to the best results when

compared to the random selection strategy. This result underlines the importance of a

proper selection of the radius R. As an example, when R = 0.08 the MAE is 3.48, while
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Table 4.6: Mean and standard deviation (std) of MAE and R2 obtained by the standard SVR

and proposed SS-SVR.

Method
MAE R2

mean std mean std

SVR 3.21 0.62 0.43 0.04

Proposed SS-SVR 2.69 0.41 0.49 0.03

Table 4.7: Comparison of the results of the first step of proposed method obtained when the

value of radius is estimated by either the proposed strategy or by randomly fixing its value.

Method
MAE R2

mean std mean std

Automatic Radius Estimation 2.75 0.43 0.43 0.03

Random Selection of the Radius

R = 0.03 3.03 0.51 0.41 0.04

R = 0.05 3.25 0.54 0.41 0.06

R = 0.07 3.33 0.55 0.40 0.06

R = 0.08 3.48 0.56 0.49 0.07

with the proposed strategy we obtain a MAE of 2.75. Moreover, the standard deviation

of both MAE and R2 demonstrate that the proposed automatic approach is more stable

than the random selection strategy. This result is due to the fact that, when a large R is

defined, the unlabeled samples can be part of more than one portion of the feature space

while determining the density, which leads to misleading density estimation. This implies

a reduction of the capability to model a reliable regression function.

Table 4.8 presents the performance obtained by applying: i) only the first step; 2) only

the second step; and 3) the two steps together. As we can see in the table, the best results

Table 4.8: Mean and standard deviation (std) of MAE and R2 obtained by executing the

proposed SS-SVR with and without the 2nd step.

Method
MAE R2

mean std mean std

Proposed SS-SVR

Only step 1 3.21 0.62 0.43 0.04

Only step 2 2.75 0.43 0.43 0.03

Both steps 2.69 0.41 0.49 0.03
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are obtained by exploiting together step 1 and step 2 of the proposed method. The use of

both steps leads to a MAE of 2.69, while using separately the first and the second, MAEs

of 2.75 and 3.11, are obtained respectively. Also the stability of the result is increased, by

jointly using both steps a lower standard deviation over the ten trials. In accordance to

the performance obtained on the Paneveggio dataset, this result confirms the importance

of exploiting the prior information in the learning phase when the training set is biased.

In addition, this confirms that the exploitation of highly informative and highly relevant

unlabeled samples together with the weighted biased training samples, can further improve

the characterization of the regression function. The average computational time required

for the first step is 40.1, while that for the second step is 2.8 seconds. It is worth noting

that, the number of the both the labeled and the unlabeled samples in the dataset affects

the computational time.

4.6 Conclusion

In this Chapter, we have presented a novel SSL method for the estimation of biophysical

parameters from remotely sensed images in the framework of ε-insensitive support vector

regression (SVR). The proposed method is made up two steps. The first step aims at

injecting additional priors information in the initial learning of the SVR function in order

to avoid the problems occurred due to the availability of the small-sized biased training

sets. This is achieved by assigning different weights to training samples that are obtained

by a novel strategy that relies on the density of samples in the feature space. According

to the developed strategy higher weights are given to the training samples located in

the higher density locations of the feature space, and vice versa. Then, a weighted SVR

algorithm is exploited in order to adopt different weights to training samples. Using the

prior information associated to the density, without including additional labels, allows one

to better model the SVR learning function when compared to the standard ε-insensitive

SVR. It worth noting that when the weight is 1, the result obtain is equal to the one

obtained with the standard SVR algorithm. Thanks to the first step, the proposed method

mitigates problems of small-sized biased sets of training samples for a proper modeling

of the SVR learning function. The second step aims at jointly using labeled samples and

a set of informative unlabeled samples in order to better characterize the SVR learning

function. This is achieved by introducing a new term in the WSVR presented in the first

step. In order to select the informative unlabeled samples that are located as closest as

possible to the ε-tube and outside of the ε-tube a novel strategy is presented. Thanks

to the second step of the proposed method, the performance of the parameter estimation

is further improved. In the experiments, we studied the effectiveness of the proposed
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SSL method for the estimation of: 1) tree parameters from LiDAR data and 2) ages of

abalones. We compare the proposed method with standard SVR. Experimental results

show that the proposed strategy allows one to improve the estimation performance with

zero cost of the collection of reference samples. As future development, we plan to test the

effectiveness of the proposed SSL method on other estimation problems (e.g. the retrieval

of SMC from satellite data).
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Chapter 5

A novel technique based on

interferometry for clutter detection

in two-channel radar sounder data

This Chapter provides the third contribution of the thesis in the context of clutter detection

from RS data. We address the clutter issue by proposing a novel technique based on inter-

ferometry for clutter detection in two-channel radar sounder data. The proposed method

includes three main steps: i) the manual feature extraction and theoretical phase difference

estimation; ii) the RS interferogram formation; and iii) the comparison of theoretical and

real phase difference distributions. Experimental results on RS data acquired in Greenland

validate the proposed approach for surface clutter detection using two-channel RS data.

5.1 Introduction

In the Earth observation, radargrams allow the direct investigation of the bed topography

and morphology, making available to glaciologist fundamental information for understand-

ing the dynamics of terrestrial ice sheets and glaciers (Schroeder et al. [2014]). Several

airborne RS instruments are currently operating in Antarctica and in Greenland (Gogi-

neni et al. [2014], Peters et al. [2007], Dall et al. [2010a]). RSs have the unique capability

to actively probe the subsurface of planetary bodies to many kilometers of depth (depend-

ing on the electromagnetic characteristics of the sounded terrain) from orbiting satellites.

A fundamental research goal for RS observations of planetary ice masses and icy moons

is the detection of liquid subsurface water. Two RSs currently operating for planetary

exploration at Mars are MARSIS (Jordan et al. [2009]) and SHARAD (Croci et al. [2011]).

The science return from MARSIS and SHARAD observations have increased the interest
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in sounder payloads for future missions. Two new instrument concepts for the study of

the icy moons of Jupiter are the Radar for Icy Moons Exploration (RIME) (Bruzzone

et al. [2015]), which will be carried on board of the European Space Agency (ESA) mis-

sion named Jupiter Icy Moons Explorer (JUICE), and the Radar for Europa Assessment

and Sounding: Ocean to Near-surface (REASON), recently selected by National Aero-

nautics and Space Administration (NASA) for a mission to Europa (Grima et al. [2015]).

The nadir acquisition geometry and wide beam patterns of RS systems can inhibit the

interpretation of subsurface signals obscured by or confused with returns from lateral

surface clutter. This clutter signal can prevent the definitive interpretation of subsurface

features when lateral and nadir echoes are received with the same delay. This interference

strictly depends on the surface topography and scattering, most significantly affecting the

shallow regions of the subsurface due to the directivity of the beam pattern. Because of

the RS acquisition geometry (see Figure 5.1), the acquired data can be affected by both

along-track and cross-track clutter.

Different solutions to deal with the clutter problem have been presented in the lit-

erature. For along-track clutter, Doppler filtering and SAR processing are well-known

techniques for clutter suppression and they are implemented as the baseline in most RS

systems (Heliere et al. [2007]). The main approaches to deal with cross track clutter,

presented also in Section 2.3 of this thesis, can be summarized in the two following ap-

proaches: i) clutter suppression by designing multi-channel RSs; and ii) clutter detection

using precise information about the surface topography. In the first class of approaches,

the cross-track clutter can be suppressed by using sophisticated antennas with very di-

rective beams or by exploiting the cross-channel phase of multichannel systems. A mul-

tichannel system allows one to estimate the direction of arrival of the received signal

(Gogineni et al. [2014], Jezek et al. [2011b], Dall et al. [2010a]) and to produce swath

measurements by exploiting multiple phase centers (Wu et al. [2011]). A major draw-

back of this approach is that it requires high complexity in hardware system design and

large data volume resources to independently record the echoes received from the chan-

nels. These problems are particularly relevant in the design of planetary RSs for which

resources (e.g., mass, volume, power and data volume allocation) are very limited com-

pared to airborne RSs. Concerning multichannel systems, MARSIS envisaged the use of

a second antenna, which was a monopole oriented along the nadir axis aiming to receive

the off-nadir surface returns and then subtract the clutter returns by the primary antenna

composite signal. However, this method requires additional antenna pattern calibration

which made the technique difficult to apply Picardi et al. [2003]. The second class of

approaches involves algorithms for the clutter surface simulation that use as an input a

DEM of the surface (Ferro et al. [2013], Nouvel et al. [2004], Iorio et al. [2008], Russo
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et al. [2008]). Different simulation algorithms are presented in the literature to develop

the cross-track mapping of the radar echoes onto the surface. These algorithms allow one

to manually or automatically compare a radargram with a surface clutter simulation and

to map the location and shape of the clutter echoes in the radargram. However, in some

cases DEMs, which have sufficient spatial resolution to properly represent features in the

radargram, are not available. Moreover, these techniques can only identify surface echoes,

without providing discrimination of clutter generated from a structure buried in the ice

subsurface.

In this Chapter, we address these problems by proposing a novel technique for the

discrimination of surface clutter in radar sounder data by means of the analysis of two-

channel RS system data. The proposed technique computes the statistical distribution

of the cross-channel phase difference for both cross-track surface clutter and subsurface

features at nadir. We apply an interferogram formation technique to extract the mea-

sured phase difference between the two channels. The technique proposed in this Chapter

exploits a single pass interferometric approach with a cross-track baseline to discriminate

the surface clutter from nadir subsurface returns. Interferometry has been widely ap-

plied in InSAR (Interferometric Synthetic Aperture Radar) (Rosen et al. [2000]). InSAR

employs observations of the same area using two SAR complex signals acquired from

different observation positions. InSAR is widely used in remote sensing for geophysical

monitoring of natural hazards (e.g., earthquakes modeling in Massonnet et al. [1994]) or

topographic map generation (Rosen et al. [2000]). Until now, interferometry was only

used in a limited capacity with radar sounding data (Jezek et al. [2011a]) and never for

clutter discrimination using a two-channel system. Although the cross-channel phase dif-

ference signal has been exploited for clutter detection and suppression few multi-channel

radar systems, we propose a technique that limits the hardware complexity to two chan-

nels for the discrimination of surface clutter. Limiting the hardware complexity and thus

the consumption of the most relevant resources for satellites sensors (e.g., mass, power,

data rate, data volume), the proposed technique aims to provide a proof of concept for a

planetary radar sounding approach being able to discriminate the surface clutter features

in RS data. This technique is a candidate to be considered for the implementation of the

REASON RS for Europa mission.

We demonstrate the proposed method through application to airborne sounding data

acquired by the University of Texas Institute for Geophysics (UTIG) Multifrequency Air-

borne Radar Sounder with Full-phase Assessment (MARFA) radar in northern Greenland.

However, the presented processing chain is generic and can also work with other RS sen-

sors having two-channels. The proposed technique is robust to roll motion and allows the

generation of phase distribution histograms, radargram interferograms, and interferomet-
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Figure 5.1: 2-D representation of the acquisition geometry of a RS instrument.

ric correlation maps that can be used for clutter detection.

The remaining Sections of this Chapter are organized as follows. Section 5.2 introduces

the proposed clutter discrimination method. Section 5.3 presents the dataset used in the

experiments, the main characteristics of the MARFA two-channel radar system and the

results of the experiments. Then, Section 5.4 is devoted to discuss the use of the proposed

approach on planetary RS data. Finally, Section 5.5 draws the conclusion of this work.

5.2 Proposed technique for cross track clutter detection

We assume to have a two-channel RS, which acquires data by two antennas with a cross-

track baseline B. The two-channel acquisition results in two radargrams, which are 2-D

complex matrices with n and m pixels in the along-track and range directions, respectively.

The proposed technique exploits both the amplitude and the phase of the two channels

and computes the cross-channel phase difference. The block scheme of the proposed tech-

nique is shown in Figure 5.2 and consists of three main steps: 1) feature extraction and

theoretical phase difference estimation; 2) interferogram formation for the exploitation of

the cross-channel phase difference; 3) comparison of theoretical and real phase difference

distributions. Both the amplitude M , and the phase P , of the received signals are given as

inputs to the technique. Step 1 uses the amplitude of the signal received by each channel

and allows us to model the theoretical phase difference for two different hypotheses (nadir

subsurface signal echo versus surface clutter echo). Step 2 generates an interferogram by

standard interferometric processing. A unique feature of the RS interferogram is that it

has the same nadir geometry as the RS data. This allows, in Step 3, the amplitude radar-

gram and the interferometric data to be directly compared by matching the position of a
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Figure 5.2: Block diagram of the proposed technique.
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region of interest (containing an ambiguous feature) with the phase difference estimated

from the two-channel RS data.

5.2.1 Manual feature extraction and theoretical phase difference estimation

The goal of this first step is to model the theoretical phase difference between signals

received by the two RS channels. In preprocessed radargrams Peters et al. [2007], n

features fi, with i = 1, 2, ..., n, of ambiguous origin (either nadir subsurface or off-nadir

cross-track surface returns) can be manually selected. The feature extraction procedure

selects the position of high-power pixels that belong to the feature region (see Figure 5.3).

The delay due to these features with respect to the surface return can be extracted from

the radargram, allowing the projection of the features onto the surface in the cross-track

direction and the computation of the theoretical cross-channel phase difference ∆Φ for the

feature fi. The proposed simulation approach aims to estimate ∆Φt (i.e., theoretical cross-

channel phase difference) according to the geometry shown in Figure 5.4, where a platform

(e.g., airborne) mounts a RS sensor connected to two antennas collocated in the across-

track direction and separated by a baseline B. Each antenna receives independently the

echo coming from different locations on the terrain according to the surface geometry and

the beamwidth of the antenna pattern. The expected phase difference can be computed

Figure 5.3: Example of manual feature selection. a) The red area corresponds to the set of

pixels that belong to a feature of interest. b) The yellow line is the simple feature-model used

to project the feature onto the surface in the cross-track direction.
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as:

∆φ =
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〉
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where ρchl and ρchr are the path lengths of the received signals for the left and the right

channel respectively, and is the wavelength, λ is the baseline vector, B =
∣∣∣−→b ∣∣∣ and l̂1 is

the unit line-of-sight vector from left to right. With the assumption of a flat surface and

correction for aircraft roll, we compute the echo received from each antenna as the sum

of two contributions (see Figure 5.2):

ρchl = Hj +Dj, ρchr = Hk +Dk (5.2)

where Hj and Dj are the signal propagation paths in free space and into the subsurface

(see Figure 5.4), received from the left channel, whereas Hk and Dk are the signal propa-

gation paths in free space and into the subsurface recorded from the right channel. The

collocation of PJ on the surface can be solved using Snell’s law (Peters et al. [2007]),

i.e.,

sin Θj =
√
εr cos Θ′j (5.3)

Figure 5.4: Two-channel sounding geometry. The red dots are reflection points on the surface.

For echoes coming from nadir, the signal path length ρchl and ρchr are equivalent and ∆Φt = 0.

The red dotted line represents an example of off-nadir signal path (for a clutter feature with the

same delay), in which the difference between ρchl and ρchr makes ∆Φt 6= 0.
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which can be written as
B
2
− Pj
Hj

=
√
εr

(
Pj
Dj

)
(5.4)

corresponding to the following fourth-order equation

(εr − 1)P 4 − 2(εr − 1)XP 3 + [(εr − 1)X2 + εrH
2
0 − d2]P 2 + 2d2XP − d2X2 = 0 (5.5)

which can be solved using Ferrari formula for quartic equations (Turnbull [1947]). This

algorithm is more efficient than computing the eigenvalues of the companion for polyno-

mials solution. From the four obtained solutions, we select the one that is compatible to

the following geometrical constraints (as done in Heliere et al. [2007]):

X − P ≥ 0 for X ≥ 0 or X − P ≤ 0 for X ≤ 0 and P ∈ R (5.6)

The same procedure can be iteratively applied to every depth and cross-track position.

We compute this theoretical phase difference for each reflection point Pj that belongs to

a feature for which we aim to determine its origin as either surface clutter or subsurface

signal at nadir. In order to generate a realistic model for the phase distribution of the

feature, we also model the interferometric phase noise. From interferometry theory, we

compute the thermal noise correlation, γ, (Rodriguez and Martin [1992]) as

γ =
1

1 + SNR−1
(5.7)

where SNR is the Signal-to-Noise Ratio of the received signal, assuming identical signal

and noise power for the two channels. Note that an increase in thermal noise decorrelation

(i.e., δ = 1− γ) results in a higher phase noise variance, which is given from the Cramer-

Rao bound Rodriguez and Martin [1992] as

σ0 =
1√
2Nl

√
1− γ2

γ
(5.8)

where Nl is the number of looks. This indicates that the number of looks strongly affects

phase noise variance for small correlation values.

5.2.2 Interferogram formation for cross-channel phase difference

In order to combine the two channels and analyze their difference in phase, we use an

interferometric approach to generate an interferogram with the same geometry as the

radargram. The processing chain for generating the interferogram is made up of the fol-

lowing step: i) reference phase calibration, ii) co-registration at sub-pixel resolution, iii)

interferogram formation, iv) multilooking. In addition to this, we applied a roll compen-

sation approach. In the following, we explain in further detail each step of the processing
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chain. The first step aims to correct the phase offset between the two channels due to the

radar system itself. This deviation is commonly due to the length difference of the ca-

bles that connect antennas and receivers. This physical length difference affects the path

length of the each received signal and, eventually, the phase difference between the two

channels. For assessing this deviation, an internal reference signal for each channel can be

recorded. The travel time of this calibration signal is not affected by external reflection.

By comparing the two references, we can measure the time delay of the two received sig-

nals and, therefore, compute any internal phase deviation between R Ch (Right Channel)

and L Ch (Left Channel). To do this, we independently apply the range compression to

the two channels and for each range line we compute the difference in phase of the two

channels. Then, this deviation is compensated as

CR = C∗Re
−i∆Φc (5.9)

where C∗R is the complex radargram acquired by the R Ch and ∆Φc is the phase difference

between the two channels evaluated on the reference signal. It worth noting that this

calibration system is suitable for assessing phase stability both during a single flight

and over an entire acquisition campaign. On a single flight, the phase can be affected

by fluctuations due to temperature variations. On an entire acquisition campaign, the

reference sample is fundamental to correct for potential configuration changes in the radar

system. Sub-pixel co-registration is required to generate interferometric radargrams. The

purpose of co-registration is to align the cross-channel signals as precisely as possible.

It is widely accepted in the literature that, in order to have a coregistration reliable for

interferometry, a 1/10 pixel precision factor should be considered (Lin et al. [1992]). To

achieve this, the two complex radargram CR and CL are resampled with an accuracy of a

tenth of a pixel using a sinc interpolation kernel (Hanssen and Bamler [1999]). The two

resampled radargrams are co-registered by maximizing the correlation estimator ρc, as:

ρc =
E[CRC

∗
L]√

E[|CR|2]E[|CL|2]
(5.10)

To generate the interferogram, CR is multiplied by the complex conjugation of CL, as

follows

Ψ = Arg(CRC
∗
L) (5.11)

Finally, multilooking is applied to the interferogram in order to reduce the speckle noise

Ψm = Arg

[
1

nm

n∑
k=1

m∑
h=1

S1(k, h)S∗1(k, h)

]
(5.12)
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We choose a rectangular windowing for multilooking (i.e., 2 by 6 pixels in vertical and

horizontal direction, respectively), which takes into account the difference in range vs.

along track resolution and feature aspect ratio. Concerning the roll motion correction,

the proposed method takes advantage of the telemetry information that can be obtain

from the platform. For example, sensors mounted on aircraft wings can measure the roll

motion and the flight altitude. We mitigate the roll motion effect by exploiting a simple

geometrical model of the radar acquisition that allows one to compute the correction

angle. In the case of earth observation from aircraft platform, the roll motion correction

algorithm can be calibrated on data acquired on the ocean surface being the water a

completely flat reflector. The correction angle precision is equal to 1 degree.

5.2.3 Comparison of theoretical and real phase difference distributions

In the last step of the proposed technique, the distributions of the observed phase differ-

ence and the theoretical phase difference (for both nadir signal and cross-track clutter) are

compared. The frequency histogram of the real phase difference ∆Φr is extracted from the

interferogram. The theoretical phase differences ∆Φt are calculated in order to test two

Figure 5.5: Qualitative illustration of the comparison between theoretical and real phase dif-

ference distributions. The three different scenarios are shown. In red and in blue the real and

theoretical phase distributions respectively are presented.
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hypotheses for the considered the feature: cross-track surface clutter vs. nadir subsurface

signal. Therefore, two phase histograms associated with two features f1 and f2 are com-

puted (i.e., ∆Φt1 and ∆Φt2). The simple Sum of Absolute Difference (SAD) is computed

for each histogram pair ([∆Φr, ∆Φt1] and [∆Φr, ∆Φt2]) to determine which theoretical

distribution is a better fit for the observed distribution. SAD is the L1−norm computed

for a difference between two vectors and it varies between 0 and 2 Cha and Srihari [2002].

Moreover, other similarity measures could be considered. Our approach identifies three

possible scenarios (see Figure 5.5): i) the observed phase distribution matches one of

the theoretical distributions (either for clutter or subsurface), ii) the observed distribu-

tion matches none of the theoretical distributions (thus suggesting a subsurface off-nadir

return); and iii) the observed distribution matches both the clutter and subsurface dis-

tributions (requiring ancillary data to resolve the ambiguity). In scenarios i) and ii), we

are able to uniquely identify if the investigated feature is clutter or a subsurface return,

because the off-nadir echo has a phase difference distribution with mean different from

zero. On the other end, scenario iii) represents the case in which even if an echo comes

from an off-nadir region both the real and the simulated phase differences are equal to

zero, requiring additional information to discriminate a nadir feature from clutter. Sce-

nario iii) is possible when the baseline is very large and/or when the flight altitude is

low. However, when the proposed approach is applied to RS acquired from satellite, only

scenarios i) and ii) are possible.

Two limitations of the proposed approach need to be discussed. i) The first one

is related to the discrimination of overlapped features (i.e., when the subsurface and

off-nadir returns are totally overlapped). Note that, this issue is also critical for every

single-channel RS system. The proposed method could solve this problem by tracking

longer the features in the along-track direction of the radargram. This is a reasonable

solution for scientific interpretation of the radargram, because features of interest typically

extend beyond the point of overlap with clutter contributions. ii) The second problem

is the clutter discrimination ambiguity due to low flight altitude acquisitions (i.e., phase

difference equal to zero for a clutter feature). As discussed above (scenario iii)), this issue

occurs only for airborne observations, where the relatively low flight altitude makes the

phased difference wrapping faster than in the satellite case (see simulated results presented

and discussed in Section 5.4).

5.3 Dataset description and experimental results

The data used in this study were collected by UTIG in the Spring of 2014 over Bow-

doin Glacier (Greenland), during a collaborative project with the Scott Polar Research
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Institute at Cambridge University. The MARFA system used is an updated version

of HiCARS radar (Peters et al. [2007]). The collected tracks offer the opportunity to

analyze different kinds of subsurface and clutter features (see Figure 5.6). The first

track, NAQLK/JKB2j/ZY1b, is collected in a region of Greenland far from sources

of surface clutter (e.g. nunataks, crevasse fields). Tracks GOG/JKB2j/BWN01b and

GOG/JKB2j/BWN01a are acquired in a region where the subsurface probed by the RS is

surrounded by nunataks (i.e., an exposed peak, not covered with ice or snow), making the

interpretation (using single-channel RS data) challenging or impossible due to the strong

presence of clutter.

Figure 5.6: Location of the RS tracks collected by MARFA on the Greenland ice shell.

5.3.1 MARFA radar system description

The High Capability Airborne Radar Sounder (HiCARS) is an ice-penetrating radar oper-

ated by the UTIG Peters et al. [2007]. This instrument allows researchers to build profiles

of ice sheets that show the ice surface, internal layers, and the bedrock in Antarctica and
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Figure 5.7: Block scheme of the MARFA radar system.

Greenland. HiCARS has been configured with an array of two dipole antennas installed

on the wings of a DC-3 aircraft. The radar system has been recently updated by UTIG in

Table 5.1: Typical operating parameters for MARFA RS.

Main System Parameters Parameter Values

Operating Frequency 52.5-67.5 MHz

Bandwidth 15 MHz

Wavelength ∼5 meters

Number of Antenna Elements 2 (TX/RX)

Baseline 19 meters

Sampling Frequency 50 MHz

Pulse Repetition Frequency 6250 Hz

Pre-summing Factor 32
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order to independently record the echoes received by each antenna. Figure 5.7 shows the

updated configuration called MARFA. Two transmit/receive switches were used instead

of one, the low noise amplifier system in VHF Receiver (VHFRX) was duplicated, and

another digitizer module was added, allowing the echoes from each antenna to be recorded

separately. To monitor the reference phase, during pulse transmission, a sample of the

generated RF chirp was obtained from the RF power amplifier stage and multiplexed

into the received radar trace. The system configuration used in most recent campaigns is

shown in Table 5.1.

5.3.2 Dataset 1: deep subsurface

The first RS track is 50 line-km long and the resolutions in the along-track and range

direction are 15 meters and 5 (in pure ice) meters, respectively.

Figure 5.8: Deep subsurface dataset (track NAQLK/JKB2j/ZY1b); optical imagery acquired on

Greenland (DigitalGlobe).

Figure 5.8 shows the NAQLK/JKB2j/ZY1b radar track acquired on Greenland. This

track was acquired over the ice sheet interior, where we do not expect the presence of sur-

face clutter. This line provides an initial demonstration of the capability to distinguish a

subsurface nadir return without any prior knowledge about the surface characteristics of

the terrain probed. Analyzing the radargram in Figure 5.9a alone would not enable deter-

mination of whether the return below the surface is clutter or a nadir subsurface return

(e.g., bedrock). By contrast, Figure 5.9b shows that the echo can be identified as nadir
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Figure 5.9: Deep subsurface dataset (track NAQLK/JKB2j/ZY1b): (a) Amplitude radargram

obtained from a single channel (left) of MARFA radar (11.5 km long portion of the entire

acquisition), (b) RS interferogram obtained with the proposed method.

subsurface return, because it has a cross-channel phase difference equal to zero. Following

the proposed method, a feature was manually selected from the amplitude radargram and

hypothesis (nadir return and clutter) histograms were simulated and compared to the

observed phase histogram. Figure 5.10 shows these three phase histograms. They show

that the phase difference distribution under nadir return hypothesis is more similar (par-

ticularly in terms of the average of the distribution) to the real phase difference for the

selected feature. This result is also supported by the metrics reported in Table 5.2, where

the SAD between real and simulated distributions is close to zero for the nadir return

case (i.e. 0.29), and the mean of the distribution is also close to zero (i.e. -1.3). It is

important to note that the expected value for the mean is zero when the selected feature

is a subsurface feature. This result confirms the hypothesis that the selected feature is

the bedrock of the icy region analyzed. An additional piece of supporting evidence can be

obtained from the optical image (DigitalGlobe) in Figure 5.8, which shows that there are

no off-nadir surface features at the same delay that MARFA could have acquired along

the track ZY1b. The bedrock elevation map computed in Bamber et al. [2013] can also

validate the result obtained with the proposed method. Although the resolution of this

data is limited (i.e., the uncertainties in bed elevation exceeding ±100 m), the results
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Figure 5.10: Feature shown in Figure 5.9a: (a) theoretical phase difference histogram for nadir

hypothesis, (b) clutter hypothesis and (c) real phase difference histogram extracted from the

real interferogram.

presented in this Section match the thickness map. This confirms the capacity of the

proposed approach to identify a deep subsurface signal at nadir discriminating it from a

clutter feature.

Table 5.2: SAD obtained between the real and the simulated (on both nadir and clutter hypoth-

esis) histograms and mean of the simulated distributions.

Feature Type SAD mean

HP1: nadir 0.29 -1.30

HP2: clutter 0.74 43.73
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5.3.3 Dataset 2: Clutter feature detection

The second RS track considered is 120 line-km long and the resolutions in the along-

track and range direction are 15 meters and 5 (in pure ice) meters respectively. In

Figure 5.11: Clutter feature detection dataset (track GOG/JKB2j/BWN01b); optical image

acquired on Greenland (DigitalGlobe).

track BWN01b, due to the challenging acquisition plan designed for this data, both the

radargram and the interferogram are very complex. We focus our attention on the feature

shown in Figure 5.12a and 5.13. After applying the proposed method, we obtained the

histograms of this feature, which can be analyzed in details in Figure 5.14 and Table

5.3. Among the simulated histograms, Figure 5.14b (i.e., clutter hypothesis) has higher

similarity to the observed phase difference histogram (Figure 5.14c). The SAD metric also

supports the clutter-generated hypothesis. As shown in Table 5.3, the SAD value for the

clutter hypothesis is smaller than the one for the nadir hypothesis. Moreover, the mean

value of the real phase difference distribution matches only one of the two simulations (i.e.

clutter). Figure 5.11 confirms that the proposed method is able to correctly identify the

selected feature as surface clutter: both the range between the aircraft and the feature

projected on the terrain and the shape of the feature itself correspond well between the

optical data and the amplitude radargram. The independent detection of clutter is a

relevant feature that demonstrates the ability of the proposed method to prevent the
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Figure 5.12: Clutter feature detection dataset (track GOG/JKB2j/BWN01b); (a) amplitude

radargram obtained from a single channel (left) of MARFA radar (10 km long portion of the

entire acquisition), (b) RS interferogram obtained with the proposed method.

Figure 5.13: Clutter feature detection dataset (track GOG/JKB2j/BWN01b); zoomed portion

of the radargram containing the selected feature.

misinterpretation of off-nadir features, by modeling and matching the phase difference of

a two-channel RS system.
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Figure 5.14: Feature shown in Figure 5.11: (a) theoretical phase difference histogram for nadir

hypothesis, (b) clutter hypothesis and (c) real phase difference histogram extracted from the

interferogram.

Table 5.3: SAD obtained on real and simulated (on both nadir and clutter hypothesis) histograms

and mean of the simulated distributions for the selected feature.

Feature Type SAD mean

HP1: nadir 0.87 1.30

HP2: clutter 0.34 -27.03

5.3.4 Dataset 3: Clutter and subsurface discrimination

The last RS track is 78 line-km long and the resolutions in the along-track and range

direction are 15 meters and 5 (in pure ice) meters, respectively.

From the histograms of the phase difference (Figure 5.18) one can determine that f1

(see Figure 5.18a and Figure 5.18e) is a clutter feature. This is confirmed by projecting

f1 (according to its delay) in the across track direction onto the surface. The position of
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Figure 5.15: Clutter and subsurface discrimination dataset (track GOG/JKB2j/BWN01a); op-

tical image acquired on Greenland (DigitalGlobe).

the projection matches the distance indicated in Figure 5.15 between the track and the

nunatak, which is the source of the clutter feature. This result is also supported by the

quantitative metrics in Table 5.4, where the SAD is 0.39 for the clutter hypothesis. This

means that there is good similarity between the real and the simulated (clutter hypothesis)

histograms. Conversely, a SAD factor of 1.18 expresses a lower similarity value between

the real histogram and the nadir simulation. For feature f2, both the qualitative (Figure

5.18) and the quantitative (Table 5.5) results support that it is a nadir feature. Taking

advantage of the available optical image (computing the projection of feature f2 on the

surface) we confirm that the cross track projection of the feature do not match any off

nadir return. This result is confirmed by the quantitative metrics in Table 5.5, where the

SAD is 1.59 for the clutter hypothesis. This means that there is low similarity between

the real and the simulated histograms when clutter hypothesis is considered. On the other

side, a SAD factor of 0.18 expresses a higher similarity value between the real histogram

and the simulated histogram under nadir hypothesis (with a phase difference mean equal

to 0.25).
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Figure 5.16: Clutter and subsurface discrimination dataset (track GOG/JKB2j/BWN01a); (a)

amplitude radargram obtained from a single channel (left) of MARFA radar (8 km long portion

of the entire acquisition), (b) RS interferogram obtained with the proposed method.

Figure 5.17: Clutter and subsurface discrimination dataset (track GOG/JKB2j/BWN01a);

zoomed portion of the radargram containing the selected features.
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Figure 5.18: Feature f1 shown in Figures 5.15 and 5.17: (a) theoretical phase difference histogram

for nadir hypothesis and (c) clutter hypothesis and (e) real phase difference histogram. Feature

f2 shown in Figures 5.15 and 5.17: (b) theoretical phase difference histogram for nadir hypothesis

and (d) clutter hypothesis and (f) real phase difference histogram.
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Table 5.4: SAD values obtained between the real and the simulated (on both nadir and clutter

hypothesis) histograms and the mean of the simulated distributions for feature f1.

Feature Type SAD mean

HP1: nadir 1.18 0.24

HP2: clutter 0.39 61.53

Table 5.5: SAD values obtained between the real and the simulated (on both nadir and clutter

hypothesis) histograms and mean of the simulated distributions for feature f2.

Feature Type SAD mean

HP1: nadir 0.18 0.25

HP2: clutter 1.59 -83.4
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5.4 Cross track clutter detection in planetary RS

In order to extend the study presented on airborne RS data to clutter detection using

planetary RS, we compare the theoretical phase difference obtained for two observation

scenarios: i) airborne sounding and ii) planetary sounding. This implies the use of two

different platforms carrying the radar, i.e., aircraft and satellite respectively. It worth

noting that the airborne platform flies at a lower altitude than the satellite one and it is

more affected by motion, roll in particular. Despite the analysis presented in this Section

can be generalized to a large number of radar sounders, we compare: i) a system having

the same design of MARFA with ii) a planetary radar operating on the Jupiter Moons.

The planetary radar is supposed to be a two channels sounder having two main differences

at system level with respect to MARFA: a lower central frequency and a slightly shorter

baseline. In particular, the central frequency chosen is 9 MHz, which is the same of the

RIME radar (Bruzzone et al. [2015]) currently under development for the JUICE mission,

while the selected baseline is 10 meter.

The first part of this analysis is devoted to the comparison of the theoretical phase

difference among the two channels for both the airborne and the satellite case. Figure 5.19

shows two examples of the phase difference behavior for a single frame. It is worth noting

that the flight altitude and the length of the baseline strongly affect the phase difference.

Thus, these variables have an impact on the effectiveness of the proposed method. In

particular, for a given baseline in the data acquired by a low-altitude airborne system

(see Figure 5.19a) the phase wraps rapidly in the cross-track, which can cause phase

ambiguities for single pulses. For higher altitudes (see Figure 5.19b), the phase difference

is more slowly varying, giving a unique phase signature in the across-track direction when

the two channel RS system reaches the altitude of a satellite platform. Consequently,

in the satellite case we expect to have a phase difference equal to zero only for a nadir

subsurface feature. This can be understood by comparing Figure 5.19a and Figure 5.19b.

5.19a shows that for a flight altitude of 1000 m with a baseline large 19 m we can estimate

to have 7 phase difference periods in the radar footprint that can cause cross-track and

nadir echo ambiguity. On the other side, Figure 5.19b shows that for a flight altitude

of 400 km with a baseline large 10 m we can estimate to have only 1 phase difference

period in the radar footprint that leads to have no cross-track and nadir echo ambiguity.

The second part of the analysis aims to simulate the expected received radargram and

the related interferogram in the same planetary case presented in 5.19b. Moreover, in the

simulation we assess the capability of the proposed method to discriminate clutter features

from subsurface nadir returns. The synthetic clutter feature corresponds to a depression

of 300 meters depth on the Europa surface that could be compared to a crater in the real



Cross track clutter detection in planetary RS 91

Figure 5.19: Theoretical phase difference behavior for a single range line in the case of a) phase

difference expected at low altitude, with H0 = 1000 m and B = 19 (MARFA airborne radar

configuration); b) phase difference expected for satellite application, with H0 = 400 km and

B = 10 m.
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Figure 5.20: Configuration of the simulation for RS orbiter case: (a) digital elevation model of

the Europa icy moon and synthetic clutter feature. (b) Simulated radargram.

scenario. This off-nadir surface feature is located 2.5 Km far from the nadir position and

it is 2.5 Km large (see Figure 5.20). Figure 5.21 shows a radargram simulation (Iorio et al.

[2008]) containing the surface and a clutter feature. In Figure 5.21b one can observe the

simulated interferogram, where the clutter and the nadir surface returns have different

values in terms of phase difference (i.e., ∆Φ = 0 for the nadir return and ∆Φ 6= 0 for

the off-nadir clutter). The histograms shown in Figures 5.22a and 5.22b allows one to

unequivocally discriminate the clutter from the nadir echo features. In Figure 5.22b one

can notice that the phase difference at the surface is always zero. When the experimental

airborne data is exploited (see Figure 5.10), the situation at the surface is different, i.e.,

the phase difference at the surface can assume non-zero values. This is mainly due to

the effect of the surface topography at the MARFA central frequency (i.e., 60 MHz). We

observed that for a flat surface, as in the case of data acquired on the ocean surface (used

to calibrate the roll correction algorithm), the phase difference is perfectly equal to zero.

When the surface is rough, higher is the frequency higher is the impact of the surface

roughness on the phase stability.



Cross track clutter detection in planetary RS 93

Figure 5.21: Planetary two-channel RS data simulation at Europa (10 meters baseline and 400

km orbit altitude): (a) radargram and (b) interferogram. (c) Phase difference histogram for the

magenta feature (surface echo). (d) Phase difference histogram for the yellow feature (clutter).

Figure 5.22: Planetary two-channel RS data simulation at Europa (10 meters baseline and 400

km orbit altitude): (a) radargram and (b) interferogram. (c) Phase difference histogram for the

magenta feature (surface echo). (d) Phase difference histogram for the yellow feature (clutter).
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5.5 Discussion and conclusion

In this Chapter, we have presented a proof of concept for a new radar sounding and

analysis approach, which can discriminate between surface clutter and subsurface sig-

nal. The proposed method achieves clutter feature discrimination through an analysis

of two-channel RS data. By studying the difference between estimated and observed

phase-difference distributions, surface clutter can be discriminated from subsurface signal

at nadir. This provides a solution to the problem of clutter discrimination in RS data

interpretation, which is not possible using only a single-channel RS. Theoretical anal-

yses and experimental results demonstrate that the proposed interferometric method is

effective for: i) detection of clutter or nadir echoes separately and ii) discrimination of

nadir from clutter echoes independently from ancillary data on surface topography. An

additional feature of the proposed technique is the capability to discriminate a nadir sub-

surface from subsurface clutter features. However, we could not validate this feature due

the lack of reference data on the subsurface. Limitations of the proposed method for low

altitude acquisition have been discussed in Section 5.2. Despite these challenges, the ex-

perimental results obtained on three different datasets, (acquired from MARFA radar on

Greenland), demonstrate the effectiveness of the interferometric approach. Simulations

show that the performance of the proposed method dramatically improves when a satellite

platform carries the radar on board, which is expected to be the primary target applica-

tion for the proposed technique. This significantly enhances the scientific interpretation

and the scientific return of planetary RS data. This enhancement is achieved through a

method that requires the low-complexity hardware considering a relatively simple two-

channel RS system. Therefore, it is particularly relevant in the design of planetary RSs

for which resources are limited. For these reasons, the proposed interferometric tech-

nique is an interesting candidate to solve the clutter detection problem in the Europa

mission Moussessian et al. [2015]. As future development, we plan to study a repeat pass

interferometry approach for clutter detection in radargram acquired by orbital RS.
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Conclusions and future work

This Chapter concludes the thesis by recalling the context of the addressed research and

by providing a summary of the novel contributions and a critical discussion of the re-

lated experimental results presented in the document. Finally, we provide ideas for future

developments of the proposed methods.

6.1 Research context and summary of novel contributions

In this thesis we have presented novel signal processing methods for the estimation of

biophysical parameters and for the analysis of icy terrains. The proposed methods repre-

sent valuable contributions for environmental monitoring analyzing remote sensing data

acquired with active sensors. Such methods improve the quality of the analysis dealing

with the scarcity of the reference samples. This allows the reduction of the operational

cost associated to the collection of reference measurements, which is essential to support

both practical application scenarios and scientific studies.

In the first part of this thesis, we introduced two main novel contributions on the

development of regression techniques for the estimation of biophysical parameters. In

particular, the proposed methods are: 1) A novel hybrid method for the correction of

the theoretical model inversion in bio/geophysical parameter estimation; and 2) a novel

semisupervised method for the estimation of biophysical parameters based on Support

Vector Regression.

In the second part, we presented a novel technique based on interferometry for clutter

detection in two-channel RS data.

Biophysical parameters estimation

In the first contribution of this thesis, we developed a novel hybrid approach to integrate

theoretical models with empirical observations related to few reference samples to esti-



96 Conclusions and future work

mate biophysical parameters. This novel methods is made up two main steps. In the first

step, a theoretical method is initially inverted to estimate the target values. Then, the

deviation between the target values estimated by theoretical method inversion and the

true target values is computed by exploiting fields reference samples. To characterize the

deviation we developed two different strategies. The first strategy, called global devia-

tion bias (GDB), computes a constant for all the samples under the assumption that the

deviation is globally independent and identically distributed in the feature space. The

second is the local deviation bias (LDB) strategy that computes the deviation according

the position of the samples in the feature space under the hypothesis that the deviation

changes in different portions of the feature space. We have shown the effectiveness of both

the GDB and LDB strategies estimating SMC from microwave sensor datasets acquired

by airborne. The experimental results obtained on three different datasets demonstrate

that the proposed method improves the estimation performance by reducing the impact

of intrinsic errors due to the analytical formulation of theoretical models. In the exper-

iments, we evaluated different feature combinations, such as different polarization and

incident angles. For each dataset, the GDB strategy was able to reduce the estimation

error (in terms of MAE and MSE) with respect to the inverse theoretical model. The

LDB strategy demonstrated its capability to further improves the correction performance

by modeling the deviation under more realistic assumptions. However, the LDB strategy

requires a higher number of good quality reference samples than the GBD strategy to

accurately model the deviation. For this reason, in real world application, when few ref-

erence samples are a available, the GDB approach is preferred. We want to highlight that

the proposed hybrid method can be applied to other estimation problems by considering

proper theoretical models.

In the second contribution of this thesis, we have presented a novel SSL method for

the estimation of biophysical parameters from remotely sensed images in the framework

of ε-insensitive support vector regression (SVR). The proposed method is made up two

steps. The first step aims at injecting additional priors information in the initial learning

of the SVR function in order to avoid the problems occurred due to the availability of the

small-sized biased training sets. This is achieved by giving different weights to training

samples that are obtained by a novel strategy that relies on the density of samples in

the feature space. According to the developed strategy higher weights are given to the

training samples located in the higher density locations of the feature space, and vice

versa. Then, a weighted SVR algorithm is introduced in order to adopt different weights

to training samples. The second step aims at jointly using labeled samples and a set of

informative unlabeled samples in order to better characterize the SVR learning function.
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This is achieved by introducing a new term in the WSVR presented in the first step. In

order to select the informative unlabeled samples that are located as closest as possible

to the ε-tube and outside of the ε-tube a novel strategy is presented. The proposed SSL

has been applied to the variables extracted from two datasets related to: i) the estimation

of the tree stem volume and ii) the estimation of the age of abalones. The experimental

results show that the proposed strategy allows one to improve the estimation performance

with zero cost of the collection of reference samples. The main advantages of the proposed

method are: i) the properly modeling of the SVR learning function when small-sized bi-

ased sets of training samples are available and ii) the reduction of the operational cost

associated to the collection of reference measurements, ii) the improvement in terms of

performance of the parameter estimation by introducing unlabeled samples in the training

phase of the learning.

Clutter detection method

In the third contribution of this thesis, we have presented a novel clutter detection method

in the context of RS data analysis. In particular, we relies on the analysis of two-channel

RS data by using a single-pass interferometric approach to study the phase-difference

distribution. The proposed method is based on three steps. The first step allows the

manual selection of a RS feature (clutter or subsurface) and the accurate modeling of

the theoretical phase difference among the cross-track antennas of the RS. The second

step is devoted to generate a radar sounder interferogram for extracting the real phase-

difference distribution related to the feature selected in step 1. Finally, in step 3, the

histograms of real and simulated phase difference are compared to define if the selected

feature is a clutter or a subsurface echo. The experimental results have been obtained on

three different datasets acquired from a two-channel RS system working at 60 MHz on

Greenland and they demonstrate the effectiveness of the interferometric approach. The

main advantages with respect to state of the art method for clutter suppression and detec-

tion are: i) the capability to detect the clutter independently from reference data on the

surface topography, and ii) the possibility to limit hardware complexity of airborne RS

systems. Moreover, the proposed clutter detection method can be a valuable solution to

discriminate nadir subsurface from subsurface lateral echoes. Finally, the formation of an

interferogram image using RS data is novel and is a relevant contribution to the field of RS

data analysis. We identified two main limitations of the proposed interferometric method:

i) completely overlapped subsurface and clutter features cannot be discriminated, and ii)

low flight altitude acquisition can limit its effectiveness. The first one, that affects also

single-channel RS systems, can be solved by analyzing longer features in the along-track

direction of the radargram. This is reasonable because usually a subsurface return ex-
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tends beyond the area overlapped with the clutter. The second problem occurs in airborne

observations, where the relatively low flight altitude makes the phase difference changing

fast. This decreased phase stability implies also an high sensitivity of the interferometric

phase to the surface roughness. In this thesis, the analysis has been also extended to

the satellite case. Simulated data shown that the performance of the proposed method

dramatically improves when the RS is on board of a high altitude platform. In addition to

this, the proposed method can use a low-complexity hardware system, which is particu-

larly suitable in the design of satellite RSs. This can be fundamental in planetary mission

aimed to explore remote celestial bodies. In this type of applications, the topographic

reference information are usually limited, thus the proposed method allows the clutter

discrimination without ancillary data. For this reason, a primary target application of

the proposed clutter detection method is the analysis of terrains using two-channel RSs

carried on satellite platform.

6.2 Concluding remarks and future developments

The studies, the methods and the results presented in this thesis regard the analysis of

microwave remote sensing data. Such methodologies are efficient instruments to optimize

the research on climate change and ice sheets dynamics. In this context, microwave remote

sensing data represents a unique non-intrusive mean to obtain large scale information.

The goal of the presented contributions is to correctly interpret this data with general

techniques applicable in different fields of research and easily scalable to a wide range of

applications.

Future developments regarding the regression methods for the estimation of biophysical

parameters focus on their full generalization in order to make them suited for the analysis

of a wider set of data. In particular, future works should address the following points:

• Extend the proposed hybrid approach to the use of other functional forms (polyno-

mial, exponential, etc.) to model the mapping function.

• Test the effectiveness of the proposed hybrid approach in other estimation problems

(e.g. the retrieval of snow pack variables in mountain areas).

• Study new techniques to compute the deviation between the inverse theoretical

model and the empirical reference data.

• Test the effectiveness of the proposed SSL method on other estimation problems

(e.g. the retrieval of SMC from satellite data).
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Concerning the proposed method for clutter detection using radar sounder data, the

future development should be devote to the:

• Development of a repeat pass procedure to apply the interferometric approach for

clutter detection to radargrams acquired by orbital RS.

• Extension of the proposed method to a completely automatic processing chain.

• Test of the proposed clutter detection method on different real datasets acquired at

different frequencies or at different altitude on the polar region of Earth.
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